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Abstract. Model-based testing derives test executions from an abstract
model that describes the system behavior. However, existing approaches
are not tailored to event-driven or input/output-driven systems. In par-
ticular, there is a need to support non-blocking I/O operations, or oper-
ations throwing exceptions when communication is disrupted.

Our new tool “Modbat” is specialized for testing systems where these
issues are common. Modbat uses extended finite-state machines to model
system behavior. Unlike most existing tools, Modbat offers a domain-
specific language that supports state machines and exceptions as first-
class constructs. Our model notation also handles non-determinism in
the system under test, and supports alternative continuations of test
cases depending on the outcome of non-deterministic operations.

These features allow us to model a number of interesting libraries suc-
cinctly. Our experiments show the flexibility of Modbat and how language
support for model features benefits their correct use.
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1 Introduction

Software testing executes parts of a system under test (SUT) [20]. A series of
inputs is fed to the SUT, which responds with a series of outputs. In model-based
testing, test cases are derived from an abstract model rather than implemented
directly as code. This approach has several advantages: A high-level model is
easier to develop and understand than program code; and partially specified
behaviors give rise to many possible combinations, from which many concrete
test cases can be derived.

Many existing test generation tools are designed to generate test data to
test a given function or method [9,17,21]. Our work covers test actions instead,
spanning sequences of multiple function calls.
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Fig. 1. A finite-state machine modeling component behavior.

Existing tools to generate test actions [9,15,16,21,28,29] define a program-
ming interface against which the model is coded; the programmer defines classes
and functions that implement the semantics of the model. It was shown that this
introduces a layer of abstraction in the model that makes it difficult to clearly
express the behavior of event-driven systems, which include databases, file sys-
tems, and cloud computing middleware [2]. Such systems also often depend on
possibly unreliable hardware or communication links, which introduce possible
delays and failures.

Our tool Modbat provides a domain-specific language to model test execu-
tions in such systems succinctly. In Modbat, system behavior is described using
extended finite-state machines (see Figure 1). They provide a graphical, intuitive
base of the model, which can be refined using a domain-specific language pro-
vided by Modbat. For example, the user can add additional preconditions about
when given events are permissible. Results can be checked using assertions, or
stored in model variables to be used in subsequent calls.

1.1 Usage of Modbat

Modbat strives to simplify test modeling by offering a flexible modeling platform.
A tester uses Modbat as follows:

1. The tester defines a model as an extended finite-state machine. The model
is compiled against a library provided by Modbat. For example, a transition
from Figure 1 could be written as
"init" -> "active" := { ¢ = new Component; c.start }.

2. The tester runs Modbat against the compiled model. Modbat explores the
possibilities defined by the model (the state space) using a random search,
executing the SUT in tandem. After each completed test, the model and the
SUT are reset to their initial state.

3. Modbat either executes a predefined number of tests, or it runs until a failure
is found. A failure is detected when a test run violates a property. When a
failure is found, Modbat writes an error trace to a file, giving the necessary
information to analyze the error. For debugging, a failed test can be replayed.

1.2 Outline

This paper is organized as follows: Section 2 gives the necessary background and
describes related work. Section 3 presents our modeling notation, and Section 4
describes our tool Modbat. Section 5 covers projects carried out with Modbat.
Section 6 concludes and outlines future work.



2 Background

2.1 Terminology

A system under test (SUT) exposes its functionality to other software via an
application programming interface (API). APIs may be organized in libraries.

Testing executes parts of the SUT [20]. A test trace, implemented as a test
case, is a series of function calls (method invocations in object-oriented lan-
guages). A test run is the execution of a test case at run-time. The test harness
serves to set up and manage test execution. A test suite is a set of test cases.

Our test model is based on extended finite state machines (EFSM) [8]. For-
mally, an EFSM is defined as a 7-tuple M = (1,0, S, D, F,U,T) where

S is a set of states, I is a set of input symbols, O is a set of output symbols;
D is an n-dimensional vector space Dy X ... X Dy,

F is a set of enabling functions f; : D — {0,1},

U is a set of update functions u; : D — D, and

T is a transition relation T: S x F x I — S x U x O [§].

In an EFSM, D models the internal state of the model; the enabling functions
describe when transitions are enabled; and update functions change the internal
state of the model based on the outcome of a function call to the SUT.

