
Combinatorial and Algebraic Statistics

Problem Set 1 version 1.1

Due Date: March 19

1. (a) Let X ∼ N (0, 1) be a random variable distributed according to the
standard normal distribution. Show that X has expectation E[X] = 0
and variance Var[X] = 1.

(b) Let Y = (X1, . . . , Xm) be a random vector for which the expectations
E[X1], . . . ,E[Xm] and E[XiXj ] are all finite, for all i, j ∈ [m]. Show
that the covariance matrix Cov[Y ] is positive semidefinite.

2. Consider the simplicial complex Γ = [12][13][14].
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(a) Show that Γ is decomposable.

(b) Determine an explicit Markov basis for the hierarchical log-linear
model associated with Γ and r1 = r3 = 1, r2 = r4 = 2.

3. Consider the m-way independence model MΓ where Γ = [1][2] · · · [m].

(a) Find a necessary and sufficient condition for an element of the set
D(Γ1,Γ2) to be nonzero for any reducible decomposition (Γ1, S,Γ2)
of Γ.

(b) Let (Γ1, S,Γ2) and (Γ′
1, S

′,Γ′
2) be two distinct reducible decomposi-

tions of Γ. Show that D(Γ1,Γ2) ∩D(Γ′
1,Γ

′
2) is equal to{[

i j k
i′ j k′

]
−
[
i j k′

i′ j k

]
: i, i′ ∈ R[m]\A, j ∈ RB , k, k

′ ∈ RC

}
Where A = G(Γ2)∪G(Γ′

2)∪S∪S′, B = (G(Γ2)4G(Γ′
2))∪S∪S′, and

C = (G(Γ2) ∩ G(Γ′
2)) \ (S ∪ S′).
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4. We consider Gaussian models associated with undirected graphs on 4
nodes. Let us assume that we have 3 samples:

Y1 =


1
0
0
1

 , Y2 =


0
1
0
1

 , Y3 =


0
0
1
1

 .

The resulting sample covariance matrix is S = 1
3 (Y1Y

T
1 + Y2Y

T
2 + Y3Y

T
3 ).

(a) Compute the MLE for the graphical model associated to
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(b) Compute the MLE for the graphical model associated to

1 2

34

(c) What are the ML degrees of the models in (a) and (b)?

5. Consider the simplicial complex Γ below and the associated log-linear
model MΓ of distributions associated to four binary random variables
X = (X1, X2, X3, X4).
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Suppose we are given data
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
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1
0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 0 0 0 · · ·
0 0 0 0 0 0 1 1 1 1 1 0 0 1 1 1 1 0 0 0
0 0 0 0 1 1 0 0 0 0 1 0 1 0 0 0 1 0 0 1




1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
· · · 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 0 0 0 0 1 1 1 1 1 1
0 0 0 1 1 0 0 0 1 0 0 0 0 1 1

 ,

where each column is a realization (x1, x2, x3, x4) of X. Find the maximum
likelihood estimate û of the frequencies u in the model MΓ.

6. Derive the formula for the maximum likelihood estimate of the discrete
Markov chain model M(I3) from Lecture 1.

7. The following exercise aims to show the proposition regarding the satura-
tion of ideals from the lecture on March 5. You are allowed and encouraged
to use all statements presented in the lecture on January 29 (the relevant
statements can be found on the first 5 slides).

(a) Let Z ⊆ Cm be any subset. Show that I(Z) = I(V (I(Z))).
(Recall that V (I(Z)) is the Zariski closure of Z.)

A Zariski closed subset of Cm is called irreducible if it cannot be written
as the union of two proper Zariski closed subsets.

Let I, J ⊆ C[x1, . . . , xm] be ideals. We consider the irreducible decompo-
sition of the variety

V (I) = V1 ∪ . . . ∪ Vr,

i.e. each component Vi is an irreducible Zariski closed subset of Cm and
Vi * Vj for i 6= j. We may assume that Vi * V (J) for i ≤ k and Vi ⊆ V (J)
for i > k.

(b) Show that V (I(Vi \ V (J))) = Vi for i ≤ k.
Deduce that the Zariski closure of V (I) \ V (J) is V1 ∪ . . . ∪ Vk.
(You may use the following statement: If Z ⊆ Cm is an irreducible
Zariski closed set and U ⊆ Z is a non-empty Zariski open subset of
Z, then U is Zariski dense in Z, i.e. the Zariski closure of U is Z.)

(c) Show that the saturation ideal I : J∞ is contained in
I(V1) ∩ . . . ∩ I(Vk).
(Hint: Show that I : J∞ ⊆ I(Vi\V (J)) for all i ≤ k, and then deduce
the statement using (a) and (b).)

(d) Show that I(V1) ∩ . . . ∩ I(Vk) ⊆
√
I : J∞.

(e) Show that the Zariski closure of V (I) \ V (J) is V (I : J∞).
(Hint: Use (b), (c) and (d).)
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8. The following exercise is meant to be done with Macaulay2 or similar
software. An online version of Macaulay2, with a short self-contained
tutorial, can be found here:

https://www.unimelb-macaulay2.cloud.edu.au/#editor

Consider the lattice L = kerZ(A) corresponding to the matrix

A =



0 0 0 0 1 1 1 1 1 1 1 1
1 1 1 1 0 0 0 0 1 1 1 1
0 0 1 1 0 0 1 1 0 0 1 1
0 1 0 1 0 1 0 1 0 1 0 1
0 0 0 0 0 0 0 0 1 1 1 1
0 0 1 1 0 0 0 0 0 0 1 1
0 0 0 1 0 0 0 1 0 0 0 1
0 0 0 0 0 1 0 1 0 1 0 1


.

(a) Compute a lattice basis of L.

(b) Compute a Markov basis of L.
(Hint: Use the method gfanLatticeIdeal from the package gfanInterface.
You need to load the package first: loadPackage "gfanInterface".)

(c) Compute a minimal Markov basis of L. Which degrees do the corre-
sponding generators of the lattice ideal IL have?
(Hint: You can apply mingens to the lattice ideal IL.)

(d) Read the short Gröbner basis introduction here:

http://www2.macaulay2.com/Macaulay2/doc/Macaulay2-1.12/share/doc/Macaulay2/

Macaulay2Doc/html/_what_spis_spa_sp__Groebner_spbasis_qu.html

(e) Compute the reduced Gröbner basis of L with respect to the graded
reverse lexicographical monomial order. Which degrees do the corre-
sponding generators of the lattice ideal IL have?
(Hint: Make a new ring R with the desired monomial order and
transfer the lattice ideal IL to the new ring using sub(IL, R).)

4


