Likelihood Inference for Discrete and Gaussian Models

Lectures on Algebraic Statistics $\$ 2.1$ by Drton, Sturmfels \& Sullivant

Speaker: Felix Rydell

KTH Stockholm

March 8, 2021

Overview

Goals for today:

1. Maximum Likelihood Estimation and Connections to Algebraic Geometry,
2. Discrete Models with Examples,
3. Gaussian Models.

Overview

Goals for today:

1. Maximum Likelihood Estimation and Connections to Algebraic Geometry,
2. Discrete Models with Examples,
3. Gaussian Models.

Overview

Goals for today:

1. Maximum Likelihood Estimation and Connections to Algebraic Geometry,
2. Discrete Models with Examples,
3. Gaussian Models.

Overview

Goals for today:

1. Maximum Likelihood Estimation and Connections to Algebraic Geometry,
2. Discrete Models with Examples,
3. Gaussian Models.

Maximum Likelihood Estimation

- Consider a statistical model $\mathcal{P}_{\Theta}=\left\{P_{\theta}: \theta \in \Theta\right\}$. Given identically distributed independent random variables $X^{(i)} \sim P_{\theta}$ for $i=1, \ldots, n$, the likelihood function is given by:

$$
L(\theta):=\prod_{i=1}^{n} p_{\theta}\left(X^{(i)}\right) .
$$

We want to find the θ that maximizes L; we may equivalently consider the \log-likelihood function $\ell:=\log L$. (Sometimes a multinomial coefficient is included in the definition of $L(\theta)$.)

- The ML-estimator is the random variable defined as

Note that it is a random variable since it depends on $X^{(i)}$. The
maximum likelihood estimate of θ given data $x^{(i)}$ is obtained as $\hat{\theta}$ when
substituting $X^{(i)}=x^{(i)}$. Note that this θ is a parameter that maximizes the likelihood of observing x

Maximum Likelihood Estimation

- Consider a statistical model $\mathcal{P}_{\Theta}=\left\{P_{\theta}: \theta \in \Theta\right\}$. Given identically distributed independent random variables $X^{(i)} \sim P_{\theta}$ for $i=1, \ldots, n$, the likelihood function is given by:

$$
L(\theta):=\prod_{i=1}^{n} p_{\theta}\left(X^{(i)}\right) .
$$

We want to find the θ that maximizes L; we may equivalently consider the \log-likelihood function $\ell:=\log L$. (Sometimes a multinomial coefficient is included in the definition of $L(\theta)$.)

- The ML-estimator is the random variable defined as

$$
\hat{\theta}:=\arg \max _{\theta \in \Theta} \ell(\theta)=\arg \max _{\theta \in \Theta} L(\theta)
$$

Note that it is a random variable since it depends on $X^{(i)}$. The maximum likelihood estimate of θ given data $x^{(i)}$ is obtained as $\hat{\theta}$ when substituting $X^{(i)}=x^{(i)}$. Note that this θ is a parameter that maximizes the likelihood of observing $x^{(1)}, \ldots, x^{(n)}$.

Algebraic Insights - Part 1

- Sullivant (Algebraic Statistics, page 2) gives the following dictionary:

Probability/Statistics	Algebra/Geometry
Probability distribution	Point in Δ
Statistical model	Semi-algebraic set
Exponential Family	Toric Variety
Conditional Inference	Lattice points in polytopes
Maximum likelihood estimation	Polynomial optimization
Model selection	Geometry of singularities
Multivariate Gaussian distribution	Spectrahedral geometry
Phylogenetic model	Tensor networks
MAP estimates	Tropical geometry

Algebraic Insights - Part 2

- The score equations (also known as critical equations) are given by setting $\partial \ell / \partial \theta_{i}=0$ for each i. A point satisfying the equation is a critical point. Any local maximum is a critical point under the assumption that the parameter space Θ is open.
- For example, let

$$
\log p_{\theta}(X)=\log q_{1}(\theta)+q_{2}(\theta)
$$

be a univariate quotient of polynomials of rational coefficients (meaning $q_{i} \in \mathbb{Q}(\theta)$.) The score equation is given by $q_{1}^{\prime}(\theta) / q_{1}(\theta)+q_{2}^{\prime}(\theta)=0$. This is an algebraic expression.

- Recall that solutions to algebraic equations is the main subject of algebraic geometry.
- We define the ML-degree of a (possibly multivariate) statistical model of the form (1) to be the number of complex solutions to the score equations for generic data. Note that this bounds the number of real solutions.

Algebraic Insights - Part 2

- The score equations (also known as critical equations) are given by setting $\partial \ell / \partial \theta_{i}=0$ for each i. A point satisfying the equation is a critical point. Any local maximum is a critical point under the assumption that the parameter space Θ is open.
- For example, let

$$
\begin{equation*}
\log p_{\theta}(X)=\log q_{1}(\theta)+q_{2}(\theta) \tag{1}
\end{equation*}
$$

be a univariate quotient of polynomials of rational coefficients (meaning $q_{i} \in \mathbb{Q}(\theta)$.) The score equation is given by $q_{1}^{\prime}(\theta) / q_{1}(\theta)+q_{2}^{\prime}(\theta)=0$. This is an algebraic expression.

- Recall that solutions to algebraic equations is the main subject of algebraic geometry.
- We define the ML-degree of a (possibly multivariate) statistical model of the form (1) to be the number of complex solutions to the score equations for generic data. Note that this bounds the number of real solutions.

Algebraic Insights - Part 2

- The score equations (also known as critical equations) are given by setting $\partial \ell / \partial \theta_{i}=0$ for each i. A point satisfying the equation is a critical point. Any local maximum is a critical point under the assumption that the parameter space Θ is open.
- For example, let

$$
\begin{equation*}
\log p_{\theta}(X)=\log q_{1}(\theta)+q_{2}(\theta) \tag{1}
\end{equation*}
$$

be a univariate quotient of polynomials of rational coefficients (meaning $q_{i} \in \mathbb{Q}(\theta)$.) The score equation is given by $q_{1}^{\prime}(\theta) / q_{1}(\theta)+q_{2}^{\prime}(\theta)=0$. This is an algebraic expression.

- Recall that solutions to algebraic equations is the main subject of algebraic geometry.
- We define the ML-degree of a (possibly multivariate) statistical model
of the form (1) to be the number of complex solutions to the score
equations for generic data. Note that this bounds the number of real
solutions.

Algebraic Insights - Part 2

- The score equations (also known as critical equations) are given by setting $\partial \ell / \partial \theta_{i}=0$ for each i. A point satisfying the equation is a critical point. Any local maximum is a critical point under the assumption that the parameter space Θ is open.
- For example, let

$$
\begin{equation*}
\log p_{\theta}(X)=\log q_{1}(\theta)+q_{2}(\theta) \tag{1}
\end{equation*}
$$

be a univariate quotient of polynomials of rational coefficients (meaning $q_{i} \in \mathbb{Q}(\theta)$.) The score equation is given by $q_{1}^{\prime}(\theta) / q_{1}(\theta)+q_{2}^{\prime}(\theta)=0$. This is an algebraic expression.

- Recall that solutions to algebraic equations is the main subject of algebraic geometry.
- We define the ML-degree of a (possibly multivariate) statistical model of the form (1) to be the number of complex solutions to the score equations for generic data. Note that this bounds the number of real solutions.

Generic Data

- What is generic data? In algebraic geometry, a point in \mathbb{K}^{n} (for some field \mathbb{K}) is generic if it lies in some fixed non-empty Zariski open set (this is a set on the form $\mathbb{K}^{n} \backslash \mathcal{V}(I)$ for an ideal $\langle 0\rangle \neq I \subseteq \mathbb{K}\left[x_{1}, \ldots, x_{n}\right]$.) The dimension of an open non-empty set is n and the dimension of the set of non-generic points is at most $n-1$.
- We can think of generic data as "random" data; randomly chosen data has probability 1 of being generic.
- A statement that is true for generic points in \mathbb{C}^{n} is also true for
generic points in \mathbb{R}^{n}. This is essentially because the Zariski closure of \mathbb{R}^{n} in \mathbb{C}^{n} is \mathbb{C}^{n} (the Zariski closure of X is the smallest set of the form $\mathcal{V}(I)$ that contains X.)

Generic Data

- What is generic data? In algebraic geometry, a point in \mathbb{K}^{n} (for some field \mathbb{K}) is generic if it lies in some fixed non-empty Zariski open set (this is a set on the form $\mathbb{K}^{n} \backslash \mathcal{V}(I)$ for an ideal $\langle 0\rangle \neq I \subseteq \mathbb{K}\left[x_{1}, \ldots, x_{n}\right]$.) The dimension of an open non-empty set is n and the dimension of the set of non-generic points is at most $n-1$.
- We can think of generic data as "random" data; randomly chosen data has probability 1 of being generic.
- A statement that is true for generic points in \mathbb{C}^{n} is also true for generic points in \mathbb{R}^{n}. This is essentially because the Zariski closure of \mathbb{R}^{n} in \mathbb{C}^{n} is \mathbb{C}^{n} (the Zariski closure of X is the smallest set of the form $\mathcal{V}(I)$ that contains X.

