
Optimization of Test Oracles in Model-based Testing for

Distributed Systems

分散システムを対象としたモデルベーステストにおけるテス

トオラクルの高速化

by

Kazuaki Banzai

坂西一暁

A Master Thesis

修士論文

Submitted to

the Graduate School of the University of Tokyo

on February 22, 2018

in Partial Fulfillment of the Requirements

for the Degree of Master of Information Science and Technology

in Computer Science

Thesis Supervisor: Masami Hagiya 萩谷昌己

Professor of Computer Science

ABSTRACT

Model-based testing is a testing technique that uses mathematical models such as
extended finite state machines (EFSMs) or UML to describe how the tests should be
done. Test cases are generated and executed from the models.

To automate test evaluation in model-based testing, a test oracle, a program for
checking whether the software under test (SUT) runs correctly, is needed. Generally, to
find more bugs with model-based testing, it is desirable to execute as many test cases as
possible.

In model-based testing for distributed systems, however, it is difficult to execute
many test cases; the test oracle takes time because of the following reason: Due to
asynchronous and concurrent communication, an execution order of requests cannot be
uniquely determined from the test oracle’s side. Thus, the test oracle needs to search for
an execution order that corresponds to the actual result from possible execution orders
in order to check whether the result is correct or not. The search time is exponential
with regard to the number of sessions and the number of actions per sessions. To solve
the problem, we present two optimization methods for test oracles used in model-based
testing for distributed systems.

The first one is a method to implement a simulator of the SUT and use it in a test
oracle. We optimize the test oracle by improving the algorithm to search for the execution
order that corresponds to the SUT’s output. This algorithm is based on the heuristic
that the receiving order of responses is generally consistent with the execution order of
requests.

The second one is a method to optimize the test oracle by applying a highly optimized
SMT solver to search for the execution order. An SMT solver is a tool for determining
the satisfiability of a formula in first-order logic. The oracle creates a formula that is
satisfiable if and only if the SUT’s output is correct and determines its satisfiability with
an SMT solver to validate the SUT.

To show the effectiveness of these methods, we test Apache ZooKeeper as an example
of a distributed system. In the tests, we use Modbat, a tool for model-based testing.
Apache ZooKeeper is a software to support distributed systems. It provides functions
used in many distributed systems, such as maintaining configuration information and
management of naming. We implement and optimize the oracle used in the tests with
two methods, and estimate these methods to establish a way to create test oracle that
takes advantage of these methods’ strength.

論文要旨

モデルベーステストは extended finite state machines(EFSMs)やUMLなどの数学的な

モデルを用いて、どのようにテストを行うかを記述し、そのモデルに従ってテストケース

を生成、実行するテスト手法である。

モデルベーステストではテスト結果の評価を自動化するために、テストオラクルと呼ば

れる、テスト対象 (SUT)が正しく動作しているかを判定するプログラムが必要になる。一

般に、モデルベーステストによって SUTのバグをより多く見つけるためには、できるだ

け多くのテストケースを実行することが望ましい。しかし分散システムを対象としたモデ

ルベーステストでは、テストオラクルの計算に時間がかかるため多くのテストケースを実

行するのが難しいという問題があった。これは並行的な通信や非同期的な通信が用いられ

るためにリクエストの処理の順番がテストオラクル側から見て一つに定まらず、そのため、

テストオラクルは複数ありうる実行順の中から、実際の結果に一致するような実行順が存

在するかを探索する必要があることにより、テストオラクルの計算時間がセッションの数

と各セッションで呼ばれるアクションの数に対して指数関数的に増大するためである。

この問題を解決するため、本研究では、分散システムを対象としたモデルベーステスト

におけるテストオラクルの高速化法を二つ提示する。

一つ目は、SUTのシミュレーターを実装し、それをテストオラクルに用いる手法である。

この手法では、レスポンスを受信した順番とリクエストが処理される順番は概ね一致する

という経験則に基づいたヒューリスティック探索によって、SUTの出力結果と一致するよ

うな処理順を探索することで、テストオラクルを高速化する。

二つ目は、実効順の探索に既存の高速な SMT solverを利用することで高速化する手法

である。SMT solverとは一階述語論理の論理式の充足可能性を判定するツールである。こ

の方法では、テストオラクルが SUTの出力結果が正しい時かつその時に限り充足可能な

論理式を構成し、その論理式の充足可能性を SMT solverを用いて判定することで SUTを

検証する。

この二つの手法の効果を示すため、分散システムとしてApache ZooKeeperを例にして、

このソフトウェアをModbatというモデルベーステストのためのテストツールを用いてテ

ストする。Apache ZooKeeperとは設定情報の保守や名前付けの管理などの、分散システ

ムで頻繁に用いられる機能を簡単に利用できるようにするソフトウェアである。このテス

トで用いるテストオラクルを上記の二つの方法で実装、高速化し、それらを比較検討する

ことで、それぞれの長所を活かしたテストオラクルの構成法を確立する。

Acknowledgements

First, I would like to thank my thesis supervisor Masami Hagiya. He gave me
insightful advice about all parts of the work and led me in the right direction.

I am very grateful to Cyrille Artho at KTH Royal Institute of Technology. This
work is based on our previous work of model-based testing for Apache ZooKeeper
he took the lead in. I am indebted to his work and his suggestion for the paper.

I would also like to thank Yoshinori Tanabe at Tsurumi University and Takashi
Kitamura at National Institute of Advanced Industrial Science and Technology
(AIST) for their insightful comments on this paper.

Contents

1 Introduction 1

2 Background 3
2.1 Apache ZooKeeper . 3

2.1.1 ZooKeeper API . 3
2.1.2 Internal data structure of ZooKeeper server and the initial

data . 3
2.2 Modbat . 4

2.2.1 Extended finte state machines 4
2.2.2 The syntacs and semantics of Modbat’s DSL 5
2.2.3 Test case generation and execution 6

2.3 Test models . 6
2.3.1 Outline of the tests . 8
2.3.2 The server model and the client model 8

2.4 Test oracle . 8
2.4.1 The order of requests processing 9
2.4.2 The problem about test oracles 9

2.5 Z3 . 9
2.6 Summary . 9

3 Test Oracle 11
3.1 Informal specification of ZooKeeper API 11

3.1.1 The specification about the order of API execution 11
3.1.2 The specification about outputs of each API 11
3.1.3 Example . 12

3.2 Formal specification of ZooKeeper APIs 13
3.2.1 A labeled transition system for the specification 13
3.2.2 The problem formalization 13
3.2.3 The formal specification of ZooKeeper 14
3.2.4 Example . 16

3.3 The Simulator-based approach . 17
3.3.1 The mechanism . 17
3.3.2 Optimization . 18

3.4 The SMT-based approach . 18
3.4.1 The formula . 18
3.4.2 Reachable(p) . 20
3.4.3 Corresponding ij(p) . 20
3.4.4 Example . 23

3.5 Filtering . 25
3.6 Simple checking and strict checking 26
3.7 Summary . 27

v

4 Experiment 29
4.1 Experimental setting . 29
4.2 Experimental result . 30

4.2.1 Comparison of test oracles in each testing condition 30
4.2.2 Comparison of testing conditions for each algorithm. 30

5 Discussion 35
5.1 The simulator-based approach and the SMT-based approach 35
5.2 Filtering and Strict checking . 36

6 Related Work 37
6.1 Model-based testing . 37
6.2 Test oracle optimization . 37
6.3 Developing cost of test oracle . 37

7 Conclusion and future work 39
7.1 Conclusion . 39
7.2 Future work . 39

References 41

vi

Chapter 1

Introduction

Since software involves almost all aspect of our life, it is very important to assure
the reliability and the quality of software [29]. Software testing is widely used to
check if the software run just as the engineers intended.

Model-based testing is a testing technique which uses mathematical models to
describe how the tests should be done. Test cases are generated and executed in
accordance with the models.

Mark Utting and Bruno Legeard argue that the following points are benefits
of model-based testing [34].

SUT Fault Detection Studies show that the model-based testing’s capabil-
ity of fault detection is equal to or higher than that of manually designed
tests [11, 14, 6, 30].

Reduced Testing Cost and Time Although it may require more cost to
learn how to use model-based testing than manual testing [10], the cost of
model-based testing is much less than that of manual testing [11, 14, 7, 6,
8, 19].

Improved Test Quality While the quality of manually designed tests de-
pends on the faculty of engineers and the entire process of the tests is not
systematic, model-based testing is systematic and repeatable because test
case generation in model-based testing based on specific algorithms. In ad-
dition, model-based testing enables to generate and executes more test cases
than manual testing and it may help to find more defect [31].

Requirements Defect Detection Writing the models leads to understand
and clarify the requirements, which are mostly described with an informal
natural-language document. It is useful to find defects which come from
requirements errors.

Traceability Traceability means the ability to find which part of the models,
the test selection criteria and the informal system requirements correspond
to the test cases. Although it is difficult to assure that a traceability between
requirements and models and a traceability between requirements and test
cases, relating test cases with the models is comparatively easy. traceability
is useful for checking if all transitions are covered by the test cases and to
visualize transitions which are covered by a test case.

Requirements Evolution Updating model is usually much easier than up-
dating manually written test suites because a model is much smaller than
test suites.

1

In previous our work [4], we employed this testing technique to test API of
Apache ZooKeeper. Apache ZooKeeper is a software that supports commonly
used features in distributed systems. Such systems are difficult to be tested be-
cause of concurrent and asynchronous communication. We used Modbat [5], a
test tool for model-based testing and proved its ability to detect faults of an SUT
with relatively small test code and showed that how to test such systems with
model-based testing. We also succeeded to find a bug which is difficult to detect
without model-based testing [4]. We also found several problems through the
study. One of them is related to a test oracle.

A test oracle is a procedure for checking if the outputs of SUT is correct. To
run many tests cases with model-based testing, in addition to automation of test
case generation and test case execution, it is necessary to automate test oracle:
checking more than hundreds or thousands of results of an SUT manually is not
realistic.

We implemented a test oracle to check the output of Apache ZooKeeper. As
the number of sessions and actions per session increases, it takes a long time
for the calculation of the test oracle. To find more defects with model-based
testing, it is desirable to run as many test case as possible. However, the long
calculation time of the test oracle makes difficult to execute many test cases. This
problem caused by concurrent communications of the SUT (we describe its detail
in Chapter 3). Since concurrent communication is widely used in distributed
systems, this problem will happen in test oracles for other distributed systems.
In this study, we propose two approaches to optimize a test oracle to solve the
problem.

The first approach utilizes a simulator which calculates the output of the SUT
from the request and the current status of the system. Using this simulator, the
test oracle searches the state space and checks if there is a path that corresponds
to the output the SUT returns is correct.

The second approach employs an SMT solver, a tool for checking satisfiability
of a formula in first-order logic. The test oracle constructs a formula which is
satisfiable if and only if the actual result is correct, and checks its satisfiability
with an SMT solver.

We call the former one as the simulator-based approach and the latter one as
the SMT-based approach. This paper shows the detail of these approaches and
the method to improve the performance of the test oracle.

The organization of this thesis as follows: In Chapter 2, we explain the de-
tail of model-based testing and introduce Apache Zookeeper, Modbat and Z3. In
Chapter 3, we formalize the problem that the test oracle solves, and explain the
two optimization approaches. We conduct experiments to evaluate the perfor-
mance of test oracles in chapter Chapter 4 and we discuss the results in Chapter
5 In Chapter 6, we show the related work of our study. We show conclusion and
future work in Chapter 7.

