
Submitted to:
FESCA 2017

c© C. Artho & G. Rousset

Model-based Testing of the Java network API

Cyrille Artho
School of Computer Science and Communication

KTH, Stockholm, Sweden
Information Technology Research Institute

AIST, Osaka, Japan

Guillaume Rousset
University of Nantes

Nantes, France

Testing networked systems is challenging. The client or server side cannot be tested by itself. We
present a solution using tool “Modbat” that generates test cases for Java’s network library java.nio,
where we test both blocking and non-blocking network functions. Our test model can dynamically
simulate actions in multiple worker and client threads, thanks to a carefully orchestrated design that
covers non-determinism while ensuring progress.

1 Introduction

Model-based testing derives concrete test cases from an abstract test model [5, 17]. Tools derive test
sequences from a model that specifies possible test executions and expected results [1, 7, 8, 13, 17]. We
use Modbat [1] because it offers an embedded domain-specific language [19] that combines extended
finite-state machines [6] with low-level monitoring code written in Scala [14].

Our work on testing Java’s non-blocking networking (package java.nio) extends previous work
where we tested a custom version of that library and found several hidden defects [3]. That custom
library was designed to be compatible with Java Pathfinder (JPF) [18] by working with JPF extension
net-iocache to backtrack the effects of network input/output [10]. It stores the effects of network
operations in memory, and replays them from previously stored data after backtracking.

In java.nio, input/output actions can be blocking or non-blocking [16]. Blocking actions suspend
the active thread until the result is directly returned to that thread. Non-blocking actions return immedi-
ately, but the result may be incomplete, requiring another call later.

Our contributions are as follows:

• We simulate possible concurrency on the server side (worker threads) and multiple client sessions
in parallel, and ensure a proper orchestration of all activities.

• We show how to model blocking and non-blocking functions in Java’s network library java.nio,
where non-blocking functions may return an incomplete result.

This paper is organized as follows: Section 2 gives the background of this work. Section 3 describes our
client/server model for the Java network library. Section 4 concludes and outlines future work.

2 Background

2.1 Modbat

Modbat provides an embedded domain-specific language [19] based on Scala [14] to model test ex-
ecutions in complex systems succinctly [1]. System behavior is described using extended finite-state
machines (EFSMs) [6]. An EFSM is a finite-state machine that is extended with variables, enabling

2 Model-based Testing of the Java network API

functions (preconditions), and update functions (actions) for each transition. Results of actions on the
system under test (SUT) can be checked using assertions inside the update function.

Test cases are derived by exploring available transitions, starting from the initial state. A test case
continues until a configurable limit is hit or a property is violated. Properties include unexpected excep-
tions and assertion failures. Assertions encode requirements, typically safety properties, and are used
to check the result of a function call within a model transition. Modbat also supports exceptions and
non-deterministic outcomes: If an exception or unexpected result occurs during a transition, its target
state can be overridden with a different (exceptional) state [1].

Finally, Modbat offers a launch function, which initializes a new child model. If multiple models
are active at the same time, they are executed using an interleaving semantics.

2.2 The Java Network Library

Java offers non-blocking input/output (I/O) over TCP/IP network sockets as part of the java.nio pack-
age [15]. Two components are essential for this work:

1. Channels represent connection entities. These include server-side ports that can accept an incom-
ing connection (ServerSocketChannel) and connection handles to send and receive data over an
active connection (SocketChannel).

2. Selectors can query multiple channels at once on their availability, chosen by using selection keys.

Blocking calls suspend the active thread until the complete result is returned; non-blocking calls return
immediately, but with a possibly incomplete result. The application programming interface (API) of
java.nio allows switching between blocking and non-blocking modes at any time.

2.3 Related Work

Unit testing experienced a widespread rise in software development in the late 1990s [11]. While unit
testing automates test execution, model-based testing automates test design [5, 17]. Instead of designing
individual test cases, test models describe entire sets of possible tests. More test tools than can be
described here exist, based on state machines [1, 8, 17] or constraint specifications [7, 13]. Test models
(as well as unit tests) are usually designed based on the specification [17].

For the Java API, related work [12] presents a systematic formulation of the specification of the
Java API, and a run-time monitor implementation which monitors the correct usage of the API. While
our work implements a monitor which verifies the correctness of implementation of the API itself (rather
than its usage by an application), systematic ways to construct the specification of the API greatly interest
us.