Generic Data

- What is generic data? In algebraic geometry, a point in \mathbb{K}^{n} (for some field \mathbb{K}) is generic if it lies in some fixed non-empty Zariski open set (this is a set on the form $\mathbb{K}^{n} \backslash \mathcal{V}(I)$ for an ideal $\langle 0\rangle \neq I \subseteq \mathbb{K}\left[x_{1}, \ldots, x_{n}\right]$.) The dimension of an open non-empty set is n and the dimension of the set of non-generic points is at most $n-1$.
- We can think of generic data as "random" data; randomly chosen data has probability 1 of being generic.
- A statement that is true for generic points in \mathbb{C}^{n} is also true for generic points in \mathbb{R}^{n}. This is essentially because the Zariski closure of \mathbb{R}^{n} in \mathbb{C}^{n} is \mathbb{C}^{n} (the Zariski closure of X is the smallest set of the form $\mathcal{V}(I)$ that contains X.)

Saturation - Part 1

- Let us return to the equation $q_{1}^{\prime}(\theta) / q_{1}(\theta)+q_{2}^{\prime}(\theta)=0$. If we want to solve it we might start by writing $q_{1}=f_{1} / g_{1}$ and $q_{2}=f_{2} / g_{2}$ so that we get a polynomial equation:

$$
\begin{gather*}
\frac{\frac{f_{1}^{\prime}}{g_{1}}-\frac{f_{1} g_{1}^{\prime}}{g_{1}^{2}}}{f_{1} / g_{1}}-\left(\frac{f_{2}^{\prime}}{g_{2}}-\frac{f_{2} g_{2}^{\prime}}{g_{2}^{2}}\right)=0 \Rightarrow \tag{2}\\
\Rightarrow g_{2}^{2}\left(f_{1}^{\prime} g_{1}-f_{1} g_{1}^{\prime}\right)-f_{1} g_{1}\left(f_{2}^{\prime} g_{2}-f_{2} g_{2}^{\prime}\right)=0 . \tag{3}
\end{gather*}
$$

> - We now have a nice polynomial equation, but we have gained solutions that we did not have before. For example, points x such that $g_{2}(x)=f_{1}(x)=0$ solves the polynomial equation (3), but clearly not the rational equation (2).

- Problems of this sort are solved using saturation of ideals. In this case we study the ideal $I=\left\langle g_{2}^{2}\left(f_{1}^{\prime} g_{1}-f_{1} g_{1}^{\prime}\right)-f_{1} g_{1}\left(f_{2}^{\prime} g_{2}-f_{2} g_{2}^{\prime}\right)\right\rangle$ and the ideal of "bad" solutions $J=\left\langle g_{1} f_{1} g_{2}\right\rangle$.

Saturation - Part 1

- Let us return to the equation $q_{1}^{\prime}(\theta) / q_{1}(\theta)+q_{2}^{\prime}(\theta)=0$. If we want to solve it we might start by writing $q_{1}=f_{1} / g_{1}$ and $q_{2}=f_{2} / g_{2}$ so that we get a polynomial equation:

$$
\begin{gather*}
\frac{\frac{f_{1}^{\prime}}{g_{1}}-\frac{f_{1} g_{1}^{\prime}}{g_{1}^{2}}}{f_{1} / g_{1}}-\left(\frac{f_{2}^{\prime}}{g_{2}}-\frac{f_{2} g_{2}^{\prime}}{g_{2}^{2}}\right)=0 \Rightarrow \tag{2}\\
\Rightarrow g_{2}^{2}\left(f_{1}^{\prime} g_{1}-f_{1} g_{1}^{\prime}\right)-f_{1} g_{1}\left(f_{2}^{\prime} g_{2}-f_{2} g_{2}^{\prime}\right)=0 . \tag{3}
\end{gather*}
$$

- We now have a nice polynomial equation, but we have gained solutions that we did not have before. For example, points x such that $g_{2}(x)=f_{1}(x)=0$ solves the polynomial equation (3), but clearly not the rational equation (2).
- Problems of this sort are solved using saturation of ideals. In this case we study the ideal $I=\left\langle g_{2}^{2}\left(f_{1}^{\prime} g_{1}-f_{1} g_{1}^{\prime}\right)-f_{1} g_{1}\left(f_{2}^{\prime} g_{2}-f_{2} g_{2}^{\prime}\right)\right\rangle$ and the ideal of "bad" solutions $J=\left\langle g_{1} f_{1} g_{2}\right\rangle$.

Saturation - Part 1

- Let us return to the equation $q_{1}^{\prime}(\theta) / q_{1}(\theta)+q_{2}^{\prime}(\theta)=0$. If we want to solve it we might start by writing $q_{1}=f_{1} / g_{1}$ and $q_{2}=f_{2} / g_{2}$ so that we get a polynomial equation:

$$
\begin{gather*}
\frac{\frac{f_{1}^{\prime}}{g_{1}}-\frac{f_{1} g_{1}^{\prime}}{g_{1}^{2}}}{f_{1} / g_{1}}-\left(\frac{f_{2}^{\prime}}{g_{2}}-\frac{f_{2} g_{2}^{\prime}}{g_{2}^{2}}\right)=0 \Rightarrow \tag{2}\\
\Rightarrow g_{2}^{2}\left(f_{1}^{\prime} g_{1}-f_{1} g_{1}^{\prime}\right)-f_{1} g_{1}\left(f_{2}^{\prime} g_{2}-f_{2} g_{2}^{\prime}\right)=0 . \tag{3}
\end{gather*}
$$

- We now have a nice polynomial equation, but we have gained solutions that we did not have before. For example, points x such that $g_{2}(x)=f_{1}(x)=0$ solves the polynomial equation (3), but clearly not the rational equation (2).
- Problems of this sort are solved using saturation of ideals. In this case we study the ideal $I=\left\langle g_{2}^{2}\left(f_{1}^{\prime} g_{1}-f_{1} g_{1}^{\prime}\right)-f_{1} g_{1}\left(f_{2}^{\prime} g_{2}-f_{2} g_{2}^{\prime}\right)\right\rangle$ and the ideal of "bad" solutions $J=\left\langle g_{1} f_{1} g_{2}\right\rangle$.

Saturation - Part 2

- Let I and J be two ideals of a ring R. We define the ideal quotient as follows

$$
(I: J):=\{r \in R: r J \subseteq I\} .
$$

- For a noetherian ring R (the polynomial rings $\mathbb{Q}[x], \mathbb{R}[x], \mathbb{C}[x]$, are noetherian,) consider the inclusion of ideals

The chain stabilizes at some $\left(I: J^{N}\right)$ and we call this the saturation of I with respect to J and write $\left(I: J^{\infty}\right)$ or $\operatorname{sat}(I, J)$.

Proposition (Ideals, Varieties and Algorithms, Theorem 7 p. 195)
Let $\mathcal{V}(J), \mathcal{V}(I)$ be two algebraic sets defined by ideals. Then

Saturation - Part 2

- Let I and J be two ideals of a ring R. We define the ideal quotient as follows

$$
(I: J):=\{r \in R: r J \subseteq I\} .
$$

- For a noetherian ring R (the polynomial rings $\mathbb{Q}[x], \mathbb{R}[x], \mathbb{C}[x]$, are noetherian,) consider the inclusion of ideals

$$
(I: J) \subseteq\left(I: J^{2}\right) \subseteq\left(I: J^{3}\right) \subseteq \cdots .
$$

The chain stabilizes at some $\left(I: J^{N}\right)$ and we call this the saturation of I with respect to J and write $\left(I: J^{\infty}\right)$ or $\operatorname{sat}(I, J)$.

Proposition (Ideals, Varieties and Algorithms, Theorem 7 p. 195)
Let $\mathcal{V}(J), \mathcal{V}(I)$ be two algebraic sets defined by ideals. Then

Saturation - Part 2

- Let I and J be two ideals of a ring R. We define the ideal quotient as follows

$$
(I: J):=\{r \in R: r J \subseteq I\} .
$$

- For a noetherian ring R (the polynomial rings $\mathbb{Q}[x], \mathbb{R}[x], \mathbb{C}[x]$, are noetherian,) consider the inclusion of ideals

$$
(I: J) \subseteq\left(I: J^{2}\right) \subseteq\left(I: J^{3}\right) \subseteq \cdots .
$$

The chain stabilizes at some $\left(I: J^{N}\right)$ and we call this the saturation of I with respect to J and write $\left(I: J^{\infty}\right)$ or $\operatorname{sat}(I, J)$.