In the formal definition, D is a vector space of fixed dimension. In our tool
(see Section 3), we allow dynamic memory allocation, but for the purpose of
describing the tool behavior, this difference is not important.

A test model usually has a large degree of uncertainty so that it can describe
many possible test executions. Test derivation (test generation) describes the
action of deriving individual concrete test cases from the abstract test model.

Techniques that rely solely on the specification of a system are called black-box
techniques, while approaches that consider the implementation during analysis
are known as white-box techniques. In our case, the specification is sufficient to
write a test model; hence we consider our approach black-box.

2.2 Online vs. Offline Testing

Test derivation techniques can be divided into online testing and offline test-
ing [28]. In online testing, the test generation (derivation) tool connects directly
to the SUT. Each test is directly executed while it is generated (see Figure 2).

In offline test generation (see Figure 3), the test derivation tool does not
execute the SUT directly. Instead, it generates an intermediate representation of
test cases that is turned into executable tests later [28]. Existing literature also
covers generation of manually deployable tests, which is elided in this paper [28§].

Online testing is more efficient than offline testing, as no test code needs to
be generated and compiled. A model can be set up to handle non-determinism
in the SUT (also see Section 3), and may even dynamically fine-tune the test
model based on earlier test executions.
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Fig. 2. Online testing. Test requirements include configuration options for the test
tool, such as the number of tests to be generated; IXIT refers to implementation extra
information, which is information needed to derive executable test cases [28]. Such
information includes system configuration (such as library locations).
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Fig. 3. Offline testing: Abstract tests are turned into executable tests later.

Offline testing has the advantage that the test execution platform does not
depend on the test derivation tool. The execution platform is therefore simpler
and has a higher chance of not introducing unwanted behavior. Offline testing
is also applicable when test cases have to be executed on a platform that is not
supported by the test derivation tool. Modbat supports both online and offline
testing, so it can handle a large set of use cases and platforms.

2.3 Related Work

Unit testing experienced a widespread rise in software development in the late
1990s [6,7,19]. In particular, JUnit is widely used for Java programs [19]. Modbat
supports offline code generation for JUnit, allowing it to complement legacy test
suites with automatically generated tests.

Many model-based testing tools allow a model to be defined against a pro-
gramming interface (API). Such tools include QuickCheck [9] and ScalaCheck [21],
which generate data based on predicate constraints; that data is then used to
execute a given function in the SUT. One of the earliest practical model-based
test tools that generates test sequences was ModelJUnit [28], which is also based
on extended finite state machines. In ModelJUnit, a lot of the structure of the
EFSM is implemented by the user (also see Section 3). A tool that motivated
Modbat was actually implemented as a preprocessor to ModelJUnit [2]. Osmo
and NModel also use state machines and take a similar approach as ModelJUnit;



the structure of the model is defined via annotated methods [15,16]. NModel and
its successor SpecExplorer [29] also distinguish themselves by splitting the model
into a scenario model (generating the tests) and a contract model (verifying the
outcome), while most other tools combine both aspects in one model.

Model-free test case generation techniques require no user-defined model.
Randomized testing is such a white-box technique, which executes the SUT
without any specification. Instead, it explores possible test actions and tries to
execute as many aspects of the SUT as possible. Such testing may be primarily
randomized [10,24] or more systematic and coverage-driven [11].

Concolic testing tools also optimize test coverage by keeping track of (sym-
bolic) constraints that describe if a code branch can be taken; these constrains
are then refined with current values during concrete test execution [13,27].

Model-free approaches essentially reverse engineer the models from the code.
Full automation comes at the expense of having no output oracle is available,
limiting detectable failures to executions that result in a fatal outcome (typically
a crash or unhandled exception).

3 Modeling Notation

We address the problems listed in Section 1 by the following design decisions:

1. The underlying model is an extended finite state machine (EFSM), which
is well understood by the formal methods community and developers alike.
Transitions in the EFSM are directly linked to program code.

2. The model is not expressed as a program, but in a domain-specific language
(DSL). Our DSL supports non-determinism both in the specification (to sim-
ulate faults or non-deterministic events) and in handling the resulting SUT
behavior (to handle faults or exceptions). It is, to our knowledge, the only
tool both supporting non-determinism and exceptions as primary constructs.

