Section 0 – Introduction  $\odot$ 

Section 1 – MLE and Algebra

Section 2 – Discrete Models 00000000 Section 3 – Gaussian Models 0000000

▲□▶▲□▶▲□▶▲□▶ □ のQ@

Section 4 – Outro

# Likelihood Inference for Discrete and Gaussian Models *Lectures on Algebraic Statistics* §2.1 by Drton, Sturmfels & Sullivant

## Speaker: Felix Rydell

KTH Stockholm

March 8, 2021

| Section 0 - Introduction | Sec |
|--------------------------|-----|
|                          | 00  |

Section 1 – MLE and Algebra 0000000 Section 2 – Discrete Models 00000000 Section 3 – Gaussian Models 0000000 Section 4 – Outro O

## Overview

#### Goals for today:

1. Maximum Likelihood Estimation and Connections to Algebraic Geometry,

2. Discrete Models with Examples,

3. Gaussian Models.

▲□▶▲圖▶▲≣▶▲≣▶ ≣ のへ⊙

| Section | 0 – Introduction |  |
|---------|------------------|--|
| -       |                  |  |

Section 1 – MLE and Algebra 0000000

Section 2 – Discrete Models

Section 3 – Gaussian Models 0000000 Section 4 – Outro O

## Overview

#### Goals for today:

# 1. Maximum Likelihood Estimation and Connections to Algebraic Geometry,

2. Discrete Models with Examples,

3. Gaussian Models.

◆□▶ ◆□▶ ◆三▶ ◆三▶ ○○ のへぐ

| ection 0 – Introduction | Section 1 – |
|-------------------------|-------------|
|                         | 000000      |

Section 1 – MLE and Algebra

Section 2 – Discrete Models 00000000 Section 3 – Gaussian Models 0000000

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ - □ - つへぐ

Section 4 – Outro O

## Overview

Goals for today:

1. Maximum Likelihood Estimation and Connections to Algebraic Geometry,

## 2. Discrete Models with Examples,

3. Gaussian Models.

| Section 0 – Introduction | Section 1 – MLE and Algebra |
|--------------------------|-----------------------------|
| •                        | 000000                      |

Section 2 – Discrete Models 00000000 Section 3 – Gaussian Models 0000000

▲□▶ ▲□▶ ▲ 臣▶ ▲ 臣▶ ― 臣 … のへぐ

Section 4 – Outro O

## Overview

Goals for today:

1. Maximum Likelihood Estimation and Connections to Algebraic Geometry,

2. Discrete Models with Examples,

3. Gaussian Models.

Section 1 – MLE and Algebra ©000000 Section 2 – Discrete Models

Section 3 – Gaussian Models

Section 4 – Outro

## Maximum Likelihood Estimation

• Consider a statistical model  $\mathcal{P}_{\Theta} = \{P_{\theta} : \theta \in \Theta\}$ . Given identically distributed independent random variables  $X^{(i)} \sim P_{\theta}$  for i = 1, ..., n, the *likelihood* function is given by:

$$L(\theta) := \prod_{i=1}^{n} p_{\theta}(X^{(i)}).$$

We want to find the  $\theta$  that maximizes L; we may equivalently consider the *log-likelihood* function  $\ell := \log L$ . (Sometimes a multinomial coefficient is included in the definition of  $L(\theta)$ .)

• The ML-estimator is the random variable defined as

$$\hat{\theta} := \arg \max_{\theta \in \Theta} \ell(\theta) = \arg \max_{\theta \in \Theta} L(\theta)$$

Note that it is a random variable since it depends on  $X^{(i)}$ . The *maximum likelihood estimate* of  $\theta$  given data  $x^{(i)}$  is obtained as  $\hat{\theta}$  when substituting  $X^{(i)} = x^{(i)}$ . Note that this  $\theta$  is a parameter that maximizes the likelihood of observing  $x^{(1)}, \ldots, x^{(n)}$ .

Section 1 – MLE and Algebra ©000000 Section 2 – Discrete Models

Section 3 – Gaussian Models

Section 4 – Outro

## Maximum Likelihood Estimation

• Consider a statistical model  $\mathcal{P}_{\Theta} = \{P_{\theta} : \theta \in \Theta\}$ . Given identically distributed independent random variables  $X^{(i)} \sim P_{\theta}$  for i = 1, ..., n, the *likelihood* function is given by:

$$L(\theta) := \prod_{i=1}^{n} p_{\theta}(X^{(i)}).$$

We want to find the  $\theta$  that maximizes L; we may equivalently consider the *log-likelihood* function  $\ell := \log L$ . (Sometimes a multinomial coefficient is included in the definition of  $L(\theta)$ .)

• The ML-estimator is the random variable defined as

$$\hat{\theta} := \arg \max_{\theta \in \Theta} \ell(\theta) = \arg \max_{\theta \in \Theta} L(\theta)$$

Note that it is a random variable since it depends on  $X^{(i)}$ . The *maximum likelihood estimate* of  $\theta$  given data  $x^{(i)}$  is obtained as  $\hat{\theta}$  when substituting  $X^{(i)} = x^{(i)}$ . Note that this  $\theta$  is a parameter that maximizes the likelihood of observing  $x^{(1)}, \ldots, x^{(n)}$ .

Section 1 – MLE and Algebra

Section 2 – Discrete Models 0000000

Section 3 – Gaussian Models 0000000 Section 4 – Outro

# Algebraic Insights – Part 1

• Sullivant (Algebraic Statistics, page 2) gives the following dictionary:

| Probability/Statistics             | Algebra/Geometry            |
|------------------------------------|-----------------------------|
| Probability distribution           | Point in $\Delta$           |
| Statistical model                  | Semi-algebraic set          |
| Exponential Family                 | Toric Variety               |
| Conditional Inference              | Lattice points in polytopes |
| Maximum likelihood estimation      | Polynomial optimization     |
| Model selection                    | Geometry of singularities   |
| Multivariate Gaussian distribution | Spectrahedral geometry      |
| Phylogenetic model                 | Tensor networks             |
| MAP estimates                      | Tropical geometry           |

Section 1 – MLE and Algebra

Section 2 – Discrete Models 00000000 Section 3 – Gaussian Models

Section 4 – Outro

# Algebraic Insights - Part 2

• The *score* equations (also known as *critical* equations) are given by setting  $\partial \ell / \partial \theta_i = 0$  for each *i*. A point satisfying the equation is a *critical* point. Any local maximum is a critical point under the assumption that the parameter space  $\Theta$  is open.

• For example, let

$$\log p_{\theta}(X) = \log q_1(\theta) + q_2(\theta) \tag{1}$$

be a univariate quotient of polynomials of rational coefficients (meaning  $q_i \in \mathbb{Q}(\theta)$ .) The score equation is given by  $q'_1(\theta)/q_1(\theta) + q'_2(\theta) = 0$ . This is an *algebraic* expression.

• Recall that solutions to algebraic equations is the main subject of algebraic geometry.

Section 1 – MLE and Algebra

Section 2 – Discrete Models 00000000 Section 3 – Gaussian Models

Section 4 – Outro

# Algebraic Insights - Part 2

• The *score* equations (also known as *critical* equations) are given by setting  $\partial \ell / \partial \theta_i = 0$  for each *i*. A point satisfying the equation is a *critical* point. Any local maximum is a critical point under the assumption that the parameter space  $\Theta$  is open.

