
Model-based Testing Simulating Unstable Networks and

Devices for IoT Software

IoTソフトウェアのための不安定なネットワークとデバイスを

シミュレートするモデルベーステスト

by

Jun Yoneyama

米山惇

A Master’s Thesis

修士論文

Submitted to

the Graduate School of the University of Tokyo

on February 28, 2018

in Partial Fulfillment of the Requirements

for the Degree of Master of Information Science and

Technology

in Computer Science

Thesis Supervisor: Masami Hagiya 萩谷昌己

Professor of Computer Science

ABSTRACT

IoT devices sometimes operate under unstable network environments because of re-
strictions such as location or size of the devices. In addition, while many devices work
in IoT environments, there is a possibility that multiple devices break down at the same
time. In order to test whether programs work correctly even under various unstable
environments, model-based testing, a testing method which extracts diverse test cases
automatically and performs automated tests, is considered to be effective. However, how
to describe many devices running asynchronously, and how to implement device failures
or unstable network environments in automated testing, are unclear.

In order to solve these problems, this paper proposes extended methods of model-
based testing suitable for programs working in IoT environments. First, the test method
is extended to improve expressiveness of test models. This extension enables describing
unstable systems by designating concerns such as error rates or the magnitude of network
delay as statistics. Second, the concept of time is introduced to model-based testing for
simulating and testing devices running in real time. Third, packet forwarders are inserted
in network communication paths so that they can be controlled by the test tool. This
method enables performing tests while causing network disconnection or delay artificially
without modifying the programs. Moreover, the test tool is extended by abstracting these
three extensions so that it can be easily used when test models are written.

In order to show usefulness of these methods, tests of a server and a client library
of MQTT, a transport protocol designed for IoT environments, with Modbat, a model-
based test tool, are performed. Moreover, simple applications using an MQTT server
and MQTT clients are created and tests of them are performed.

論文要旨

IoT向けデバイスは, デバイスの位置, 大きさなどの制約により, 不安定なネットワーク

環境で稼働する場合がある. 更に, IoT環境では多数のデバイスが動作するが, 外的な要因

により, 複数のデバイスが同時に故障する可能性がある. プログラムがさまざまな不安定

な状況でも正常に動作することをテストするためには, 多様なテストケースを機械的に抽

出して自動テストを行う手法であるモデルベーステストが有効であると考えられる. しか

し, 非同期的に動作する多数のデバイスをどのように記述すればよいか, また, デバイスの

故障や不安定なネットワークを自動テストでどのように実現するかは明らかでない.

これらの問題を解決するため, 本論文では, モデルベーステストの手法を拡張し, IoT環

境で動作するプログラムに適したテストを行う手法を提案する. 第一に, デバイスの数, 故

障率, ネットワークの遅延の大きさなどの関心事を統計量として指定して, それに従ってデ

バイスや通信路の故障が発生した場合のテストを簡潔に記述できるようにする. 第二に, モ

デルベーステストに時間の概念を導入し, 実時間上で動作するデバイス群のシミュレート

及びテストを行えるようにする. 第三に, プログラム間のネットワーク通信路にパケット

フォワーダーを挿入することにより, ネットワークの切断や遅延をシミュレートし, テスト

ツールから制御できるようにする. この手法では, 検証対象のプログラムを変更せずに, 不

安定なネットワークをシミュレートしながらテストを行うことができる. 更に, この三点の

拡張を抽象化し, テストを書く際に簡単に利用できるようテストツールの拡張を行う.

これらの手法の有効性を示すため, モデルベーステストツールModbatを用いて, IoT環

境向けに設計された通信プロトコルであるMQTTのサーバー及びクライアントライブラ

リのテストを行った. 更に, MQTTサーバー・クライアントを利用する簡単なアプリケー

ションを作成し, アプリケーション単位でのテストを行った.

Acknowledgements

We would like to thank Masami Hagiya for a lot of useful advice and super-
vision. We would also like to appreciate Cyrille Artho and Yoshinori Tanabe’s
advice.

Contents

1 Introduction 1
1.1 Background . 1
1.2 Our Research . 1
1.3 Outline . 2

2 Related Work 3
2.1 Model-based Testing . 3
2.2 Fault Injection . 3
2.3 IoT and Testing . 3

3 Preliminaries 5
3.1 Model-based Testing . 5

3.1.1 Modbat . 5
3.1.2 Extended Finite State Machines 5

3.2 MQTT . 6
3.2.1 Topic Name and Topic Filter 6
3.2.2 Interactions in MQTT . 7
3.2.3 Implementations . 8

4 Methods 9
4.1 Timed Extended Finite State Machines 9

4.1.1 Definition . 9
4.1.2 Implementation . 10

4.2 Dynamic Weight Change . 12
4.2.1 Definition . 12
4.2.2 Implementation . 13

4.3 Transition Invocation . 14
4.3.1 Definition . 14
4.3.2 Implementation . 15

4.4 Packet Forwarder . 16
4.4.1 Implementation . 16

5 Evaluation 18
5.1 Test of MQTT Client Library and Server 18

5.1.1 Method . 18
5.1.2 Models . 19
5.1.3 Results . 21

5.2 Test of Smart House . 22
5.2.1 Method . 22
5.2.2 Models . 23
5.2.3 Evaluation of the Effects . 26
5.2.4 Test Variations . 26

v

5.2.5 Results . 27

6 Conclusions 30

7 Future Work 31

References 32

vi

Chapter 1

Introduction

In this thesis, we extend methods of model-based testing for testing IoT systems
efficiently.

1.1 Background

In IoT environments, many devices are connected to the Internet. They commu-
nicate each other via the Internet to work together. However, these devices have
some restrictions in IoT environments.

First, communication methods of devices are limited. In most cases, IoT
devices are connected to the Internet wirelessly. However, since device location is
limited, devices may be far from routers or base stations. Moreover, some kinds
of devices may move around. Because of this restriction, IoT devices need to
work under unstable radio condition.

Second, device size is limited because there may not be enough space for IoT
devices. Clearly, only small antennas can be installed on a small device. This
restriction also makes the network connection of devices unstable. In addition, a
small device can mount only small battery packs, which increases risks that the
device battery run out.

Because of these restrictions, IoT devices are required to work under unstable
network environments and unstable device condition.

1.2 Our Research

In an IoT system, many devices work together communicating one another. In
order to find bugs in programs working on these devices, the programs need to
be tested. Many programs running asynchronously may produce many execution
paths, therefore model-based testing is considered to be suitable for such situ-
ations. However, it is difficult to test these programs with usual model-based
testing. For example, it is easy to describe behavior of each device in model-
based testing, but it is difficult to describe the whole behavior of the system. In
addition, methods to simulate device failures or unstable network environments
in automated testing are not established.

This research proposes extensions for model-based testing to perform test-
ing suitable for programs working in IoT environments. Our methods consist
of mainly two approaches. First approach is to extend the definition of model-
based testing in order to describe IoT systems as test models. This approach
consists of three extensions. First extension introduces timed extended finite state
machines, which enable describing systems working in real time. Second exten-
sion, dynamic weight change enables describing devices whose error rates may

1

be changed. Third extension, transition invocation simplifies model description
of devices which handle errors with callback functions, or devices whose states
are changed by the environment forcibly. Second approach is to simulate unsta-
ble network environments during test execution. It introduces a mechanism to
simulate unstable network line by software. We implemented these extensions in
Modbat, a model-based test tool.

Moreover, we created test models of IoT systems using these extensions and
performed tests of the models with Modbat.

1.3 Outline

This thesis is structured as follows. Chapter 2 summarizes the related work.
Chapter 3 describes the background knowledge for this research. Chapter 4
describes the definitions and implementations of our extensions. The methods
and the results of the experiments are described in Chapter 5. Finally, Chapter 6
concludes this thesis and Chapter 7 discusses the future work.

2

Chapter 2

Related Work

This chapter describes relevant work. Since our study proposes methods to test
software on IoT environments using a model-based test tool and fault injection,
we refer studies on model-based testing, fault injection, and IoT testing.

2.1 Model-based Testing

Testing is a kind of method to test programs by executing a part of the pro-
grams and comparing expected output and actual output. Model-based testing
is a variant of testing in which abstract models of the software are described to
generate test cases automatically [25]. There are some test tools for model-based
testing, such as QuickCheck [11], ScalaCheck [19] and Modbat [7].

In concurrent systems, the output of the system may be non-deterministic,
and there is an approach to verify the output by enumerating possible outputs [5].