Proposition (Ideals, Varieties and Algorithms, Theorem 7 p. 195)

Let $\mathcal{V}(J), \mathcal{V}(I)$ be two algebraic sets defined by ideals. Then

$$
\overline{\mathcal{V}(I) \backslash \mathcal{V}(J)}{ }^{\mathrm{Zar}}=\mathcal{V}(\operatorname{sat}(I, J)) .
$$

Saturation - Part 3

Example (2.1.3)

- Consider the score equations with table of counts u and parameters λ_{i}

$$
\begin{aligned}
& \frac{u_{1}+u_{12}}{\lambda_{1}}+\frac{u_{12}}{\lambda_{1}+\lambda_{2}+2}-\frac{u_{2}+u_{12}}{\lambda_{1}+1}-\frac{u_{0}+u_{1}+u_{2}+u_{12}}{\lambda_{1}+\lambda_{2}+1}=0 \\
& \frac{u_{1}+u_{12}}{\lambda_{2}}+\frac{u_{12}}{\lambda_{1}+\lambda_{2}+2}-\frac{u_{1}+u_{12}}{\lambda_{2}+1}-\frac{u_{0}+u_{1}+u_{2}+u_{12}}{\lambda_{1}+\lambda_{2}+1}=0
\end{aligned}
$$

- In a software like Macaulay2 or Singular, we let I be the ideal generated by the two equations above after clearing denominators. Let J be the ideal generated by all the denominators:
- As explained previously, in $\mathcal{V}(I)$, we have to many points. The ideal that corresponds to the system of Example 2.1.3 is given by sat $(I, J)=$ $\left(I, J^{\infty}\right)$; this ideal describes the set of solutions that we are interested in.

Saturation - Part 3

Example (2.1.3)

- Consider the score equations with table of counts u and parameters λ_{i}

$$
\begin{aligned}
& \frac{u_{1}+u_{12}}{\lambda_{1}}+\frac{u_{12}}{\lambda_{1}+\lambda_{2}+2}-\frac{u_{2}+u_{12}}{\lambda_{1}+1}-\frac{u_{0}+u_{1}+u_{2}+u_{12}}{\lambda_{1}+\lambda_{2}+1}=0 \\
& \frac{u_{1}+u_{12}}{\lambda_{2}}+\frac{u_{12}}{\lambda_{1}+\lambda_{2}+2}-\frac{u_{1}+u_{12}}{\lambda_{2}+1}-\frac{u_{0}+u_{1}+u_{2}+u_{12}}{\lambda_{1}+\lambda_{2}+1}=0
\end{aligned}
$$

- In a software like Macaulay 2 or Singular, we let I be the ideal generated by the two equations above after clearing denominators. Let J be the ideal generated by all the denominators:

$$
J:=\left\langle\lambda_{1} \lambda_{2}\left(\lambda_{1}+1\right)\left(\lambda_{2}+1\right)\left(\lambda_{1}+\lambda_{2}+1\right)\left(\lambda_{1}+\lambda_{2}+2\right)\right\rangle
$$

- As explained previously, in $\mathcal{V}(I)$, we have to many points. The ideal
that corresponds to the system of Example 2.1 .3 is given by sat $(I, J)=$ $\left(I, J^{\infty}\right)$; this ideal describes the set of solutions that we are interested in.

Saturation - Part 3

Example (2.1.3)

- Consider the score equations with table of counts u and parameters λ_{i}

$$
\begin{aligned}
& \frac{u_{1}+u_{12}}{\lambda_{1}}+\frac{u_{12}}{\lambda_{1}+\lambda_{2}+2}-\frac{u_{2}+u_{12}}{\lambda_{1}+1}-\frac{u_{0}+u_{1}+u_{2}+u_{12}}{\lambda_{1}+\lambda_{2}+1}=0 \\
& \frac{u_{1}+u_{12}}{\lambda_{2}}+\frac{u_{12}}{\lambda_{1}+\lambda_{2}+2}-\frac{u_{1}+u_{12}}{\lambda_{2}+1}-\frac{u_{0}+u_{1}+u_{2}+u_{12}}{\lambda_{1}+\lambda_{2}+1}=0
\end{aligned}
$$

- In a software like Macaulay 2 or Singular, we let I be the ideal generated by the two equations above after clearing denominators. Let J be the ideal generated by all the denominators:

$$
J:=\left\langle\lambda_{1} \lambda_{2}\left(\lambda_{1}+1\right)\left(\lambda_{2}+1\right)\left(\lambda_{1}+\lambda_{2}+1\right)\left(\lambda_{1}+\lambda_{2}+2\right)\right\rangle
$$

- As explained previously, in $\mathcal{V}(I)$, we have to many points. The ideal that corresponds to the system of Example 2.1.3 is given by sat $(I, J)=$ $\left(I, J^{\infty}\right)$; this ideal describes the set of solutions that we are interested in.

Discrete Models - Part 1

- A parametric discrete model is given by an open subset $\Theta \subseteq \mathbb{R}^{d}$ and a rational map $g: \Theta \rightarrow \Delta_{k-1}$, meaning each coordinate g_{i} is a rational function. We consider:

$$
\ell(\theta)=\log L(\theta)=\log \prod_{i=1}^{k} g_{i}(\theta)^{u_{i}}=\sum u_{i} \log g_{i}(\theta)
$$

for a table of counts $u_{i}=\#\left\{j: X^{(j)}=i\right\}$.

Discrete Models - Part 1

- A parametric discrete model is given by an open subset $\Theta \subseteq \mathbb{R}^{d}$ and a rational map $g: \Theta \rightarrow \Delta_{k-1}$, meaning each coordinate g_{i} is a rational function. We consider:

$$
\ell(\theta)=\log L(\theta)=\log \prod_{i=1}^{k} g_{i}(\theta)^{u_{i}}=\sum u_{i} \log g_{i}(\theta)
$$

for a table of counts $u_{i}=\#\left\{j: X^{(j)}=i\right\}$.

Example (2.1.2, (1/3))

- The parametrization of the independence model $\mathcal{M}_{X \Perp Y}$ is the map $g: \Delta_{r-1} \times \Delta_{c-1} \rightarrow \Delta_{r c-1},(\alpha, \beta) \mapsto\left(\alpha_{i} \beta_{j}\right)$.
- For a table of counts $u \in \mathbb{N}^{n}$, we have the log-likelihood

Discrete Models - Part 1

- A parametric discrete model is given by an open subset $\Theta \subseteq \mathbb{R}^{d}$ and a rational map $g: \Theta \rightarrow \Delta_{k-1}$, meaning each coordinate g_{i} is a rational function. We consider:

$$
\ell(\theta)=\log L(\theta)=\log \prod_{i=1}^{k} g_{i}(\theta)^{u_{i}}=\sum u_{i} \log g_{i}(\theta)
$$

for a table of counts $u_{i}=\#\left\{j: X^{(j)}=i\right\}$.

Example (2.1.2, (1/3))

- The parametrization of the independence model $\mathcal{M}_{X \Perp Y}$ is the map
$g: \Delta_{r-1} \times \Delta_{c-1} \rightarrow \Delta_{r c-1},(\alpha, \beta) \mapsto\left(\alpha_{i} \beta_{j}\right)$.
- For a table of counts $u \in \mathbb{N}^{r \times c}$, we have the log-likelihood

$$
\ell(\alpha, \beta)=\sum u_{i j} \log \left(\alpha_{i} \beta_{j}\right)=\sum_{i} u_{i+} \log \alpha_{i}+\sum_{j} u_{+j} \log \beta_{j},
$$

where u_{i+}, u_{+j} are the familiar marginal sums.

Discrete Models - Part 2

Example (2.1.2, (2/3))

- Observe that α_{i}, β_{j} are not independent of each other since they need to sum to 1 . We resolve this by letting

$$
\alpha_{r}=1-\sum_{i=1}^{r-1} \alpha_{i}, \beta_{c}=1-\sum_{j=1}^{c-1} \beta_{j}
$$

- The score equations are

Discrete Models - Part 2

Example (2.1.2, (2/3))

- Observe that α_{i}, β_{j} are not independent of each other since they need to sum to 1 . We resolve this by letting

$$
\alpha_{r}=1-\sum_{i=1}^{r-1} \alpha_{i}, \beta_{c}=1-\sum_{j=1}^{c-1} \beta_{j}
$$

- The score equations are

$$
\begin{aligned}
& \frac{\partial \ell(\alpha, \beta)}{\partial \alpha_{i}}=\frac{u_{i+}}{\alpha_{i}}-\frac{u_{r+}}{1-\sum_{k=1}^{r-1} \alpha_{k}}=0, \forall i=1, \ldots, r-1 \\
& \frac{\partial \ell(\alpha, \beta)}{\partial \beta_{j}}=\frac{u_{+j}}{\beta_{j}}-\frac{u_{+c}}{1-\sum_{k=1}^{c-1} \beta_{k}}=0, \forall j=1, \ldots, c-1
\end{aligned}
$$

Discrete Models - Part 3

Example (2.1.2, (3/3))

- Clearing denominators gives systems of linear equations. For example, if $\alpha^{\prime}=\left(\alpha_{1}, \ldots, \alpha_{r-1}\right)$

$$
\left[\begin{array}{cccc}
u_{1+}+u_{r+} & u_{1+} & \cdots & u_{1+} \\
u_{2+} & u_{2+}+u_{r+} & \cdots & u_{2+} \\
\vdots & \vdots & \ddots & \vdots \\
u_{r-1+} & u_{r-1+} & \cdots & u_{r-1+}+u_{r+}
\end{array}\right] \alpha^{\prime}=\left[\begin{array}{c}
u_{1+} \\
u_{2+} \\
\vdots \\
u_{r-1+}
\end{array}\right]
$$

- Under the assumption that $u_{r+}>0$, the matrix is full-rank and there is a unique solution. One can check that the following is a solution (the MLE):
- "Having maximum likelihood degree one can be expressed equivalently by saying that the ML estimate is a rational function of the data.'