3 Test Model for the Java Network API

We start with the overall organization of our test model and add selector-based, non-blocking I/O later.

3.1 Minimalist Model for Client/Server Connections

A server using blocking I/O uses multiple threads to handle multiple connections at the same time: A
server main thread accepts incoming requests and then spawns a worker thread, which uses a given
connection handle and deals with the request. Each client is typically an independent process that first

C. Artho & G. Rousset 3

val ssc = ServerSocketChannel.open()

"open" -> "bound" := ssc.socket().bind(...)

"bound" -> "bound" := {

 launch(new ClientModel)

 val conn = ssc.accept()

 launch(new Worker(conn)) }

"bound" -> "closed" := ssc.close()

Client

Server main

Server worker

bound

connect

closed

connected read/write

closed

closed

open

read/write

accept

bind

init

close

close

close

Figure 1: Minimalist model for client/server connections, with the server main model code (left) and a
visualization of all three components (right). The second transition first launches a client model, then
calls “accept” on the ServerSocketChannel, and finally passes the handle for the incoming connection
to a newly launched server worker model.

connects to the server and then communicates with it. For the purpose of testing, we launch client models
as child instances, which simulate external processes while being executed inside the test harness.

Figure 1 shows this parallel composition of dynamically instantiated models. It mirrors a server that
accepts incoming client connections and then delegates the connection handle to a worker thread. The
crucial part is transition “bound”→ “bound”. To ensure a correct handshake that establishes a working
connection, a client model that connects back to the server in its constructor has to be launched first.
The call to connect is executed in the constructor of the model; this ensures that the subsequent call
to accept succeeds (because the operating system queues the pending client connection request). After
that, the connection handle is passed to a new server worker model instance, which uses that connection.

3.2 Server Implementation Using Selectors

High-performance servers use non-blocking, selector-based I/O, to handle many connections in a single
execution thread [9]. The server usually calls select in an infinite loop, which returns a set of available
channels from which data can be consumed [16, 4]. Available operations include accept, to handle a
new incoming connection, and read, to handle new data on an existing connection. The complexity
of concurrency in the previous architecture is replaced by non-determinism w. r. t. the outcome of each
select call and possibly incomplete read and write operations that require careful buffer management.

3.3 Server Main and Worker Models Using Selectors

Our Modbat model for java.nio expands on an earlier version, which was used to uncover defects in a
custom version of the java.nio library but did not use multiple connections [3].

The detailed server main model in Figure 2 refines the original simple model with selectors and non-
blocking calls, which have to be repeated until they succeed. It starts with a fully initialized instance
of ServerSocketChannel. Each state has several self-transitions, which do not affect the state of the
model or the corresponding object that is tested. Self-transitions may change between blocking and non-
blocking mode (toggleBlocking), check the state of the selector (checkSelector) or the local port number

4 Model-based Testing of the Java network API

open Exc. toggleBlocking/checkSelector/getLocalPort

bound

bind

closed

 close

 Exc. toggleBlocking/checkSelector/getLocalPort

selector

 configSelector

 close

 Exc. checkSelector/getLocalPort

connected

 launch(client); blocking accept accepting

 launch(client)

 close

launch(worker)

 Exc. checkSelector/getLocalPort

 close

non-bl. accept (successful)

 Exc. non-bl. accept (failed)/checkSelector/getLocalPort

close

Exc. close/checkSelector/getLocalPort

Figure 2: Detailed model of the server main thread. Labeled nodes are states, black solid arrows are
model transitions. The dashed transition represents a successful non-blocking accept call, which is mod-
eled as a non-deterministic outcome. Red arrows represent exceptions for operations that are disallowed
in some states. ‘/” shows alternatives for a transition, “;” a concatenation of two actions.

(getLocalPort), or perform an operation that is not allowed in a given state and that results in an exception
(red transitions labeled “Exc.”). A “successful” path through the test model first binds the channel to an
address and network port, then configures the selector, and then accepts one or more client connections
before shutting down the service by calling close on the ServerSocketChannel. Calls to accept in
non-blocking mode may initially fail because the client model may not be ready when the call is made.
In that case, the model stays in an intermediate “accepting” state. In that state, the call to accept can
be repeated until the operation is successful. As the outcome depends on network latency, a successful
result is modeled as a non-deterministic outcome in Modbat, shown as a dotted transition in Figure 2.
The model proceeds to state “connected” if the returned connection object is initialized (non-null) and
stays in state “accepting” otherwise.