• For example, let

$$\log p_{\theta}(X) = \log q_1(\theta) + q_2(\theta) \tag{1}$$

be a univariate quotient of polynomials of rational coefficients (meaning  $q_i \in \mathbb{Q}(\theta)$ .) The score equation is given by  $q'_1(\theta)/q_1(\theta) + q'_2(\theta) = 0$ . This is an *algebraic* expression.

• Recall that solutions to algebraic equations is the main subject of algebraic geometry.

Section 1 – MLE and Algebra

Section 2 – Discrete Models 00000000 Section 3 – Gaussian Models

Section 4 – Outro

# Algebraic Insights - Part 2

• The *score* equations (also known as *critical* equations) are given by setting  $\partial \ell / \partial \theta_i = 0$  for each *i*. A point satisfying the equation is a *critical* point. Any local maximum is a critical point under the assumption that the parameter space  $\Theta$  is open.

• For example, let

$$\log p_{\theta}(X) = \log q_1(\theta) + q_2(\theta) \tag{1}$$

be a univariate quotient of polynomials of rational coefficients (meaning  $q_i \in \mathbb{Q}(\theta)$ .) The score equation is given by  $q'_1(\theta)/q_1(\theta) + q'_2(\theta) = 0$ . This is an *algebraic* expression.

# • Recall that solutions to algebraic equations is the main subject of algebraic geometry.

Section 1 – MLE and Algebra

Section 2 – Discrete Models 00000000 Section 3 – Gaussian Models

Section 4 – Outro

# Algebraic Insights - Part 2

• The *score* equations (also known as *critical* equations) are given by setting  $\partial \ell / \partial \theta_i = 0$  for each *i*. A point satisfying the equation is a *critical* point. Any local maximum is a critical point under the assumption that the parameter space  $\Theta$  is open.

• For example, let

$$\log p_{\theta}(X) = \log q_1(\theta) + q_2(\theta) \tag{1}$$

be a univariate quotient of polynomials of rational coefficients (meaning  $q_i \in \mathbb{Q}(\theta)$ .) The score equation is given by  $q'_1(\theta)/q_1(\theta) + q'_2(\theta) = 0$ . This is an *algebraic* expression.

• Recall that solutions to algebraic equations is the main subject of algebraic geometry.

Section 1 – MLE and Algebra

Section 2 – Discrete Models 00000000 Section 3 – Gaussian Models 0000000

< □ > < 同 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Section 4 – Outro

## Generic Data

• What is *generic* data? In algebraic geometry, a point in  $\mathbb{K}^n$  (for some field  $\mathbb{K}$ ) is generic if it lies in some fixed non-empty Zariski open set (this is a set on the form  $\mathbb{K}^n \setminus \mathcal{V}(I)$  for an ideal  $\langle 0 \rangle \neq I \subseteq \mathbb{K}[x_1, \ldots, x_n]$ .) The dimension of an open non-empty set is n and the dimension of the set of non-generic points is at most n-1.

• We can think of generic data as "random" data; randomly chosen data has probability 1 of being generic.

• A statement that is true for generic points in  $\mathbb{C}^n$  is also true for generic points in  $\mathbb{R}^n$ . This is essentially because the Zariski closure of  $\mathbb{R}^n$  in  $\mathbb{C}^n$  is  $\mathbb{C}^n$  (the Zariski closure of X is the smallest set of the form  $\mathcal{V}(I)$  that contains X.)

Section 1 – MLE and Algebra

Section 2 – Discrete Models 00000000 Section 3 – Gaussian Models 0000000

< □ > < 同 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Section 4 – Outro

## Generic Data

• What is *generic* data? In algebraic geometry, a point in  $\mathbb{K}^n$  (for some field  $\mathbb{K}$ ) is generic if it lies in some fixed non-empty Zariski open set (this is a set on the form  $\mathbb{K}^n \setminus \mathcal{V}(I)$  for an ideal  $\langle 0 \rangle \neq I \subseteq \mathbb{K}[x_1, \ldots, x_n]$ .) The dimension of an open non-empty set is n and the dimension of the set of non-generic points is at most n-1.

# • We can think of generic data as "random" data; randomly chosen data has probability 1 of being generic.

• A statement that is true for generic points in  $\mathbb{C}^n$  is also true for generic points in  $\mathbb{R}^n$ . This is essentially because the Zariski closure of  $\mathbb{R}^n$  in  $\mathbb{C}^n$  is  $\mathbb{C}^n$  (the Zariski closure of X is the smallest set of the form  $\mathcal{V}(I)$  that contains X.)

Section 1 – MLE and Algebra

Section 2 – Discrete Models 00000000 Section 3 – Gaussian Models 0000000 Section 4 – Outro

## Generic Data

• What is *generic* data? In algebraic geometry, a point in  $\mathbb{K}^n$  (for some field  $\mathbb{K}$ ) is generic if it lies in some fixed non-empty Zariski open set (this is a set on the form  $\mathbb{K}^n \setminus \mathcal{V}(I)$  for an ideal  $\langle 0 \rangle \neq I \subseteq \mathbb{K}[x_1, \ldots, x_n]$ .) The dimension of an open non-empty set is n and the dimension of the set of non-generic points is at most n-1.

• We can think of generic data as "random" data; randomly chosen data has probability 1 of being generic.

• A statement that is true for generic points in  $\mathbb{C}^n$  is also true for generic points in  $\mathbb{R}^n$ . This is essentially because the Zariski closure of  $\mathbb{R}^n$  in  $\mathbb{C}^n$  is  $\mathbb{C}^n$  (the Zariski closure of X is the smallest set of the form  $\mathcal{V}(I)$  that contains X.)

Section 1 – MLE and Algebra

Section 2 – Discrete Models 00000000 Section 3 – Gaussian Models

Section 4 – Outro O

#### Saturation - Part 1

• Let us return to the equation  $q'_1(\theta)/q_1(\theta) + q'_2(\theta) = 0$ . If we want to solve it we might start by writing  $q_1 = f_1/g_1$  and  $q_2 = f_2/g_2$  so that we get a polynomial equation:

$$\frac{f_1'}{g_1} - \frac{f_1g_1'}{g_1^2} - \left(\frac{f_2'}{g_2} - \frac{f_2g_2'}{g_2^2}\right) = 0 \Rightarrow$$
(2)

$$\Rightarrow g_2^2(f_1'g_1 - f_1g_1') - f_1g_1(f_2'g_2 - f_2g_2') = 0.$$
(3)

• We now have a nice polynomial equation, but we have gained solutions that we did not have before. For example, points x such that  $g_2(x) = f_1(x) = 0$  solves the polynomial equation (3), but clearly not the rational equation (2).

• Problems of this sort are solved using *saturation* of ideals. In this case we study the ideal  $I = \langle g_2^2(f'_1g_1 - f_1g'_1) - f_1g_1(f'_2g_2 - f_2g'_2) \rangle$  and the ideal of "bad" solutions  $J = \langle g_1f_1g_2 \rangle$ .