Discrete Models - Part 3

Example (2.1.2, (3/3))

- Clearing denominators gives systems of linear equations. For example, if $\alpha^{\prime}=\left(\alpha_{1}, \ldots, \alpha_{r-1}\right)$

$$
\left[\begin{array}{cccc}
u_{1+}+u_{r+} & u_{1+} & \cdots & u_{1+} \\
u_{2+} & u_{2+}+u_{r+} & \cdots & u_{2+} \\
\vdots & \vdots & \ddots & \vdots \\
u_{r-1+} & u_{r-1+} & \cdots & u_{r-1+}+u_{r+}
\end{array}\right] \alpha^{\prime}=\left[\begin{array}{c}
u_{1+} \\
u_{2+} \\
\vdots \\
u_{r-1+}
\end{array}\right]
$$

- Under the assumption that $u_{r+}>0$, the matrix is full-rank and there is a unique solution. One can check that the following is a solution (the MLE):

$$
\hat{\alpha}_{i}=\frac{u_{i+}}{u_{++}}, \hat{\beta}_{j}=\frac{u_{+j}}{u_{++}}
$$

- "Having maximum likelihood degree one can be expressed

Discrete Models - Part 3

Example (2.1.2, (3/3))

- Clearing denominators gives systems of linear equations. For example, if $\alpha^{\prime}=\left(\alpha_{1}, \ldots, \alpha_{r-1}\right)$

$$
\left[\begin{array}{cccc}
u_{1+}+u_{r+} & u_{1+} & \cdots & u_{1+} \\
u_{2+} & u_{2+}+u_{r+} & \cdots & u_{2+} \\
\vdots & \vdots & \ddots & \vdots \\
u_{r-1+} & u_{r-1+} & \cdots & u_{r-1+}+u_{r+}
\end{array}\right] \alpha^{\prime}=\left[\begin{array}{c}
u_{1+} \\
u_{2+} \\
\vdots \\
u_{r-1+}
\end{array}\right]
$$

- Under the assumption that $u_{r+}>0$, the matrix is full-rank and there is a unique solution. One can check that the following is a solution (the MLE):

$$
\hat{\alpha}_{i}=\frac{u_{i+}}{u_{++}}, \hat{\beta}_{j}=\frac{u_{+j}}{u_{++}}
$$

- "Having maximum likelihood degree one can be expressed equivalently by saying that the ML estimate is a rational function of the data."

Birch's Theorem - Part 1

Proposition (2.1.5, Birch's Theorem)

Let $A \in \mathbb{N}^{d \times k}$ and $u \in \mathbb{N}^{k}$. The ML-estimate of the frequencies \hat{u} in \mathcal{M}_{A} is the unique non-negative solution to $A \hat{u}=A u$ for $\hat{u} \in \mathcal{V}\left(I_{A}\right)$.

\square

- Let v be the non-negative estimated table of counts. The expression $u^{T} \log v$ is up to a constant equal to $\log \prod p_{i}^{u_{i}}$, if we let $p_{i}=v_{i} / n$. - We wish to maximize is $u^{T} \log v$, subject to $\dot{j}^{T} \log v=0$ for all $j=1$. and $\sum v_{i}=n$.

Birch's Theorem - Part 1

Proposition (2.1.5, Birch's Theorem)

Let $A \in \mathbb{N}^{d \times k}$ and $u \in \mathbb{N}^{k}$. The ML-estimate of the frequencies \hat{u} in \mathcal{M}_{A} is the unique non-negative solution to $A \hat{u}=A u$ for $\hat{u} \in \mathcal{V}\left(I_{A}\right)$.

- The MLE \hat{u} differs from the MLE \hat{p} by a constant: $\hat{u}=n \hat{p}$, where $n=\sum u_{i}$.
- Recall that I_{A} is the toric ideal $\left\langle p^{z}-p^{z}\right.$
and $\mathcal{M}_{A}:=\{p \in \Delta: \log p \in$ rowspan $A\}$. Recall that the Zariski closure

Proof (1/2).

- Let v be the non-negative estimated table of counts. The expression
$u^{T} \log v$ is up to a constant equal to $\log \prod p_{i}^{u_{i}}$, if we let $p_{i}=v_{i} / n$.
- We wish to maximize is $u^{T} \log v$, subject to $b_{j}^{T} \log v=0$ for all $j=1$,
and \sum $\sum v_{i}=n$

Birch's Theorem - Part 1

Proposition (2.1.5, Birch's Theorem)

Let $A \in \mathbb{N}^{d \times k}$ and $u \in \mathbb{N}^{k}$. The ML-estimate of the frequencies \hat{u} in \mathcal{M}_{A} is the unique non-negative solution to $A \hat{u}=A u$ for $\hat{u} \in \mathcal{V}\left(I_{A}\right)$.

- The MLE \hat{u} differs from the MLE \hat{p} by a constant: $\hat{u}=n \hat{p}$, where $n=\sum u_{i}$.
- Recall that I_{A} is the toric ideal $\left\langle p^{z}-p^{z^{\prime}}: z, z^{\prime} \in \mathbb{N}^{k}, z-z^{\prime} \in \operatorname{ker}_{\mathbb{Z}} A\right\rangle$, and $\mathcal{M}_{A}:=\{p \in \Delta: \log p \in \operatorname{rowspan} A\}$. Recall that the Zariski closure of \mathcal{M}_{A} is $\mathcal{V}\left(I_{A}\right)$.
- Let v be the non-negative estimated table of counts. The expression $u^{T} \log v$ is up to a constant equal to $\log \prod p_{i}^{u_{i}}$, if we let $p_{i}=v_{i} / n$. - We wish to maximize is $u^{T} \log v$, subject to $b_{j}^{T} \log v=0$ for all $j=1$, and $\sum v_{i}=n$.

Birch's Theorem - Part 1

Proposition (2.1.5, Birch's Theorem)

Let $A \in \mathbb{N}^{d \times k}$ and $u \in \mathbb{N}^{k}$. The ML-estimate of the frequencies \hat{u} in \mathcal{M}_{A} is the unique non-negative solution to $A \hat{u}=A u$ for $\hat{u} \in \mathcal{V}\left(I_{A}\right)$.

- The MLE \hat{u} differs from the MLE \hat{p} by a constant: $\hat{u}=n \hat{p}$, where $n=\sum u_{i}$.
- Recall that I_{A} is the toric ideal $\left\langle p^{z}-p^{z^{\prime}}: z, z^{\prime} \in \mathbb{N}^{k}, z-z^{\prime} \in \operatorname{ker}_{\mathbb{Z}} A\right\rangle$, and $\mathcal{M}_{A}:=\{p \in \Delta: \log p \in \operatorname{rowspan} A\}$. Recall that the Zariski closure of \mathcal{M}_{A} is $\mathcal{V}\left(I_{A}\right)$.

Proof ($1 / 2$).

- Let b_{1}, \ldots, b_{l} be a basis for ker $_{\mathbb{Z}} A$. Observe that $p \in \mathcal{M}_{A}$ if and only if $\log p=A^{T} x$ and $p \in \Delta$ if and only if $b_{j}^{T} \log p=0$ and $\sum p_{i}=1$. (For example, $\log p=A^{T} x$ implies $b_{j}^{T} \log p=\left(A b_{j}\right)^{T} x=0$.)

Birch's Theorem - Part 1

Proposition (2.1.5, Birch's Theorem)

Let $A \in \mathbb{N}^{d \times k}$ and $u \in \mathbb{N}^{k}$. The ML-estimate of the frequencies \hat{u} in \mathcal{M}_{A} is the unique non-negative solution to $A \hat{u}=A u$ for $\hat{u} \in \mathcal{V}\left(I_{A}\right)$.

- The MLE \hat{u} differs from the MLE \hat{p} by a constant: $\hat{u}=n \hat{p}$, where $n=\sum u_{i}$.
- Recall that I_{A} is the toric ideal $\left\langle p^{z}-p^{z^{\prime}}: z, z^{\prime} \in \mathbb{N}^{k}, z-z^{\prime} \in \operatorname{ker}_{\mathbb{Z}} A\right\rangle$, and $\mathcal{M}_{A}:=\{p \in \Delta: \log p \in \operatorname{rowspan} A\}$. Recall that the Zariski closure of \mathcal{M}_{A} is $\mathcal{V}\left(I_{A}\right)$.

Proof ($1 / 2$).

- Let b_{1}, \ldots, b_{l} be a basis for ker $_{\mathbb{Z}} A$. Observe that $p \in \mathcal{M}_{A}$ if and only if $\log p=A^{T} x$ and $p \in \Delta$ if and only if $b_{j}^{T} \log p=0$ and $\sum p_{i}=1$. (For example, $\log p=A^{T} x$ implies $b_{j}^{T} \log p=\left(A b_{j}\right)^{T} x=0$.)
- Let v be the non-negative estimated table of counts. The expression $u^{T} \log v$ is up to a constant equal to $\log \prod p_{i}^{u_{i}}$, if we let $p_{i}=v_{i} / n$.