2.2 Fault Injection

Fault injection is a technique to inject errors into the system artificially in order
to test the robustness of the system [21], [14]. This technique is also applied to
software testing as software implemented fault injection (SWIFI). There are tools
for SWIFI, such as FERRARI [15], DOCTOR [13] and MODIFI [23].

There is a study that evaluates effects of network error on a Myrinet network
interface hardware by using simulated fault injection and software implemented
fault injection [22]. Both methods in this study modify the system under test
(SUT) to inject faults. Our study differs from this in that our method injects
faults with software, without modifying the SUT.

2.3 IoT and Testing

There are transport protocols designed for IoT devices such as MQTT [8] and
CoAP [9]. In these protocols, multiple clients communicate one another via a
server.

There is an approach to verify MQTT implementations formally [18]. In
this study, the specification is described in a formal language TTCN-3 [12], and
MQTT servers are tested according to the specification, by sending messages and
receiving responses from them. They tested three MQTT server implementations
and found that all of them produced responses violating the protocol specification.

In a study evaluating the performance of MQTT and CoAP, unstable network
environments are realized by using running a WAN emulator in another PC [24].
This study evaluates correlation between network instability and performance,

3

such as the size of network delay and packet loss rate. Our approach differs
from this study in that no extra equipment is required, and that the network
environment can be easily controlled by the software during a test. However, this
study may be superior to our study in that this method simulates network errors
more faithfully than our method.

There is also a study that analyzes loss and delay of MQTT messages in ac-
tual wireless network environment by capturing TCP packets [17]. This study
analyzes correlation between the size of message payload and message loss, on
wired network and wireless network. This method enables testing in actual envi-
ronments, but our method can control network errors more finely by software.

Our approach differs from these studies in that network disconnection is sim-
ulated in a situation close to the actual environment, that MQTT clients are also
tested, and that the whole system can be tested.

4

Chapter 3

Preliminaries

This thesis extends the method of model-based testing, and performs tests of
MQTT implementations. Model-based testing is a kind of test method for soft-
ware testing. MQTT is a transport protocol designed for IoT environments.
This chapter describes the background knowledge about model-based testing and
MQTT.

3.1 Model-based Testing

Software testing is a method to find bugs in software by executing some parts of
the software. The target software for the test is called system under test (SUT).
Usually, one test case consists of a pair of an input and an expected output, and
a test is performed by comparing the actual output and the expected output.

Model-based testing is one of the methods of software testing. In this method,
test writer defines a model abstracting behavior of the SUT as an abstract model.
This method enables generating multiple test cases from the model.

3.1.1 Modbat

Modbat is one of test tools for model-based testing. [7, 4] This tool is mainly
designed for testing an SUT with an application programming interface (API).
A model in Modbat is expressed as an extended finite state machine (EFSM) in
a domain-specific language based on Scala [16, 20].

Modbat is implemented in Scala and is able to test APIs in Java and Scala.

3.1.2 Extended Finite State Machines

Definition 3.1. An extended finite state machine is defined as a 7-tuple M =
(I,O, S,D, F, U, T), where

• S is a set of symbolic states,

• I is a set of input symbols,

• O is a set of output symbols,

• D is an n-dimensional vector space D1 × . . .×Dn,

• F is a set of enabling functions fi such that fi : D → {0, 1},

• U is a set of update functions ui such that ui : D → D, and

• T is a transition relation such that T ⊆ (S × F × I)× (S × U ×O) [10].

5

Here D stands for the internal state of the model.
And the state of the model at a specific time is expressed as follows.

Definition 3.2. A state of the EFSM M is defined as (s,x), where s ∈ S and
x ∈ D.

We denote a transition ((s1, f, i) , (s2, u, o)) ∈ T as (s1, f, i) → (s2, u, o), where
s1, s2 ∈ S, f ∈ F , i ∈ I, u ∈ U and o ∈ O. Intuitively, a transition (s1, f, i) →
(s2, u, o) means that when the system is in the symbolic state s1, its internal state
x satisfies f(x) = 1 and the input i is given, the SUT moves to the symbolic
state s2 with generating output o and updating the internal state x := u(x) [10].

3.2 MQTT

MQTT is a transport protocol designed for IoT environments. [8] This protocol
has some characteristics suitable for devices with unstable network environments
and limited power sources. This protocol runs over TCP/IP or another trans-
port layer protocol which supports ordered, lossless and bidirectional communica-
tion. [8] We assume TCP/IP connection and use terms of TCP/IP in this paper.
We also focus on MQTT version 3.1.1.

Client B

Server

Client A

Figure 3.1: An example system communicating with MQTT

MQTT is a publish/subscribe pattern protocol in which multiple clients ex-
change messages via a server. A server is sometimes called a broker in this
protocol. Each message has a payload, a topic name and a value named Quality
of Service (QoS). This protocol can guarantee message arrival even if devices are
working in unstable network environments that TCP connection may be lost. A
topic name is a string used to control delivery of messages.

QoS is used to guarantee message arrival. MQTT defines three types of QoS,
namely 0 to 2 as follows.

QoS 0 This message is delivered “at most once”. The message may be lost
during delivery.

QoS 1 This message is delivered “at least once”. The message may be delivered
multiple times.

QoS 2 This message is delivered “exactly once”. No message lose or redundant
delivery is allowed. [8]

3.2.1 Topic Name and Topic Filter

A topic name is a string sequence separated into hierarchies by slashes. A client
can subscribe topic filters, which represent a set of topics. When the server
receives a message from a client, the server forwards the message to clients of
which topic filters match the topic name of the message.

6

The structure of a topic filter is similar to that of a topic name, but the usage
of wildcards is allowed in a topic filter.

3.2.2 Interactions in MQTT

Here we describe the overall behavior of interactions between a server and a client.

Connect

When a server is running, it is waiting for a TCP connection at a particular port.
Connection process begins with TCP connection request from the client. After
the connection is established, the client sends a CONNECT packet to the server.
The CONNECT packet includes a string client identifier and several flags.

We describe clean session flag here. Clean session is a one-bit value included
in the CONNECT packet to define treatment of the session state. A Session is an
interaction between the server and the client which stores various states between
them. If the clean session flag is set to 1 in the CONNECT packet, the server
discards all information about the client and starts entirely new session then. If
it is set to 0, the session is regarded as the continuing session from the previous
connection with the client.

After receiving the CONNECT packet, the server responds with a CONNACK

packet, indicating acceptance or rejection.

Subscribe

The client subscribes topics to receive messages from the server with a SUBSCRIBE
packet. A SUBSCRIBE packet consists of a list of pairs of a topic filter and a
requested QoS. A pair of a topic filter and a QoS indicates subscribing messages
with topics matching the filter with at most the desired QoS.

The server responds to the client with a SUBACK packet, which shows success
or failure for each topic filter.

The client can quit subscription with an UNSUBSCRIBE packet, and the server
responds to it with an UNSUBACK packet.

Publish

A message is published from a client to a server, or a server to a client. Packet
interaction is the same in both directions. Here we distinguish a client and a
server with the words a sender and a receiver.

In a publish process, the sender sends a PUBLISH packet to the receiver first.
The packet includes a topic, a QoS, a retain flag and a payload. The response of
the receiver varies depending on the QoS.

QoS 0 The receiver makes no response.

QoS 1 The receiver responds with a PUBACK packet. The sender sends the
PUBLISH packet again if the network connection is lost without receiving
the PUBACK packet.

QoS 2 The receiver responds with a PUBREC packet. If the sender does not re-
ceive the PUBREC packet, it sends the PUBLISH packet again. After receiving
the PUBREC packet the sender sends a PUBREL packet, and again the receiver
responds with a PUBCOMP packet. The sender also sends the PUBREC packet
again if the PUBCOMP packet does not reach the sender.

7

A PUBLISH packet in QoS 1 or QoS 2 also has a value packet identifier, and the
responses for the packet have the same packet identifier to indicate the relation
to the message.

A retain flag is one-bit value in a PUBLISH packet. If the flag is set to 1 in
a PUBLISH packet from the client, the server stores the message for future sub-
scriptions. One message is stored for each topic, therefore the arrival of another
message with the same topic and retain flag 1 overwrites the stored message.

Disconnect

When the client disconnects from the server, the client sends a DISCONNECT

packet. The server makes no response and closes the TCP connection. If the
connection started with setting clean session to 0, the server stores the session
state with the client, including its subscriptions and unacknowledged messages
in QoS 1 or QoS 2.