Section 1 – MLE and Algebra

Section 2 – Discrete Models 00000000 Section 3 – Gaussian Models

Section 4 – Outro O

#### Saturation - Part 1

• Let us return to the equation  $q'_1(\theta)/q_1(\theta) + q'_2(\theta) = 0$ . If we want to solve it we might start by writing  $q_1 = f_1/g_1$  and  $q_2 = f_2/g_2$  so that we get a polynomial equation:

$$\frac{f_1'}{g_1} - \frac{f_1g_1'}{g_1^2} - \left(\frac{f_2'}{g_2} - \frac{f_2g_2'}{g_2^2}\right) = 0 \Rightarrow$$
(2)

$$\Rightarrow g_2^2(f_1'g_1 - f_1g_1') - f_1g_1(f_2'g_2 - f_2g_2') = 0.$$
(3)

• We now have a nice polynomial equation, but we have gained solutions that we did not have before. For example, points x such that  $g_2(x) = f_1(x) = 0$  solves the polynomial equation (3), but clearly not the rational equation (2).

• Problems of this sort are solved using *saturation* of ideals. In this case we study the ideal  $I = \langle g_2^2(f'_1g_1 - f_1g'_1) - f_1g_1(f'_2g_2 - f_2g'_2) \rangle$  and the ideal of "bad" solutions  $J = \langle g_1f_1g_2 \rangle$ .

Section 1 – MLE and Algebra

Section 2 – Discrete Models 00000000 Section 3 – Gaussian Models

Section 4 – Outro O

#### Saturation - Part 1

• Let us return to the equation  $q'_1(\theta)/q_1(\theta) + q'_2(\theta) = 0$ . If we want to solve it we might start by writing  $q_1 = f_1/g_1$  and  $q_2 = f_2/g_2$  so that we get a polynomial equation:

$$\frac{f_1'}{g_1} - \frac{f_1g_1'}{g_1^2} - \left(\frac{f_2'}{g_2} - \frac{f_2g_2'}{g_2^2}\right) = 0 \Rightarrow$$
(2)

$$\Rightarrow g_2^2(f_1'g_1 - f_1g_1') - f_1g_1(f_2'g_2 - f_2g_2') = 0.$$
(3)

• We now have a nice polynomial equation, but we have gained solutions that we did not have before. For example, points x such that  $g_2(x) = f_1(x) = 0$  solves the polynomial equation (3), but clearly not the rational equation (2).

• Problems of this sort are solved using *saturation* of ideals. In this case we study the ideal  $I = \langle g_2^2(f'_1g_1 - f_1g'_1) - f_1g_1(f'_2g_2 - f_2g'_2) \rangle$  and the ideal of "bad" solutions  $J = \langle g_1f_1g_2 \rangle$ .

Section 1 – MLE and Algebra

Section 2 – Discrete Models 00000000 Section 3 – Gaussian Models 0000000 Section 4 – Outro O

## Saturation - Part 2

# $\bullet$ Let I and J be two ideals of a ring R. We define the ideal quotient as follows

 $(I:J):=\{r\in R:rJ\subseteq I\}.$ 

• For a noetherian ring R (the polynomial rings  $\mathbb{Q}[x],\mathbb{R}[x],\mathbb{C}[x]$ , are noetherian,) consider the inclusion of ideals

$$(I:J) \subseteq (I:J^2) \subseteq (I:J^3) \subseteq \cdots$$

The chain stabilizes at some  $(I : J^N)$  and we call this the saturation of I with respect to J and write  $(I : J^\infty)$  or sat(I, J).

Proposition (Ideals, Varieties and Algorithms, Theorem 7 p. 195)

Let  $\mathcal{V}(J), \mathcal{V}(I)$  be two algebraic sets defined by ideals. Then

$$\overline{\mathcal{V}(I) \setminus \mathcal{V}(J)}^{\operatorname{Zar}} = \mathcal{V}(\operatorname{sat}(I, J))$$

・ロト・日本・日本・日本・日本・日本

Section 1 – MLE and Algebra 0000000 Section 2 – Discrete Models 00000000 Section 3 – Gaussian Models 0000000 Section 4 – Outro O

## Saturation - Part 2

 $\bullet$  Let I and J be two ideals of a ring R. We define the ideal quotient as follows

$$(I:J) := \{ r \in R : rJ \subseteq I \}.$$

• For a noetherian ring R (the polynomial rings  $\mathbb{Q}[x], \mathbb{R}[x], \mathbb{C}[x]$ , are noetherian,) consider the inclusion of ideals

$$(I:J) \subseteq (I:J^2) \subseteq (I:J^3) \subseteq \cdots$$

The chain stabilizes at some  $(I : J^N)$  and we call this the saturation of I with respect to J and write  $(I : J^\infty)$  or sat(I, J).

Proposition (Ideals, Varieties and Algorithms, Theorem 7 p. 195)

Let  $\mathcal{V}(J), \mathcal{V}(I)$  be two algebraic sets defined by ideals. Then

$$\overline{\mathcal{V}(I) \setminus \mathcal{V}(J)}^{\operatorname{Zar}} = \mathcal{V}(\operatorname{sat}(I,J))$$

Section 1 – MLE and Algebra 0000000 Section 2 – Discrete Models 0000000 Section 3 – Gaussian Models

Section 4 – Outro O

## Saturation - Part 2

 $\bullet$  Let I and J be two ideals of a ring R. We define the ideal quotient as follows

$$(I:J) := \{ r \in R : rJ \subseteq I \}.$$

• For a noetherian ring R (the polynomial rings  $\mathbb{Q}[x], \mathbb{R}[x], \mathbb{C}[x]$ , are noetherian,) consider the inclusion of ideals

$$(I:J) \subseteq (I:J^2) \subseteq (I:J^3) \subseteq \cdots$$

The chain stabilizes at some  $(I : J^N)$  and we call this the saturation of I with respect to J and write  $(I : J^\infty)$  or sat(I, J).

## Proposition (Ideals, Varieties and Algorithms, Theorem 7 p. 195)

Let  $\mathcal{V}(J), \mathcal{V}(I)$  be two algebraic sets defined by ideals. Then

$$\overline{\mathcal{V}(I)\setminus\mathcal{V}(J)}^{\mathrm{Zar}}=\mathcal{V}(\mathrm{sat}(I,J)).$$

・ロト・(日下・(日下・(日下・))

Section 1 – MLE and Algebra

Section 2 – Discrete Models 00000000 Section 3 – Gaussian Models 0000000 Section 4 – Outro O

#### Saturation - Part 3

#### Example (2.1.3)

 $\bullet$  Consider the score equations with table of counts u and parameters  $\lambda_i$ 

| $\frac{u_1 + u_{12}}{\lambda_1}$ | $+ \frac{u_{12}}{\lambda_1 + \lambda_2 + 2} -$ | $\frac{u_2+u_{12}}{\lambda_1+1} -$     | $\frac{u_0 + u_1 + u_2 + u_{12}}{\lambda_1 + \lambda_2 + 1} =$ | = 0 |
|----------------------------------|------------------------------------------------|----------------------------------------|----------------------------------------------------------------|-----|
| $\frac{u_1 + u_{12}}{\lambda_2}$ | $+ \frac{u_{12}}{\lambda_1 + \lambda_2 + 2} -$ | $\frac{u_1 + u_{12}}{\lambda_2 + 1} -$ | $\frac{u_0 + u_1 + u_2 + u_{12}}{\lambda_1 + \lambda_2 + 1} =$ | = 0 |

• In a software like Macaulay2 or Singular, we let *I* be the ideal generated by the two equations above after clearing denominators. Let *J* be the ideal generated by all the denominators:

 $J := \langle \lambda_1 \lambda_2 (\lambda_1 + 1) (\lambda_2 + 1) (\lambda_1 + \lambda_2 + 1) (\lambda_1 + \lambda_2 + 2) \rangle$ 

• As explained previously, in  $\mathcal{V}(I)$ , we have to many points. The ideal that corresponds to the system of Example 2.1.3 is given by  $\operatorname{sat}(I, J) = (I, J^{\infty})$ ; this ideal describes the set of solutions that we are interested in.