Birch's Theorem - Part 1

Proposition (2.1.5, Birch's Theorem)

Let $A \in \mathbb{N}^{d \times k}$ and $u \in \mathbb{N}^{k}$. The ML-estimate of the frequencies \hat{u} in \mathcal{M}_{A} is the unique non-negative solution to $A \hat{u}=A u$ for $\hat{u} \in \mathcal{V}\left(I_{A}\right)$.

- The MLE \hat{u} differs from the MLE \hat{p} by a constant: $\hat{u}=n \hat{p}$, where $n=\sum u_{i}$.
- Recall that I_{A} is the toric ideal $\left\langle p^{z}-p^{z^{\prime}}: z, z^{\prime} \in \mathbb{N}^{k}, z-z^{\prime} \in \operatorname{ker}_{\mathbb{Z}} A\right\rangle$, and $\mathcal{M}_{A}:=\{p \in \Delta: \log p \in$ rowspan $A\}$. Recall that the Zariski closure of \mathcal{M}_{A} is $\mathcal{V}\left(I_{A}\right)$.

Proof ($1 / 2$).

- Let b_{1}, \ldots, b_{l} be a basis for ker $_{\mathbb{Z}} A$. Observe that $p \in \mathcal{M}_{A}$ if and only if $\log p=A^{T} x$ and $p \in \Delta$ if and only if $b_{j}^{T} \log p=0$ and $\sum p_{i}=1$. (For example, $\log p=A^{T} x$ implies $b_{j}^{T} \log p=\left(A b_{j}\right)^{T} x=0$.)
- Let v be the non-negative estimated table of counts. The expression $u^{T} \log v$ is up to a constant equal to $\log \prod p_{i}^{u_{i}}$, if we let $p_{i}=v_{i} / n$.
- We wish to maximize is $u^{T} \log v$, subject to $b_{j}^{T} \log v=0$ for all $j=1, \ldots, l$ and $\sum v_{i}=n$.

Birch's Theorem - Part 2

Proof (2/2).

- The first constraint, $b_{j}^{T} \log v=0$, is equivalent to $v \in \mathcal{V}\left(I_{A}\right)$. This is essentially because $v^{z}=v^{z^{\prime}}$ if and only if $\left(z-z^{\prime}\right)^{T} \log v=0$ (let $z=b_{j}^{+}$and $z^{\prime}=b_{j}^{-}$.)
- To solve the optimization problem we use the method of Lagrange multipliers. Write $\mathcal{L}(v, \lambda, \gamma):=u^{T} \log v-\sum \lambda_{j} b_{j}^{T} \log v-\gamma\left(n-\sum v_{i}\right)$. - Putting the gradient of \mathcal{L} to zero yields that the critical points are the solutions to the $k+l+1$ equations

- The first conditions after clearing denominators can be written $u+\lambda B=-\gamma v$. We get $A u=(-\gamma) A v$. Since the column sum of A are all equal, we get $\sum(A u)_{i}=a \sum u_{i}=-\gamma a \sum v_{i}$, implying $\gamma=-1$ and $A u=A v$. - Uniqueness is due to the strict convexity of the likelihood function.

Birch's Theorem - Part 2

Proof (2/2).

- The first constraint, $b_{j}^{T} \log v=0$, is equivalent to $v \in \mathcal{V}\left(I_{A}\right)$. This is essentially because $v^{z}=v^{z^{\prime}}$ if and only if $\left(z-z^{\prime}\right)^{T} \log v=0$ (let $z=b_{j}^{+}$and $z^{\prime}=b_{j}^{-}$.)
- To solve the optimization problem we use the method of Lagrange multipliers. Write $\mathcal{L}(v, \lambda, \gamma):=u^{T} \log v-\sum \lambda_{j} b_{j}^{T} \log v-\gamma\left(n-\sum v_{i}\right)$.
- Putting the gradient of \mathcal{L} to zero yields that the critical points are the solutions to the $k+l+1$ equations
- The first conditions after clearing denominators can be written $u+\lambda B=-\gamma v$. We get $A u=(-\gamma) A v$. Since the column sum of A are all equal, we get \sum
- Uniqueness is due to the strict convexity of the likelihood function.

Birch's Theorem - Part 2

Proof (2/2).

- The first constraint, $b_{j}^{T} \log v=0$, is equivalent to $v \in \mathcal{V}\left(I_{A}\right)$. This is essentially because $v^{z}=v^{z^{\prime}}$ if and only if $\left(z-z^{\prime}\right)^{T} \log v=0$ (let $z=b_{j}^{+}$and $z^{\prime}=b_{j}^{-}$.)
- To solve the optimization problem we use the method of Lagrange multipliers. Write $\mathcal{L}(v, \lambda, \gamma):=u^{T} \log v-\sum \lambda_{j} b_{j}^{T} \log v-\gamma\left(n-\sum v_{i}\right)$.
- Putting the gradient of \mathcal{L} to zero yields that the critical points are the solutions to the $k+l+1$ equations

$$
\frac{u_{i}}{v_{i}}+\sum \lambda_{j} \frac{b_{i j}}{v_{i}}+\gamma=0, b_{j}^{T} \log v=0, \sum v_{i}=n .
$$

- The first conditions after clearing denominators can be written $u+\lambda B=-\gamma v$. We get $A u=(-\gamma) A v$. Since the column sum of A are all
- Uniqueness is due to the stirict convexity of the likelithood function.

Birch's Theorem - Part 2

Proof (2/2).

- The first constraint, $b_{j}^{T} \log v=0$, is equivalent to $v \in \mathcal{V}\left(I_{A}\right)$. This is essentially because $v^{z}=v^{z^{\prime}}$ if and only if $\left(z-z^{\prime}\right)^{T} \log v=0$ (let $z=b_{j}^{+}$and $z^{\prime}=b_{j}^{-}$.)
- To solve the optimization problem we use the method of Lagrange multipliers. Write $\mathcal{L}(v, \lambda, \gamma):=u^{T} \log v-\sum \lambda_{j} b_{j}^{T} \log v-\gamma\left(n-\sum v_{i}\right)$.
- Putting the gradient of \mathcal{L} to zero yields that the critical points are the solutions to the $k+l+1$ equations

$$
\frac{u_{i}}{v_{i}}+\sum \lambda_{j} \frac{b_{i j}}{v_{i}}+\gamma=0, b_{j}^{T} \log v=0, \sum v_{i}=n .
$$

- The first conditions after clearing denominators can be written $u+\lambda B=-\gamma v$. We get $A u=(-\gamma) A v$. Since the column sum of A are all equal, we get $\sum(A u)_{i}=a \sum u_{i}=-\gamma a \sum v_{i}$, implying $\gamma=-1$ and $A u=A v$.

Birch's Theorem - Part 2

Proof (2/2).

- The first constraint, $b_{j}^{T} \log v=0$, is equivalent to $v \in \mathcal{V}\left(I_{A}\right)$. This is essentially because $v^{z}=v^{z^{\prime}}$ if and only if $\left(z-z^{\prime}\right)^{T} \log v=0$ (let $z=b_{j}^{+}$and $z^{\prime}=b_{j}^{-}$.)
- To solve the optimization problem we use the method of Lagrange multipliers. Write $\mathcal{L}(v, \lambda, \gamma):=u^{T} \log v-\sum \lambda_{j} b_{j}^{T} \log v-\gamma\left(n-\sum v_{i}\right)$.
- Putting the gradient of \mathcal{L} to zero yields that the critical points are the solutions to the $k+l+1$ equations

$$
\frac{u_{i}}{v_{i}}+\sum \lambda_{j} \frac{b_{i j}}{v_{i}}+\gamma=0, b_{j}^{T} \log v=0, \sum v_{i}=n .
$$

- The first conditions after clearing denominators can be written $u+\lambda B=-\gamma v$. We get $A u=(-\gamma) A v$. Since the column sum of A are all equal, we get $\sum(A u)_{i}=a \sum u_{i}=-\gamma a \sum v_{i}$, implying $\gamma=-1$ and $A u=A v$. - Uniqueness is due to the strict convexity of the likelihood function.

Junction Trees - Part 1

- Let Γ be a decomposable simplicial complex. A junction tree is a tree whose vertices are the facets of Γ, whose edges are labeled by separators in Γ, and such that each edge splits the set of facets of Γ into two subcomplexes Γ_{1}, Γ_{2} in $\left(\Gamma_{1}, S, \Gamma_{2}\right)$.
- If $\Gamma=[123][134]$, then [123] - [134] represents the unique junction
tree. For $\Gamma=[12][13][14]$, there are a few different junction trees, for example [12] - [13] - [14]. A junction tree can be obtained by breaking down a decomposable complex down to its constituent simplices.