3.2.3 Implementations

The specification of MQTT is published, and there are many open source imple-
mentations for MQTT servers and clients.

Eclipse Mosquitto is an open source broker implementation for the MQTT
protocol versions 3.1 and 3.1.1 [2]. Mosquitto also contains a C and C++ client
library. The broker is mainly written in C language.

Eclipse Paho is an open source project including implementations of MQTT
libraries for many programming languages [1]. Each library provides APIs for
MQTT communications, such as connecting, publish messages, subscribing and
disconnecting.

Both Eclipse Mosquitto and Eclipse Paho are parts of iot.eclipse.org projects.

8

Chapter 4

Methods

We propose extensions for model-based testing and have implemented them in
Modbat. All of those extensions are designed for testing IoT devices, but they
may be also useful for testing other software. In this chapter, we describe the
purpose, the definition and the implementation of each extension.

Section 4.1, 4.2 and 4.3 describe extensions for model-based testing for im-
proving description of models. These extensions enable describing models which
are not describable in original model-based testing, or simplify model descrip-
tion. Each of these sections shows the formal definition and the implementation
in Modbat of each extension. Section 4.4 describes an extension for test execu-
tion, which enables testing while simulating unstable network environments.

4.1 Timed Extended Finite State Machines

In an EFSM, the transitions are decided by the symbolic state s ∈ S, the internal
state x ∈ D and the input i ∈ I. However, actual systems sometimes affected by
the time, therefore it is natural to extend an EFSM to utilize the time to decide
whether a transition is able to be executed.

Though it is possible to extend enabling functions to take the time for an
additional argument, we need to take care of difference between the internal
state condition and the time condition. Namely, if there is no possible transi-
tion because of the enabling functions, the model will never have an executable
transition. On the other hand, if there is no possible transition because of the
time conditions, it is possible to continue transition in the future, with some time
conditions satisfied.

We designed an extension for an EFSM to deal with the time in a limited way
so that the models are simply described and easily confirmed their terminating
condition. This extension defines timed extended finite state machines (TEF-
SMs), and a transition in a TEFSM may suspend some transitions in the model
for a specific period. While some transitions are suspended, the other transitions
are able to be executed.

4.1.1 Definition

Definition 4.1. A timed extended finite state machine (TEFSM) is defined as
an 8-tuple M = (I,O, S,D, F, U,Π, T), where

• I,O, S,D, F, U are the same as those of Definition 3.1,

• Π is a set of suspending functions πi such that πi : T → R≥0, and

• T is a transition relation such that T ⊆ (S×F ×I)×(S×U×Π×R≥0×O).

9

Definition 4.2. A state of the TEFSM M is defined as a 4-tuple (s,x, p, τ),
where s ∈ S, x ∈ D, p : T → R≥0 and τ ∈ R≥0.

Here p(t) ∈ R≥0 represents the suspending time for each transition t ∈ T ,
and τ represents the current time of the test. A test starts from the state with
p(t) = 0 for all t ∈ T and τ = 0. We describe additional variables in t =
(s1, f, i) → (s2, u, π, e, o). The variable e ∈ R≥0 represents the execution time of
t, namely, when the transition t is executed, the time advances by e.

When the system is in the state (s,x, p, τ), a transition t = (s1, f, i) →
(s2, u, π, e, o) is executable if and only if s = s1, f(x) = 1 and p(t) ≤ τ . And
executing the transition t updates the state by

s := s2 (4.1)

x := u(x) (4.2)

p := p′ (4.3)

where p′(t′) = τ + e+ π(t′) (4.4)

τ := τ + e. (4.5)

4.1.2 Implementation

We implemented this extension in Modbat as an additional method for Modbat.
This implementation is designed for models executing multiple model instances
in parallel. Each model instance has a boolean flag staying, which means all the
transitions in the model instance are suspended if it is set to true.

The value e in a transition in a TEFSM models the execution time of the
transition, but the execution time may vary in actual test executions. In this
implementation, appending stay method to a transition function can assign the
suspending time to the transition in the model. This method is overloaded in two
ways, with one integer value or a pair of two integer values. After a transition
function with stay (x, y) attached is executed, a random integer z larger than
x (inclusive) and smaller than y (exclusive) is chosen. Then the model instance
suspends for z milliseconds and other model instances keep running. Internally,
the variable staying is set to true then, and a timer thread is started. The timer
thread sleeps for z milliseconds and then sets the stay variable of the model
instance to false. Here z corresponds to the suspending time p(t) in the TEFSM,
but this implementation extends the suspending time non-deterministically. The
method with one integer argument is a syntax sugar of that with a pair of two
integers argument, namely, stay x is equivalent to stay (x, x). These methods
can be used like an attribute of a transition, by using method chain notation of
Scala (Figure 4.1).

At each moment Modbat tries to execute a transition, it enumerates all possi-
ble transitions and terminates the test execution if there is no transition satisfying
its enabling function. However, if there is no executable transition but there are
transitions in staying model instances, it is expected for Modbat to wait until
one of the staying model instances finishes staying. This functionality is imple-
mented in Modbat by using a unique object stayLock and methods for handling
threads in Java, wait and notify. When Modbat enumerates all possible transi-
tions and find only transitions in staying model instances, the main thread calls
wait method with the object stayLock. On the other hand, the timer thread
calls notify with stayLock after sleeping and setting staying to true. Then the
main thread is resumed, and the test execution continues running.

10

class A extends Model {

// suspended for 100 ms after execution

"a" -> "b" := {

// some actions

} label "x" stay 100

// suspended for a specific duration between 150 ms and 200 ms

"b" -> "c" := {

// some actions

} label "y" stay (150, 200)

"c" -> "d" := {

// some actions

} label "z"

}

Figure 4.1: A Modbat model using two types of stay methods

class A extends Model {

var lastTransition: Long = _

// suspended for 100 ms after execution

"a" -> "b" := {

// some actions

lastTransition = System.currentTimeMillis()

} label "x"

// suspended for a specific duration between 150 ms and 200 ms

"b" -> "c" := {

require(System.currentTimeMillis() - lastTransition >= 100)

// some actions

lastTransition = System.currentTimeMillis()

} label "y"

"c" -> "d" := {

require(System.currentTimeMillis() - lastTransition >=

choose(150, 200))

// some actions

} label "z"

}

Figure 4.2: A Modbat model with similar behavior to that of Figure 4.1 without
using stay method

Figure 4.1 shows an example model to use two types of stay methods. The
model in Figure 4.2 reproduces similar behavior without using stay method, but
its description is complex. The code will be more complex if the model has more
transitions. Moreover, if the require statement is not satisfied and there is no
other executable transition, the test execution terminates then, even though the
transitions can be executable in the future.

11

4.2 Dynamic Weight Change

An EFSM in Modbat behaves probabilistically in actual test executions according
to the weights of the transitions. Each transition has a real number named weight,
and the probability that the transition is chosen is proportional to its weight. This
functionality is useful for simulating non-deterministic behavior of the SUT and
for generating various test cases.

In this paper, we propose extension for this functionality so that the weights
can be modified dynamically during a test execution. This feature cannot be
realized in the original model-based testing. This extension enables simulating
situations that many devices break probabilistically, but the error rates change
depending on the environment. Such situations can be easily implemented by
creating a model that models the environment and controls the error rates of the
device models.

4.2.1 Definition

Before defining our proposed extension, we formalize this probabilistic behavior
as follows.

Definition 4.3. A probabilistic extended finite state machine (PEFSM) is de-
fined as an 8-tuple M = (I,O, S,D, F, U, T, w), where

• I,O, S,D, F, U, T are the same as those of Definition 3.1 respectively, and

• w is a weight function w : T → R≥0, where R≥0 is the set of non-negative
real numbers.

The state of this model is expressed as (s,x) ∈ S ×D, which is the same as
that of EFSM.

The transition probability is decided by the weight function. First, the weight
of a transition t = ((s1, f, i) → (s2, u, o)) ∈ T is defined by w(t). Second, a set of
possible transition Ts,x,i for each model state (s,x) ∈ S ×D and input i ∈ I is
defined as follows.

Ts,x,i = {((s1, f, j) → (s2, u, o)) ∈ T | s = s1, f(x) = 1, i = j} (4.6)

Then the probability that t ∈ Ts,x,i is chosen is decided proportionately to w(t),
indeed,

w(t)∑
t′∈Ts,x,i

w(t′)
. (4.7)

In Modbat, weights are expressed as a variable of type double attached to a
transition.