Because selector and read/write calls can be made on each connection independently, a separate
“worker” model simulates such calls (see Figure 3a). In this model, the generated model instances
simulate interleaved selector usages.Each connection model starts with an initialized connection, from
which at can proceed by shutting down the input or output channel, or both by closing the connection.
In each state, self-transitions can read or write on the channel, or check the state of its selectors. Once a
channel is partially or fully closed, several operations result in an exception.

Each server-side connection model instance is paired with a minimalist client instance (see Fig-
ure 3b). This ensures a connection to the server socket is eventually established, which is necessary for
testing networked software components, as they cannot be executed in isolation.

We check that the return values and exceptions thrown are consistent with the model-side view of
the overall system. Due to network latency, it may be possible that data is not available in cases where
an ideal network could provide data; our assertions take this into account. For example, the number of
bytes read may be less or equal than the number of bytes available in the channel. The opposite case, a
return value suggesting the availability of data where no data is believed (by the model) to exist, results
in a property violation that is shown as an error trace by Modbat [3].

C. Artho & G. Rousset 5

connected read/write/checkSelector

output
shutdown

 shutdownOutput

input
shutdown

 shutdownInput

closed

 close

 ClosedChExc. read/checkSelector

both
shutdown

 shutdownInput

close

 read/write/checkSelector

 shutdownOutput

 close ClosedChExc. read/checkSelector

 close

 close ClosedChExc.
/ CancelledKeyExc.

(a) Server-side connection model

init

 connect

 read

shutdown

 Exc. close

(b) Client model

Figure 3: Test models representing a server connection (“worker”, left) and a client connection (right).
Selector calls are possible as long as the channel is not closed. The client model reads until either an
exception occurs, or by a non-deterministic model choice closes the connection.

3.4 Challenges

Side effects of test actions pose a challenge. If a test does not clean up all resources when it ends,
dependencies between tests may arise. We observed this in cases where a test could not be replayed in
isolation but only if it was part of a larger sequence of multiple tests. We eventually arrived at what we
think is a correct model by executing half a million test cases against the system, without false positives.

Test cases for the Java network API execute quickly, but ephemeral ports that handle a connection
are exhausted after a while. On today’s systems, a few tens of thousands of such ports are available; their
number can be increased only slightly with a custom kernel configuration. A lack of available ephemeral
ports results in a slowdown of test execution (until closed ports are made available again).

In the model described in this paper, the behavior of each connection is independent of other con-
nections, so the test oracle is entirely local to each model instance, and independent of interleavings of
messages sent over the network. If this is not the case, the oracle has to consider all possible interleavings
of events, as described in other work [2].

4 Conclusion and Future Work

We present a test model for a network API that uses multiple parallel model instances to simulate con-
current requests. The critical issue is to ensure progress after launching a new model instance, or when
waiting for a request. To achieve this, (1) the server side must be ready to receive requests; (2) a client
session is initiated; and (3), in the case of the Java network API, the necessary server call to accept the
client session must be executed. Changing the order of these steps leads to a deadlock in test execution.

Our model faithfully reflects all key operations of the Java network library [16], and can be used to an-
alyze different implementations in depth; previous work reports on defects found with our approach [3].

The models we present can be adapted to other client/server systems. In the future, we want to
explore more network APIs, and other uses of Modbat as an event simulator.

Modbat and example models are available at http://people.kth.se/~artho/modbat/.

http://people.kth.se/~artho/modbat/

6 Model-based Testing of the Java network API

References
[1] C. Artho, A. Biere, M. Hagiya, E. Platon, M. Seidl, Y. Tanabe & M. Yamamoto (2013): Modbat: A Model-

based API Tester for Event-driven Systems. In: Proc. 9th Haifa Verification Conf., LNCS 8244, Springer,
Haifa, Israel, pp. 112–128, doi:10.1007/978-3-319-03077-7_8.

[2] C. Artho, Q. Gros, G. Rousset, K. Banzai, L. Ma, T. Kitamura, M. Hagiya, Y. Tanabe & M. Yamamoto (2017):
Model-based API Testing of Apache ZooKeeper. In: 10th IEEE International Conference on Software Testing,
Verification and Validation (ICST 2017), IEEE, Tokyo, Japan.