Figure 4 shows an example. Class SimpleCounter offers two methods that
can increase its counter value (initially 0). The first method has the added prop-
erty that a successful outcome depend on a flag (initially ¢rue). If the flag is set
to false by calling toggleSwitch, then calling inc does not change the counter
value. A corresponding test model calls the given methods in random order until
value 2 is reached. In doing so, it does not take the side-effect of toggleSwitch
into account. Modbat finds sequences of actions in the model that result in
violating the assertion in the model, such as toggleSwitch, inc, inc, assert.

Note that a labeled state in an EFSM does not reflect the full model state; in
our example, states correspond to the counter value but do not include the state
of the switch in the counter (see Figure 5). This design is deliberate: The choice
of a more abstract model state keeps the model size small. Model variables are
used instead to define details matching the precise system state [28].

As a consequence of this design approach, different paths resulting in the
same model state may correspond to different system states. In other words,
model state (s, D) and SUT state do not necessarily match for two traces where



public class SimpleCounter { class CounterModel extends Model {

int count = 0; var counter = new SimpleCounter ()
boolean flag = true; // transitions
def instance() = { new MBT (

public void toggleSwitch() { "zero" -> "zero" := {

flag = !flag; counter.toggleSwitch
} 1,
public void inc() { "zero" -> "omne" := {

if (flag) { counter.inc

count += 1; },

} "one" -> "two" := {
} counter.inc
public void inc2() { },

count += 2; "zero" -> "two" := {
} counter.inc2
public int value() { },

return count; "two" -> "end" := {
} assert (counter.value == 2)

} D1

Fig. 4. Example system (left) and Modbat model (right).
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Fig. 5. Visualization of example model.

s = ¢’ due to abstractions in the model. We are not aware of an established
best practice for choosing the best level of abstraction, but it is well-known that
choosing the right level of abstraction is a challenging task [18].

3.1 ESFM Notation

The notation of our model is motivated by previous work [2|, which used a
model that is based on graphs expressed in the notation used by Graphviz [12].
We decided to move to a new notation, because the Graphviz format is not
extensible and not designed for model-based testing, but for visualization.

Our notation is designed as an embedded DSL [31] on top of the Scala pro-
gramming language [22]. Transitions are declared with a concise syntax:

"pre_state" -> "post_state" := { transition_action }.”

Transition actions include calls to the SUT API, and assertions that check
return values against given properties. Transition actions can be modified by
adding declarations on exceptional or non-deterministic behavior.

" The first declared state automatically constitutes the initial state of the model.



FEzceptions can be specified succinctly in Modbat. If an exception of a given
type is always expected, throws ("ExceptionType" {, "ExcType"}) gives a list
of possible exceptions, where one of them must occur during the transition. If
an exception may occur, catches can be used, which specifies the target state
for the model if the exception occurs:

"pre" -> "post" := { action } catches ("Exception" -> "errorState").

Related to the formal definition of ESFMs in Section 2, Modbat does not
use explicit input and output symbols; input/output functions of Java’s libraries
are available instead. D is represented by model variables. F' is implemented by
Modbat itself as a check of the predecessor state, and whether declared precondi-
tions evaluate to true. Update functions U are transition actions as shown above;
and the transition relation 7', implemented by Modbat, takes into account the
given successor states, exceptions, and the semantics of nextIf as shown below.

Modbat also supports some shorthand definitions, for example to model a set
of transitions with the same action and end state, and to model multiple tran-
sitions with the same predecessor and successor states but different actions. We
believe that automatically combining user-defined annotations for preconditions
and exceptions with transitions derived from the EFSM, is a key to making a
test derivation tool both expressive and easy to use. Earlier work has shown that
managing the model state as user-defined code is tedious and error-prone [2].

3.2 Comparison to API-driven Test Derivation Tools

Existing tools like ModelJUnit [28] or ScalaCheck [21] require user-defined code
to manage the model state. To show the benefit that Modbat provides, we com-
pare the necessary code to manage the model state for normal transitions and
transitions throwing exceptions. The overhead of user-defined code becomes par-
ticularly high when exceptions have to be managed. Figure 6 shows, for different
tools, the code for managing the model state, and for ensuring that an exception
always occurs (for example, when action is executed in the wrong system state).
Code to manage optional exceptions is similar in ModelJUnit and ScalaCheck;
it updates the next state instead of a boolean and contains no assertion.