We extend PEFSMs to enable updating transition weights dynamically.

Definition 4.4. A dynamic probabilistic extended finite state machine (DPEFSM)
is defined as a 9-tuple M = (I,O, S,D, F, U,Ω, T, w0), where

• I,O, S,D, F, U are the same as those of Definition 3.1 respectively,

• Ω is a set of weight update functions ωi such that ωi : T → R≥0∪{∗}, where
∗ is a fresh symbol,

• T is a transition relation such that T ⊆ (S × F × I) × (S × U ×W × O),
and

12

class Environment extends Model {

var device: Device = _

"init" -> "stable" := {

device = new Device

launch(device)

}

"stable" -> "unstable" := {

device.setWeight("run", 0.5)

device.setWeight("break", 0.5)

}

"unstable" -> "stable" := {

device.setWeight("run", 0.9)

device.setWeight("break", 0.1)

}

}

class Device extends Model {

"running" -> "running" :=

skip label "run" weight 0.9

"running" -> "broken" := {

// some actions

} label "break" weight 0.1

"broken" -> "broken" :=

skip label "break" weight 0.1

"broken" -> "running" := {

// some actions

} label "run" weight 0.9

}

Figure 4.3: Modbat models of the environment (left) and a device (right) using
setWeight

• w0 is an initial weight function w0 : T → R≥0.

Definition 4.5. A state of the DPEFSM M is defined as a triple (s,x, w), where
s ∈ S, x ∈ D and w : T → R≥0.

When the state of this model is (s,x, w), a transition ((s1, f, i) , (s2, u, ω, o)) ∈
T is executable if and only if s = s1 and f(x) = 1. The weight of such a transition
t is calculated by w(t) for this state, and the probability that t is chosen is decided
by the same way as in a PEFSM.

In this model, when a transition t = ((s1, f, i) , (s2, u, ω, o)) ∈ T is executed
with the state (s,x, w), the state is updated by

s := s2 (4.8)

x := u(x) (4.9)

w := w′ (4.10)

where w′(t′) =

{
w(t′) if ω(t′) = ∗
ω(t′) otherwise

. (4.11)

This update means the weights of some of the transitions is updated, and the
other weights are leaved unchanged.

4.2.2 Implementation

In Modbat, a string named label can be attached to a transition. The extension is
implemented by adding setWeight method in Model class. This method receives
a string l and a double value w, and sets the weights of the transitions whose
labels correspond to l, to w.

Figure 4.3 shows an example of models of the environment and a device. Here
skip is defined in Modbat as a method doing nothing. At the time the device is
launched, it repeats going to “running” state at 90% probability and to “broken”
state at 10% probability. When the model of the environment goes to “unstable”
state, the weights of the transitions in the device model are updated, and the
model goes to “running” state at 50% probability and to “broken” state at 50%
probability.

13

running run

broken

 break run

 break

Figure 4.4: The diagram of the model of the device in Figure 4.3

4.3 Transition Invocation

Model-based testing is good at describing actions of the SUTs, but it is difficult
to describe passive reactions of the SUTs. For example, it is common to use
callback functions in the software, and it is natural that the callback functions
change the symbolic state of the software. Furthermore, when multiple models
are running in parallel, it is possible for a model to control the symbolic state of
another model.

This functionality can be realized in original EFSMs by modifying the internal
state by callback functions and restricting transitions by the enabling functions.
However, this implementation requires additional variables and enabling func-
tions, and makes the model more complex.

In order to solve this problem, we propose an extension for model-based test-
ing that enables invoking transition functions directly by callback functions or
other models.

4.3.1 Definition

Definition 4.6. An invokable extended finite state machine (IEFSM) is defined
as a 9-tuple M = (I,O, S,D, F, U, L, λ, T), where

• I,O, S,D, F, U are the same as those of Definition 3.1,

• L is a set of label symbols,

• λ is a labeling function, such that λ : L → T , and

• T is a transition relation such that T ⊆ (S × F × I) × (S × U × L∗ × O),
where L∗ is the set of finite sequences of label symbols.

Definition 4.7. A state of IEFSM M is defined as a triple (s,x, q), where s ∈ S,
x ∈ D, and q is a queue of the elements of L.

Intuitively, the queue of the labels q represents a queue of next transitions. If
q is not empty, the front transition of q is executed if possible, instead of choosing
possible transitions from T . In addition, a transition function can push elements
to q when it is executed.

Formally, when the system is in the state (s,x, q) and q is not empty, let l ∈ L
be the front element of q, and let t be t = (s1, f, i) → (s2, u, (l1, . . . , ln), o) = λ(l).
At this moment l is popped out from q. If t satisfies the condition s = s1,
f(x) = 1 and the input i is given, t is executed. Otherwise, a transition is looked
up from q again in the same way. If q is empty, the executed transition is chosen
by the same method as that of EFSMs.

14

class Device extends Model {

"running" -> "running" := {

// some actions

} label "action"

"running" -> "broken" := {

} label "error" weight 0.0

"broken" -> "running" := {

// handle error

} label "handle"

def callbackOnError(): Unit = {

invokeTransition("error")

}

}

Figure 4.5: An example model using in-
vokeTransition

class Device extends Model {

var hasError: Boolean = false

"running" -> "running" := {

require(!hasError)

// some actions

} label "action"

"running" -> "broken" := {

require(hasError)

} label "error"

"broken" -> "running" := {

// handle error

hasError = false

} label "handle"

def callbackOnError(): Unit = {

hasError = true

}

}

Figure 4.6: A model with similar behav-
ior without invokeTransition

When a transition t = (s1, f, i) → (s2, u, (l1, . . . , ln), o) is executed, the labels
l1, . . . , ln are pushed at the back of q.

4.3.2 Implementation

We implemented a mechanism to invoke transition during testing in Modbat by
a method similar to the definition of IEFSMs. We introduced a queue of labels in
each test execution, and implemented a method invokeTransition in the model
class. The transition labels can be pushed to the queue by calling this method
from transition functions or callback functions.

The code in Figure 4.5 shows a part of example model using invokeTransition
in a callback function. Concrete actions and registration of the callback function
are not shown in this code. We assume that the callback function callbackOnError
is called when an error occurs. The transition labeled “error” has weight 0.0,
therefore this transition is not executed normally. When an error happens while
the model is running, the callback function is called and the label “error” is
pushed to the queue. Then at the next time a transition function is executed,
the transition function with the label “error” is chosen to be executed.

On the other hand, the code in Figure 4.6 shows a model with similar behavior
to that in Figure 4.5, which is implemented without using invokeTransition.
In this code, the error condition is managed with a boolean variable hasError.
When the model instance is in “running” state, if hasError is set to false then the
transition labeled “action” is executed, otherwise the transition labeled “error”
is executed. Therefore similar behavior can be reproduced in the original Mod-
bat. However, even if hasError is set to true, other transitions in other model
instances may be executed at this moment. In addition, it is necessary to take
care of data races in setting the value of hasError, because it is common that
callback functions are executed in other threads. With transition invocation, on
the other hand, the test tool manages race conditions, therefore the test writer
needs to pay less attention to data races.

15

4.4 Packet Forwarder

In order to test whether programs work under unstable network environments, it
is necessary to simulate network environment. Such methods are generally called
fault injection, which injects error in the SUT or the environment artificially [14].

We propose a method to simulate network errors and delays in software test-
ing. This method is applicable for software in which servers and clients commu-
nicate one another via TCP/IP.

ClientClient

Server

Forwarder Forwarder

Figure 4.7: A diagram of a system using packet forwarders

This method simulates an unstable network line by inserting a mechanism
named packet forwarder between a server and a client as shown in Figure 4.7.
The packet forwarder normally forwards packets to both directions, from the
server to the client and the client from the server. And network errors and delays
can be caused artificially by controlling the forwarder. The order of the packets
is not modified in this method, because packet order is guaranteed in the TCP
specification.

In this method, the program of the SUT is not modified at all, which prevents
additional bugs from being mixed into the SUT.

4.4.1 Implementation

Server

Client

Socket

ServerSocket

TCP

TCP

Buffer Buffer

Forwarder

Figure 4.8: A diagram of the contents of a packet forwarders

Figure 4.8 shows the summary of implementation of a packet forwarder in
Scala. In this figure, the Socket and the ServerSocket are instances of the
classes java.net.Socket and java.net.ServerSocket respectively. Informally
speaking, the Socket acts like the client to the server, and the ServerSocket acts
like the server to the client. The forwarder also has two buffers, corresponding to

16

both directions of communication between the server and the client. Each buffer
stores the contents of the packet from one socket and sends the contents to the
other socket. This forwarding is repeated in an independent thread.