2

Chapter 2

Background

In this chapter, we show the background of the paper and the tools we use in the
experiment.

2.1 Apache ZooKeeper

We give a brief summary of ZooKeeper’s API and data structures.

2.1.1 ZooKeeper API

We choose Apache ZooKeeper as an example of a typical distributed system.
Apache ZooKeeper is a software that supports distributed systems [20]. It pro-
vides functions that are used in many distributed systems, such as maintaining
configuration and management of naming.We can easily use these functions with
ZooKeeper’s Java API shown in the below list.

• create node (create node)

• delete node (delete node)

• exist node (check if node exists)

• getACL node (get the access control list (ACL) of node. ACL holds the
access permission of each user.)

• setACL node acl (set acl as node of ACL)

• getChildren node (get the child nodes of node)

• getData node (get the data of node)

• setData node data (set data to node)

ZooKeeper employs client-server model: each client communicates with other
clients with accessing servers’ data. The structure of the data held by the servers
is like a file system in Unix: It is a tree structure and we can set data and access
permissions (ACL) to each node. ZooKeeper is usually used in other software to
create distributed systems, but we test ZooKeeper itself in the experiment.

2.1.2 Internal data structure of ZooKeeper server and the initial data

ZooKeeper server holds tree data like Figure 2.1. Each node has a name, a data
and an access control list (ACL) (each node has more information such as ID and
time stamp but these data do not affect results of API and we ignore them in the

3

tests). Data of a node is an array of byte. ACL holds each user’s permissions for
the node. There are five types of permissions: CREATE, READ, WRITE, DELETE and
ADMIN. CREATE is the permission to create a child node. READ and WRITE is
the permission to read and write the data respectively. DELETE is the permission
to delete a child node. ADMIN is the permission to change the ACL. The initial
data of the ZooKeeper server is the root node (“/”) and “/zookeeper”. Their data
are null and their ACLs are {ANYONE_ID_UNSAFE → ALL} 1 2.

Figure 2.1: The internal data structure of ZooKeeper server. It shows a name,
a data (the string in []) and an ACL (the string in {}) of each node. Here C,
R, W, D and A are abbreviations of CREATE, READ, WRITE, DELETE and ADMIN

respectively.

2.2 Modbat

First, we show the models Modbat uses to generate test cases. Then, we show
how to write models in Modbat’s DSL and explain how Modbat generates test
cases and executes them.

2.2.1 Extended finte state machines

Modbat is a testing tool for model-based testing. It uses extended finite state
machines (EFSMs) as the test models. In an EFSM, a function that changes the
internal state of the model can be linked to a transition between states. This
function is executed when the corresponding transition is chosen.

Formal definition of an EFSM is as follows: An EFSM is a 7-tuple of M =
(S, I,O,D, F, U, T), where
S is a set of states,
I is a set of input symbols,
O is a set of output symbols,
D is an n-dimensional vector space D1 ×D2 × ...×Dn,
F is a set of enabling functions fi : D → {0, 1},
U is a set of update functions ui : D → D, and
T is a transition relation T : S × F × I → S × U ×O [9].

D represents the memory of M . We denote the current vector of M as x ∈ D.
T ((s1, f, i), (s2, u, o)) means that when M in state s1 with vector x ∈ D such that
f(x) = 1 and receives i as the input symbol, M can change its state to s2 with
o as the output and the next internal state is updated to u(x), where s1, s2 ∈ S,
f ∈ F , i ∈ I, u ∈ U and o ∈ O.

1ANYONE_ID_UNSAFE is a special ID which matches all users.
2We denote {CREATE, DELETE, READ, WRITE, ADMIN} by ALL.

4

We show an example of an EFSM (Figure 2.2) and its implementation with
Modbat (Figure 2.3). This EFSM is a model for testing temperature of an air
conditioner’s: first it starts the air conditioner then increases and decreases the
temperature several times and check it within the appropriate range. After that,
it stops the air conditioner.

init

active

 start

 incTest decTest

quit

 stop

Figure 2.2: The air conditioner’s test model.

2.2.2 The syntacs and semantics of Modbat’s DSL

Modbat provides a domain specific language (DSL) on top of Scala to write test
models [5]. With the DSL, we can write test models with non-deterministic tran-
sitions and exception handling intuitively. As the DSL is embedded in Scala, it
can make use of all features of Scala. Since Scala is compatible with Java, we can
call ZooKeeper’s Java API directly.

Testing for network systems like ZooKeeper is difficult because of concurrency
and asynchronous communications. These advantages of Modbat helps to test for
such systems [4].

We explain the basic syntax and semantics of the DSL. Like line 6 to 8 in
Figure 2.3, we can define a transition of a model as follows:

"pre_state" −> "post_state" := {action}

This description means that the model can change its state from pre_state to
post_state and it executes action while the transition.

We can define an enabling function by adding require(condition) in action.
In this case, the model can change the state to post_state only when condition

is true.
Also, Modbat’s DSL supports exception handling as below:

5

1 class ACModel extends Model{

2 var ac = new AirConditioner()

3 val min = ac.minTemperature

4 val max = ac.maxTemperature

5
6 "init" −> "active" := {

7 ac.cool()

8 }

9
10 "active" −> "active" := {

11 ac.inc()

12 assert(ac.temperature >= min && ac.temperature <= max)

13 }

14
15 "active" −> "active" := {

16 ac.dec()

17 assert(ac.temperature >= min && ac.temperature <= max)

18 }

19
20 "active" −> "quit" := {

21 ac.stop()

22 }

23 }

Figure 2.3: The implementation of the model in Modbat.

"pre_state" −> "post_state" := {action} catch {"exception" −> "

exc_state"}

It means that if exception is thrown while executing action, the model changes
its state to exc_state instead of post_state.

Further, Modbat allows running multiple models by launch(model). If multi-
ple models are launched, these models run concurrently: when a model transition
to another state and it finishes executing the action that corresponds to the tran-
sition, Modbat chooses one of the launched models and make it transition to
another state. This feature is useful to tests concurrent network communications.

2.2.3 Test case generation and execution

Modbat generates and executes test cases from code written in the DSL. Modbat
supports both on-line testing and off-line testing [5]. In on-line testing, test cases
are generated while executing them [35]. With the method, test cases can be
generated with taking the result of execution into consideration. On the other
hand, off-line testing means that test cases are generated before they are run. We
apply on-line testing to the tests for ZooKeeper.

2.3 Test models

In this section, we show the test models used in model-based testing for Apach
ZooKeeper. Black-box testing is an approach that gives some input to the system

6

under tests (SUT) and checks if the output of the SUT is correct. We conduct
black-box testing for ZooKeeper’s Java API using a model for a server (Figure
2.4) and a model for a client (Figure 2.5).

init

serverStarted

 start

startClient

launch
(require nClients < CLIENTS)

quit

finish
(require nClients >= CLIENTS)

nClients+=1

Figure 2.4: The server model.

connected (a)sync create/.../setData;checkResult;nActions+=1
(require nActions < ACTIONS)

exception

 Exception

close

 close session
(require nActions >= ACTIONS) checkException;nActions+=1

Figure 2.5: The client model.

7

2.3.1 Outline of the tests

Here, we show the outline of the tests. First, Modbat initializes one server and it
launches multiple models using launch command. Each client connects with the
server when the client model is launched. Second, each client calls ZooKeeper’s
API ACTIONS times. The server receives requests from clients and sends the results
to the sender of the requests. Third, Modbat checks the results of API using a
test oracle in checkResult or checkException. After the server launches client
models CLIENTS times and each client finishes call API ACTIONS times, Modbat
terminates the models.

2.3.2 The server model and the client model

Figure 2.4 shows the model for a server and Figure 2.5 shows the model for a
client. One server model corresponds to one ZooKeeper server and one client
model corresponds to one ZooKeeper client. The server model is the main model
for the tests, i.e., the first model from which Modbat starts in each test. The
role of the model is simple: it sets up one ZooKeeper server and launches a client
model CLIENTS times. The number of clients (CLIENTS) is given as a parameter
of Modbat. After it launches client models, these models run concurrently.

After the server model launches a client models, the model sets up one ZooKeeper
client and make it connect to the server. Next, it calls ZooKeeper’s API at ran-
dom.

ZooKeeper provides synchronous API and asynchronous API. When a syn-
chronous API is chosen, the client waits for the result and checks the result is
correct with test oracle. If the result is wrong, the test finishes with fails. Oth-
erwise, the client model changes its state. Note that the other models do not
transition until the client model finishes to transition. Thus, there is no concur-
rency among synchronous APIs.

When an asynchronous API is chosen, the client model changes its state with-
out waiting for the result. After finishing the transition, Modbat chooses another
model and make it transition. With an asynchronous API, clients send requests
concurrently since each model does not wait for a response of an API that another
model’s client sent before. An asynchronous API can take a callback function as
its argument. When the client receives the response, the callback function is
called. The result is checked in the callback function using a test oracle.

Regardless of synchronous or asynchronous API, if ZooKeeper’s API runs
without any exceptions, the model checks the result of API by checkResult and
changes its state to connected. If Modbat catches an exception, Modbat changes
the model’s state to exception and goes back to connected after checking the
exception by checkException.

The number of APIs call per client (ACTIONS) is given as an option of Modbat.
After a client calls APIs given times, the model changes its state to closed. While
the transition, the client closes the session. After all client models move to closed,
the server model stops the server and moves to quit. Then, Modbat finishes the
test and executes next test.

2.4 Test oracle

We briefly show how the test oracle works and why the test oracle takes time.

8

2.4.1 The order of requests processing

The results of APIs are checked with a test oracle. To check the results, the oracle
needs to determine the order in which the ZooKeeper server executes API. We
call this order as the execution-order. Although the execution-order cannot be
uniquely determined by the test oracle due to the concurrency, there are some
rules about the order. We will describe these rules in Chapter 3.

2.4.2 The problem about test oracles

Since the test oracle cannot know the actual execution-order, it needs to consider
all possible execution-orders to avoid false-negatives; if there is an order which
corresponds the actual result, i.e., the result that the SUT returned, the oracle
regards that the actual result is correct. Otherwise, it considers the actual result
is incorrect. The number of possible orders increases exponentially as the number
of clients and the number of API calls increase. Thus, the calculation of test
oracle takes time exponentially and it makes difficult to execute many test cases.

2.5 Z3

Boolean satisfiability problem (SAT) is a decision problem for satisfiability of a
boolean formula. Satisfiability Modulo Theories (SMT) problems extend SAT
to problems for satisfiability of a logical formula in theories such as arithmetic,
array, and bit-vectors. Z3 is an SMT solver, a tool for solving SMT problems,
from Microsoft Research [13]. Z3 solver provides textual format and API (for C,
C++, Java, Python, OCaml) as its interface. We use its Java APIs to check the
satisfiability of a formula which is satisfiable if and only if the result of the SUT
is correct.

The reason we use an SMT solver is that it effectively addresses state space
explosion. Z3 and other SMT solvers use a SAT solver inside. A state-of-art SAT
solver uses Davis-Puntam-Logemann-Loveland (DPLL) procedure [12]. DPLL
enables to reduce the size of state space significantly by pruning subtrees. Since
the problem of the test oracles is essentially caused by state space explosion, and
we apply Z3 to a test oracle in expectation of solving the problem efficiently.