Junction Trees - Part 1

- Let Γ be a decomposable simplicial complex. A junction tree is a tree whose vertices are the facets of Γ, whose edges are labeled by separators in Γ, and such that each edge splits the set of facets of Γ into two subcomplexes Γ_{1}, Γ_{2} in $\left(\Gamma_{1}, S, \Gamma_{2}\right)$.
- If $\Gamma=[123][134]$, then [123] - [134] represents the unique junction tree. For $\Gamma=[12][13][14]$, there are a few different junction trees, for example $[12]-[13]-[14]$. A junction tree can be obtained by breaking down a decomposable complex down to its constituent simplices.

Junction Trees - Part 2

- A clique in a graph G is a subgraph that is complete, meaning each vertex is connected to all other vertices by an edge in this subgraph.

Proposition (2.1.7)

Let Γ be a decomposable simplicial complex. Let u be data such that all marginals along cliques are positive. Let $J(\Gamma)$ be a junction tree for Γ. Then the maximum likelihood estimates of the table of frequencies is given by

In particular, decomposable models have ML degree one.

- The condition on the cliques makes sure that the denominator is non-zero.
- Recall the underlying hierarchical log-linear model

Junction Trees - Part 2

- A clique in a graph G is a subgraph that is complete, meaning each vertex is connected to all other vertices by an edge in this subgraph.

Proposition (2.1.7)

Let Γ be a decomposable simplicial complex. Let u be data such that all marginals along cliques are positive. Let $J(\Gamma)$ be a junction tree for Γ. Then the maximum likelihood estimates of the table of frequencies is given by

$$
\hat{u}_{i}=\frac{\prod_{F \in V(J(\Gamma))}\left(\left.u\right|_{F}\right)_{i_{F}}}{\prod_{S \in E(J(\Gamma))}\left(\left.u\right|_{S}\right)_{i_{S}}}
$$

In particular, decomposable models have ML degree one.

- The condition on the cliques makes sure that the denominator is
non-zero.
- Recall the underlying hierarchical log-linear model

Junction Trees - Part 2

- A clique in a graph G is a subgraph that is complete, meaning each vertex is connected to all other vertices by an edge in this subgraph.

Proposition (2.1.7)

Let Γ be a decomposable simplicial complex. Let u be data such that all marginals along cliques are positive. Let $J(\Gamma)$ be a junction tree for Γ. Then the maximum likelihood estimates of the table of frequencies is given by

$$
\hat{u}_{i}=\frac{\prod_{F \in V(J(\Gamma))}\left(\left.u\right|_{F}\right)_{i_{F}}}{\prod_{S \in E(J(\Gamma))}\left(\left.u\right|_{S}\right)_{i_{S}}}
$$

In particular, decomposable models have ML degree one.

- The condition on the cliques makes sure that the denominator is non-zero.
- Recall the underlying hierarchical log-linear model

Junction Trees - Part 2

- A clique in a graph G is a subgraph that is complete, meaning each vertex is connected to all other vertices by an edge in this subgraph.

Proposition (2.1.7)

Let Γ be a decomposable simplicial complex. Let u be data such that all marginals along cliques are positive. Let $J(\Gamma)$ be a junction tree for Γ. Then the maximum likelihood estimates of the table of frequencies is given by

$$
\hat{u}_{i}=\frac{\prod_{F \in V(J(\Gamma))}\left(\left.u\right|_{F}\right)_{i_{F}}}{\prod_{S \in E(J(\Gamma))}\left(\left.u\right|_{S}\right)_{i_{S}}}
$$

In particular, decomposable models have ML degree one.

- The condition on the cliques makes sure that the denominator is non-zero.
- Recall the underlying hierarchical log-linear model

$$
\mathcal{M}_{\Gamma}=\left\{p \in \Delta: p_{i}=\frac{1}{Z(\theta)} \prod_{F} \theta_{i_{F}}^{(F)}\right\}
$$

Iterative Proportional Scaling

- There is no closed-form formula for maximum likelihood estimates for non-decomposable log-linear models. However, the log-likelihood function is convex for these models and therefore computer algorithms are appropriate for computing ML estimates.
- A popular choice for an algorithm is the Iterative Proportional

Scaling Algorithm (Lecture Notes on Algebraic Statistics, page 43.) It inputs $A \in \mathbb{N}^{d \times k}$, a table of counts $u \in \mathbb{N}^{k}$ and a tolerance $\epsilon>0$, and outputs expected counts \hat{u}.

Iterative Proportional Scaling

- There is no closed-form formula for maximum likelihood estimates for non-decomposable log-linear models. However, the log-likelihood function is convex for these models and therefore computer algorithms are appropriate for computing ML estimates.
- A popular choice for an algorithm is the Iterative Proportional Scaling Algorithm (Lecture Notes on Algebraic Statistics, page 43.) It inputs $A \in \mathbb{N}^{d \times k}$, a table of counts $u \in \mathbb{N}^{k}$ and a tolerance $\epsilon>0$, and outputs expected counts \hat{u}.

Gaussian Models

- A Gaussian model is described by $\mathcal{P}_{\Theta}=\{\mathcal{N}(\mu, \Sigma): \theta=(\mu, \Sigma) \in \Theta\}$, where $\Theta \subseteq \mathbb{R}^{m} \times \mathrm{PD}_{m}$ (PD_{m} is the cone of symmetric positive definite matrices.) We write $X \sim \mathcal{N}(\mu, \Sigma)$ for an m-dimensional random vector X if it has the density function

$$
f_{\mu, \Sigma}(x)=\frac{1}{(2 \pi)^{m / 2}(\operatorname{det} \Sigma)^{1 / 2}} e^{-\frac{1}{2}(x-\mu)^{T} \Sigma^{-1}(x-\mu)},
$$

where $x, \mu \in \mathbb{R}^{m}$ and Σ is a symmetric positive definite matrix. We call μ the mean and Σ is the covariance matrix.

- The log-likelihood function is up to a constant equal to

It is a simple exercise to show that $v^{T} A v=\operatorname{trace}\left(A v^{T} v\right)$, implying

Gaussian Models

- A Gaussian model is described by $\mathcal{P}_{\Theta}=\{\mathcal{N}(\mu, \Sigma): \theta=(\mu, \Sigma) \in \Theta\}$, where $\Theta \subseteq \mathbb{R}^{m} \times \mathrm{PD}_{m}\left(\mathrm{PD}_{m}\right.$ is the cone of symmetric positive definite matrices.) We write $X \sim \mathcal{N}(\mu, \Sigma)$ for an m-dimensional random vector X if it has the density function

$$
f_{\mu, \Sigma}(x)=\frac{1}{(2 \pi)^{m / 2}(\operatorname{det} \Sigma)^{1 / 2}} e^{-\frac{1}{2}(x-\mu)^{T} \Sigma^{-1}(x-\mu)},
$$

where $x, \mu \in \mathbb{R}^{m}$ and Σ is a symmetric positive definite matrix. We call μ the mean and Σ is the covariance matrix.

- The log-likelihood function is up to a constant equal to

$$
\ell(\mu, \Sigma)=-\frac{n}{2} \log \operatorname{det} \Sigma-\frac{1}{2} \sum\left(X^{(i)}-\mu\right)^{T} \Sigma^{-1}\left(X^{(i)}-\mu\right)
$$

It is a simple exercise to show that $v^{T} A v=\operatorname{trace}\left(A v^{T} v\right)$, implying

$$
\ell(\mu, \Sigma)=-\frac{n}{2} \log \operatorname{det} \Sigma-\frac{1}{2} \operatorname{trace}\left(\Sigma^{-1} \sum\left(X^{(i)}-\mu\right)\left(X^{(i)}-\mu\right)^{T}\right)
$$

The Saturated Gaussian Model

- The saturated Gaussian model is described by $\Theta=\mathbb{R}^{m} \times \mathrm{PD}_{m}$. For this model, we have the ML-estimates

$$
\hat{\mu}=\bar{X}=\frac{1}{n} \sum X^{(i)}, \hat{\Sigma}=S=\frac{1}{n} \sum\left(X^{(i)}-\mu\right)\left(X^{(i)}-\mu\right)^{T} .
$$

We call \bar{X} the sample mean and S the sample covariance.

- Let us deduce the formula for $\hat{\mu}$. Observe that

Using the formula
we get the score equations

The Saturated Gaussian Model

- The saturated Gaussian model is described by $\Theta=\mathbb{R}^{m} \times \mathrm{PD}_{m}$. For this model, we have the ML-estimates

$$
\hat{\mu}=\bar{X}=\frac{1}{n} \sum X^{(i)}, \hat{\Sigma}=S=\frac{1}{n} \sum\left(X^{(i)}-\mu\right)\left(X^{(i)}-\mu\right)^{T} .
$$

We call \bar{X} the sample mean and S the sample covariance.

