Pontryagin’s Maximum Principle
an introduction

Boualem Djehiche
KTH, Stockholm

May 6, 2015
Deterministic optimal control problem:

Minimize or maximize

$$J(u) = \int_0^T f(x(t), u(t)) dt + h(x(T)),$$

with respect to $u : [0, T] \to U$, subject to

$$\begin{cases}
\dot{x}(t) = b(x(t), u(t)), & 0 < t \leq T, \\
x(0) = x_0.
\end{cases}$$

where, U is a given set of controls.
Stochastic optimal control problem:

Minimize or maximize

\[J(u) = E \left[\int_0^T f(x(t), u(t)) \, dt + h(x(T)) \right], \]

with respect to \(u : [0, T] \rightarrow U \), subject to

\[
\begin{align*}
\begin{align*}
\frac{dx(t)}{dt} &= b(x(t), u(t)) \, dt + \sigma(x(t), u(t)) \, dW(t), \\
x(0) &= x_0.
\end{align*}
\end{align*}
\]
Stochastic optimal control problem for systems of mean-field type

Minimize or maximize

$$J(u) = E \left[\int_0^T f(x(t), E[x(t)], u(t)) dt + h(x(T), E[x(T)]) \right],$$

with respect to $u: [0, T] \rightarrow U$, subject to

$$\begin{cases}
 dx(t) = b(x(t), E[x(t)], u(t)) dt + \sigma(x(t), E[x(t)], u(t)) dW(t), \\
 x(0) = x_0.
\end{cases}$$

Example:

$$J(u) = Var(x(T)) = E[x^2(T)] - (E[x(T)])^2.$$
Optimal control theory tries to answer two questions:

- Existence of a minimum/maximum of the performance functional J.
- Explicit computation/characterization of such a minimum/maximum.
 - The Bellman principle which yields the Hamilton-Jacobi-Bellman equation (HJB) for the value function;
 - Pontryagin’s maximum principle which yields the Hamiltonian system for "the derivative" of the value function.
Features of the Bellman principle and the HJB equation

- The Bellman principle is based on the "law of iterated conditional expectations".
 - It does not apply for dynamics of mean-field type:
 \[
 J(u) = E \left[\int_0^T f(x(t), E[x(t)], u(t)) dt + h(x(T), E[x(T)]) \right].
 \]

- The HJB equation is a nonlinear PDE, valid only for "Markovian systems", where the coefficients \(b, \sigma, h \) and \(f \) are deterministic functions of \((t, x)\).

- An eventual optimal control should be of "feedback form":
 \(\bar{u}(t) = \nu(t, X_t) \), where \(\nu \) is a deterministic function of \((t, x)\).
Features of the Pontryagin’s maximum principle

- Pontryagin’s principle is based on a ”perturbation technique” for the control process, that does not put ”structural” restrictions on the dynamics of the controlled system.
- It seems well suited for
 - Non-Markovian systems. i.e. where the coefficients b, σ, h and f are random and not necessarily deterministic functions of (t, x).
 - Systems of mean-field type.
A heuristic derivation of the Pontryagin’s principle

Minimize

\[J(u) = \int_0^T f(x(t), u(t)) dt + h(x(T)), \]

with respect to \(u : [0, T] \rightarrow U \), subject to

\[
\begin{align*}
\dot{x}(t) &= b(x(t), u(t)), \quad 0 < t \leq T, \\
x(0) &= x_0.
\end{align*}
\]

Using the Lagrangian multiplier method, we minimize the Lagrangian functional

\[
\mathcal{L}(x, u, p) := \int_0^T (f(x(t), u(t)) + p(t) \cdot (\dot{x}(t) - b(x(t), u(t))) dt + h(x(T)),
\]

(9)
Introducing the so-called Hamiltonian

\[
H(x, u, p) := p \cdot b(x, u) - f(x, u),
\]

the Lagrangian functional becomes

\[
\mathcal{L}(x, u, p) := \int_0^T \left(-H(x(t), u(t), p(t)) + p(t) \cdot \dot{x}(t) \right) dt + h(x(T)).
\]
If \((\bar{x}, \bar{u}, p)\) is a minimizer of \(\mathcal{L}\), performing a first-order Taylor expansion with perturbation \((\delta x, \delta u, \delta p)\), such that \(\delta x(0) = 0\):

\[
\delta \mathcal{L} := \mathcal{L}(\bar{x} + \delta x, \bar{u} + \delta u, p + \delta p) - \mathcal{L}(\bar{x}, \bar{u}, p) \\
\approx \int_0^T \left(-H_x \cdot \delta x - H_u \cdot \delta u - H_p \cdot \delta p + p \cdot \frac{d}{dt}(\delta x) + \delta p \cdot \dot{x} \right) dt \\
+ \left. h_x \cdot \delta x \right|_0^T,
\]

Integrating by parts, we obtain

\[
\delta \mathcal{L} \approx \int_0^T \left(-(H_x - \dot{p}) \cdot \delta x - H_u \cdot \delta u + (-H_p + \dot{x}) \cdot \delta p + \frac{d}{dt}(p \cdot \delta x) \right) dt \\
+ h_x \cdot \delta x(T).
\]
Requiring $\delta \mathcal{L} = 0$ and noting that $\delta x(0) = 0$, yields

$$0 = \int_0^T ((-H_x - \dot{p}) \cdot \delta x - H_u \cdot \delta u + (-H_p + \dot{x}) \cdot \delta p) \, dt$$
$$+ (h_x + p(T)) \cdot \delta x(T).$$