2.6 Summary

We introduce the tools we used in this paper. Apache ZooKeeper is a system to
support functions that are widely used in distributed systems. We show its API
and how to change the internal data structure with API. In the experiment, we
conduct black-box testing for the API.

We use Modbat as a test tool for model-based testing. Modbat uses EFSMs
to describe how to conduct tests. It provides DSL which enables to clearly and
shortly implement models which contain non-determinism and exception han-
dling.

In the experiment, we use two kinds of models: a server model and a client
model. The server model start up a ZooKeeper server and launch multiple clients
models. Each client model call ZooKeeper API multiple times and check its result
at each time the server send the result of API.

We use a test oracle to check if the actual result is correct. From all possible
execution-orders, the test oracle checks if there exists an order which corresponds
to the actual result. This test oracle takes time due to the state space explosion.

9

In the SMT-based approach, the test oracle uses an SMT-solver to check the
satisfiability of a formula. We employ Z3 to handle the state space explosion.

10

Chapter 3

Test Oracle

In this chapter, we describe the detail of the simulator-based approach and the
SMT-based approach and we show how to optimize test oracle. First, to strictly
describe both (1) what ZooKeeper API should do with respect to input and the
internal data of ZooKeeper and (2) what problem the test oracle solves, we explain
the specification of the ZooKeeper API. Second, we show the two approaches
and optimization methods for each approach. Third, we show another method
for optimization, which removes actions that can be ignored and reduces the
calculation cost. Finally, we explain more strict test oracle which avoids false
negatives.

3.1 Informal specification of ZooKeeper API

Before introducing formal specification, we explain the specification of ZooKeeper
API informally for comprehensibility in this section.

3.1.1 The specification about the order of API execution

ZooKeeper guarantees that each API is executed in a specific order: the requests
in the same session are processed in FIFO (First In, First Out) order. Thus, in the
same session, the order of executing API (hereafter we call it the execution-order)
is the same as the order of API calls (we call it the call-order). For example,
if APIs are called as Table 3.1, sync create(/a) of session 1 is executed before
async delete(/a) of session 1 and async exists(/a) of session 2 is executed
before sync delete(/a) of session 2. Since we use a different session for each
client, the execution-order is the same as the call-order in the same client.

In addition to this rule, there is no concurrency among synchronous APIs, as
mentioned before. This is because that Modbat makes all clients wait for the
result of synchronous API. Thus, among synchronous APIs, the execution-order
is the same as the order of call. In the example of Table 3.1, the sync create(/a)
of session 1 is executed before sync delete(/a) of session 2.

Hence, there are five possible execution-orders in Table 3.1; [a11, a
1
2, a

2
1, a

2
2],

[a11, a
2
1, a

1
2, a

2
2], [a11, a21, a22, a12], [a21, a11, a12, a22] and [a21, a

1
1, a

2
2, a

1
2] are the possible or-

ders, where aij is session i’s j-th called API and [ai1j1 , ..., a
in
jn
] is the execution-order

in this order. The other orders violate one of the two rules.

3.1.2 The specification about outputs of each API

Here, we describe what data each API should return. Each ZooKeeper API
returns corresponding data when the API is successfully executed. Otherwise, it
returns an exception that indicates the cause of the fail. The output of each API

11

session the 1st action the 2nd action
Session 1 sync create(/a) async delete(/a)

Session 2 async exists(/a) sync delete(/a)

(a) The history of API call for each session
the 1st action the 2nd action

sync create(/a) sync delete(/a)

(b) The order of synchronous API calls

Table 3.1: An example for the order of executing API

depends on the input (arguments of API) and the internal data of the ZooKeeper
server. Table 3.2 shows that what the API should return as the output in each
case. This table shows exceptions that occur often (and are considered in the tests)
and does not contain rare exceptions. We create this table based on ZooKeeper
API documentation [3] and a ZooKeeper book [20]

API n exists n does not
exist

p does not
exists

a child of n
exists

no permis-
sion

create(n) NEE(n) n NNE(n) NEE(n) NAE(n)
delete(n) null2 NNE(n) NNE(n) NEmE(n) NAE(n)
exists(n) True False False True True or

False1

getChildren(n) c NNE(n) NNE(n) n NAE(n)
getData(n) d NNE(n) NNE(n) d NAE(n)
setData(n, d) s NNE(n) NNE(n) s NAE(n)
getACL(n) acl NNE(n) NNE(n) n NAE(n)

setACL(n, acl) s NNE(n) NNE(n) s NAE(n)

Table 3.2: The output of each API in each case. Here, NEE, NNE, NAE and
NEmE stand for NodeExistsException, NoNodeException, NoAuthException and
NoAuthException respectively. n, d, acl, c and s means the name, the data, the
ACL, the list of children nodes and the stat of the node respectively. The stat
contains system data such as the ID and the version of the node.

1 exist n does not need any permission
2 delete / fails with BadArgumentsExc(/).

3.1.3 Example

As we mentioned in Section 2.4.2, the test oracle regards that the output of the
SUT is correct if and only if there is an execution-order that corresponds to the
actual output. Here, we use Table 3.1 as an example and explain how the test
oracle works. We will show more formal description in Section 3.2.2.

First, we consider the case in which that the output of a11 is
NodeExistsException(/a). This exception is thrown if and only if /a exists.
The test oracle checks if one of the five possible orders corresponds to the result.
Since there is no order such that /a exists just before the a11 is executed (note
that the initial data of the ZooKeeper server contains only “/” and “/zookeeper”),
no order corresponds to the result of a11. Thus, the test oracle considers that the
output of the SUT is incorrect.

Second, we explain the case where the output of a22 of session2 is null. When
the execution-order is [a11, a

2
1, a

2
2, a

1
2], the output of a22 should be null. Thus, the

test oracle judges the output to be correct.

12

3.2 Formal specification of ZooKeeper APIs

In this section, we shall define a mathematical model to strictly describe the
specification of ZooKeeper and the problem the test oracle checks.

3.2.1 A labeled transition system for the specification

We use a labeled transition system to describe the specification. A labeled
transition system T is a 3-tuple (S, δ, L) where S is a set of states, L is a set
of labels, and δ is a transition relation δ ⊆ S × L× S. We denote (s, l, s′) ∈ δ by
s

l→ s′.
Next, we define S and δ. To define S, first, we define a notation for representing

the history of API calls, i.e., the order of APIs to be called on, and the progress
status of executing APIs. Let Act be the set of actions, ranged over by a, a′, . . . ,
D be the set of internal data, ranged over by d, d′, · · · , and L be the set of labels,
ranged over by l, l′, · · · . We only consider internal data of an SUT which may
affect outputs of actions. As for ZooKeeper, the internal data is the tree structure
of nodes. Act, D, and L should be defined with respect to an SUT.

We will show the definition of these three sets for ZooKeeper in Section 3.2.3.
We define action rows, sessions and session formulas as follows:

action rows r ::= a | a.r, where a ∈ Act

sessions s ::= (r, p), where p ∈ N

session formulas f ::= s | s|f

As shown above, a session s is a tuple of an action row r and an index p. An
action row r means the history of actions (which we may also call requests or
APIs) in the session, and an index p of the session is a natural number to indicate
how many actions have been executed in the session. A session formula represents
the history of API calls and the state of progress of execution for each session.

We denote the set of all session formulas by F , the j-th action of the i-th
session in session formula f by fa

i
j , and the index of the i-th session of f as

pos(i, f). When f is clear from the context, we use aij , instead of fa
i
j . We define

S as F ×D.
Second, we define a transition relation δ. We use an execution function

e : Act×N×D → L×D to describe the result of the execution of each action and
the next state after the execution. A guard function g : F ×N → {True,False}
is used for representing whether the transition is enabled. We define a transition
relation δ as a relation such that

([(r1, p1)|...|(ri, pi)|...|(rn, pn)], d)
l→ ([(r1, p1)|...|(ri, pi)|...|(rn, pn)], d

′)

⇔ e(aipi , i, d) = (l, d′) ∧ g([(r1, p1)|...|(ri, pi)|...|(rn, pn)], i)∧
∀k(k ̸= i =⇒ pk ̸= p′k) ∧ p′i = p′i+1

The intuitive meaning of (f, d) l→ (f ′, d′) is that an action can be executed
when the current state is (f, d) and if aij is executed, it outputs l and the state
changes from (f, d) to (f, d′).

3.2.2 The problem formalization

Since the test oracle cannot know the actual execution-order, it checks if there
is an order corresponding to the result. Now, we can formalize the problem the

13

test oracle solves as a decision problem that checks if there exists a specific path
which starts from the initial state sini ∈ S. Let fini = [(r1, 1)|...|(rn, 1)] be the
session formula of sini and dini be the data of sini, i.e., sini = (fini, dini). We call
fini as the initial session formula and dini as the initial data. Since none of the
actions have been executed in the initial state, all indices of session formulas in
fini are 1. The initial data is the internal data of an SUT in the initial state. As
for ZooKeeper, dini is the data we explained in Section 2.1.2.

Let F i
j be a set {[(r1, p1)|...|(rn, pn)]|p1, ..., pn ∈ N ∧ pi = j} and Si

j be a set
{(f, d)|f ∈ F i

j}. When the SUT returns l as the execution result of aij , the oracle
checks if there exist s ∈ Si

j and s′ ∈ Si
j+1 such that there is a path to s from sini

and s
l→ s′. We call that the output of aij is valid, if there exist such s and s′.

When the output is valid, there exists an execution-order which corresponds to
the actual output. Thus, the oracle considers that the result is correct. Otherwise,
it considers that the result is incorrect.

3.2.3 The formal specification of ZooKeeper

We define Act, D, L, e and g to write the specification of ZooKeeper. Let P be
the set of all permissions, i.e., {CREATE, DELETE, READ, WRITE, ADMIN}, ID be a set
of all id and ACL be a set of all total functions h : ID → 2P . id is used to identify
users. In the tests, we use "client-i" for the i-th session and ANYONE_ID_UNSAFE

(we use ANY to denote ANYONE_ID_UNSAFE). The latter one is used for all sessions.
Thus, the session i has a permission for node n if and only if ”client-i” or ANY has
the permission.

We denote a list of permission by p ∈ 2P and an element of ACL by acl . Act,
Name and NodeData is a set of all ⟨action⟩, ⟨Name⟩ and ⟨nodeData⟩ respectively
where

⟨character⟩ ::= ”a”|...|”Z”|0|..|9
⟨bit⟩ ::= 0|1

⟨string⟩ ::= ⟨character⟩|⟨character⟩⟨string⟩
⟨Name′⟩ ::= /⟨string⟩|⟨Name′⟩/⟨string⟩
⟨bool⟩ ::= true|false

⟨exception⟩ ::= NoNodeException(⟨Name⟩)|NodeExistsException(⟨Name⟩)|
NoAuthException(⟨Name⟩)|NoAuthException(⟨Name⟩)|
BadArgumentsExc(⟨Name⟩)

⟨Name⟩ ::= /|⟨Name′⟩
⟨nodeData⟩ ::= ⟨bit⟩|⟨bit⟩⟨nodeData⟩

⟨api⟩ ::= create(⟨Name⟩) | delete(⟨Name⟩) |
exists(⟨Name⟩) | getChildren(⟨Name⟩) |
getData(⟨Name⟩) | setData(⟨Name⟩)(⟨nodeData⟩) |
getACL(⟨Name⟩) | setACL(⟨Name⟩)(acl)

⟨sync action⟩ ::= sync ⟨api⟩
⟨async action⟩ ::= async ⟨api⟩

⟨action⟩ ::= sync ⟨api⟩ | async ⟨api⟩
⟨output⟩ ::= ⟨Name⟩ | ⟨bool⟩ | ⟨nodeData⟩ | acl | null | ⟨exception⟩

14

When the aij is a sync action and aij is the k th called sync action, we denote k
by c(i, j).