Compared to other tools, Modbat’s notation is more concise (see Table 1).
When counting the additional code to handle certain features, we assume a non-
trivial EFSM with non-empty preconditions and do not count the action function
itself, or lines containing only curly braces. We also count a state transition in
Modbat as two lines, as it is usually formatted as such (see Figure 4). We can
see that our notation reduces the amount of model code by 75 % for each tran-
sition while also eliminating error-prone repetitive code that manages internal
information.®

Preconditions (which may not contain side-effects) are supported by all tools
in similar ways. In Modbat, preconditions are declared using require, using the
same syntax as in normal Scala code.

8 Defining additional helper functions in ScalaCheck could partially alleviate the over-
head of exception checking, but not of state management.



Modbat ModelJUnit ScalaCheck
boolean actionOGuard() { case object TransitionO

"pre" _> "POSt L

{ action } return state == 0; } extends Command {
@Action void action0() { preConditions += (s==...)
action(); def run(s: State) = action
state = 1; } def nextState(s:State)=...
Modbat ModelJUnit ScalaCheck
{ action } { boolean ok = false; { var ok = false
throws ("Exception") try { try {
action(); action
} catch(Exception e) { } catch { case e:
ok = true; } Exception => ok=true }
assert (ok); } assert (ok) }

Fig. 6. State transitions (top) and exception handling (bottom) in different tools.

Table 1. Lines of additional code needed (per use) to handle certain model features.

Feature Modbat ModelJUnit ScalaCheck
State transition 1 4 4
Precondition 1 1 1
Expected exception 1 5 5
Optional exception 1 4 4

As can be seen, Modbat’s embedded DSL supports model constructs effi-
ciently while still leveraging the host language, Scala. Other related tools also
use models defined in program code against a given API (see Section 2.3); the
coding overhead compared to our DSIL-based approach is similar to the cases
shown in Table 1.

3.3 Advanced Modeling Features: Non-determinism and
Annotations

We consider non-determinism a powerful modeling feature and therefore support
multiple operators that deal with different types of non-determinism:

Choose returns a random number in a given range. It is intended to cover
relatively simple use cases. We do not model complex data such as sup-
ported by generator functions in ScalaCheck [21], because the generators
from ScalaCheck can be combined with Modbat as long as replay and offline
testing (see below) are not used.

Maybe executes code probabilistically, with default probability of 0.5. This is
useful when testing SUT functionality that is expected to fail sometimes
(such as input/output). In a normal test setup, failure probability may be
too low to be observed. With maybe, faults can be simulated (injected) on
the model level.



NextIf models alternative outcomes on the SUT side. For instance, non-blocking
input/output (I/O) operations return immediately but may be incomplete.
Using nextIf, the model can account for both possible outcomes of such an
operation.

When using non-blocking 1/0, a failed or partial I/O operation usually has
to be retried later. In Modbat, nextIf overrides the normal successor state if
its predicate is true. The following code models a non-blocking accept call in
ServerSocketChannel, which is part of package java.nio in the standard Java
library [23]:

"accepting" -> "connected" := {
connection = ch.accept()
} nextIf ({ () => connection == null} -> "accepting").’

The documentation of accept states that the non-blocking variant immedi-
ately returns a new connection handle if it is successful and null otherwise [23].
The normal successor state in the model (connected) covers the case where the
operation is successful, but nextIf defines an alternative to remain in the current
model state otherwise.

Using nextIf allows exhaustive testing of component-based systems which
are often I/O-driven and have to be able to continue after communication prob-
lems. It is similar to next-state declarations in modeling languages such as
Promela [14] used for the exhaustive verification of algorithms. As Modbat tests
implementations, exhaustive verification cannot be attained directly. To observe
all possible outcomes, either a large number of test runs is needed, or a platform
that can simulate delays, such as Java PathFinder [30]; also see Section 5.

As our modeling language is embedded in Scala, all Scala language features
are available. In particular, longer blocks of code can be written as separate
functions. Functions may also be annotated so they have a special significance
outside a test run: Functions annotated with @init and @shutdown are executed
before the first and after the last test run, respectively. In our case studies, we
used these annotations to run a server in the background while client tests were
being executed, and to shut the server down cleanly at the end. While this
task could also be handled externally (e.g., by shell scripts), having a built-in
mechanism allows us to refer to model data. Similarly, annotations @before and
@after execute a function before and after each test. Such functions set up and
tear down auxiliary data structures without complicating the test model itself.

3.4 Other Features

Modbat records any decisions taken by its own random number generator (RNG),
so tests can be replayed in full (with a given random seed) or partially (with
a subset of the trace of random numbers generated). Unfortunately, replaying
currently does not support third-party data generators such as ScalaCheck’s.