Section 1 – MLE and Algebra

Section 2 – Discrete Models 00000000 Section 3 – Gaussian Models 0000000 Section 4 – Outro O

#### Saturation - Part 3

#### Example (2.1.3)

 $\bullet$  Consider the score equations with table of counts u and parameters  $\lambda_i$ 

$$\frac{u_1 + u_{12}}{\lambda_1} + \frac{u_{12}}{\lambda_1 + \lambda_2 + 2} - \frac{u_2 + u_{12}}{\lambda_1 + 1} - \frac{u_0 + u_1 + u_2 + u_{12}}{\lambda_1 + \lambda_2 + 1} = 0$$
$$\frac{u_1 + u_{12}}{\lambda_2} + \frac{u_{12}}{\lambda_1 + \lambda_2 + 2} - \frac{u_1 + u_{12}}{\lambda_2 + 1} - \frac{u_0 + u_1 + u_2 + u_{12}}{\lambda_1 + \lambda_2 + 1} = 0$$

• In a software like Macaulay2 or Singular, we let *I* be the ideal generated by the two equations above after clearing denominators. Let *J* be the ideal generated by all the denominators:

 $J := \langle \lambda_1 \lambda_2 (\lambda_1 + 1) (\lambda_2 + 1) (\lambda_1 + \lambda_2 + 1) (\lambda_1 + \lambda_2 + 2) \rangle$ 

• As explained previously, in  $\mathcal{V}(I)$ , we have to many points. The ideal that corresponds to the system of Example 2.1.3 is given by sat $(I, J) = (I, J^{\infty})$ ; this ideal describes the set of solutions that we are interested in.

Section 1 – MLE and Algebra 000000●

Section 2 – Discrete Models 0000000 Section 3 – Gaussian Models 0000000 Section 4 – Outro O

#### Saturation - Part 3

#### Example (2.1.3)

 $\bullet$  Consider the score equations with table of counts u and parameters  $\lambda_i$ 

$$\frac{u_1 + u_{12}}{\lambda_1} + \frac{u_{12}}{\lambda_1 + \lambda_2 + 2} - \frac{u_2 + u_{12}}{\lambda_1 + 1} - \frac{u_0 + u_1 + u_2 + u_{12}}{\lambda_1 + \lambda_2 + 1} = 0$$
$$\frac{u_1 + u_{12}}{\lambda_2} + \frac{u_{12}}{\lambda_1 + \lambda_2 + 2} - \frac{u_1 + u_{12}}{\lambda_2 + 1} - \frac{u_0 + u_1 + u_2 + u_{12}}{\lambda_1 + \lambda_2 + 1} = 0$$

• In a software like Macaulay2 or Singular, we let *I* be the ideal generated by the two equations above after clearing denominators. Let *J* be the ideal generated by all the denominators:

$$J := \langle \lambda_1 \lambda_2 (\lambda_1 + 1) (\lambda_2 + 1) (\lambda_1 + \lambda_2 + 1) (\lambda_1 + \lambda_2 + 2) \rangle$$

• As explained previously, in  $\mathcal{V}(I)$ , we have to many points. The ideal that corresponds to the system of Example 2.1.3 is given by  $\operatorname{sat}(I, J) = (I, J^{\infty})$ ; this ideal describes the set of solutions that we are interested in.

Section 1 – MLE and Algeb 0000000 Section 2 – Discrete Models •0000000 Section 3 – Gaussian Models

Section 4 – Outro

#### Discrete Models - Part 1

• A *parametric discrete model* is given by an open subset  $\Theta \subseteq \mathbb{R}^d$  and a rational map  $g : \Theta \to \Delta_{k-1}$ , meaning each coordinate  $g_i$  is a rational function. We consider:

$$\ell(\theta) = \log L(\theta) = \log \prod_{i=1}^{k} g_i(\theta)^{u_i} = \sum u_i \log g_i(\theta),$$

for a table of counts  $u_i = \#\{j : X^{(j)} = i\}.$ 

#### Example (2.1.2, (1/3))

The parametrization of the independence model M<sub>X⊥Y</sub> is the map g: Δ<sub>r-1</sub> × Δ<sub>c-1</sub> → Δ<sub>rc-1</sub>, (α, β) ↦ (α<sub>i</sub>β<sub>j</sub>).
For a table of counts u ∈ N<sup>r×c</sup>, we have the log-likelihood

$$\ell(\alpha,\beta) = \sum u_{ij} \log(\alpha_i \beta_j) = \sum_i u_{i+1} \log \alpha_i + \sum_j u_{+j} \log \beta_j,$$

where  $u_{i+}, u_{+j}$  are the familiar marginal sums.

|▲□▶▲圖▶▲≣▶▲≣▶ = 直 = のへで

Section 1 – MLE and Algeb

Section 2 – Discrete Models •0000000 Section 3 – Gaussian Models

Section 4 – Outro O

#### Discrete Models - Part 1

• A *parametric discrete model* is given by an open subset  $\Theta \subseteq \mathbb{R}^d$  and a rational map  $g : \Theta \to \Delta_{k-1}$ , meaning each coordinate  $g_i$  is a rational function. We consider:

$$\ell(\theta) = \log L(\theta) = \log \prod_{i=1}^{k} g_i(\theta)^{u_i} = \sum u_i \log g_i(\theta),$$

for a table of counts  $u_i = \#\{j : X^{(j)} = i\}.$ 

#### Example (2.1.2, (1/3))

The parametrization of the independence model M<sub>X⊥Y</sub> is the map g: Δ<sub>r-1</sub> × Δ<sub>c-1</sub> → Δ<sub>rc-1</sub>, (α, β) ↦ (α<sub>i</sub>β<sub>j</sub>).
 For a table of counts u ∈ N<sup>r×c</sup>, we have the log-likelihood

$$\ell(\alpha,\beta) = \sum u_{ij} \log(\alpha_i \beta_j) = \sum_i u_{i+1} \log \alpha_i + \sum_j u_{+j} \log \beta_j,$$

where  $u_{i+}, u_{+j}$  are the familiar marginal sums.

|▲□▶▲圖▶▲≣▶▲≣▶ = 差 - 釣��

Section 1 – MLE and Algeb

Section 2 – Discrete Models •0000000 Section 3 – Gaussian Models

Section 4 – Outro

#### Discrete Models - Part 1

• A *parametric discrete model* is given by an open subset  $\Theta \subseteq \mathbb{R}^d$  and a rational map  $g : \Theta \to \Delta_{k-1}$ , meaning each coordinate  $g_i$  is a rational function. We consider:

$$\ell(\theta) = \log L(\theta) = \log \prod_{i=1}^{k} g_i(\theta)^{u_i} = \sum u_i \log g_i(\theta),$$

for a table of counts  $u_i = \#\{j : X^{(j)} = i\}.$ 

#### Example (2.1.2, (1/3))

The parametrization of the independence model M<sub>X⊥Y</sub> is the map g: Δ<sub>r-1</sub> × Δ<sub>c-1</sub> → Δ<sub>rc-1</sub>, (α, β) → (α<sub>i</sub>β<sub>j</sub>).
For a table of counts u ∈ N<sup>r×c</sup>, we have the log-likelihood

$$\ell(\alpha,\beta) = \sum u_{ij} \log(\alpha_i\beta_j) = \sum_i u_{i+1} \log \alpha_i + \sum_j u_{+j} \log \beta_j,$$

where  $u_{i+}, u_{+j}$  are the familiar marginal sums.