Let O be a set of all ⟨output⟩. L is defined as O ∪ {τ}, where τ represents
an output which is not checked by the test oracle: setACL and setData return
Stat object which contains system data of the node. Since we do not check Stat

objects, we use τ as the output of these actions.
Next, we define D, a set of all data. D represents a set of all internal data

which affects a result of an action. As for ZooKeeper, an internal data is a tree
structure of nodes. A data is a 4-tuple of (N ,D,A, T) where N is a set of nodes,
D : N → NodeData, A : N → ACL, and T : N → 2N are partial functions
that return the data, the ACL and the child nodes of a node respectively. We
use d as a data and we say that d contains a node n when n ∈ N . Also, we
say that the i-th session has CREATE/DELETE/READ/WRITE/ADMIN permission of n
when A(n)(”client-i”) or A(n)(ANY) contains the permission.

Then, we define the guard function g as follows:

1. if aipos(i,f) is an async action, g(f, i) = True,

2. if aipos(i,f) is a sync action and c(i, pos(i, f)) = 1, g(f, i) = True.

3. if aipos(i,f) is a sync action and c(i, pos(i, f)) > 1, g(f, i) = True if and only
if for all ai′j′ , (a

i′
j′ is a sync action ∧c(i, j) > c(i′, j′)) → pos(i′, f) > j′.

The guard function corresponds to the rule that there is no concurrency among
synchronous APIs; The function returns True if and only if the transition follows
the rule.

Finally, we define the execution function e. We write a function that maps x
to y and z ̸= x to h(z) as h[x 7→ y]. e models the output and the next data of
ZooKeeper when each API is executed. Its definition is as follows:

1. when a = create(n), e(a, i, d) is

(a) if d contains n, (NodeExistsException(n), d),

(b) else if d contains parent(n) 1, (NoNodeException(n), d),

(c) else if the ith session does not have CREATE permission of parent(n),
(NoAuthException(n), d),

(d) else (n, (n ∪N ,D,A, T [parent(n) 7→ T (parent(n)) ∪ n])).

2. when a = delete(n), e(a, i, d) is

(a) if d does not contain n, (NoNodeException(n), d),

(b) else if d contains a child node of n, i.e a node in T (n),
(NoAuthException(n), d),

(c) else if the ith session does not have Delete permission of parent(n),
(NoAuthException(n), d),

(d) else (n, (N − n,D,A, T [parent(n) 7→ T (parent(n))− n])).

3. when a = exists(n), e(a, i, d) is

(a) if d contains n, (True, d),

(b) else n, (False, d).

1parent : N → N returns the parent node of n, i.e., n ∈ T (parent(n))

15

4. when a = getChildren(n), e(a, i, d) is

(a) if d does not contain n, (NoNodeException(n), d),

(b) else if the ith session does not have READ permission of n,
(NoAuthException(n), d),

(c) else (T (n), d).

5. when a = getData(n), e(a, i, d) is

(a) if d does not contain n, (NoNodeException(n), d),

(b) else if the ith session does not have READ permission of n,
(NoAuthException(n), d),

(c) else (D(n), d).

6. when a = setData(n, b), e(a, i, d) is

(a) if d does not contain n, (NoNodeException(n), d),

(b) else if the ith session does not have WRITE permission of n,
(NoAuthException(n), d),

(c) else (τ, (N ,D[n 7→ b],A, T)).

7. when a = getACL(n), e(a, i, d) is

(a) if d does not contain n, (NoNodeException(n), d),

(b) else (A(n), d).

8. when a = setACL(n, acl), e(a, i, d) is

(a) if d does not contain n, (NoNodeException(n), d),

(b) else if the ith session does not have ADMIN permission of n,
(NoAuthException(n), d),

(c) else (τ, (N ,D,A[n 7→ acl], T)).

3.2.4 Example

Using the transition system, we explain how the test oracle checks a result of
ZooKeeper. As we did in Section 3.1.3, we use Table 3.1 as an example. We
denote a function which maps x1, ..., and xn to y1, ..., and yn respectively by
[x1 7→ y1, ..., xn 7→ yn]. The initial session formula fini and the initial data dini of
Table 3.1 are as follows:

fini = ((sync create(/a)|async delete(/a), 0),

(async exists(/a)|sync delete(/a), 0))

dini = ({/, /zookeeper}, [/ 7→ null, /zookeeepr 7→ null],

[/ 7→ [ANY 7→ ALL],

/zookeeper 7→ [ANY 7→ ALL]],

[/ 7→ {/zookeeper}, /zookeeper 7→ {}])

Diagram 3.1 shows the transitions from (fini, dini). First, we shall consider the
case in which the result of a11 is NoNodeException(/a) and the oracle checks if
its output is valid. In this case, the test oracle checks if there exist s ∈ S1

0 and

s′ ∈ S1
1 such that there is a path to s from sini and s

NoNodeException(/a)→ s′. As

16

(0|0, {/, /zookeeper})

(0|1, {/, /zookeeper})

(1|1, {/, /zookeeper, /a})

(1|2, {/, /zookeeper})

(2|2, {/, /zookeeper})

NNE

(2|1, {/, /zookeeper})

(2|2, {/, /zookeeper})

NNE

null
null

/a

(1|0, {/, /zookeeper, /a})

(1|1, {/, /zookeeper, /a})

(1|2, {/, /zookeeper})

(2|2, {/, /zookeeper})

NNE

(2|1, {/, /zookeeper})

(2|2, {/, /zookeeper})

NNE

null
null

((2|0), {/,/zookeeper})

((2|1), {/,/zookeeper})

((2|2), {/,/zookeeper})

NNE

False

null
True

/a

False

Diagram 3.1: Transitions from (fini, dini). The diagram only shows the index of
each session and N . We omit action raws, A, D due to space limitation.

shown in Diagram 3.1, there is no such s and s′. Thus, the test oracle judges that
the result is not correct.

Second, we think about the case in which the result of a22 is null. This time,
the test oracle considers that the actual result is correct because the path

sini
False→ (0|1, {/, /zookeeper}) /a→ (1|1, {/, /zookeeper, /a}) null→
(2|1, {/, /zookeeper})

corresponds the result.

3.3 The Simulator-based approach

We implement and optimize the test oracle with two approaches. In this section,
we explain the simulator-based approach, an approach which uses a simulator of
the SUT to check results of the SUT.

3.3.1 The mechanism

In this approach, we implement a simulator which receives (1) the data and (2)
the next action to be executed and returns (1) the calculated result for the action
and (2) the next data after execution. This simulator is an implementation for
the execution function e.

Figure 3.1 shows that pseudo code for the simulator-based approach.
search receives the action (targetAction) to be checked and the actual result
(actualResult) of the action and it returns whether the result is correct. This
function starts from the initial state sini (initialState) and searches the state
space until it finds the corresponding result or it checks all states (Line 5-9).
frontier contains transitions which will be checked. The implementation of
frontier depends on what algorithm is used for the search. For example, when
we use breadth-first search, a queue is used. execAction receives a state s and
a number i. With the guard function g, it checks if the transition where the
next action of session i is executed is enabled (Line 14). If the transition is not
enabled, it returns false. Otherwise, it execute the next action of session i using
the simulator and calculate the result and the next state (Line 15-17). If the
action is targetAction, execAction returns whether the calculated result equals

17

(0|0, {/, /zookeeper})

(0|1, {/, /zookeeper})

(1|1, {/, /zookeeper, /a})

(1|2, {/, /zookeeper})

(2|2, {/, /zookeeper})

(2|1, {/, /zookeeper})

(2|2, {/, /zookeeper})

(1|0, {/, /zookeeper, /a})

(1|1, {/, /zookeeper, /a})

(1|2, {/, /zookeeper})

(2|2, {/, /zookeeper})

(2|1, {/, /zookeeper})

(2|2, {/, /zookeeper})

((2|0), {/,/zookeeper})

((2|1), {/,/zookeeper})

((2|2), {/,/zookeeper})

False

null
True

/a

Diagram 3.2: The simulator-based approach with depth-first search. States in
black are checked and states in gray are not checked by the simulator.

to the actual result (Line 19). Otherwise, it returns false (if the next state has
not been checked yet, the next state (sNext) is pushed to frontier (Line 21-23).

We use Table 3.1 as an example and show that how the test oracle works when
the result of a21 is True. Diagram 3.2 shows the result that the test oracle searches
with depth-first search algorithm. In the leftmost path, the simulator returns
False as the output of a21. Since the result does not match the actual output, the
oracle searches the second path from the left. In the path, the simulator returns
True, thus the test oracle considers that the actual result is correct and finishes
the search.

3.3.2 Optimization

We can make the test oracle faster by optimizing the algorithm used for the search.
We developed a new heuristic algorithm (we call it Hänsel und Gretel heuristics).
This algorithm preferentially searches execution-orders that are similar to the
call-order. This is based on a rule of thumb that a server tends to process the
requests in an execution-order that is similar to the call-order even if clients send
requests concurrently or there is a network delay.

Diagram 3.3 shows how the algorithm works when the actual result of a21 is
True and the call-order is [a11, a

2
2, a

2
2, a

1
2]. The algorithm checks the path which

corresponds to [a11, a
2
2, a

2
2, a

1
2] first. Since a21 in this path returns True, the heuristic

algorithm succeeds finding the solution faster than the depth-first search.

3.4 The SMT-based approach

In the second approach, the test oracle creates a formula which is satisfiable
if and only if the output of the SUT is valid. Then the test oracle checks its
satisfiability with an SMT solver. We denote the formula for checking the result
of aij by Φi

j . Instead of optimizing the search algorithm, this method employs a
highly optimized SMT solver such as Z3 to address state space explosion. In this
section, we show how to construct the formula.

3.4.1 The formula

We denote a path in the labeled transition system T by s1s2...sn and the actual
result of aij by rij . When the test oracle checks the result of aij , we say that a

18

1 class Search {

2 def search(targetAction:Act, actualResult:Output) = {

3 var found = false

4 froniter.push(initialState)

5 while (frontier.isEmpty || found) {

6 val (s, i) = frontier.pop()

7 found = found || execAction(s, i)

8 }

9 found

10 }

11
12 def execAction(s:State, i:Int) = {

13 val a = getAction(s.formula, i)

14 if (g(f, i)) {

15 val (calculatedResult, dNext) = e(a, i, s.data)

16 val fNext = update(f, i)

17 val sNext = new State(fNext, dNext)

18 if (a == targetAction) {

19 return actualResult == calculatedResult

20 } else {

21 if (!visitedStates.contains(sNext)){

22 visitedStates.push(sNext)

23 frontier.push(sNext)

24 }

25 return false

26 }

27 } else {

28 return false

29 }

30 }

31 }

Figure 3.1: Pseudo code for the simulator-based test oracle

(0|0, {/, /zookeeper})

(0|1, {/, /zookeeper})

(1|1, {/, /zookeeper, /a})

(1|2, {/, /zookeeper})

(2|2, {/, /zookeeper})

(2|1, {/, /zookeeper})

(2|2, {/, /zookeeper})

(1|0, {/, /zookeeper, /a})

(1|1, {/, /zookeeper, /a})

(1|2, {/, /zookeeper})

(2|2, {/, /zookeeper})

(2|1, {/, /zookeeper})

(2|2, {/, /zookeeper})

((2|0), {/,/zookeeper})

((2|1), {/,/zookeeper})

((2|2), {/,/zookeeper})

True

/a

Diagram 3.3: The simulator-based approach with Hänsel und Gretel algorithm.
It checks the call-order first.