[3] C. Artho, M. Hagiya, R. Potter, Y. Tanabe, F. Weitl & M. Yamamoto (2013): Software Model Checking for
Distributed Systems with Selector-Based, Non-Blocking Communication. In: Proc. 28th Int. Conf. on Auto-
mated Software Engineering, ASE, IEEE, Palo Alto, USA, pp. 169–179, doi:10.1109/ASE.2013.6693077.

[4] E. Baeldung (2016): Introduction to the Java NIO Selector. http://www.baeldung.com/
java-nio-selector. Accessed: 2017-03-07.

[5] R. Binder (2000): Testing object-oriented systems: models, patterns, and tools. Addison-Wesley.
[6] K. Cheng & A. Krishnakumar (1993): Automatic functional test generation using the extended finite state

machine model. In: Proc. 30th Int. Design Automation Conf., DAC, ACM, Dallas, USA, pp. 86–91,
doi:10.1145/157485.164585.

[7] K. Claessen & J. Hughes (2000): QuickCheck: a lightweight tool for random testing of Haskell programs.
SIGPLAN Not. 35(9), pp. 268–279, doi:10.1145/357766.351266.

[8] J. Jacky, M. Veanes, C. Campbell & W. Schulte (2007): Model-Based Software Testing and Analysis with C#,
1st edition. Cambridge University Press, doi:10.1017/CBO9780511619540.

[9] D. Kegel (2013): The C10K problem. http://www.kegel.com/c10k.html.
[10] W. Leungwattanakit, C. Artho, M. Hagiya, Y. Tanabe, M. Yamamoto & K. Takahashi (2014): Modular

Software Model Checking for Distributed Systems. IEEE Transactions on Software Engineering 40(5), pp.
483–501, doi:10.1109/TSE.2013.49.

[11] J. Link & P. Fröhlich (2003): Unit Testing in Java: How Tests Drive the Code. Morgan Kaufmann Publishers,
Inc.

[12] Q. Luo, Y. Zhang, C. Lee, D. Jin, P. Meredith, T. Şerbănuţă & G. Roşu (2014): RV-Monitor: Efficient Para-
metric Runtime Verification with Simultaneous Properties. In: Proc. 5th Int. Conf. on Runtime Verification,
RV 8734, Springer, Toronto, Canada, pp. 285–300, doi:10.1007/978-3-319-11164-3_24.

[13] R. Nils (2013): ScalaCheck, a powerful tool for automatic unit testing. https://github.com/rickynils/
scalacheck/. Accessed: 2016-12-30.

[14] M. Odersky, L. Spoon & B. Venners (2010): Programming in Scala: A Comprehensive Step-by-step Guide,
2nd edition. Artima Inc., USA.

[15] Oracle (2016): Java Platform SE 8. http://docs.oracle.com/javase/8/docs/api/.
[16] Oracle (2016): Java Platform Standard Edition 8 API Specification. http://docs.oracle.com/javase/

8/docs/api/.
[17] M. Utting & B. Legeard (2006): Practical Model-Based Testing: A Tools Approach. Morgan Kaufmann

Publishers, Inc., San Francisco, USA.
[18] W. Visser, K. Havelund, G. Brat, S. Park & F. Lerda (2003): Model checking programs. Automated Software

Engineering Journal 10(2), pp. 203–232, doi:10.1023/A:1022920129859.
[19] D. Wampler & A. Payne (2009): Programming Scala. O’Reilly Series, O’Reilly Media.

http://dx.doi.org/10.1007/978-3-319-03077-7_8
http://dx.doi.org/10.1109/ASE.2013.6693077
http://www.baeldung.com/java-nio-selector
http://www.baeldung.com/java-nio-selector
http://dx.doi.org/10.1145/157485.164585
http://dx.doi.org/10.1145/357766.351266
http://dx.doi.org/10.1017/CBO9780511619540
http://www.kegel.com/c10k.html
http://dx.doi.org/10.1109/TSE.2013.49
http://dx.doi.org/10.1007/978-3-319-11164-3_24
https://github.com/rickynils/scalacheck/
https://github.com/rickynils/scalacheck/
http://docs.oracle.com/javase/8/docs/api/
http://docs.oracle.com/javase/8/docs/api/
http://docs.oracle.com/javase/8/docs/api/
http://dx.doi.org/10.1023/A:1022920129859

	Introduction
	Background
	Modbat
	The Java Network Library
	Related Work

	Test Model for the Java Network API
	Minimalist Model for Client/Server Connections
	Server Implementation Using Selectors
	Server Main and Worker Models Using Selectors
	Challenges

	Conclusion and Future Work