|▲□▶▲圖▶▲≣▶▲≣▶ = 直 = のへで

Section 1 – MLE and Algeb 0000000 Section 2 – Discrete Models ○●○○○○○○

Section 3 – Gaussian Models 0000000 Section 4 – Outro O

#### Discrete Models – Part 2

#### Example (2.1.2, (2/3))

• Observe that  $\alpha_i, \beta_j$  are not independent of each other since they need to sum to 1. We resolve this by letting

$$\alpha_r = 1 - \sum_{i=1}^{r-1} \alpha_i, \ \beta_c = 1 - \sum_{j=1}^{c-1} \beta_j$$

• The score equations are

$$\frac{\partial \ell(\alpha, \beta)}{\partial \alpha_i} = \frac{u_{i+}}{\alpha_i} - \frac{u_{r+}}{1 - \sum_{k=1}^{r-1} \alpha_k} = 0, \ \forall i = 1, \dots, r-1$$
$$\frac{\partial \ell(\alpha, \beta)}{\partial \beta_j} = \frac{u_{+j}}{\beta_j} - \frac{u_{+c}}{1 - \sum_{k=1}^{c-1} \beta_k} = 0, \ \forall j = 1, \dots, c-1$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ ─臣 ─のへで

Section 1 – MLE and Algeb 0000000 Section 2 – Discrete Models ○●○○○○○○

Section 3 – Gaussian Models 0000000 Section 4 – Outro

#### Discrete Models – Part 2

#### Example (2.1.2, (2/3))

• Observe that  $\alpha_i, \beta_j$  are not independent of each other since they need to sum to 1. We resolve this by letting

$$\alpha_r = 1 - \sum_{i=1}^{r-1} \alpha_i, \ \beta_c = 1 - \sum_{j=1}^{c-1} \beta_j$$

• The score equations are

$$\frac{\partial \ell(\alpha,\beta)}{\partial \alpha_i} = \frac{u_{i+}}{\alpha_i} - \frac{u_{r+}}{1 - \sum_{k=1}^{r-1} \alpha_k} = 0, \ \forall i = 1, \dots, r-1$$
$$\frac{\partial \ell(\alpha,\beta)}{\partial \beta_j} = \frac{u_{+j}}{\beta_j} - \frac{u_{+c}}{1 - \sum_{k=1}^{c-1} \beta_k} = 0, \ \forall j = 1, \dots, c-1$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ ・三三 の々で

Section 1 – MLE and Algeb 0000000 Section 2 – Discrete Models 0000000 Section 3 – Gaussian Models 0000000

Section 4 – Outro O

### Discrete Models - Part 3

# Example (2.1.2, (3/3))

 $\bullet$  Clearing denominators gives systems of linear equations. For example, if  $\alpha'=(\alpha_1,\ldots,\alpha_{r-1})$ 



• Under the assumption that  $u_{r+} > 0$ , the matrix is full-rank and there is a unique solution. One can check that the following is a solution (the MLE):

$$\hat{\alpha}_i = \frac{u_{i+}}{u_{++}}, \ \hat{\beta}_j = \frac{u_{+j}}{u_{++}}.$$

• "Having maximum likelihood degree one can be expressed equivalently by saying that the ML estimate is a rational function of the data."

Section 1 – MLE and Algeb 0000000 Section 2 – Discrete Models 0000000 Section 3 – Gaussian Models 0000000

Section 4 – Outro O

### Discrete Models - Part 3

## Example (2.1.2, (3/3))

 $\bullet$  Clearing denominators gives systems of linear equations. For example, if  $\alpha'=(\alpha_1,\ldots,\alpha_{r-1})$ 

$$\begin{bmatrix} u_{1+} + u_{r+} & u_{1+} & \cdots & u_{1+} \\ u_{2+} & u_{2+} + u_{r+} & \cdots & u_{2+} \\ \vdots & \vdots & \ddots & \vdots \\ u_{r-1+} & u_{r-1+} & \cdots & u_{r-1+} + u_{r+} \end{bmatrix} \alpha' = \begin{bmatrix} u_{1+} \\ u_{2+} \\ \vdots \\ u_{2+} \\ \vdots \\ u_{r-1+} \end{bmatrix}$$

• Under the assumption that  $u_{r+} > 0$ , the matrix is full-rank and there is a unique solution. One can check that the following is a solution (the MLE):

$$\hat{\alpha}_i = \frac{u_{i+}}{u_{++}}, \ \hat{\beta}_j = \frac{u_{+j}}{u_{++}}.$$

• "Having maximum likelihood degree one can be expressed equivalently by saying that the ML estimate is a rational function of the data."

Section 1 – MLE and Algebrace

Section 2 – Discrete Models 0000000 Section 3 – Gaussian Models 0000000

▲□▶▲□▶▲□▶▲□▶ □ のQ@

Section 4 – Outro O

## Discrete Models - Part 3

## Example (2.1.2, (3/3))

 $\bullet$  Clearing denominators gives systems of linear equations. For example, if  $\alpha'=(\alpha_1,\ldots,\alpha_{r-1})$ 

$$\begin{bmatrix} u_{1+} + u_{r+} & u_{1+} & \cdots & u_{1+} \\ u_{2+} & u_{2+} + u_{r+} & \cdots & u_{2+} \\ \vdots & \vdots & \ddots & \vdots \\ u_{r-1+} & u_{r-1+} & \cdots & u_{r-1+} + u_{r+} \end{bmatrix} \alpha' = \begin{bmatrix} u_{1+} \\ u_{2+} \\ \vdots \\ u_{2+} \\ \vdots \\ u_{r-1+} \end{bmatrix}$$

• Under the assumption that  $u_{r+} > 0$ , the matrix is full-rank and there is a unique solution. One can check that the following is a solution (the MLE):

$$\hat{\alpha}_i = \frac{u_{i+}}{u_{++}}, \ \hat{\beta}_j = \frac{u_{+j}}{u_{++}}.$$

• "Having maximum likelihood degree one can be expressed equivalently by saying that the ML estimate is a rational function of the data."

Section 1 – MLE and Algebr

Section 2 – Discrete Models 0000000 Section 3 – Gaussian Models 0000000 Section 4 – Outro

## Birch's Theorem – Part 1

# Proposition (2.1.5, Birch's Theorem)

Let  $A \in \mathbb{N}^{d \times k}$  and  $u \in \mathbb{N}^k$ . The ML-estimate of the frequencies  $\hat{u}$  in  $\mathcal{M}_A$  is the unique non-negative solution to  $A\hat{u} = Au$  for  $\hat{u} \in \mathcal{V}(I_A)$ .

• The MLE  $\hat{u}$  differs from the MLE  $\hat{p}$  by a constant:  $\hat{u} = n\hat{p}$ , where  $n = \sum u_i$ .