19

path p = s1s2...sn is valid if p is the evidence that the output is valid, that is, p
satisfies following conditions:

1. s1 = sini,

2. for each 1 ≤ k < n, sk
l→ sk+1 and

3. p corresponds to the result, i.e., there exist sk ∈ Si
j and sk+1 ∈ Si

j such that
sk

r→ sk+1.

Reachable(p) is a proposition that a path p satisfies the first condition and
Corresponding ij(p) is a proposition that a path p satisfies the third condition. rij
is valid if and only if there is a valid path. Hence,

Φi
j = Reachable(p) ∧ Corresponding ij(p)

We denote the number of actions in an action row r by |r|. Let sum be
|r1| + .. + |rn|, i.e., the number of actions in whole sessions. Hereafter, we shall
only consider paths whose length is sum and which starts from sini. The time of
aij in a path p = s1s2...sn is the possession of aij at p, that is, t such that st ∈ Si

j

and st+1 ∈ Si
j+1. Let pt

i
j be the time of aij in a path p. t ij is used when p is

obvious. We shall encode Φi
j with t ij .

3.4.2 Reachable(p)

By the definition of the transition relation δ, p satisfies Reachable(p) if and only
if p satisfies the following conditions:

1. for all i and j, 1 ≤ t ij ≤ sum,

2. for all i, i′, j and j′, (i, j) ̸= (i, j′) =⇒ t ij ̸= t i
′
j′ ,

3. for all i, j, j′, if j < j′ =⇒ t ij < t ij′ ,

4. for all i, i′, j and j′, if both aij and ai
′
j′ are sync action,

then c(i, j) < c(i′, j′) =⇒ t ij < t i
′
j′ .

The first two condition corresponds to the condition that exactly one action is
executed at one transition, the third condition corresponds to the condition that
the execution-order is the call-order in the same session, and the fourth condition
corresponds to g(f, i).

3.4.3 Corresponding ij(p)

As we show in Section 3.2.3, an output of each action depends on

1. the id of session,

2. the ACL of the node,

3. the data of the node and

4. the existence of nodes.

We use Exist , Auth and Data to describe the above four information. Each
predicate mention about st in p = s1s2...sn. We say that a proposition P at t
when st satisfies P. Then, Exist , Auth and Data are predicates defined as follows:

20

Exist tn node n exists at t,

Autht
n(acl) the ACL of the node n is acl at t,

Datat
n(d) the data of node n is d at t,

Permt
n(p, i) session i has permission p for the node n at t.

Let allACL be a set of all ACL such that there exists ai
′
j′ which takes the ACL

as an argument. We define allData with regards to a node data in the same way.
The forth predicates can be written with Autht

n(acl):

Permt
n(p, i) = ∨

acl∈allACL∧hasPerm(acl,p,i)
Autht

n(acl),

where hasPerm(acl, p, i) returns whether acl(”client-i”) or acl(ANY) contain p.
We denote a predicate that the path contains st ∈ Si

j and st+1 ∈ Si
j+1 such

that s
o→ s′ by oR

t
(i,j).

Then,
Corresponding ij(p) = ∃t(oRt

(i,j))

.
We can represent oR

t
(i,j) using these propositions:

1. when aij = create(n), oR
t
(i,j) is

(a) if o = NEE(n), Exist tn
(b) else if o = NNE(n), ¬NEE(n)R

t
(i,j) ∧ ¬Exist tparent(n),

(c) else if o = NAE(n),
¬NEE(n)R

t
(i,j) ∧ ¬NNE(n)R

t
(i,j) ∧ ¬Permt

parent(n)(CREATE, i),

(d) else ¬NEE(n)R
t
(i,j) ∧ ¬NNE(n)R

t
(i,j) ∧ NAE(n)R

t
(i,j).

2. when aij = delete(n), oR
t
(i,j) is

(a) if o = NNE(n), ¬Exist tn,
(b) if o = NEmE(n), ¬NNE(n)R

t
(i,j) ∧ ∨

m∈T (n)
Exist tm,

(c) if o = NAE(n),
¬NNE(n)R

t
(i,j) ∧ ¬NEmE(n)R

t
(i,j) ∧ ¬Permt

parent(n)(DELETE, i),

(d) else o = NAE(n), NNE(n)R
t
(i,j) ∧ NEmE(n)R

t
(i,j) ∧ NAE(n)R

t
(i,j).

3. when aij = exists(n), oR
t
(i,j) is

(a) if o = True, Exist tn,
(b) else ¬Exist tn.

4. when aij = getChildren(n), oR
t
(i,j) is

(a) if o = NNE(n), ¬Exist tn,
(b) else if o = NAE(n), ¬NNE(n)R

t
(i,j) ∧ ¬Permt

n(READ, i),

(c) else if o = nl,
NNE(n)R

t
(i,j) ∧ NAE(n)R

t
(i,j) ∧ (∧

m∈nl
Exist tm) ∧ (∧

n̸∈nl
¬Exist tm) .

5. when aij = getData(n), oR
t
(i,j) is

21

(a) if o = NNE(n), ¬Exist tn,

(b) else if o = NAE(n), ¬NNE(n)R
t
(i,j) ∧ ¬Permt

n(WRITE, i),

(c) else if o = d, NNE(n)R
t
(i,j) ∧ NAE(n)R

t
(i,j) ∧ dD

t
n.

6. when aij = setData(n, d),

(a) if o = NNE(n), ¬Exist tn, oR
t
(i,j) is

(b) else if o = NAE(n), ¬NNE(n)R
t
(i,j) ∧ ¬Permt

n(WRITE, i),

(c) else NNE(n)R
t
(i,j) ∧ NAE(n)R

t
(i,j)

2

7. when aij = getACL(n), oR
t
(i,j) is

(a) if o = NNE(n), ¬Exist tn,

(b) else o = ACL, NNE(n)R
t
(i,j) ∧Autht

n(o).

8. when aij = setACL(n, acl), oR
t
(i,j) is

(a) if o = NNE(n), ¬Exist tn,

(b) else if o = NAE(n), ¬NNE(n)R
t
(i,j) ∧ ¬Permt

n(ADMIN, i),

(c) else NNE(n)R
t
(i,j) ∧ NAE(n)R

t
(i,j)

2

Since a state of ZooKeeper depends on the execution-order, we can represent
Exist , Auth and Data with t ij .

First, we consider Exist , Auth and Data when t = 1. In the initial state,
there exists only “/” and “/zookeeper”. Their initial data is null and their ACL
is [ANY 7→ ALL]. Thus,

Exist1n =

{
True (n = ”/” ∨ n = ”/zookeeper”)

False (otherwise)

Auth1
n(acl)[i] =


True ((n = ”/” ∨ n = ”/zookeeper”)∧

acl = [ANY 7→ ALL])

False (otherwise)

Data1
n(d) =

{
True ((n = ”/” ∨ n = ”/zookeeper”) ∧ d = null)

False (otherwise)

Next, we represent these predicates at t with the state of ZooKeeper at t −
1. To represent Exist , Auth and Data with t i

′
j′ , we denote a predicate that an

action whose API is α is executed without any exceptions at time t by Exetα.
The formal definition is Exetα = ∨

api(aij)=α
(t ij = t ∧ (∧

o∈Exceptions(n)
¬oR

t
(i,j))), where

Exceptions(n) = {NNE(n), NEE(n), NAE(n), NEmE(n), BAE(n)}.
If the node exists at t − 1, then the node exists if the node is not deleted at

t− 1. Otherwise, the node exists if the node is created at t− 1. Thus,

Exist tn =(Exist t−1
n ∧ ¬Exetdelete(n)) ∨ (¬Exist t−1

n ∧ Exet−1
create(n))

2We do not check the output of setData when it executed without an error

22

As for Data, if the node’s data is d at t − 1, then the data is d if it is not
changed and the node is not deleted at t − 1. Otherwise, if the node exists at
t− 1, the data is d if the data is changed to d at t. If the node does not exist, the
data is d if the node is created at t and d = null 3. Thus, if d = null,

Datat
n(d) =(Datat−1

n (d) ∧ (∧
d′∈allData∧d′ ̸=d

¬Exet−1
setData(n,d′)) ∧ ¬Exet−1

delete(n))∨

(¬Datat−1
n (d) ∧ ((Exist t−1

n ∧ Exet−1
setData(n,d))

∨ (¬Exist t−1
n ∧ Exet−1

create(n))))

Otherwise,

Datat
n(d) =(Datat−1

n (d) ∧ (∧
d′∈allData∧d′ ̸=d

¬Exet−1
setData(n,d′)) ∧ ¬Exet−1

delete(n))∨

(¬Datat−1
n (d) ∧ ((Exist t−1

n ∧ Exet−1
setData(n,d))))

As for Auth, if the node’s ACL is acl at t − 1, then the ACL is acl if it is
not changed and the node is not deleted at t − 1. Otherwise, if the node exists
at t − 1, the ACL is acl if the ACL is changed to ACL at t. If the node does
not exist, the ACL is acl if the node is created at t and acl = [ANY 7→ ALL] 4. If
p = [ANY 7→ ALL],

Autht
n(acl) =(Autht−1

n (acl) ∧ (∧
acl′∈allACL∧acl′ ̸=acl

¬Exet−1
setACL(n,acl′)) ∧ ¬Exet−1

delete(n))∨

(¬Autht−1
n (acl) ∧ ((Exist t−1

n ∧ Exet−1
setACL(n,acl))

∨ (¬Exist t−1
n ∧ Exet−1

create(n))))

Otherwise,

Autht
n(acl) =(Autht−1

n (acl) ∧ (∧
acl′∈allACL∧acl′ ̸=acl

¬Exet−1
setACL(n,acl′)) ∧ ¬Exet−1

delete(n))∨

(¬Autht−1
n (acl) ∧ ((Exist t−1

n ∧ Exet−1
setACL(n,acl))))

We can represent Exist , Auth and Data with t i
′
j′ by solving the above equations

inductively.

3.4.4 Example

Using Table 3.1 as an example, we show how the SMT-based test oracle works.
When the result of a21 is True and the oracle checks the result, it calculates
Reachable and Corresponding21 to construct Φ2

1. We can calculate Reachable(p)
straightforwardly from the four conditions we mentioned in Section 3.4.2:

Reachable(p) = (1 ≤ t11 ≤ 4) ∧ (1 ≤ t12 ≤ 4) ∧ (1 ≤ t21 ≤ 4) ∧ (1 ≤ t22 ≤ 4)∧
(t11 ̸= t12) ∧ (t11 ̸= t21) ∧ (t11 ̸= t22)∧
(t12 ̸= t21) ∧ (t12 ̸= t22) ∧ (t21 ̸= t22)∧
(t11 < t21)∧
(t11 < t12) ∧ (t21 < t22).