A packet forwarder is launched designating the URL and the port of the
server, and the port to accept a connection from the client. When the forwarder
is started, it connects to the server with the Socket and starts waiting for a con-
nection from a client. And it starts forwarding messages when a client connects
to the ServerSocket in the forwarder.

When a connection loss is simulated, both the Socket and the ServerSocket
call close method to each TCP connection. And when a network delay is sim-
ulated, the threads forwarding data between the sockets sleep for a particular
time duration. Therefore the network delays in both direction can be controlled
independently.

It is useful to implement a packet forwarder as a model instance in Modbat
and control the forwarder using model states and transition functions.

17

Chapter 5

Evaluation

In order to show the effectiveness of the methods described in Chapter 4, we
made some models and performed tests of the models with Modbat.

Experiments in Section 5.1 test whether an MQTT server and an MQTT client
library work correctly under unstable network environments, especially focusing
on re-delivery of messages. These experiments evaluate the effectiveness of packet
forwarders and transition invocation.

Experiments in Section 5.2 test a system of a smart house. This system has
thermometers and air conditioners communicating with MQTT, and tries to keep
the room temperature around the set temperature. These experiments evaluate
the effectiveness of extensions for describing model of systems with many devices.

Table 5.1 shows the execution environment of the experiments in this chapter.
We implemented our extensions on Modbat version 3.2 and the modified version
of Modbat is used in the experiments.

Table 5.1: Execution environment of the experiments
CPU Intel Core i7-3770 (3.40GHz)

Memory 16GB
OS Ubuntu 16.04

Version of Java 1.8.0 161
Version of Scala 2.11.8

Base version of Modbat 3.2
Version of Mosquitto 1.4.14

Version of Paho 1.2.0

5.1 Test of MQTT Client Library and Server

We conducted experiments to test Mosquitto and Java APIs of Eclipse Paho. We
made Modbat models of MQTT clients which call APIs of the library.

5.1.1 Method

In each experiment in this section, the modeled system has an MQTT server
and two MQTT clients. The two clients are named “Sender” and “Receiver”
respectively, and both of them are connected to the server via packet forwarders.

A test case is executed in the following way.

1. The server is started.

2. The Sender and the Receiver connect to the server.

18

3. The Receiver subscribes particular topics.

4. The Sender publishes a message with the topic to the server several times.
The Sender also counts the number of the messages published. At this
moment, the server is expected to forward the message to the Receiver.

5. The Receiver receives messages from the server and counts the number of
the messages it received.

6. The Sender and the Receiver disconnect from the server.

7. The number of the messages published and the number of the messages
received are compared.

In actual test executions, multiple test cases are executed sequentially without
rebooting the server in order to reduce test execution time. In order to avoid
execution of the test cases to conflict one another, the client identifiers of the
Sender and the Receiver and the topics in the messages have a common prefix,
which is unique to the test case. Concretely, each test case in Modbat is generated
from a random seed and the hexadecimal expression of the random seed is used
as the prefix.

We conducted experiments to test whether this system works correctly under
unstable network environments. In order to simulate unstable network environ-
ments, packet forwarders are inserted between each client and the server, and the
network lines are controlled. We conducted nine experiments with three types
of QoS and three types of the stability of the network lines of the Sender and
the Receiver. In each experiment, messages are published in QoS 0, 1 or 2. And
the experiments in each QoS are conducted with three different combinations of
its Sender and Receiver, which is a stable Sender and an unstable Receiver, an
unstable Sender and a stable Receiver, or an unstable Sender and an unstable
Receiver. Each of a stable client and an unstable client has a packet forwarder
between the client and the server. However, the forwarder of the stable client
is always alive during an experiment, but the forwarder of the unstable client
sometimes cuts the network connection between the client and the server.

In these experiments, each of the Sender and the Receiver runs an instance of
MqttAsyncClient class in Paho, which provides non-blocking APIs for MQTT
communication. Though the server Mosquitto is running outside the test tool
and Modbat calls only APIs in Paho, we cannot simply determine which of the
server and the clients has bugs from the result. Therefore both Mosquitto and
Paho are considered as the SUTs for these experiments.

5.1.2 Models

Top Level Model

A model for this experiment consists of four types of model instances. Figure 5.1
shows the state machine of the top level model, which is launched at the beginning
of the test execution. This model creates model instances of Sender and Receiver,
and launches them.

Forwarder

Figure 5.2 shows the state machine of the model of a packet forwarder. This
state machine mainly has two states, enabled and disabled. The weights of the
transitions between these two states are modified by the setWeight method, so

19

init

run

 start

Figure 5.1: The top level model for test-
ing Paho

enabled skip_e

disabled

 disable

end

 end enable

 skip_d

Figure 5.2: A model of Forwarder

connected publish

lost

 (publish) lose

stop

 stop reconnect

 (reconnect)

end

 end

Figure 5.3: A model of Sender

connected

lost

 lose

stop

 stop reconnect

 (reconnect)

end

 end

Figure 5.4: A model of Receiver

that the error rate of the Forwarder can be controlled. When the model is in the
enabled state, the Forwarder repeats forwarding packets in other threads.

There are four transitions between the enabled state and disabled state,
but the two transitions labeled skip_e and skip_d do nothing. The disable

transition closes the connections between the server and the Forwarder, and be-
tween the client and the forwarder. This transition also terminates the threads
forwarding packets. Executing the enable transition connects the forwarder to
the server and starts waiting for a connection from the client again. The end

transition terminates waiting for a connection. The weight of this transition is
set to 0.0, therefore this transition is not executed unless it is explicitly invoked
by invokeTransition.

Sender

Figure 5.3 shows the state machine of the Sender model. When an instance of
Sender model is launched, it creates an instance of Forwarder and launches it.
After that, Sender connects to the server via the Forwarder.

As shown in the figure, the Sender repeats publishing messages when it is at
the connected state. The publish method in MqttAsyncClient returns a token,
which stores the progress of the message delivery. The model stores all the tokens
of publishes a list. If the Sender tries to publish a message while the Forwarder
is disabled, publish API in Paho throws an exception and the model goes to the
lost state, which is shown as a dashed arrow in the figure. This functionality is
realized by the nextIf method in Modbat. The weight of the transition labeled

20

lose is set to 0.0, therefore this transition is not executed usually. This transition
is called by the callback function for MqttAsyncClient which is called when the
network connection is lost. When the model is at the lost state, the Sender
repeats trying to reconnect to the server. If the reconnection fails, the state
goes back to lost by nextIf. When the model is at the connected state, the
model randomly goes to the stop state. In this transition, the Sender starts to
prepare for disconnection. Concretely, the transition weights of its Forwarder are
set to be stable, and the transition enable is invoked. After the forwarder is
set to be stable, the end transition is executed and the stored publish tokens are
processed with waitForCompletion method in Paho. This method blocks until
the message delivery corresponding the token finishes, or the designated timeout
occurs. After processing all the stored tokens, the Sender disconnects from the
server, and terminates the Forwarder by invoking the end transition in it.

The retain flag of each message is set to true so that the message is delivered
to the receiver even if the server receives the message while the Receiver is not
connected. An MQTT server stores only one message for each topic, therefore
every message in this experiment must have a distinct topic. Therefore the topic
of i-th message from the Sender is set to randomSeed/i.

Receiver

Figure 5.4 shows the state machine of the Receiver model. Similarly to the model
of Sender, the Receiver model creates and launches an instance of Forwarder.
Here the Forwarders of the Sender and the Receiver wait for TCP connection
at different ports. In addition, the Receiver subscribes a topic filter. Since the
messages from the Sender have topic of the form randomSeed/i and the Receiver
need to subscribe messages with this form of topic for all i, the Receiver subscribes
a topic filter randomSeed/+, where + means a one-level wildcard for topics.

In order not to miss the messages after the Receiver disconnects from the
server, the stop transition can be executed only after the Sender finishes discon-
nection completely. This timing is managed by the require method in Modbat.
The remaining transitions works the same as those of the Sender, except for the
Receiver neither publishes messages nor waits for completion of them.