• Recall that  $I_A$  is the toric ideal  $\langle p^z - p^{z'} : z, z' \in \mathbb{N}^k, z - z' \in \ker_{\mathbb{Z}} A \rangle$ , and  $\mathcal{M}_A := \{p \in \Delta : \log p \in \operatorname{rowspan} A\}$ . Recall that the Zariski closure of  $\mathcal{M}_A$  is  $\mathcal{V}(I_A)$ .

#### Proof (1/2).

• Let  $b_1, \ldots, b_l$  be a basis for ker<sub>Z</sub> A. Observe that  $p \in \mathcal{M}_A$  if and only if  $\log p = A^T x$  and  $p \in \Delta$  if and only if  $b_j^T \log p = 0$  and  $\sum p_i = 1$ . (For example,  $\log p = A^T x$  implies  $b_j^T \log p = (Ab_j)^T x = 0$ .) • Let v be the non-negative estimated table of counts. The expression  $u^T \log v$  is up to a constant equal to  $\log \prod p_i^{u_i}$ , if we let  $p_i = v_i/n$ . • We wish to maximize is  $u^T \log v$ , subject to  $b_j^T \log v = 0$  for all  $j = 1, \ldots, l$  and  $\sum v_i = n$ .

Section 1 – MLE and Algebr 0000000 Section 2 – Discrete Models 0000000 Section 3 – Gaussian Models 0000000 Section 4 – Outro

## Birch's Theorem – Part 1

## Proposition (2.1.5, Birch's Theorem)

Let  $A \in \mathbb{N}^{d \times k}$  and  $u \in \mathbb{N}^k$ . The ML-estimate of the frequencies  $\hat{u}$  in  $\mathcal{M}_A$  is the unique non-negative solution to  $A\hat{u} = Au$  for  $\hat{u} \in \mathcal{V}(I_A)$ .

• The MLE  $\hat{u}$  differs from the MLE  $\hat{p}$  by a constant:  $\hat{u}=n\hat{p},$  where  $n=\sum u_i.$ 

• Recall that  $I_A$  is the toric ideal  $\langle p^z - p^{z'} : z, z' \in \mathbb{N}^k, z - z' \in \ker_{\mathbb{Z}} A \rangle$ , and  $\mathcal{M}_A := \{p \in \Delta : \log p \in \operatorname{rowspan} A\}$ . Recall that the Zariski closure of  $\mathcal{M}_A$  is  $\mathcal{V}(I_A)$ .

#### Proof (1/2).

• Let  $b_1, \ldots, b_l$  be a basis for ker<sub>Z</sub> A. Observe that  $p \in \mathcal{M}_A$  if and only if  $\log p = A^T x$  and  $p \in \Delta$  if and only if  $b_j^T \log p = 0$  and  $\sum p_i = 1$ . (For example,  $\log p = A^T x$  implies  $b_j^T \log p = (Ab_j)^T x = 0$ .) • Let v be the non-negative estimated table of counts. The expression  $u^T \log v$  is up to a constant equal to  $\log \prod p_i^{u_i}$ , if we let  $p_i = v_i/n$ . • We wish to maximize is  $u^T \log v$ , subject to  $b_j^T \log v = 0$  for all  $j = 1, \ldots, l$  and  $\sum v_i = n$ .

Section 1 – MLE and Algebr 0000000 Section 2 – Discrete Models 0000000 Section 3 – Gaussian Models 0000000 Section 4 – Outro

## Birch's Theorem – Part 1

## Proposition (2.1.5, Birch's Theorem)

Let  $A \in \mathbb{N}^{d \times k}$  and  $u \in \mathbb{N}^k$ . The ML-estimate of the frequencies  $\hat{u}$  in  $\mathcal{M}_A$  is the unique non-negative solution to  $A\hat{u} = Au$  for  $\hat{u} \in \mathcal{V}(I_A)$ .

- The MLE  $\hat{u}$  differs from the MLE  $\hat{p}$  by a constant:  $\hat{u}=n\hat{p},$  where  $n=\sum u_i.$
- Recall that  $I_A$  is the toric ideal  $\langle p^z p^{z'} : z, z' \in \mathbb{N}^k, z z' \in \ker_{\mathbb{Z}} A \rangle$ , and  $\mathcal{M}_A := \{p \in \Delta : \log p \in \operatorname{rowspan} A\}$ . Recall that the Zariski closure of  $\mathcal{M}_A$  is  $\mathcal{V}(I_A)$ .

#### Proof (1/2).

Let b<sub>1</sub>,..., b<sub>l</sub> be a basis for ker<sub>Z</sub> A. Observe that p ∈ M<sub>A</sub> if and only if log p = A<sup>T</sup>x and p ∈ Δ if and only if b<sub>j</sub><sup>T</sup> log p = 0 and ∑ p<sub>i</sub> = 1. (For example, log p = A<sup>T</sup>x implies b<sub>j</sub><sup>T</sup> log p = (Ab<sub>j</sub>)<sup>T</sup>x = 0.)
Let v be the non-negative estimated table of counts. The expression u<sup>T</sup> log v is up to a constant equal to log ∏ p<sub>i</sub><sup>u<sub>i</sub></sup>, if we let p<sub>i</sub> = v<sub>i</sub>/n.
We wish to maximize is u<sup>T</sup> log v, subject to b<sub>j</sub><sup>T</sup> log v = 0 for all j = 1,..., l and ∑ v<sub>i</sub> = n.

Section 1 – MLE and Algebr 0000000 Section 2 – Discrete Models 0000000 Section 3 – Gaussian Models 0000000 Section 4 – Outro

## Birch's Theorem – Part 1

## Proposition (2.1.5, Birch's Theorem)

Let  $A \in \mathbb{N}^{d \times k}$  and  $u \in \mathbb{N}^k$ . The ML-estimate of the frequencies  $\hat{u}$  in  $\mathcal{M}_A$  is the unique non-negative solution to  $A\hat{u} = Au$  for  $\hat{u} \in \mathcal{V}(I_A)$ .

- The MLE  $\hat{u}$  differs from the MLE  $\hat{p}$  by a constant:  $\hat{u}=n\hat{p},$  where  $n=\sum u_i.$
- Recall that  $I_A$  is the toric ideal  $\langle p^z p^{z'} : z, z' \in \mathbb{N}^k, z z' \in \ker_{\mathbb{Z}} A \rangle$ , and  $\mathcal{M}_A := \{p \in \Delta : \log p \in \operatorname{rowspan} A\}$ . Recall that the Zariski closure of  $\mathcal{M}_A$  is  $\mathcal{V}(I_A)$ .

### Proof (1/2).

• Let  $b_1, \ldots, b_l$  be a basis for ker<sub>Z</sub> A. Observe that  $p \in \mathcal{M}_A$  if and only if  $\log p = A^T x$  and  $p \in \Delta$  if and only if  $b_j^T \log p = 0$  and  $\sum p_i = 1$ . (For example,  $\log p = A^T x$  implies  $b_j^T \log p = (Ab_j)^T x = 0$ .) • Let v be the non-negative estimated table of counts. The expression  $u^T \log v$  is up to a constant equal to  $\log \prod p_i^{u_i}$ , if we let  $p_i = v_i/n$ . • We wish to maximize is  $u^T \log v$ , subject to  $b_j^T \log v = 0$  for all  $j = 1, \ldots, l$  and  $\sum v_i = n$ .
Section 1 – MLE and Algebr 0000000 Section 2 – Discrete Models 0000000 Section 3 – Gaussian Models 0000000 Section 4 – Outro

# Birch's Theorem – Part 1

# Proposition (2.1.5, Birch's Theorem)

Let  $A \in \mathbb{N}^{d \times k}$  and  $u \in \mathbb{N}^k$ . The ML-estimate of the frequencies  $\hat{u}$  in  $\mathcal{M}_A$  is the unique non-negative solution to  $A\hat{u} = Au$  for  $\hat{u} \in \mathcal{V}(I_A)$ .