3When a node is created, its initial data is null.
4When a node is created, its initial ACL is [ANY 7→ ALL].

23

To calculate Corresponding21, first we represent it with R:

Corresponding21(p) =(t21 = 1 =⇒ TrueR
1
(2,1)) ∧ (t21 = 2 =⇒ TrueR

2
(2,1))∧

(t21 = 3 =⇒ TrueR
3
(2,1)) ∧ (t21 = 4 =⇒ TrueR

4
(2,1))

As we showed in Section 3.4.3, R can be written with Exist , Auth and Data.
Thus, we get

Corresponding21(p) =(t21 = 1 =⇒ Exist1/a) ∧ (t21 = 2 =⇒ Exist2/a)∧

(t21 = 3 =⇒ Exist3/a) ∧ (t21 = 4 =⇒ Exist4/a)

When t = 1,

Exist1/a =False,

Exist1/ =True,

Exist1/zookeeper =True,

Auth1
/([ANY 7→ ALL]) =True,

From the recurrence formulas in Section 3.4.3, we obtain

Exist t”/” =True

Exist t”/a” =(Exist t−1
”/a” ∧ ¬Exet−1

delete(/a)) ∨ (¬Exist t−1
”/a” ∧ Exet−1

create(/a))

Permt
”/”(DELETE, t) = ∨

acl∈allACL∧hasPerm(acl,DELETE,i)
Autht

n(acl)

=Autht
”/”([ANY 7→ ALL])

Permt
”/”(DELETE, t) = ∨

acl∈allACL∧hasPerm(acl,CREATE,i)
Autht

n(acl)

=Autht
”/”([ANY 7→ ALL])

Autht
”/”([ANY 7→ ALL]) =(Autht−1

”/” (p) ∧ (∧
acl∈allACL∧acl ̸=[ANY7→ALL]

¬Exet−1
setACL(n,acl))

∧ ¬Exet−1
delete(n))∨

(¬Autht−1
”/” ([ANY 7→ ALL]) ∧ ((Exist t−1

”/” ∧ Exet−1
setACL(n,[ANY7→ALL]))

∨ (¬Exist t−1
”/” ∧ Exet−1

create(n))))

=Autht−1
”/” ([ANY 7→ ALL])

Exetdelete(/a) =(t12 = t ∧ ¬ExceptionR
t
(1,2)) ∨ (t22 ∧ ¬ExceptionR

t
(2,2))

=(t12 = t ∧ ¬(¬Exist t/a ∨ ∨
m∈children(/a)

Exist tm∨

Permt
parent(/a)(DELETE, 1)))∨

(t22 = t ∧ ¬(¬Exist t/a ∨ ∨
m∈children(/a)

Exist tm

∨ Permt
parent(/a)(DELETE, 2)))

=(t12 = t ∧ Exist t/a) ∨ (t22 = t ∧ Exist t/a)

=(t12 = t ∨ t22 = t) ∧ Exist t/a

Exetcreate(/a) =(t11 = t ∧ ¬ExceptionR
t
(1,1))

=(t11 = t ∧ ¬(Exist t/a ∨ ¬Exist t”/” ∨ Permt
”/”(CREATE, 1)))

=(t11 = t) ∧ ¬Exist t/a

24

We can solve the reccurence formulas and write Exist with t ij . However, if we solve
these formulas, the length of Φ increases exponentially in relation to t because
every time t decreases by 1, the number of terms of Exist t increases at least twice.
Thus, for each t, n, d and acl, we register Exist tn, Autht

n(acl) Datat
n(d) as boolean

variables and the recurrence formula to the SMT solver.

3.5 Filtering

To reduce the size of the search space, it is effective to remove actions which do
not affect the result of the target action, i.e., the action the test oracle checks. We
call this technique filtering. Filtering can be applied to both the simulator-based
approach and the SMT-based approach because, in both approaches, the size of
state space depends on the number of actions the test oracle needs to consider.

For example, when the test oracle checks the result of sync delete(/a) in Ta-
ble 3.3, the test oracle can ignore async exists(/a) and async getData(/a),
since async exists(/a) and async getData(/a) do not affect the result of
sync delete(/a). Such “read” actions (exists, getChildren, getData and
getACL) can be ignored5.

session the 1st action the 2nd action
Session 1 async create(/a) async delete(/a)

Session 2 async exists(/a) async getData(/a)

Table 3.3: An example for filtering “read” actions.

Also, we can ignore some “write” actions (create, delete, setData and
setACL).

For example, in Table 3.4, async create(/c) does not affect the results of the
other actions because the existence of /c does not affect their results. Basically,
the test oracle can ignore “write” action that does not manipulate neither the
ancestor nodes of the target node, the target node itself nor the child nodes of the
target node. When there is a delete action for the ancestor nodes, the test oracle

session the 1st action the 2nd action
Session 1 sync create(/a) sync create(/a/b)

Session 2 async create(/a/c) async exists(/a)

Session 3 sync delete(/a) async create(/c)

(a) The history of API call for each session
the 1st action the 2nd action the 3rd action

sync create(/a) sync delete(/a) sync create(/a/b)

(b) The order of synchronous API calls

Table 3.4: An example for filtering “write” actions.

cannot use this filter because the result of delete action may change depending
on the existence of child nodes. For instance, the result of sync create(/a/b) in
Table 3.4 is affected by not only sync create(/a) and sync delete(/a) but
also async create(/a/c) because the result of sync delete(/a) depends on
the result of async create(/a/c). If the SUT executes sync create(/a) first
and sync delete(/a) second, sync create(a/b) fails with NoNodeException for

5The test oracle needs to consider a “read” action if it is the target action.

25

/a/b. However, if the SUT executes sync create(/a), async create(/a/c), and
sync delete(/a) in this order, sync delete(/a) fails with NoAuthException for
/a and sync create(/a/b) succeeds. Thus, when there is a delete action for the
ancestor nodes of the target node, the test oracle should consider the descendant
nodes of the ancestor node.

3.6 Simple checking and strict checking

So far, we consider checking only the result of a target action: for each time the
SUT returns the output, test oracle checks the result and it does not care about
the other results. This simple checking is easy to implement, but a false-negatives
error may happen.

Table 3.5 shows an example of defect missed by the test oracle which checks
only a target action. In this example, the result of async exists(/a) is incorrect.
Since the result of async delete(/a) is null, it is executed after async create(/a)
is executed (otherwise async delete(/a) should return NoNodeException(/a)).
/a does not exist when async exists(/a) is called, but the actual result is
true. Thus, test oracle should judge that the result of async exists(/a) is
incorrect. However, the test oralce we explained before cannot find the defect
because it only checks the result of async exists(/a) when it checks the re-
sult of async exists(/a): the test oracle mistakes that the execution-order for
async delete(/a), async create(/a) and async exists(/a), and it judges that
the result of async exists(/a) is correct.

session the 1st action the 2nd action
Session 1 async create(/a)

Session 2 async delete(/a) async exists(/a)

(a) The history of API call for each session
session the 1st action the 2nd action

Session 1 ”/a”

Session 2 null True

(b) The result of each API

Table 3.5: An example such that simple checking misses a defect

To avoid false-negatives, the test oracle should check the other results and it
should prune the branches that do not match the actual results from the search
tree. Diagram 3.4 shows that how the simulator-based test oracle which checks
only one result with breadth-first search and Diagram 3.5 shows the test oracle
which checks all results. Both diagrams show how the test oracles search when it
checks the result of async exists(/a) of session 2 in Table 3.5. The test oracle in
Diagram 3.4 stops searching when it reaches the bottom node which is the second
from the left. It does not check the other results, thus it considers the result is
correct even though the result of async delete(/a) is actually not correct. On
the other hand, the test oracle which checks all results cut the left half branch
because the result of async delete(/a) does not equal to the actual result. Thus,
it succeeds finding the defect.

In the SMT-based approach, the test oracle combines the original formula
with additional clauses for checking the results of other API: the formula that is

26

(0|0, {/, /zookeeper})

(0|1, {/, /zookeeper})

(1|1, {/, /zookeeper, /a})

(1|2, {/, /zookeeper})

(1|1, {/, /zookeeper})

(1|2, {/, /zookeeper})

True

/a False

(1|0, {/, /zookeeper, /a})

(1|1, {/, /zookeeper})

(1|2, {/, /zookeeper})

True

null

/a NoNodeException(a)

Diagram 3.4: How breadth first search with simple checking works.

(0|0, {/, /zookeeper})

(0|1, {/, /zookeeper})

(1|1, {/, /zookeeper, /a})

(1|2, {/, /zookeeper})

(1|1, {/, /zookeeper})

(1|2, {/, /zookeeper})

(1|0, {/, /zookeeper, /a})

(1|1, {/, /zookeeper})

(1|2, {/, /zookeeper})

True

null

/a NoNodeException(a)

Diagram 3.5: How breadth-first search with strict checking works.

satisfiable if and only if all results are correct is

(Reachable(p) ∧ Corresponding ij(p)) ∧ ∧
(i′,j′)̸=(i,j)

Corresponding(i′, j′)(p).

Note that the strict test oracle is not necessarily faster than the simple one. The
number of solutions in the search tree of the former one is smaller than that of
the latter one. Although the former one can prune the branches, the search may
go deeper.

3.7 Summary

We show the specification of ZooKeeper’s API informally and formally. We define
a labeled transition system which describes the history of API calls and the state
of progress of executing APIs. Using the labeled transition system, we formalize
the problem test oracle solves as a decision problem to check the existence of a
specific path.

Then, we show the two approaches: the simulator-based approach and the
SMT-based approach. The simulator-based approach uses a simulator for the
SMT to search the state space. We also show a heuristic algorithm to improve
the performance of the test oracle.

The SMT-based approach makes a formula which is satisfiable if and only if
the actual output of the SUT is correct. Then, it checks the satisfiability of the
formula with an SMT solver. We show how to create the formula by utilizing
recurrence formulas about the existence, the ACL, and the data of each node.

The filtering technique is another approach to improve the performance. To
reduce the size of the state space, this technique removes actions which do not

27

affect the result of the target action.
Finally, we show a strict test oracle which considers not only the result of the

target action but also all results. The strict one can find defects which are missed
by the test oracle that checks only the target node’s result.

28

Chapter 4

Experiment

To evaluate the effectiveness of the two approaches and the optimization methods,
we measure the calculation time of each test oracle.

4.1 Experimental setting

In this experiment, we measure the calculation time of the following test oralces:

1. the simulator-based test oracle using breadth-first search,

2. the simulator-based test oracle using depth-first search,

3. the simulator-based test oracle using Hänsel und Gretel,

4. the SMT-based test oracle and

5. no-oracle.

no-oracle means only running the SUT and not checking if the results are correct.
This is for showing the running time of SUT itself. We run these test oracles in
following conditions:

1. simple checking with the weak filter,

2. simple checking with the strong filter,

3. strict checking with the weak filter and

4. strict checking with the strong filter.

Here, simple checking means checking only the result of a target action and strict
checking means checking all results. The weak filter only removes “read” actions,
while the strong filter removes not only “read” actions but also “write” actions
which do not affect a target action.