- Let us deduce the formula for $\hat{\mu}$. Observe that

$$
\sum\left(X^{(i)}-\mu\right)^{T} \Sigma^{-1}\left(X^{(i)}-\mu\right)=\sum X^{(i) T} \Sigma^{-1} X^{(i)}-2 \mu^{T} \Sigma^{-1} X^{(i)}+\mu^{T} \Sigma^{-1} \mu
$$

Using the formula

$$
x^{T} A y=\sum_{i j} A_{i j} x_{i} y_{j},
$$

we get the score equations
$0=\frac{\partial \ell(\mu, \Sigma)}{\partial \mu_{k}}=-\frac{1}{2} \sum_{i}\left(2 \sum_{j} \Sigma_{k j}^{-1} \mu_{j}-2\left(\Sigma^{-1} X^{(i)}\right)_{k}\right) \Rightarrow \sum_{i}\left(\Sigma^{-1} \mu-\Sigma^{-1} X^{i}\right)=0$

Special Cases - Part 1

- Using S, we can rewrite our log-likelihood function

$$
\ell(\mu, \Sigma)=-\frac{n}{2} \log \operatorname{det} \Sigma-\frac{n}{2} \operatorname{trace}\left(S \Sigma^{-1}\right)-\frac{n}{2}(\bar{X}-\mu)^{T}(\bar{X}-\mu) .
$$

Proposition (2.1.10)

Suppose that $\left.\Theta=\Theta_{1} \times\{]_{m}\right\}$ is the parameter space of a Gaussian model. The MLE $\hat{\mu}$ of the mean is the point in $\Theta_{1} \subseteq \mathbb{R}^{m}$ that is the closest to \bar{X} in the L^{2}-norm.

Special Cases - Part 1

- Using S, we can rewrite our log-likelihood function

$$
\ell(\mu, \Sigma)=-\frac{n}{2} \log \operatorname{det} \Sigma-\frac{n}{2} \operatorname{trace}\left(S \Sigma^{-1}\right)-\frac{n}{2}(\bar{X}-\mu)^{T}(\bar{X}-\mu) .
$$

Proposition (2.1.10)

Suppose that $\Theta=\Theta_{1} \times\left\{\mathrm{I}_{m}\right\}$ is the parameter space of a Gaussian model. The MLE $\hat{\mu}$ of the mean is the point in $\Theta_{1} \subseteq \mathbb{R}^{m}$ that is the closest to \bar{X} in the L^{2}-norm.

Special Cases - Part 1

- Using S, we can rewrite our log-likelihood function

$$
\ell(\mu, \Sigma)=-\frac{n}{2} \log \operatorname{det} \Sigma-\frac{n}{2} \operatorname{trace}\left(S \Sigma^{-1}\right)-\frac{n}{2}(\bar{X}-\mu)^{T}(\bar{X}-\mu) .
$$

Proposition (2.1.10)

Suppose that $\Theta=\Theta_{1} \times\left\{\mathrm{I}_{m}\right\}$ is the parameter space of a Gaussian model. The MLE $\hat{\mu}$ of the mean is the point in $\Theta_{1} \subseteq \mathbb{R}^{m}$ that is the closest to \bar{X} in the L^{2}-norm.

Proof.

- When Σ is the identity matrix I_{m}, the log-likelihood function reduces to

$$
\ell\left(\mu, \mathrm{I}_{m}\right)=-\frac{n}{2} \operatorname{trace} S-\frac{n}{2}(\bar{X}-\mu)^{T}(\bar{X}-\mu)=-\frac{n}{2} \operatorname{trace} S-\frac{n}{2}\|\bar{X}-\mu\|_{2}^{2} .
$$

- Therefore, maximizing ℓ over Θ_{1} is equivalent to minimizing $\|\bar{X}-\mu\|_{2}$ over Θ_{1}.

Special Cases - Part 1

- Using S, we can rewrite our log-likelihood function

$$
\ell(\mu, \Sigma)=-\frac{n}{2} \log \operatorname{det} \Sigma-\frac{n}{2} \operatorname{trace}\left(S \Sigma^{-1}\right)-\frac{n}{2}(\bar{X}-\mu)^{T}(\bar{X}-\mu)
$$

Proposition (2.1.10)

Suppose that $\Theta=\Theta_{1} \times\left\{I_{m}\right\}$ is the parameter space of a Gaussian model. The MLE $\hat{\mu}$ of the mean is the point in $\Theta_{1} \subseteq \mathbb{R}^{m}$ that is the closest to \bar{X} in the L^{2}-norm.

Proof.

- When Σ is the identity matrix I_{m}, the log-likelihood function reduces to

$$
\ell\left(\mu, \mathrm{I}_{m}\right)=-\frac{n}{2} \operatorname{trace} S-\frac{n}{2}(\bar{X}-\mu)^{T}(\bar{X}-\mu)=-\frac{n}{2} \operatorname{trace} S-\frac{n}{2}\|\bar{X}-\mu\|_{2}^{2}
$$

- Therefore, maximizing ℓ over Θ_{1} is equivalent to minimizing $\|\bar{X}-\mu\|_{2}$ over Θ_{1}.

Special Cases - Part 2

Proposition (2.1.12)

Suppose that $\Theta=\mathbb{R}^{m} \times \Theta_{2}$. Then $\hat{\mu}=\bar{X}$ and $\hat{\Sigma}$ is the maximizer of

$$
\ell(\Sigma)=-\frac{n}{2} \log \operatorname{det} \Sigma-\frac{n}{2} \operatorname{trace} S \Sigma^{-1}
$$

in the set Θ_{2}.

Proof.
 - The inverse of Σ is also positive definite (recall that a matrix is positive definite if and only if all its eigenvalues are positive.) Therefore $(\bar{X}-\mu)^{T} \Sigma^{-1}(\bar{X}-\mu) \geq 0$ and equality holds if and only if $\mu=\bar{X}$.

Special Cases - Part 2

Proposition (2.1.12)

Suppose that $\Theta=\mathbb{R}^{m} \times \Theta_{2}$. Then $\hat{\mu}=\bar{X}$ and $\hat{\Sigma}$ is the maximizer of

$$
\ell(\Sigma)=-\frac{n}{2} \log \operatorname{det} \Sigma-\frac{n}{2} \operatorname{trace} S \Sigma^{-1}
$$

in the set Θ_{2}.

Proof.

- The inverse of Σ is also positive definite (recall that a matrix is positive definite if and only if all its eigenvalues are positive.) Therefore $(\bar{X}-\mu)^{T} \Sigma^{-1}(\bar{X}-\mu) \geq 0$ and equality holds if and only if $\mu=\bar{X}$.

Special Cases - Part 3

Theorem (2.1.14)

Let $G=(V, E)$ be an undirected graph and $\Theta=\mathbb{R}^{m} \times \Theta_{2}$, where

$$
\Theta_{2}=\left\{\Sigma \in \mathrm{PD}_{m}:\left(\Sigma^{-1}\right)_{i j}=0 \text { if } i j \notin E\right\} .
$$

The ML-estimate of Σ given a positive definite sample covariance matrix S is, the unique positive definite matrix $\hat{\Sigma}$ such that $\hat{\Sigma}_{i j}=S_{i j}, i j \in E$ and $\left(\hat{\Sigma}^{-1}\right)_{i j}=0$ for $i j \notin E$.

- Models of this form as by definition called Gaussian graphical models.
- The inverse $K=\Sigma^{-1}$ of the covariance matrix is known as the concentration matrix and in some cases it is more convienient to parametrize the model via concentration matrices.
- Observing $\log \operatorname{det} K=-\log \operatorname{det} \Sigma$ allows us to instead consider the log-likelihood function (up to scaling)

Special Cases - Part 3

Theorem (2.1.14)
Let $G=(V, E)$ be an undirected graph and $\Theta=\mathbb{R}^{m} \times \Theta_{2}$, where

$$
\Theta_{2}=\left\{\Sigma \in \mathrm{PD}_{m}:\left(\Sigma^{-1}\right)_{i j}=0 \text { if } i j \notin E\right\} .
$$

The ML-estimate of Σ given a positive definite sample covariance matrix S is, the unique positive definite matrix $\hat{\Sigma}$ such that $\hat{\Sigma}_{i j}=S_{i j}, i j \in E$ and $\left(\hat{\Sigma}^{-1}\right)_{i j}=0$ for $i j \notin E$.

- Models of this form as by definition called Gaussian graphical models.
concentration matrix and in some cases it is more convienient to
parametrize the model via concentration matrices.
- Observing log det $K=-\log$ det Σ allows us to instead consider the
log-likelihood function (up to scaling)

Special Cases - Part 3

Theorem (2.1.14)
Let $G=(V, E)$ be an undirected graph and $\Theta=\mathbb{R}^{m} \times \Theta_{2}$, where

$$
\Theta_{2}=\left\{\Sigma \in \mathrm{PD}_{m}:\left(\Sigma^{-1}\right)_{i j}=0 \text { if } i j \notin E\right\} .
$$

The ML-estimate of Σ given a positive definite sample covariance matrix S is, the unique positive definite matrix $\hat{\Sigma}$ such that $\hat{\Sigma}_{i j}=S_{i j}, i j \in E$ and $\left(\hat{\Sigma}^{-1}\right)_{i j}=0$ for $i j \notin E$.