The test oracle is embedded at the end of the end transition in the Receiver,
as an assert statement. The actual condition of the assert statement varies
depending on the QoS of the messages in the experiment as shown in Table 5.2.
In this table, P,R denote the number of the messages published from the Sender
and the number of the messages the Receiver received respectively. A test case is
regarded as failure if this condition is violated, or uncaught exceptions are raised.

Table 5.2: QoS of messages and expected condition about message arrival
Message QoS Expected condition

QoS 0 P ≥ R
QoS 1 P ≤ R
QoS 2 P = R

5.1.3 Results

We performed 50 test cases for each experiment. Each test cases took about
hundreds milliseconds.

21

Table 5.3 shows the summary of the results of these experiments for three
types of QoS and three types of stability of the clients. In this table, “Success”
or “Timeout” shows the result of each experiment, where “Success” means all
the test cases finished satisfying the assertion without uncaught exceptions and
“Timeout” means a timeout occurred when the sender disconnected from the
server in some test cases.

Table 5.3: Results of the experiments testing Paho
QoS 0 QoS 1 QoS 2

Stable Sender and Unstable Receiver Success Success Success
Unstable Sender and Stable Receiver Timeout Success Success

Unstable Sender and Unstable Receiver Timeout Success Success

We describe the timeout in detail. The timeout happened in the method
waitForCompletion in Paho, called in end transition of the Sender. This time-
out means that the message delivery corresponding to the token has not been
completed. However, the timeout only happened with QoS 0 and an unstable
Sender, therefore this seems to be correct behavior because the message delivery
is never completed if the message is lost because of a network error. This re-
sult shows that network disconnection was correctly simulated and it interrupted
message delivery.

Moreover, there were some test cases in which the inequalities in Table 5.2
strictly. Namely, P > R and P < R held in some test cases with messages in
QoS 0 and QoS 1, respectively. This result implies message loss actually occurred
in the experiments in QoS 0, and message re-delivery actually performed in the
experiments in QoS 1.

5.2 Test of Smart House

5.2.1 Method

We designed a model of a smart house, which runs thermometers and air con-
ditioners in order to keep the room temperature. This system runs in unstable
environments and in real time, therefore our extensions are useful to modelize
the system.

The house has many devices communicating with MQTT clients, and runs an
MQTT broker to relay messages from the devices to other devices. The house
has 4x4 rooms and each room has a thermometer and an air conditioner. Each of
a thermometer and an air conditioner runs an MQTT client in it, and connects to
the server with the client. In addition, the house has a device named controller.
The controller also runs an MQTT client to connect to the server and manages
the room temperatures. The controller receives room temperatures from the
thermometers and publishes messages to the air conditioners to control the room
temperatures around the set temperature. Users of the house set temperature
with the controller. In these experiments, the software running on the controller,
thermometers and air conditioners are regarded as SUTs. It is expected that they
work to keep the room temperatures as close to the set temperature as possible.

Each room in the house is identified by x and y coordinates. The temperature
of each room is affected by its adjacent rooms and the mode of its air conditioner.
The outside temperature also changes along with the time, which affects the
temperature of the rooms facing the outer walls.

22

init

standby

 setup

run

 run

end

 end

Figure 5.5: The top level model of a
smart house

init

run

 connect

 restore

broken

 break

end

 end

 restore

 break

 end

Figure 5.6: A model of Thermometer

init

run

 connect

 set temperature

end

 end

Figure 5.7: A model of Controller

init

run

 connect

 restore

broken

 break

end

 end

 restore

 break

 end

Figure 5.8: A model of Air Conditioner

In these experiments, the change of room temperatures are simulated along
with the time change while device errors happen, and the effect of device errors
are evaluated and visualized by comparing two houses in the same environment
and with the different robustness of the devices.

These experiments also uses Mosquitto as the MQTT server, and the clients
are implemented with the class MqttAsyncClient in Paho Java APIs.

5.2.2 Models

A model of the smart house consists of five types of model instances.

23

init

0

 setup

 set 0

+

 set +

-

 set -

end

 end

 set 0

 set +

 end

 set 0

 set -

 end

Figure 5.9: A model of Temperature Manager

Top Level Model

Figure 5.5 shows the state machine of the top level model of this experiment
for testing the smart house. The instance of this model launches other model
instances in the setup transition. The simulation runs while this model is in the
run state. The transition run is set to stay for 3000 ms with stay method so
that the simulation continues running for 3000 ms. When this model goes to the
end state, other models start to terminate the simulation.

The instance of this model also stores the actual room temperatures, the
actual modes of air conditioners and the outside temperature. At the beginning
of a test case, the room temperatures and the outside temperature are set to
20.0 ◦C.

Thermometers

A thermometer is installed in each room in the smart house. Figure 5.6 shows
the state machine of the model of a thermometer. When the transition labeled
connect is executed, the MQTT client in the thermometer connects to the server.
Then the thermometer spawns a thread, which repeats measuring the room tem-
perature and publishing it to the server at the regular interval. This measured
temperature may include error, and the intensity of the error may change de-
pending on the state of the model, run or broken. In our experiments, the error
is set to ±0.5 ◦C if the thermometer is at the run state, and set to ±10.0 ◦C if it
is at the broken state. The transition between run and broken states has stay
attribute with random time, which prevents from changing the state too often.

The messages are published in QoS 0, without waiting for completion of the
delivery. Each message has the same topic, identified by the random seed of the
test case and coordinates of the room.

24

Controller

The smart house has a controller to manage the overall system in the house.
The controller has a set temperature, which is changed by the user in the house.
The controller receives the temperatures from the thermometers and stores the
temperatures for each room. This stored temperatures may be different from the
actual temperatures. The stored temperatures are initially set to 20.0 ◦C, which
are the same as the actual temperatures. The controller repeats operating the
air conditioners to keep the room temperatures around the set temperature by
publishing messages.

Figure 5.7 shows the state machine of the model of a controller. The model
instance connects to the server in the transition setup. It also subscribes topics
for receiving messages from the thermometers. At the same time, it spawns a
thread that repeats publishing messages to the air conditioners at a regular inter-
val. The actual algorithm for controlling the air conditioners varies depending on
the experiments. The messages are published in QoS 2 and with a topic identified
by the random seed and coordinates of the room.

The set temperature is set to 20.0 ◦C at the beginning of a test case. The
transition labeled set temperature updates the set temperature by +1.0 ◦C,
−1.0 ◦C or ±0.0 ◦C randomly. This transition has stay attribute with random
time.

After the top level model goes to the end state, the controller can execute the
end transition, which terminates its MQTT client.

Air Conditioners

An air conditioner in this system has three modes, stop, heating and cooling. We
represent these modes as 0, 1 and -1 respectively.

Figure 5.8 shows the state machine of the model of an air conditioner. The
transitions in this state machine have similar roles as those of a thermometer.
We describe the difference from a thermometer in this section.

In the connect transition, the air conditioner also subscribes a topic to receive
messages from the controller in QoS 2. A message from the controller specifies
a mode by 0, 1 or -1, and the air conditioner sets its mode according to the
message in a callback function. Here, it sets its mode correctly if it is at the run
state, but it sets its mode randomly if it is at the broken state.

Temperature Manager

The top level model launches a model instance of temperature manager, which
is a model representing the environment of the smart house. The temperature
manager is not a device in the house but calculates the outside temperature and
room temperature in the simulation.

Figure 5.9 shows the state machine of the model of a temperature manager.
In the setup transition, it spawns a thread to repeat calculating and updating
the temperatures at regular interval. The states 0, + and - represent the change
of the outside temperature. The outside temperature increases or decreases while
the model is in the + or - state, respectively.

The room temperatures are calculated in a discretized time interval. Let x be
a room, Tx(t) be the temperature of room x at time t and A be a set of rooms
adjacent to x. Here we regard the outside as an adjacent room to x if x faces
the outer wall of the house. And let cx,y be the conduction coefficient between
room x and room y, r be the power of air conditioners, and acx(t) be the mode

25

of the air conditioner in room x at time t. Then the room temperature at next
time step is calculated by the formula 5.1.

Tx(t+∆t) = Tx(t) + ∆t

∑
y∈A

cx,y (Ty (t)− Tx (t)) + r · acx (t)

 (5.1)

This formula intuitively means that the rate of change of the room temperature
is proportional to the temperature difference from the adjacent rooms. In these
experiments, cx,y is set to 0.0001 ◦C/ms if either x or y is the outside, otherwise
set to 0.0002 ◦C/ms.