This in turn suggests that the extremal (\bar{x}, \bar{u}, p) satisfies the so-called Hamiltonian system associated with the optimal control problem (7)-(8):

$$\begin{cases}
\bar{x}(0) = x_0, & \text{(Initial value)} \\
\dot{\bar{x}}(t) = H_p(\bar{x}(t), p(t), \bar{u}(t)), & \text{(Controlled dynamics)} \\
\dot{p}(t) = -H_x(\bar{x}(t), p(t), \bar{u}(t)), & \text{(Adjoint equation)} \\
p(T) = -h_x(\bar{x}(T)), & \text{(Adjoint terminal value)} \\
H_u(\bar{x}(t), \bar{u}(t), p(t)) = 0, & \text{(\bar{u} extremal for H)}
\end{cases}$$
The adjoint equation

\[
\begin{aligned}
\dot{p}(t) &= -H_x(\bar{x}(t), p(t), \bar{u}(t)), \quad 0 \leq t < T, \\
p(T) &= -h_x(\bar{x}(T)).
\end{aligned}
\] (11)

Pontryagin’s Maximum Principle. If \((\bar{x}, \bar{u})\) is an optimal solution of the control problem (7)-(8), then there exists a function \(p\) solution of the adjoint equation (11) for which

\[
\bar{u}(t) = \arg \max_{u \in U} H(\bar{x}(t), u, p(t)), \quad 0 \leq t \leq T. \quad \text{(Maximum Principle)}
\]

This result says that \(\bar{u}\) is not only an extremal for the Hamiltonian \(H\). It is in fact a maximum.
This perturbation method, implicitly assumes that the set U of control is linear i.e. if $u \in U$ then also $u + \delta u \in U$.

But, in many practical examples, the set/space U is rather convex or a general metric space.

Device a new perturbation method which should be compatible with the structure of the set of controls.
If the set of controls U is convex, then a natural perturbation method would be a convex perturbation of a given optimal control \bar{u}:

$$\delta u := \epsilon(u - \bar{u}), \quad u \in U,$$

where, ϵ will tend to 0. Hence, if \bar{u} is optimal for J, we have

$$J(\bar{u} + \epsilon(u - \bar{u})) - J(\bar{u}) \geq 0,$$

and thus, we can write

$$(J'(\bar{u}), u - \bar{u}) \geq 0, \quad \forall u \in U,$$

provided that J is Gateaux differentiable.
A local maximum principle

Mimicking the previous formal computations we would expect the following (local) version of the maximum principle.

\[\frac{dH}{du}(\bar{x}(t), \bar{u}(t), p(t)) \cdot (u - \bar{u}(t)) \leq 0, \quad 0 \leq t \leq T, \quad \forall u \in U. \]
If the set U is not necessarily convex, but a *general separable metric space*,

Pontryagin’s approach suggests the following perturbation method called *spike variation* would be appropriate.

For $\epsilon > 0$, pick a subset $E_\epsilon \subset [0, T]$ such that $|E_\epsilon| = \epsilon$. The control process u^ϵ is a spike variation of u if

$$ u^\epsilon(t) := \begin{cases} u(t), & t \in E_\epsilon, \\ \bar{u}(t), & t \in E_\epsilon^c, \end{cases} $$

(12)

where, $u \in U$ is an arbitrary control.
Using the spike variation technique, Pontryagin’s main contribution is the following key relation between the performance functional J and the associated Hamiltonian H:

$$J(u^\varepsilon) - J(\bar{u}) = - \int_0^T \delta H(s) I_{E_\varepsilon}(s) \, ds + o(\varepsilon),$$

for arbitrary $u \in U$, where,

$$\delta H(s) = H(\bar{x}(s), u(s), p(s)) - H(\bar{x}(s), \bar{u}(s), p(s)).$$
We can choose it of the form $E_\epsilon := [\bar{t}, \bar{t} + \epsilon]$, for arbitrarily chosen $\bar{t} \in [0, T]$. This yields

$$0 \leq J(u^\epsilon) - J(\bar{u}) = -\int_{\bar{t}}^{\bar{t}+\epsilon} \delta H(t) \, dt + o(\epsilon).$$

Dividing by ϵ and then sending ϵ to zero together with the separability of U we obtain

$$\bar{u}(t) = \arg\max_{u \in U} H(\bar{x}(t), u, p(t)), \quad 0 \leq t \leq T. \quad \text{(Maximum Principle)}$$
Relation to the Hamilton-Jacobi-Bellman’s equation

The Hamilton-Jacobi-Bellman equation is a nonlinear backward PDE

\[
\begin{aligned}
\frac{\partial V}{\partial t}(t, x) + \max_u H(x, V_x(t, x), u) &= 0, \\
V(x, T) &= h(x).
\end{aligned}
\] (14)

satisfied by the value function \(V(x, t) \) defined by

\[
V(t, x) = \min_{u: x(t)=x} \int_t^T f(x(s), u(s)) dt + h(x(T))
\] (15)

The associated optimal control is of feedback type:

\[
u^*(t, x) = \arg \max_u H(x, V_x(t, x), u),
\]

which depends on \(V_x(t, x) \) but not on \(V \).
An informal comparison between the adjoint equation and the HJB equation suggests that

\[p(t) = V_x(t, x), \]

provided that the HJB equation admits a smooth solution \(V \). Unfortunately, smooth solutions of HJB equations are obtained in very few cases. Most of real world problems exhibit non-smooth solutions of the HJB equation.
References

Optimal Control

- Papers by BD with co-authors.

Backward SDEs