- Models of this form as by definition called Gaussian graphical models.
- The inverse $K=\Sigma^{-1}$ of the covariance matrix is known as the concentration matrix and in some cases it is more convienient to parametrize the model via concentration matrices.
log-likelihood function (up to scaling)

Special Cases - Part 3

Theorem (2.1.14)

Let $G=(V, E)$ be an undirected graph and $\Theta=\mathbb{R}^{m} \times \Theta_{2}$, where

$$
\Theta_{2}=\left\{\Sigma \in \mathrm{PD}_{m}:\left(\Sigma^{-1}\right)_{i j}=0 \text { if } i j \notin E\right\} .
$$

The ML-estimate of Σ given a positive definite sample covariance matrix S is, the unique positive definite matrix $\hat{\Sigma}$ such that $\hat{\Sigma}_{i j}=S_{i j}, i j \in E$ and $\left(\hat{\Sigma}^{-1}\right)_{i j}=0$ for $i j \notin E$.

- Models of this form as by definition called Gaussian graphical models.
- The inverse $K=\Sigma^{-1}$ of the covariance matrix is known as the concentration matrix and in some cases it is more convienient to parametrize the model via concentration matrices.
- Observing $\log \operatorname{det} K=-\log \operatorname{det} \Sigma$ allows us to instead consider the log-likelihood function (up to scaling)

$$
K \mapsto \log \operatorname{det} K-\operatorname{trace}(S K)
$$

Linear Spaces of Symmetric Matrices - Part 1

- An LSSM is a linear space (in particular a variety) $\mathcal{L} \subseteq \mathbb{S}^{n}$, where \mathbb{S}^{n} is the set of n-dimensional symmetric matrices. We assume it contains at least one invertible matrix. Let • denote the trace operator on matrices, $A \bullet B:=\operatorname{trace}(A B)$.
- The log-likelihood function for the concentration matrix is

- If we write $\operatorname{mld}(\mathcal{L})$ for the ML-degree, then for a generic S

Linear Spaces of Symmetric Matrices - Part 1

- An LSSM is a linear space (in particular a variety) $\mathcal{L} \subseteq \mathbb{S}^{n}$, where \mathbb{S}^{n} is the set of n-dimensional symmetric matrices. We assume it contains at least one invertible matrix. Let • denote the trace operator on matrices, $A \bullet B:=\operatorname{trace}(A B)$.
- The log-likelihood function for the concentration matrix is

$$
\ell(K)=\log \operatorname{det} K-\operatorname{trace} S K .
$$

Let A_{1}, \ldots, A_{m} be matrices that span \mathcal{L}, so that $\mathcal{L}=\left\{\sum \lambda_{i} A_{i}: \lambda_{i} \in \mathbb{C}^{n}\right\}$. The score equations are

$$
(\ell(M))_{A_{i}}^{\prime}=\nabla \ell(M) \bullet A_{i}=\left(M^{-1}-S\right) \bullet A_{i}=0 .
$$

\square

Linear Spaces of Symmetric Matrices - Part 1

- An LSSM is a linear space (in particular a variety) $\mathcal{L} \subseteq \mathbb{S}^{n}$, where \mathbb{S}^{n} is the set of n-dimensional symmetric matrices. We assume it contains at least one invertible matrix. Let \bullet denote the trace operator on matrices, $A \bullet B:=\operatorname{trace}(A B)$.
- The log-likelihood function for the concentration matrix is

$$
\ell(K)=\log \operatorname{det} K-\operatorname{trace} S K .
$$

Let A_{1}, \ldots, A_{m} be matrices that span \mathcal{L}, so that $\mathcal{L}=\left\{\sum \lambda_{i} A_{i}: \lambda_{i} \in \mathbb{C}^{n}\right\}$. The score equations are

$$
(\ell(M))_{A_{i}}^{\prime}=\nabla \ell(M) \bullet A_{i}=\left(M^{-1}-S\right) \bullet A_{i}=0 .
$$

- We define $\mathcal{L}^{-1}:=\overline{\left\{M^{-1}: M \in \mathcal{L} \cap \mathrm{GL}\left(\mathbb{S}^{n}\right)\right\}^{\mathrm{Zar}} \text { and }}$ $\mathcal{L}^{\perp}:=\left\{M \in \mathbb{S}^{n}: \operatorname{trace}(M \mathcal{L})=0\right\}$.

Linear Spaces of Symmetric Matrices - Part 1

- An LSSM is a linear space (in particular a variety) $\mathcal{L} \subseteq \mathbb{S}^{n}$, where \mathbb{S}^{n} is the set of n-dimensional symmetric matrices. We assume it contains at least one invertible matrix. Let • denote the trace operator on matrices, $A \bullet B:=\operatorname{trace}(A B)$.
- The log-likelihood function for the concentration matrix is

$$
\ell(K)=\log \operatorname{det} K-\operatorname{trace} S K .
$$

Let A_{1}, \ldots, A_{m} be matrices that span \mathcal{L}, so that $\mathcal{L}=\left\{\sum \lambda_{i} A_{i}: \lambda_{i} \in \mathbb{C}^{n}\right\}$. The score equations are

$$
(\ell(M))_{A_{i}}^{\prime}=\nabla \ell(M) \bullet A_{i}=\left(M^{-1}-S\right) \bullet A_{i}=0 .
$$

- We define $\mathcal{L}^{-1}:=\overline{\left\{M^{-1}: M \in \mathcal{L} \cap \mathrm{GL}\left(\mathbb{S}^{n}\right)\right\}^{\mathrm{Zar}} \text { and }}$ $\mathcal{L}^{\perp}:=\left\{M \in \mathbb{S}^{n}: \operatorname{trace}(M \mathcal{L})=0\right\}$.
- If we write $\operatorname{mld}(\mathcal{L})$ for the ML-degree, then for a generic S

$$
\operatorname{mld}(\mathcal{L})=\#\left(\left(\mathcal{L}^{-1}-S\right) \cap \mathcal{L}^{\perp}\right)
$$

Linear Spaces of Symmetric Matrices - Part 2

- Observe that the set $\left(\mathcal{L}^{-1}-S\right) \cap \mathcal{L}^{\perp}$ is a variety. We can use software to calculate the cardinality. Generically, there is no non-invertible matrix in this intersection.
- We simulate generic points by taking random rational data (and do this a few times to make sure that we did not get a non-generic point.)
- The degree of a variety is the degree of its defining radical ideal. The definition is a bit technical, but can be calculated with software.

Linear Spaces of Symmetric Matrices - Part 2

- Observe that the set $\left(\mathcal{L}^{-1}-S\right) \cap \mathcal{L}^{\perp}$ is a variety. We can use software to calculate the cardinality. Generically, there is no non-invertible matrix in this intersection.
- We simulate generic points by taking random rational data (and do this a few times to make sure that we did not get a non-generic point.)
- The degree of a variety is the degree of its defining radical ideal. The definition is a bit technical, but can be calculated with software.

Linear Spaces of Symmetric Matrices - Part 2

- Observe that the set $\left(\mathcal{L}^{-1}-S\right) \cap \mathcal{L}^{\perp}$ is a variety. We can use software to calculate the cardinality. Generically, there is no non-invertible matrix in this intersection.
- We simulate generic points by taking random rational data (and do this a few times to make sure that we did not get a non-generic point.)
- The degree of a variety is the degree of its defining radical ideal. The definition is a bit technical, but can be calculated with software.

Linear Spaces of Symmetric Matrices - Part 2

- Observe that the $\operatorname{set}\left(\mathcal{L}^{-1}-S\right) \cap \mathcal{L}^{\perp}$ is a variety. We can use software to calculate the cardinality. Generically, there is no non-invertible matrix in this intersection.
- We simulate generic points by taking random rational data (and do this a few times to make sure that we did not get a non-generic point.)
- The degree of a variety is the degree of its defining radical ideal. The definition is a bit technical, but can be calculated with software.

Proposition (Linear spaces of symmetric matrices with non-maximal maximum likelihood degree, Theorem 1.1)

The ML-degree of a linear space $\mathcal{L} \subset \mathbb{S}^{n}$ is at most the degree of the variety $\mathbb{P} \mathcal{L}^{-1}$. This is an equality if and only if the intersection $\mathbb{P} \mathcal{L}^{-1} \cap \mathbb{P} \mathcal{L}^{\perp}$ is empty.

Outro

- Thank you for listening!

$$
\begin{aligned}
& \text { Combinatrial and Algebvaiz Statistics } \\
& \text { Presentation notes: Eqamples of punctos. }
\end{aligned}
$$

$$
\begin{aligned}
& \begin{array}{ll}
\text { three } \\
\text { chores } & \Gamma=[\{4][24][34] \\
0 & x \Gamma)=[34]-[14]-\{12\}
\end{array} \\
& \text { Praposition 2.1.7 example: } \\
& { }^{2}{ }^{3} \quad \Gamma=[12]\{23][34] \text {. } \\
& J(12)=[12]-[23]-[34]
\end{aligned}
$$

$$
\begin{aligned}
& =\frac{u_{i_{1} i_{2}+}+u_{+i_{2} i_{3}}+u_{+i_{3} \bar{u}_{4}}}{u_{4 i_{2}++} u_{++i_{3}+}}
\end{aligned}
$$