5.2.3 Evaluation of the Effects

In order to evaluate the difference among algorithms or the effect of the errors
in the experiments, two instances of the house is executed in parallel and their
outputs are compared. The two instances have the same environment, including
the model states, the outside temperature and the set temperature. However,
they may have different MQTT clients in the devices, control algorithms, the
modes of the air conditioners and devices with different robustness, which result
in producing different room temperatures. Then we can evaluate the performance
of the two algorithms or the effect of device errors, by comparing the two outputs.

5.2.4 Test Variations

We conducted running simulation with four pairs of different settings. We dis-
tinguish the instances in a pair by “System A” and “System B”.

Experiment 1: Effect of Thermometer Errors

This experiment evaluates the effect of thermometer errors. In this experiment,
all the air conditioners always work correctly. In System A, all the thermometers
work correctly even when its model state is at the broken state. In System B, the
thermometer publishes a temperature with large error when it is at the broken

state.

Experiment 2: Effect of Air Conditioner Errors

This experiment evaluates the effect of the errors of the air conditioners. All the
thermometers work correctly in this experiment. In System A, all the air condi-
tioner always work correctly. Namely, an air conditioner sets its mode correctly
as designated by the controller. In System B, the air conditioner may be broken,
so it sets its mode randomly when it is at the broken state.

Experiment 3: Control Algorithm Comparing to Previous Tempera-
tures

This experiment evaluates the performance of an algorithm of the controller to
detect the errors of the thermometers. Both thermometers and air conditioners
may be broken as explained in Section 5.6 and Section 5.8. System A has a con-
troller with a naive algorithm, which turns on cooling when the room temperature
is higher than the set temperature and vice versa. The controller always “be-
lieves“ the temperatures from the thermometers. The algorithm of the controller
in System B differs in that when it receives a temperature but the difference

26

 0

 1

 2

 3

 4

 5

 0 1 2 3 4 5

S
ys

te
m

 B

System A

Maximum difference between target temperatures and
actual temperatures for each test case

test cases
mean

Figure 5.10: The effect of thermometer errors

between the temperature and the stored temperature of the room is larger than
a certain threshold, it discards the new temperature and keeps using the stored
temperature. The threshold is set to 2.0 ◦C in this experiment.

Experiment 4: Control Algorithm Comparing to Adjacent Room Tem-
peratures

This experiment evaluates another algorithm of the controller. Thermometers,
air conditioners and the controller in System A works as the same as those of the
previous experiment. The controller in System B always stores the new temper-
atures from the thermometers, but the controller checks the room temperatures
when it operates the air conditioners. It compares the room temperature and the
mean of the temperatures in the adjacent rooms, and if the difference is larger
than a threshold, it uses the mean instead of the stored temperature to control
the air conditioner. The threshold is set to 2.0 ◦C in this experiment.

5.2.5 Results

We performed 50 test cases for each experiment and plotted the maximum dif-
ference between the room temperatures and the set temperature across the time
and all the rooms, comparing the paired models. In these figures, a point of the
shape + corresponds to a test case, and the point shows that System A was better
than System B if it is over the diagonal and vice versa.

Figure 5.10 shows the effect of thermometer errors and Figure 5.11 shows the
effect of air conditioner errors. These two figures show that both air conditioner
errors and thermometer errors enlarge the temperature errors.

Figure 5.12 and Figure 5.13 show the effectiveness of two controller algo-
rithms. In these experiments, both algorithms improved the temperature errors.
However, the figures also show that the difference among test cases had major
impact on the temperature errors and there were some test cases the algorithms
made the temperature errors worse.

In addition, we visualized the change of the room temperatures as gif animated
heat maps. Figure 5.14 shows the heat map at a certain moment in a test case
in the Experiment 1. The top two heat maps show the temperature and the

27

 0

 1

 2

 3

 4

 5

 0 1 2 3 4 5

S
ys

te
m

 B

System A

Maximum difference between target temperatures and
actual temperatures for each test case

test cases
mean

Figure 5.11: The effect of air conditioner errors

 0

 1

 2

 3

 4

 5

 0 1 2 3 4 5

S
ys

te
m

 B

System A

Maximum difference between target temperatures and
actual temperatures for each test case

test cases
mean

Figure 5.12: Comparison between a naive algorithm and an algorithm comparing
to previous temperature

mode of the air conditioner in each room in System A and System B. Each cell
corresponds to a room and the two figures in the cell represent the temperature
and the mode of the air conditioner respectively. The left bottom heat map shows
the difference of the temperatures in each room between System A and System
B. If the value is positive, it shows that the room temperature in System B is
higher than that in System A. The right bottom heat map shows the difference
of the temperature error in each room between System A and System B. Namely,
the values in this heat map is expressed as |TB −S| − |TA−S|, where TA and TB

are the room temperature in System A and System B respectively, and S is the
set temperature at the moment. If the value is positive, it shows that the room
in System B has the closer temperature to the set temperature than System A.

These visualizations clearly show the difference between two models.

28

 0

 1

 2

 3

 4

 5

 0 1 2 3 4 5

S
ys

te
m

 B

System A

Maximum difference between target temperatures and
actual temperatures for each test case

test cases
mean

Figure 5.13: Comparison between a naive algorithm and an algorithm comparing
to adjacent temperatures

Comparison between System A and System B (step=045) target=19.0 outside=19.70

a

b

c

d

 0 1 2 3

System A

18.51
1

17.96
1

17.91
1

18.00
1

17.85
1

18.31
1

18.33
1

18.34
0

17.86
1

18.29
1

17.78
1

17.85
1

18.41
0

17.75
-1

17.68
-1

17.85
-1

 17

 18

 19

 20

 21

ro
o

m
 t

e
m

p
e

ra
tu

re

a

b

c

d

 0 1 2 3

System B

17.88
0

18.21
1

18.65
1

18.76
0

17.78
1

17.66
0

18.16
1

18.46
1

17.71
0

17.71
1

18.18
1

18.28
0

17.79
0

17.66
-1

18.13
0

18.56
0

 17

 18

 19

 20

 21

ro
o

m
 t

e
m

p
e

ra
tu

re

a

b

c

d

 0 1 2 3

Delta (B - A)

-0.63 0.26 0.73 0.76

-0.07 -0.65 -0.17 0.12

-0.15 -0.58 0.40 0.42

-0.62 -0.09 0.44 0.71

-3

-2

-1

 0

 1

 2

 3

d
if

fe
re

n
c

e

a

b

c

d

 0 1 2 3

Diff of error (|B - target| - |A - target|)

0.63 -0.26 -0.73 -0.76

0.07 0.65 0.17 -0.12

0.15 0.58 -0.40 -0.42

0.62 0.09 -0.44 -0.71

-3

-2

-1

 0

 1

 2

 3

d
if

fe
re

n
c

e

Figure 5.14: A heat map comparing System A (without errors) and System B
(with thermometer errors)

29

Chapter 6

Conclusions

In this study, we have defined extensions for performing model-based tests suit-
able for IoT environments and implemented them in Modbat.

The first extension, timed extended finite state machines, enable modeling
systems running in real time. The second extension, dynamic weight change,
enables the transition probabilities of EFSMs dynamically in test executions.
This extension realizes modeling devices whose error rates may change. The third
extension, transition invocation, enables invoking transition functions forcibly by
other transition functions or callback functions. This extension realizes modeling
devices which handle errors in a simple and natural way. We have shown that
these extensions are effective to describe models of IoT systems briefly with high
expressiveness.

We have also proposed packet forwarders, in order to simulate unstable TCP
network environments during test execution by software without modifying the
SUTs. By using packet forwarders, network disconnection and network delay
can be controlled by transition functions in test models. We have also shown
that packet forwarders actually simulate network connection loss through testing
MQTT implementations.

30

Chapter 7

Future Work

The timed extended finite state machines in our definition have limited expres-
siveness compared to regular timed automata [3]. Further extensions are desired
for more expressiveness with a simple syntax.

The packet forwarder in this thesis relays TCP packets but it may be applied
to other transport layer protocols such as UDP. Since the order of the packets is
not guaranteed in UDP, the UDP forwarder will have more complicated structure
and operations.

The packet forwarder simulates network errors by controlling TCP layer.
Though it simulates errors for applications using APIs of TCP, the responses
from the APIs may be different from the cases that actual network errors occur.
Therefore it is necessary to evaluate the difference and to develop methods to
simulate network errors in ways closer to the actual errors.