For each test oracle, we run 5000 tests on a machine (Intel Xeon E5-2687W,
64GB Memory, Ubuntu 14.04). We use Apache ZooKeeper 3.4.10, Scala 2.11.8,
Java 1.8.0_144, Z3 4.6.0 and Modbat 3.2. The number of sessions and the number
of actions per sessions is set to from 2 to 11 and the timeout is set to 15000 seconds.
We conduct each test 10 times and calculate the average times.

29

4.2 Experimental result

Figure 4.1 and Figure 4.2 shows the experimental result. These two group of
graphs shows the same result but their purposes are different. Each figure in
Figure 4.1 shows the result for each test condition, while each figure in Figure
4.2 shows the result for each test oracle. We use the former graph to compare
the performance of each test oracle and we use the latter one to compare the
performance in each test condition.

4.2.1 Comparison of test oracles in each testing condition

First, we compare the test oracles in each testing condition using Figure 4.1.
Overall, as the number of sessions and the number of actions per sessions grow,
the calculation time increases because the number of possible execution-order
grows. When the model scale is less than 4, each calculation time is almost the
same between the test oracles. When the model scale is large, the SMT-based
test oracle is slower than the simulator-based test oracles.

As for simulator-based test oracles, Hänsel und Gretel is the fastest one and
the performance is almost the same as that of no-oracle. Depth-first search is
the second fastest one. While this algorithm is as fast as Hänsel und Gretel in
“simple checking, the strong filter” test condition, it is slower than Hänsel und
Gretel in the other test conditions. Breadth-first search is the slowest one among
simulator-based test oracles. In “simple checking, the weak filter” test condition,
it times out when the model scale is more than 8. However, the performance is
significantly improved when the test oracle uses the strong filter.

4.2.2 Comparison of testing conditions for each algorithm.

Next, we compare test conditions using Figure 4.2.
The strong filter improves the performance of all test oracles except for Hänsel

und Gretel. Hänsel und Gretel is not improved with the strong filter because the
performance is almost optimal even with the weak filter. The strong filter makes
depth-first search faster and the performance becomes almost the same for no-
oracle. The performance of breadth-first search is significantly improved. While
breadth-first search with the weak filter times out when the model scale is 9
in “simple checking” and 10 in “strict checking”, the one with the strong filter
becomes much faster. The strong filter also improves the SMT-based test oracle.
While it times out when the model scale is more than 5 with the weak filter, with
the strong filter, it does not time out when the model scale is less than 8.

Strict checking makes BFS and DFS faster. This is not an obvious result
because the number of solutions of strict checking is smaller than that of simple
checking. On the other hand, strict checking does not affect the performance of
the SMT-based test oracle. Since the performance of Hänsel und Gretel is almost
optimal, the performance does not change.

30

 0

 2000

 4000

 6000

 8000

 10000

 12000

 14000

 2 3 4 5 6 7 8 9 10 11

T
im

e
to

 e
xe

cu
te

 5
,0

00
 te

st
s

[s
ec

]

Model scale (number of sessions and number of actions per session)

Breadth-first search
heuristic search

Depth-first search
smt

No oracle

(a) simple checking, the strong filter

 0

 2000

 4000

 6000

 8000

 10000

 12000

 14000

 2 3 4 5 6 7 8 9 10 11

T
im

e
to

 e
xe

cu
te

 5
,0

00
 te

st
s

[s
ec

]

Model scale (number of sessions and number of actions per session)

Breadth-first search
heuristic search

Depth-first search
smt

No oracle

(b) simple checking, the weak filter

31

 0

 2000

 4000

 6000

 8000

 10000

 12000

 14000

 2 3 4 5 6 7 8 9 10 11

T
im

e
to

 e
xe

cu
te

 5
,0

00
 te

st
s

[s
ec

]

Model scale (number of sessions and number of actions per session)

Breadth-first search
heuristic search

Depth-first search
smt

No oracle

(c) strict checking, the strong filter

 0

 2000

 4000

 6000

 8000

 10000

 12000

 14000

 2 3 4 5 6 7 8 9 10 11

T
im

e
to

 e
xe

cu
te

 5
,0

00
 te

st
s

[s
ec

]

Model scale (number of sessions and number of actions per session)

Breadth-first search
heuristic search

Depth-first search
smt

No oracle

(d) strict checking, the weak filter

Figure 4.1: Comparison of test oracles in each testing condition.

32

 0

 2000

 4000

 6000

 8000

 10000

 12000

 14000

 2 3 4 5 6 7 8 9 10 11

T
im

e
to

 e
xe

cu
te

 5
,0

00
 te

st
s

[s
ec

]

Model scale (number of sessions and number of actions per session)

simple checking, the strong filter
simple checking, the weak filter
strict checking, the strong filter
strict checking, the weak filter

No oracle

(a) Breadth-first search

 0

 2000

 4000

 6000

 8000

 10000

 12000

 14000

 2 3 4 5 6 7 8 9 10 11

T
im

e
to

 e
xe

cu
te

 5
,0

00
 te

st
s

[s
ec

]

Model scale (number of sessions and number of actions per session)

simple checking, the strong filter
simple checking, the weak filter
strict checking, the strong filter
strict checking, the weak filter

No oracle

(b) Depth-first search

33

 0

 2000

 4000

 6000

 8000

 10000

 12000

 14000

 2 3 4 5 6 7 8 9 10 11

T
im

e
to

 e
xe

cu
te

 5
,0

00
 te

st
s

[s
ec

]

Model scale (number of sessions and number of actions per session)

simple checking, the strong filter
simple checking, the weak filter
strict checking, the strong filter
strict checking, the weak filter

No oracle

(c) Hänsel und Gretel heuristics

 0

 2000

 4000

 6000

 8000

 10000

 12000

 14000

 2 3 4 5 6 7 8 9 10 11

T
im

e
to

 e
xe

cu
te

 5
,0

00
 te

st
s

[s
ec

]

Model scale (number of sessions and number of actions per session)

simple checking, the strong filter
simple checking, the weak filter
strict checking, the strong filter
strict checking, the weak filter

No oracle

(d) SMT-based

Figure 4.2: Comparison of testing conditions for each algorithm.

34

Chapter 5

Discussion

In Chapter 3, we formalize the problem a test oracle solves to strictly describe the
problem. Then, we show the simulator-based approach and the SMT-based test
approach and develop optimization methods for each approach. We also apply
filtering to both approaches with the aim of reducing the size of the search space.
Finally, we show the strict checking to avoid false-negatives.

In this chapter, we shall discuss the following topics based on the experimental
results in Chapter 4:

1. which optimization methods are effective and why the test oracle becomes
faster with these methods,

2. whether the optimization methods can be applied to another distributed
system.

5.1 The simulator-based approach and the SMT-based approach

First, we shall compare the two approaches. The experiment shows that the
simulator-based test oracles are faster than the SMT-based test oracles. We as-
sume that it is caused by the degree of optimization in each approach. The SMT
solver can solve various problems as long as the problem is reduced to a satisfi-
ability problem. This tool is highly optimized to solve the well-known problems
effectively, but it is not tuned for the problem the test oracle solves. On the
other hand, the simulator is implemented for only the problem and it is suited for
solving the problem.

Thus, if we refine the encoding to SMT, it may be possible to speed up the
SMT solver. For example, adding some clauses that are not necessary but can
reduce the search space may improve the performance of the SMT solver. Also, the
performance depends on which strategy we use. Z3 solver uses heuristic algorithms
that are called strategies. With these strategies, Z3 can solve well-known problems
fast, but it may not effectively perform on new classes of problems [2]. In the
experiment, we use the default strategy for quantifier-free linear integer arithmetic
(QF_LIA). It might be possible to improve the performance of the test oracle
significantly by customizing the strategy.

While the simulator-based approach is superior to the SMT-based test oracle
in terms of the performance, the latter one is surpassing in terms of the cost of
developing the test oracle. The line of code for the SMT-based approach is 636
while the line of code for simulator-based approach is 948 and about 70% (673
line) of the code is for the simulator. Although the line of code depends on an
SUT, the SMT-based approach may be a good choice if the problem is easy to
encode into the SMT formula.

35

As for other distributed system, we expect that Hänsel und Gretel search works
for other applications because the heuristics may hold in many applications. In the
SMT-based approach it may be possible to make the test oracles more efficient by
improving encoding and strategies. However, it requires deep knowledge about an
SMT solver, and it maybe a challenge for developers who want to use the method.

5.2 Filtering and Strict checking

Next, we shall consider the filtering technique. This technique improves the per-
formance of each test oracle especially for the breadth-first search and the SMT-
based test oracles. Since the number of states grows exponentially with regards
to the number of sessions and the number of actions per sessions, we assume that
this technique also works effectively in other applications.

The number of solutions of strict checking is smaller than that of simple check-
ing. However, the experiment shows that the strict checking makes the test oracle
faster. This result suggests that the benefit that the strict checking can prune
branches outweighs the disadvantage of the strict checking. Strict checking is not
for optimization method but for avoiding the false-negatives. However, it may
improve the performance in other applications by reducing the size of the state
space.

36

Chapter 6

Related Work

6.1 Model-based testing

Model-based testing needs the assistance of testing tools to automate test case
generation, test execution and test evaluation. The support of such tools is also
neccessary to write test code easily. There are various testing tools to support
model-based testing, such as Spec Explorer [1], NModel [18] and AGEDIS [17]. As
we showed in Chapter 2, Modbat is a testing tool that enables to write test code
effectively using Scala-like DSL [5]. In previous our work [4], we conducted model-
based testing for API of Apache ZooKeeper using Modbat and we demonstrated
that Modbat enables to test distributed systems effectively. We also showed that
the simulator-based approach and the heuristic algorithms to speed up the test
oracle. In this paper, we expand the previous study.We showed the formaliza-
tion for the problem the test oracle solves and developed the new optimization
methods.

6.2 Test oracle optimization

Our two approaches both focus on executing more test cases by speeding up the
test oracle. Test case reduction is another approach to optimize a test oracle.
Leitner et al. [26] combined static slice, a technique for extracting code which
can affect the result of the test case, with delta debugging technique [36] to
minimize test cases. Kuhn et al. [22, 21] investigated the failure-triggering fault
interaction (FTFI) number, i.e., the number of conditions required to trigger a
failure, of large distributed systems and show that all failures are triggered at
most 4 to 6 parameters. Based on the investigation, they suggest that testing all
n-tuples of parameters is more practical than exhaustive testing, where n ≤ 6. In
cloud systems such as ZooKeeper, however, many bugs are reported which can be
reproduced only with a large number of events [25]. Thus, we still need to address
state space explosion we explained this paper to find such bugs.

6.3 Developing cost of test oracle

Using a book [20] and online API documentation [3] as references, we implement
test oracle by ourselves. Instead of implementing the test oracle manually, there
is an approach to use formal specification as a test oracle. The advantage of the
approach is that it reduces or may remove the cost of implementing test oracle if
such specification is available. In their comprehensive survey [16], Harman et al
calls such test oracles as specified oracles and classify them into three categories;
specification based languages, assertions and contracts, and algebraic specifica-

37

tion. The first category is test oracles which are derived from a specification
written in some formal language, such as B [23], Z [32] and VDM [15], or some
mathematical model, such as finite state machines [24] and labeled transition
systems [33]. The second category uses assertions to also check if a boolean ex-
pression is true. Languages which supports design by contract, such as Eiffel [27]
and JML [28], can also check preconditions and postconditions of methods and
class invariants. The last category derives test oracle from a specification written
in algebraic specification languages which use first-order logic to specify a system
behavior. It may be possible to combine our approaches to a specified oracle with
reduce the cost of implementing a test oracle.