9 The parentheses followed by the arrow, () =>, are a Scala syntax artifact to encap-
sulate the condition in an anonymous function, which is then passed to Modbat.
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Fig. 7. Master (filled circle)/slave (unfilled circle) RNG usage in Modbat.

Modbat uses random numbers in a tree-like fashion: Instead of one RNG,
a master RNG and a slave RNG are maintained (see Figure 7). The master is
advanced by one step at the end of each test run and only used to seed the slave
RNG for a new test run. Because the RNG is restored to a new seed before a
new test is started, changes in the number of (slave) RNG calls in previous test
cases do not affect the new state at the beginning of a new test. This keeps test
runs within a test suite consistent across minor modifications of the model (such
as adding an extra choice that does not affect the outcome of most test runs).
Precomputing master RNG states even allows parallelization of test executions.

Modbat supports multiple ESFMs, which are executed using an interleaving
semantics. Modbat starts a given state machine first, which then uses the launch
function of Modbat to launch a (parametrized) instance of another ESFM.

Modbat supports both online and offline testing, even when random numbers
are used. For offline testing, the trace of random numbers is recorded for each
transition, so test case minimization can be performed later [32].

Modbat also supports coverage measurement; currently, state and transition
coverage are measured. Coverage can be visualized (along with the test model)
using Graphviz [12].

4 Implementation Architecture

Modbat’s test models are defined in an embedded DSL [31] on top of Scala [22].
Scala was chosen for its extensible syntax (allowing the definition of domain-
specific languages on top of Scala) and its compatibility with Java. We use the
Scala compiler to parse the test model and compile it against a model library
that defines the syntax of our DSL and its operators (see Figure 8).

Modbat supports a variety of configuration options. Test requirements in-
clude the total number of tests and the option to abort after a failure. The
length of test runs can also be limited by setting a probability to abort a test
after each step. Implementation-specific information (IXIT in Figure 2) includes
library locations, log file locations, and the option to set a random seed.

Modbat loads the compiled model and tests it against the SUT. Normally,
Modbat runs in the normal Java Virtual Machine (JVM), and executes test cases
online against the test specification. Failed tests are reported and can optionally
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Fig. 8. Implementation architecture (online testing).

be written to a Java or Scala source file as unit tests. Modbat supports JUnit-
style test code generation or a stand-alone format that uses its own test harness.

Offline test code is compiled against the test model for later execution. Both
the compiled unit tests (defining the test traces) and the test model are used for
offline testing, as the latter holds model variables and state transition functions.

5 Usage of Modbat in Software Development

To find defects in Modbat itself, Modbat is tested internally against a number
of test models. Tests range from parsing command line arguments to online and
offline test derivation. About 200 such tests are used as regression tests during
development, to validate Modbat itself. Online test case generation is tested by
running Modbat on the compiled test model, and observing the outcome (test
coverage reported, number of failures found, contents of error traces). For offline
testing, two more stages are added: First, the generated source code is compiled
and compared against a previous run; then, the output of the executed offline
tests is also verified.

5.1 Testing the SAT Solver Lingeling with Modbat

Our first project illustrates how Modbat is used to test SAT solvers, which are
very complex and highly optimized programs. As SAT solvers often serve as
reasoning backends in verification frameworks, their correctness is of particular
importance. In general, efficiently implemented SAT solvers are too complex to
be fully verified themselves, so testing approaches like model-based testing are
required to ensure their robustness. Previous work [3] shows how model-based
testing compares to standard testing techniques for the SAT solver Lingeling,
which is the winner of several major tracks at the SAT solver competition 2013.
Besides standard reasoning techniques found in almost all recent SAT solvers,
Lingeling additionally implements several preprocessing rules which are very
effective, but which also increase the complexity of the solver’s code and API.
An earlier testing framework [3| realizes a model-based testing approach
where the model is expressed in plain C code. The generation of the test cases
based on this model was also manually implemented in C, requiring about 650
lines of code. We formulated the same model, consisting of 12 states with 18



transitions, in Modbat with only 300 lines of code for the same functionality.
As Lingeling is written in C, we used the Java Native Access (JNA) framework
to make Lingeling’s API accessible in Modbat. We did not experience any re-
strictions concerning the expressiveness of neither Modbat nor Scala used for
describing the generation of the input data. Because each test run consists of
hundreds of transitions with almost equally many (uncovered) branches, 99.98 %
of all generated paths by Modbat were unique after 100,000 tests.