- The MLE  $\hat{u}$  differs from the MLE  $\hat{p}$  by a constant:  $\hat{u}=n\hat{p},$  where  $n=\sum u_i.$
- Recall that  $I_A$  is the toric ideal  $\langle p^z p^{z'} : z, z' \in \mathbb{N}^k, z z' \in \ker_{\mathbb{Z}} A \rangle$ , and  $\mathcal{M}_A := \{p \in \Delta : \log p \in \operatorname{rowspan} A\}$ . Recall that the Zariski closure of  $\mathcal{M}_A$  is  $\mathcal{V}(I_A)$ .

# Proof (1/2).

• Let  $b_1, \ldots, b_l$  be a basis for  $\ker_{\mathbb{Z}} A$ . Observe that  $p \in \mathcal{M}_A$  if and only if  $\log p = A^T x$  and  $p \in \Delta$  if and only if  $b_j^T \log p = 0$  and  $\sum p_i = 1$ . (For example,  $\log p = A^T x$  implies  $b_j^T \log p = (Ab_j)^T x = 0$ .) • Let v be the non-negative estimated table of counts. The expression  $u^T \log v$  is up to a constant equal to  $\log \prod p_i^{u_i}$ , if we let  $p_i = v_i/n$ . • We wish to maximize is  $u^T \log v$ , subject to  $b_j^T \log v = 0$  for all  $j = 1, \ldots, l$  and  $\sum v_i = n$ .

Section 1 – MLE and Algebr 0000000 Section 2 – Discrete Models 0000000 Section 3 – Gaussian Models 0000000 Section 4 – Outro O

# Birch's Theorem – Part 1

# Proposition (2.1.5, Birch's Theorem)

Let  $A \in \mathbb{N}^{d \times k}$  and  $u \in \mathbb{N}^k$ . The ML-estimate of the frequencies  $\hat{u}$  in  $\mathcal{M}_A$  is the unique non-negative solution to  $A\hat{u} = Au$  for  $\hat{u} \in \mathcal{V}(I_A)$ .

- The MLE  $\hat{u}$  differs from the MLE  $\hat{p}$  by a constant:  $\hat{u}=n\hat{p},$  where  $n=\sum u_i.$
- Recall that  $I_A$  is the toric ideal  $\langle p^z p^{z'} : z, z' \in \mathbb{N}^k, z z' \in \ker_{\mathbb{Z}} A \rangle$ , and  $\mathcal{M}_A := \{p \in \Delta : \log p \in \operatorname{rowspan} A\}$ . Recall that the Zariski closure of  $\mathcal{M}_A$  is  $\mathcal{V}(I_A)$ .

# Proof (1/2).

• Let  $b_1, \ldots, b_l$  be a basis for  $\ker_{\mathbb{Z}} A$ . Observe that  $p \in \mathcal{M}_A$  if and only if  $\log p = A^T x$  and  $p \in \Delta$  if and only if  $b_j^T \log p = 0$  and  $\sum p_i = 1$ . (For example,  $\log p = A^T x$  implies  $b_j^T \log p = (Ab_j)^T x = 0$ .) • Let v be the non-negative estimated table of counts. The expression  $u^T \log v$  is up to a constant equal to  $\log \prod p_i^{u_i}$ , if we let  $p_i = v_i/n$ . • We wish to maximize is  $u^T \log v$ , subject to  $b_j^T \log v = 0$  for all  $j = 1, \ldots, l$  and  $\sum v_i = n$ .

Section 1 – MLE and Algeb 0000000 Section 2 – Discrete Models 00000000 Section 3 – Gaussian Models 0000000 Section 4 – Outro O

# Birch's Theorem – Part 2

## Proof (2/2).

• The first constraint,  $b_j^T \log v = 0$ , is equivalent to  $v \in \mathcal{V}(I_A)$ . This is essentially because  $v^z = v^{z'}$  if and only if  $(z - z')^T \log v = 0$  (let  $z = b_j^+$  and  $z' = b_j^-$ .)

To solve the optimization problem we use the *method of Lagrange multipliers*. Write L(v, λ, γ) := u<sup>T</sup> log v − ∑λ<sub>j</sub>b<sub>j</sub><sup>T</sup> log v − γ(n − ∑v<sub>i</sub>).
Putting the gradient of L to zero yields that the critical points are the solutions to the k + l + 1 equations

$$\frac{u_i}{v_i} + \sum \lambda_j \frac{b_{ij}}{v_i} + \gamma = 0, \ b_j^T \log v = 0, \ \sum v_i = n.$$

Section 1 – MLE and Algebr 0000000 Section 2 – Discrete Models 00000000 Section 3 – Gaussian Models 0000000 Section 4 – Outro O

# Birch's Theorem – Part 2

#### Proof (2/2).

• The first constraint,  $b_j^T \log v = 0$ , is equivalent to  $v \in \mathcal{V}(I_A)$ . This is essentially because  $v^z = v^{z'}$  if and only if  $(z - z')^T \log v = 0$  (let  $z = b_j^+$  and  $z' = b_j^-$ .)

To solve the optimization problem we use the *method of Lagrange multipliers*. Write L(v, λ, γ) := u<sup>T</sup> log v − ∑λ<sub>j</sub>b<sub>j</sub><sup>T</sup> log v − γ(n − ∑v<sub>i</sub>).
Putting the gradient of L to zero yields that the critical points are the solutions to the k + l + 1 equations

$$\frac{u_i}{v_i} + \sum \lambda_j \frac{b_{ij}}{v_i} + \gamma = 0, \ b_j^T \log v = 0, \ \sum v_i = n.$$

Section 1 – MLE and Algeb 0000000 Section 2 – Discrete Models 00000000 Section 3 – Gaussian Models 0000000 Section 4 – Outro O

# Birch's Theorem – Part 2

#### Proof (2/2).

• The first constraint,  $b_j^T \log v = 0$ , is equivalent to  $v \in \mathcal{V}(I_A)$ . This is essentially because  $v^z = v^{z'}$  if and only if  $(z - z')^T \log v = 0$  (let  $z = b_j^+$  and  $z' = b_j^-$ .)

To solve the optimization problem we use the *method of Lagrange multipliers*. Write L(v, λ, γ) := u<sup>T</sup> log v − ∑λ<sub>j</sub>b<sub>j</sub><sup>T</sup> log v − γ(n − ∑v<sub>i</sub>).
Putting the gradient of L to zero yields that the critical points are the solutions to the k + l + 1 equations

$$\frac{u_i}{v_i} + \sum \lambda_j \frac{b_{ij}}{v_i} + \gamma = 0, \ b_j^T \log v = 0, \ \sum v_i = n.$$

Section 1 – MLE and Algeb 0000000 Section 2 – Discrete Models 00000000 Section 3 – Gaussian Models 0000000 Section 4 – Outro O

# Birch's Theorem – Part 2

#### Proof (2/2).

• The first constraint,  $b_j^T \log v = 0$ , is equivalent to  $v \in \mathcal{V}(I_A)$ . This is essentially because  $v^z = v^{z'}$  if and only if  $(z - z')^T \log v = 0$  (let  $z = b_j^+$  and  $z' = b_j^-$ .)