In the experiments in Section 5.2, the models of devices break down just
probabilistically. However, the actual devices may be broken because of various
reasons, therefore the error rate may vary depending on the environment. In order
to create test models breaking like actual devices, it is necessary to construct a
kind of probabilistic models such as Markov models.

It is useful to reproduce errors found in tests for finding the causes of the
errors. However, in IoT systems, since multiple devices communicate and their
software may run multiple threads, their behavior may be non-deterministic.
In other words, the system may produce different output even if the test tool
executes In order to reproduce outputs from communicating systems, net-iocache
may be used to reproduce network communication [6]. However, net-iocache is a
method for software model checking, therefore there may be difficulty for applying
net-iocache to model-based testing.

31

References

[1] Eclipse Paho - MQTT and MQTT-SN software. http://www.eclipse.org/
paho/.

[2] Mosquitto. https://mosquitto.org/.

[3] Rajeev Alur and David L. Dill. A theory of timed automata. Theor. Comput.
Sci., 126(2):183–235, 1994.

[4] Cyrille Artho and Armin Biere. Modbat. https://people.kth.se/~artho/
modbat/, 2016.

[5] Cyrille Artho, Quentin Gros, Guillaume Rousset, Kazuaki Banzai, Lei Ma,
Takashi Kitamura, Masami Hagiya, Yoshinori Tanabe, and Mitsuharu Ya-
mamoto. Model-based API testing of Apache ZooKeeper. In 2017 IEEE
International Conference on Software Testing, Verification and Validation,
ICST 2017, Tokyo, Japan, March 13-17, 2017, pages 288–298. IEEE Com-
puter Society, 2017.

[6] Cyrille Artho, Watcharin Leungwattanakit, Masami Hagiya, Yoshinori Tan-
abe, and Mitsuharu Yamamoto. Cache-based model checking of networked
applications: From linear to branching time. In ASE 2009, 24th IEEE/ACM
International Conference on Automated Software Engineering, Auckland,
New Zealand, November 16-20, 2009, pages 447–458. IEEE Computer Soci-
ety, 2009.

[7] Cyrille Valentin Artho, Armin Biere, Masami Hagiya, Eric Platon, Martina
Seidl, Yoshinori Tanabe, and Mitsuharu Yamamoto. Modbat: A model-
based API tester for event-driven systems. In Valeria Bertacco and Axel
Legay, editors, Hardware and Software: Verification and Testing - 9th Inter-
national Haifa Verification Conference, HVC 2013, Haifa, Israel, November
5-7, 2013, Proceedings, volume 8244 of Lecture Notes in Computer Science,
pages 112–128. Springer, 2013.

[8] Andrew Banks and Rahul Gupta. MQTT version 3.1.1. http://docs.

oasis-open.org/mqtt/mqtt/v3.1.1/os/mqtt-v3.1.1-os.html, 2014.

[9] Carsten Bormann. CoAP — constrained application protocol — overview.
http://coap.technology/, 2014–2016.

[10] Kwang-Ting Cheng and A. S. Krishnakumar. Automatic functional test
generation using the extended finite state machine model. In Alfred E. Dun-
lop, editor, Proceedings of the 30th Design Automation Conference. Dallas,
Texas, USA, June 14-18, 1993., pages 86–91. ACM Press, 1993.

[11] Koen Claessen and John Hughes. Quickcheck: a lightweight tool for random
testing of haskell programs. In Martin Odersky and Philip Wadler, editors,

32

http://www.eclipse.org/paho/
http://www.eclipse.org/paho/
https://mosquitto.org/
https://people.kth.se/~artho/modbat/
https://people.kth.se/~artho/modbat/
http://docs.oasis-open.org/mqtt/mqtt/v3.1.1/os/mqtt-v3.1.1-os.html
http://docs.oasis-open.org/mqtt/mqtt/v3.1.1/os/mqtt-v3.1.1-os.html
http://coap.technology/

Proceedings of the Fifth ACM SIGPLAN International Conference on Func-
tional Programming (ICFP ’00), Montreal, Canada, September 18-21, 2000.,
pages 268–279. ACM, 2000.

[12] Jens Grabowski, Dieter Hogrefe, György Réthy, Ina Schieferdecker, Anthony
Wiles, and Colin Willcock. An introduction to the testing and test control
notation (TTCN-3). Computer Networks, 42(3):375–403, 2003.

[13] Seungjae Han, Kang G Shin, and Harold A Rosenberg. Doctor: An in-
tegrated software fault injection environment for distributed real-time sys-
tems. In Computer Performance and Dependability Symposium, 1995. Pro-
ceedings., International, pages 204–213. IEEE, 1995.

[14] Mei-Chen Hsueh, Timothy K. Tsai, and Ravishankar K. Iyer. Fault injection
techniques and tools. IEEE Computer, 30(4):75–82, 1997.

[15] Ghani A. Kanawati, Nasser A. Kanawati, and Jacob A. Abraham. FER-
RARI: A flexible software-based fault and error injection system. IEEE
Trans. Computers, 44(2):248–260, 1995.

[16] Lausanne (EPFL) Lausanne. The Scala programming language. https:

//www.scala-lang.org/, 2002–2018.

[17] Shinho Lee, Hyeonwoo Kim, Dong-kweon Hong, and Hongtaek Ju. Cor-
relation analysis of MQTT loss and delay according to QoS level. In The
International Conference on Information Networking 2013, ICOIN 2013,
Bangkok, Thailand, January 28-30, 2013, pages 714–717. IEEE Computer
Society, 2013.

[18] Kristiyan Mladenov, Stijn van Winsen, Chris Mavrakis, and KPMG Cyber.
Formal verification of the implementation of the MQTT protocol in IoT
devices. 2017.

[19] Rickard Nilsson. ScalaCheck. https://www.scalacheck.org/, 2015.

[20] Martin Odersky, Lex Spoon, and Bill Venners. Programming in Scala. Ar-
tima Inc, 2008.

[21] Zary Segall, Dalibor F. Vrsalovic, Daniel P. Siewiorek, David A. Yaskin,
J. Kownacki, James H. Barton, R. Dancey, A. Robinson, and T. Lin. FIAT-
fault injection based automated testing environment. In Proceedings of the
Eighteenth International Symposium on Fault-Tolerant Computing, FTCS
1988, Tokyo, Japan, 27-30 June, 1988, pages 102–107. IEEE Computer So-
ciety, 1988.

[22] David T. Stott, Gregory L. Ries, Mei-Chen Hsueh, and Ravishankar K. Iyer.
Dependability analysis of a high-speed network using software-implemented
fault injection and simulated fault injection. IEEE Trans. Computers,
47(1):108–119, 1998.

[23] Rickard Svenningsson, Jonny Vinter, Henrik Eriksson, and Martin Törngren.
MODIFI: A model-implemented fault injection tool. In Erwin Schoitsch,
editor, Computer Safety, Reliability, and Security, 29th International Con-
ference, SAFECOMP 2010, Vienna, Austria, September 14-17, 2010. Pro-
ceedings, volume 6351 of Lecture Notes in Computer Science, pages 210–222.
Springer, 2010.

33

https://www.scala-lang.org/
https://www.scala-lang.org/
https://www.scalacheck.org/

[24] Dinesh Thangavel, Xiaoping Ma, Alvin C. Valera, Hwee-Xian Tan, and
Colin Keng-Yan Tan. Performance evaluation of MQTT and coap via a
common middleware. In 2014 IEEE Ninth International Conference on In-
telligent Sensors, Sensor Networks and Information Processing (ISSNIP),
Singapore, April 21-24, 2014, pages 1–6. IEEE, 2014.

[25] Mark Utting, Alexander Pretschner, and Bruno Legeard. A taxonomy of
model-based testing approaches. Softw. Test., Verif. Reliab., 22(5):297–312,
2012.

34

	Introduction
	Background
	Our Research
	Outline

	Related Work
	Model-based Testing
	Fault Injection
	IoT and Testing

	Preliminaries
	Model-based Testing
	Modbat
	Extended Finite State Machines

	MQTT
	Topic Name and Topic Filter
	Interactions in MQTT
	Implementations

	Methods
	Timed Extended Finite State Machines
	Definition
	Implementation

	Dynamic Weight Change
	Definition
	Implementation

	Transition Invocation
	Definition
	Implementation

	Packet Forwarder
	Implementation

	Evaluation
	Test of MQTT Client Library and Server
	Method
	Models
	Results

	Test of Smart House
	Method
	Models
	Evaluation of the Effects
	Test Variations
	Results

	Conclusions
	Future Work
	References