We performed a similar experiment as described in earlier work [3], applying
our tests to 373 different defective versions of Lingeling. The faults were ran-
domly seeded into Lingeling’s code by removing arbitrary lines or by introducing
abort-statements. Each generated test case was then applied to each defective
version, with a timeout of 100 seconds per test case (on a given instance of Lin-
geling). In our setup, 55 % of the defects were found with the model written in
C [3] within that timeframe. With Modbat we found 60 % of the defects. When
looking at the execution performance, we experienced that the hand-coded model
in C is only twice as fast as the generic Modbat framework.

5.2 Java PathFinder

To evaluate Modbat to an input/output (I/O) driven system, we applied it to an
implementation of java.nio, Java’s network library for non-blocking, selector-
based I/O. This library is used in Java PathFinder (JPF) [30], which is a soft-
ware model checker for Java bytecode. In a concurrent SUT, JPF explores the
outcomes of all possible thread interleavings by backtracking executions to a pre-
viously stored program state, and exploring the other remaining outcomes from
that point. By itself, JPF cannot handle network I/O, because backtracking the
SUT causes it to be out of sync with its environment [5].

In JPF, a model library can provide the missing functionality that JPF does
not support. Other work describes the implementation of java.nio in JPF and
its application to a web server in depth, along with a preliminary evaluation of
an earlier model [4]. In this work, we describe our enhancements to the earlier
model [4], the new defects that Modbat revealed, and its behavior in JPF in
more depth.

JPF implements software model checking by running the SUT in its own
virtual machine (VM) that is capable of backtracking the entire SUT state. JPF
currently supports only the execution of entire programs; therefore, the test
harness also needs to be executed inside JPF, even if it is entirely deterministic.
In our case, Modbat is the test harness, and the java.nio library is the SUT.

5.3 Evaluation of Models for Non-blocking I/0

Non-blocking I/0 is difficult to test: A non-blocking operation returns imme-
diately, but the result may be incomplete. The correct use of non-blocking I/0
therefore requires state and buffer management code to ensure completion of an
operation. While more difficult to implement than blocking I/0, it often provides
better performance and has become prevalent in modern servers [26].



Table 2. Experiments on testing the java.nio client API in JPF.

# tests| Model coverage | JPF states other JPF statistics
# states[# trans.| new]visited|ins. [1,000s[[mem. [MBJ[ time
100 5 13| 1,070 5 11,667 616| 0:15
200 6 15| 2,142 3 23,316 1,173| 0:31
300 6 19| 6,256 24 68,312 2,913| 1:51
400 6 20(16,302 61 177,605 4,802| 6:03
500 6 20(26,054| 121 283,699 6,127/10:20

Table 3. Experiments on testing the java.nio server API in JPF.

# tests| Model coverage | JPF states other JPF statistics

# states|# trans.| new]visited[ins. [1,000s][mem. [MB][[time

100 7 171 676 0 7,185 294(0:16
200 7 17 4,798 223 52,128 551(1:10
400 7 171 6,917 230 74,823 1,131 1:46
800 7 17(11,973| 273 128,910 2,607| 3:37
1,200 7 17(14,760( 282 158,872 4,396| 5:33
1,600 7 17]20,194| 338 217,039 5,996| 9:57

We applied Modbat to three related models: one for the server API that
focuses on accepting connections on an open port, and two for the client API
that model connection usage and selectors, respectively. Out of these models,
the server model is the smallest (having fewer states and less inherent non-
determinism than the client models), and the client model that includes selector
usage is the largest.

Modbat is first applied to our test model on the normal Java VM, taking
the standard implementation of java.nio as a reference implementation. The
model is written such that no (false) positives are reported in that case. Model
execution in this case is very fast; for models without external communication,
we measured 3,000 test per second on an 8-core Mac Pro workstation running
Mac OS 10.7.

Execution in JPF is much slower than in the normal Java VM. The overall
architecture remains the same, but Modbat and the SUT run inside JPF instead
of the normal Java VM to analyze non-deterministic operations. While Modbat
itself is deterministic, non-determinism in non-blocking I/O generates multiple
possible successor states. When the outcome of a given test case is analyzed
exhaustively (in JPF) rather than for only one execution (in the normal Java
VM), coverage information maintained by Modbat diverges as well. This causes
a state space explosion across multiple test executions (see Tables 2 and 3). In
that table, the number of “visited” states in JPF indicates the effect of non-
determinism on coverage information, and thus a super-linear increase in the
state space.