38

Chapter 7

Conclusion and future work

7.1 Conclusion

In this research, we address the state space explosion in model-based testing for
distributed systems.

First, we formally describe the specification of Apache ZooKeeper and the
problem the test oracle solves. We formalize the specification and the problem
with a labeled transition system which represents the state of space with regard
to executing API.

Then, we propose two approaches to implement the test oracle; the simulator-
based approach and an SMT-based approach. The former one searches for a
solution from the state space using a simulator of the SUT. We develop a heuristic
algorithm which preferentially searches execution-orders that are similar to the
call-order. With this heuristic algorithm, we succeed making the performance of
test oracle almost optimal.

The latter one makes a formula that is satisfiable if and only if the actual
result of SUT is correct and check its satisfiability by an SMT solver. We show
that how to encode the problem into a formula.

We develop the filtering technique to reduce the size of the search space. The
filter which removes not only “read” actions but also a part of “write” actions
significantly improves the performance of test oracles in both approaches.

Finally, we show the strict checking, that is, checking not only the result of a
target action but also the result of all actions. The strict checking is a method
to avoid false-negatives rather than an optimization method, but the experiment
shows that it also improves the performance.

7.2 Future work

The performance of the SMT-based test oracle needs to be improved for practical
use. If we use more sophisticated encoding and a strategy, it may be possible to
speed up the test oracle.

We do not check some of the features of Apache ZooKeeper such as watchers
and multiple servers. We need to test these features and to check if there are new
defects in them. Also, the performance of the new test oracle should be measured.

Even if we control the order of messages over the network, the test oracle still
needs to deal with the non-determinism because of the concurrency of threads.
However, the amount of non-determinism is reduced by controlling the network
and it may make the test oracle faster.

We only apply the two approaches and the optimization methods to Apache
ZooKeeper. We need to check whether these approaches and the optimization

39

methods are effective in other systems. In addition to the performance of the test
oracles, we need to measure the cost of implementing the test oracle with some
metrics such as the number of lines of code or the time of implementation.

40

References

[1] Spec Explorer. https://msdn.microsoft.com/en-us/library/ee620411.

aspx. Online; Accessed: 2017-1-19.

[2] Strategies - rise4fun. https://rise4fun.com/z3/tutorial/strategies.
Online; Accessed: 2017-12-13.

[3] ZooKeeper (ZooKeeper 3.4.10 API). https://zookeeper.apache.org/doc/
r3.4.10/api/index.html. Online; Accessed: 2017-1-6.

[4] Cyrille Artho, Quentin Gros, Guillaume Rousset, Kazuaki Banzai, Lei Ma,
Takashi Kitamura, Masami Hagiya, Yoshinori Tanabe, and Mitsuharu Ya-
mamoto. Model-based API testing of Apache ZooKeeper. In 2017 IEEE
International Conference on Software Testing, Verification and Validation,
ICST 2017, Tokyo, Japan, March 13-17, 2017, pages 288–298. IEEE Com-
puter Society, 2017.

[5] Cyrille Valentin Artho, Armin Biere, Masami Hagiya, Eric Platon, Martina
Seidl, Yoshinori Tanabe, and Mitsuharu Yamamoto. Modbat: A model-based
API tester for event-driven systems. In Haifa Verification Conference, pages
112–128. Springer, 2013.

[6] Eddy Bernard, Bruno Legeard, Xavier Luck, and Fabien Peureux. Generation
of test sequences from formal specifications: Gsm 11-11 standard case study.
Software: Practice and Experience, 34(10):915–948, 2004.

[7] Mark Blackburn, Robert Busser, and Aaron Nauman. Why model-based
test automation is different and what you should know to get started. In
International conference on practical software quality and testing, pages 212–
232, 2004.

[8] Manfred Broy, Bengt Jonsson, Joost-Pieter Katoen, Martin Leucker, and
Alexander Pretschner. Model-based testing of reactive systems: advanced
lectures, volume 3472. Springer, 2005.

[9] Kwang Ting Cheng and Avinash S Krishnakumar. Automatic functional test
generation using the extended finite state machine model. In Proceedings of
the 30th International Design Automation Conference, pages 86–91. ACM,
1993.

[10] Ian Craggs, Manolis Sardis, and Thierry Heuillard. Agedis case studies:
Model-based testing in industry. In Proc. 1st Eur. Conf. on Model Driven
Software Engineering, pages 129–132. Citeseer, 2003.

[11] Siddhartha R Dalal, Ashish Jain, Nachimuthu Karunanithi, JM Leaton,
Christopher M Lott, Gardner C Patton, and Bruce M Horowitz. Model-based
testing in practice. In Proceedings of the 21st International Conference on
Software Engineering, pages 285–294. ACM, 1999.

41

https://msdn.microsoft.com/en-us/library/ee620411.aspx
https://msdn.microsoft.com/en-us/library/ee620411.aspx
https://rise4fun.com/z3/tutorial/strategies
https://zookeeper.apache.org/doc/r3.4.10/api/index.html
https://zookeeper.apache.org/doc/r3.4.10/api/index.html

[12] Martin Davis, George Logemann, and Donald Loveland. A machine program
for theorem-proving. Communications of the ACM, 5(7):394–397, 1962.

[13] Leonardo De Moura and Nikolaj Bjørner. Z3: An efficient smt solver. Tools
and Algorithms for the Construction and Analysis of Systems, pages 337–340,
2008.

[14] Eitan Farchi, Alan Hartman, and Shlomit S. Pinter. Using a model-based test
generator to test for standard conformance. IBM systems journal, 41(1):89–
110, 2002.

[15] John Fitzgerald and Peter Gorm Larsen. Modelling systems: practical tools
and techniques in software development. Cambridge University Press, 2009.

[16] Mark Harman, Phil McMinn, Muzammil Shahbaz, and Shin Yoo. A com-
prehensive survey of trends in oracles for software testing. University of
Sheffield, Department of Computer Science, Tech. Rep. CS-13-01, 2013.

[17] Alan Hartman and Kenneth Nagin. The AGEDIS tools for model based
testing. ACM SIGSOFT Software Engineering Notes, 29(4):129–132, 2004.

[18] Jonathan Jacky, Margus Veanes, Colin Campbell, and Wolfram Schulte.
Model-Based Software Testing and Analysis with C. Cambridge University
Press, 2007.

[19] Claude Jard and Thierry Jéron. Tgv: theory, principles and algorithms.
International Journal on Software Tools for Technology Transfer (STTT),
7(4):297–315, 2005.

[20] F. Junqueira and B. Reed. ZooKeeper: distributed process coordination.
O’Reilly, 2013.

[21] D Richard Kuhn and Michael J Reilly. An investigation of the applicability of
design of experiments to software testing. In Software Engineering Workshop,
2002. Proceedings. 27th Annual NASA Goddard/IEEE, pages 91–95. IEEE,
2002.

[22] D Richard Kuhn, Dolores R Wallace, and Albert M Gallo. Software fault
interactions and implications for software testing. IEEE transactions on
software engineering, 30(6):418–421, 2004.

[23] Kevin Lano and Howard Haughton. Specification in B: An introduction using
the B toolkit. World Scientific, 1996.

[24] David Lee and Mihalis Yannakakis. Principles and methods of testing finite
state machines-a survey. Proceedings of the IEEE, 84(8):1090–1123, 1996.

[25] Tanakorn Leesatapornwongsa, Mingzhe Hao, Pallavi Joshi, Jeffrey F Luk-
man, and Haryadi S Gunawi. Samc: Semantic-aware model checking for fast
discovery of deep bugs in cloud systems. In OSDI, pages 399–414, 2014.

[26] Andreas Leitner, Manuel Oriol, Andreas Zeller, Ilinca Ciupa, and Bertrand
Meyer. Efficient unit test case minimization. In Proceedings of the twenty-
second IEEE/ACM international conference on Automated software engi-
neering, pages 417–420. ACM, 2007.

[27] Bertrand Meyer. Eiffel*: A language and environment for software engineer-
ing. Journal of Systems and Software, 8(3):199–246, 1988.

42

[28] Christian Murphy, Kuang Shen, and Gail Kaiser. Using JML runtime as-
sertion checking to automate metamorphic testing in applications without
test oracles. In Software Testing Verification and Validation, 2009. ICST’09.
International Conference on, pages 436–445. IEEE, 2009.

[29] Glenford J Myers, Corey Sandler, and Tom Badgett. The art of software
testing. John Wiley & Sons, 2011.

[30] Alexander Pretschner, Wolfgang Prenninger, Stefan Wagner, Christian Küh-
nel, Martin Baumgartner, Bernd Sostawa, Rüdiger Zölch, and Thomas
Stauner. One evaluation of model-based testing and its automation. In Pro-
ceedings of the 27th international conference on Software engineering, pages
392–401. ACM, 2005.

[31] Alexander Pretschner, Wolfgang Prenninger, Stefan Wagner, Christian Küh-
nel, Martin Baumgartner, Bernd Sostawa, Rüdiger Zölch, and Thomas
Stauner. One evaluation of model-based testing and its automation. In Pro-
ceedings of the 27th international conference on Software engineering, pages
392–401. ACM, 2005.

[32] J Michael Spivey and JR Abrial. The Z notation. Prentice Hall Hemel
Hempstead, 1992.

[33] Jan Tretmans. Test generation with inputs, outputs, and quiescence. Tools
and Algorithms for the Construction and Analysis of Systems, pages 127–146,
1996.

[34] Mark Utting and Bruno Legeard. Practical model-based testing: a tools ap-
proach. Morgan Kaufmann, 2010.

[35] Mark Utting, Alexander Pretschner, and Bruno Legeard. A taxonomy of
model-based testing approaches. Software Testing, Verification and Reliabil-
ity, 22(5):297–312, 2012.

[36] Andreas Zeller and Ralf Hildebrandt. Simplifying and isolating failure-
inducing input. IEEE Transactions on Software Engineering, 28(2):183–200,
2002.

43

	Introduction
	Background
	Apache ZooKeeper
	ZooKeeper API
	Internal data structure of ZooKeeper server and the initial data

	Modbat
	Extended finte state machines
	The syntacs and semantics of Modbat's DSL
	Test case generation and execution

	Test models
	Outline of the tests
	The server model and the client model

	Test oracle
	The order of requests processing
	The problem about test oracles

	Z3
	Summary

	Test Oracle
	Informal specification of ZooKeeper API
	The specification about the order of API execution
	The specification about outputs of each API
	Example

	Formal specification of ZooKeeper APIs
	A labeled transition system for the specification
	The problem formalization
	The formal specification of ZooKeeper
	Example

	The Simulator-based approach
	The mechanism
	Optimization

	The SMT-based approach
	The formula
	Reachable(p)
	Correspondingij(p)
	Example

	Filtering
	Simple checking and strict checking
	Summary

	Experiment
	Experimental setting
	Experimental result
	Comparison of test oracles in each testing condition
	Comparison of testing conditions for each algorithm.

	Discussion
	The simulator-based approach and the SMT-based approach
	Filtering and Strict checking

	Related Work
	Model-based testing
	Test oracle optimization
	Developing cost of test oracle

	Conclusion and future work
	Conclusion
	Future work

	References