Because of this growing memory usage by the state space generated JPF,
generating a large number of test runs in a single execution is not possible. We
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Fig. 9. Paths covered (out of infinitely many possible paths) during 100,000 test runs.

solve the problem by splitting 100,000 tests into small test suites, and multiple
executions of Modbat in JPF. Taking advantage of our random number generator
(see Section 3), we use the successor of the master random seed of the last test
run in the next execution of Modbat. Coverage information is aggregated by
post-processing the log files.

Full state and transition coverage was reached quickly in all models, after
fewer than 1,000 test runs.'® As the models include loops, the number of possi-
ble paths is infinite. However, most tests reach an end state after ten or fewer
transitions. Due to this, the probabilistic test exploration of Modbat ends up
covering previously derived test traces (see Figure 9). After 1,000 tests, between
13.7 and 21.3 % of all generated traces are unique; after 10,000 tests, that num-
ber drops to 4.4-12.2 %; after 100,000 tests, to 1.6-7.0 %. We consider these
diminishing returns not to be a huge problem: Similar case studies have shown
that a large number of significant SUT behaviors is covered after 2,000-5,000
cases [3].

5.4 Defects Found
We found two previously unknown defects in our java.nio library for JPF:

1. The wrong exception was thrown when finishConnect was invoked after
close. This scenario is easily overlooked as manually written tests and (even
our own earlier models) tend to focus on key operations of the SUT and
neglect operations that come after “difficult” ones [25]. The bug was found

10 We found that for a large number of models, state and transition coverage was even
easier to obtain. However, a model state may reflect many system states, depend-
ing on the level of abstraction. Therefore, we think that more complex coverage
metrics [1] are needed; their usage is future work.



Fig. 10. Model of end-of-file semantics; dashed transitions are incomplete reads.

after introducing a short-hand in Modbat to model similar transitions more
succinctly, made it expedient to include the scenario that triggered the defect.
Manually written unit tests with exception checking code (see Figure 6) did
not implement the exception check correctly, underscoring the importance
of supporting such features with a DSL. From this we conclude that it is
conceivable that a developer using other test tools (without DSL support)
may have missed this bug.

2. It was possible to read spurious data after an end-of-file (EOF) token had
been received. The test case for this includes a server that sends two bytes
and then closes its connection. The model has to verify correct reception of
data in the presence of possibly incomplete reads. The defect in the library
related to a mismatch between the EOF event and its internal state when
non-blocking reads are used. The problem was found thanks to improved
monitoring code in the model. In this case, the property to be monitored
was expressed programmatically, and was initially too weak. In hindsight,
using extra model states and Modbat’s nextIf feature would have expressed
the same property more succinctly and clearly (see Figure 10).

From these case studies, we conclude that Modbat is effective at modeling APIs
of I/O-driven systems. The fact that it allows to express certain features directly
was related to finding defects that were not detected by manually written tests
(because of faulty checking code) and earlier models (because of a less expressive
DSL available then). Still, we also concur that creating a succinct and correct
model of system states and actions as a compact EFSM is a challenge. The
choice of appropriate model states and variables at the right level of abstraction
requires experience and precise reasoning about the system specification.

6 Conclusions and Future Work

Modbat is a model-based tester based on extended finite-state machines. It differs
from existing test generation tools by providing a domain-specific language that
assigns system actions to transitions between model states. Modbat directly
supports exception handling and non-deterministic system actions such as non-
blocking input/output.

Our experience with Modbat shows that its notation is very versatile and
allows the developer to focus on the system semantics and properties. Using
Modbat, we successfully found previously unknown defects in a complex system.
This was made possible because Modbat allows one to easily express a variety of
system actions, including non-deterministic operations. The fact that previous



attempts missed these defects suggests that model expressiveness is an important
factor for the effectiveness of model-based testing.

Our current approach to test case derivation uses only a random seed as per-
sistent state. This allows for parallelization of the search, but limits the number
of unique paths found for a given number of test cases. In future work, we would
like to investigate coverage-driven approaches, in a way that still allows splitting
large test suites into small parts. We also plan to integrate Modbat with other
test data generation tools, and consider searching finite models exhaustively.
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