To solve the optimization problem we use the *method of Lagrange multipliers*. Write L(v, λ, γ) := u<sup>T</sup> log v − ∑λ<sub>j</sub>b<sub>j</sub><sup>T</sup> log v − γ(n − ∑v<sub>i</sub>).
Putting the gradient of L to zero yields that the critical points are the solutions to the k + l + 1 equations

$$\frac{u_i}{v_i} + \sum \lambda_j \frac{b_{ij}}{v_i} + \gamma = 0, \ b_j^T \log v = 0, \ \sum v_i = n.$$

Section 1 – MLE and Algebr 0000000 Section 2 – Discrete Models 00000000 Section 3 – Gaussian Models 0000000 Section 4 – Outro O

# Birch's Theorem – Part 2

### Proof (2/2).

• The first constraint,  $b_j^T \log v = 0$ , is equivalent to  $v \in \mathcal{V}(I_A)$ . This is essentially because  $v^z = v^{z'}$  if and only if  $(z - z')^T \log v = 0$  (let  $z = b_j^+$  and  $z' = b_j^-$ .)

To solve the optimization problem we use the *method of Lagrange multipliers*. Write L(v, λ, γ) := u<sup>T</sup> log v − ∑λ<sub>j</sub>b<sub>j</sub><sup>T</sup> log v − γ(n − ∑v<sub>i</sub>).
Putting the gradient of L to zero yields that the critical points are the solutions to the k + l + 1 equations

$$\frac{u_i}{v_i} + \sum \lambda_j \frac{b_{ij}}{v_i} + \gamma = 0, \ b_j^T \log v = 0, \ \sum v_i = n.$$

Section 1 – MLE and Algebr 0000000 Section 2 – Discrete Models

Section 3 – Gaussian Models 0000000

Section 4 – Outro O

# Junction Trees – Part 1

• Let  $\Gamma$  be a decomposable simplicial complex. A *junction tree* is a tree whose vertices are the facets of  $\Gamma$ , whose edges are labeled by separators in  $\Gamma$ , and such that each edge splits the set of facets of  $\Gamma$  into two subcomplexes  $\Gamma_1, \Gamma_2$  in  $(\Gamma_1, S, \Gamma_2)$ .

• If  $\Gamma = [123][134]$ , then [123] - [134] represents the unique junction tree. For  $\Gamma = [12][13][14]$ , there are a few different junction trees, for example [12] - [13] - [14]. A junction tree can be obtained by breaking down a decomposable complex down to its constituent simplices.

Section 1 – MLE and Algebr 0000000 Section 2 – Discrete Models 00000000 Section 3 – Gaussian Models 0000000

Section 4 – Outro O

# Junction Trees – Part 1

• Let  $\Gamma$  be a decomposable simplicial complex. A *junction tree* is a tree whose vertices are the facets of  $\Gamma$ , whose edges are labeled by separators in  $\Gamma$ , and such that each edge splits the set of facets of  $\Gamma$  into two subcomplexes  $\Gamma_1, \Gamma_2$  in  $(\Gamma_1, S, \Gamma_2)$ .

• If  $\Gamma = [123][134]$ , then [123] - [134] represents the unique junction tree. For  $\Gamma = [12][13][14]$ , there are a few different junction trees, for example [12] - [13] - [14]. A junction tree can be obtained by breaking down a decomposable complex down to its constituent simplices.

Section 1 – MLE and Algeb

Section 2 – Discrete Models 00000000 Section 3 – Gaussian Models 0000000

◆□▶ ◆□▶ ◆□▶ ◆□▶ □ のQで

Section 4 – Outro

# Junction Trees – Part 2

• A *clique* in a graph *G* is a subgraph that is complete, meaning each vertex is connected to all other vertices by an edge in this subgraph.

# Proposition (2.1.7)

Let  $\Gamma$  be a decomposable simplicial complex. Let u be data such that all marginals along cliques are positive. Let  $J(\Gamma)$  be a junction tree for  $\Gamma$ . Then the maximum likelihood estimates of the table of frequencies is given by

$$\hat{u}_i = \frac{\prod_{F \in V(J(\Gamma))} (u|_F)_{i_F}}{\prod_{S \in E(J(\Gamma))} (u|_S)_{i_S}}$$

In particular, decomposable models have ML degree one.

• The condition on the cliques makes sure that the denominator is non-zero.

• Recall the underlying hierarchical log-linear model

$$\mathcal{M}_{\Gamma} = \left\{ p \in \Delta : p_i = \frac{1}{Z(\theta)} \prod_F \theta_{i_F}^{(F)} \right\}$$

Section 1 – MLE and Algeb

Section 2 – Discrete Models

Section 3 – Gaussian Models 0000000

< □ > < 同 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Section 4 – Outro

# Junction Trees – Part 2

• A *clique* in a graph *G* is a subgraph that is complete, meaning each vertex is connected to all other vertices by an edge in this subgraph.

# Proposition (2.1.7)

Let  $\Gamma$  be a decomposable simplicial complex. Let u be data such that all marginals along cliques are positive. Let  $J(\Gamma)$  be a junction tree for  $\Gamma$ . Then the maximum likelihood estimates of the table of frequencies is given by

$$\hat{u}_i = \frac{\prod_{F \in V(J(\Gamma))} (u|_F)_{i_F}}{\prod_{S \in E(J(\Gamma))} (u|_S)_{i_S}}$$

In particular, decomposable models have ML degree one.

• The condition on the cliques makes sure that the denominator is non-zero.

• Recall the underlying hierarchical log-linear model

$$\mathcal{M}_{\Gamma} = \left\{ p \in \Delta : p_i = \frac{1}{Z(\theta)} \prod_F \theta_{i_F}^{(F)} \right\}$$

Section 1 – MLE and Algeb

Section 2 – Discrete Models 00000000 Section 3 – Gaussian Models 0000000

< □ > < 同 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Section 4 – Outro

# Junction Trees – Part 2

• A *clique* in a graph *G* is a subgraph that is complete, meaning each vertex is connected to all other vertices by an edge in this subgraph.

# Proposition (2.1.7)

Let  $\Gamma$  be a decomposable simplicial complex. Let u be data such that all marginals along cliques are positive. Let  $J(\Gamma)$  be a junction tree for  $\Gamma$ . Then the maximum likelihood estimates of the table of frequencies is given by

$$\hat{u}_i = \frac{\prod_{F \in V(J(\Gamma))} (u|_F)_{i_F}}{\prod_{S \in E(J(\Gamma))} (u|_S)_{i_S}}$$

In particular, decomposable models have ML degree one.

- The condition on the cliques makes sure that the denominator is non-zero.
- Recall the underlying hierarchical log-linear model

$$\mathcal{M}_{\Gamma} = \left\{ p \in \Delta : p_i = \frac{1}{Z(\theta)} \prod_F \theta_{i_F}^{(F)} \right\}$$

Section 1 – MLE and Algeb

Section 2 – Discrete Models 00000000 Section 3 – Gaussian Models 0000000

< □ > < 同 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Section 4 – Outro

# Junction Trees – Part 2

• A *clique* in a graph *G* is a subgraph that is complete, meaning each vertex is connected to all other vertices by an edge in this subgraph.

# Proposition (2.1.7)

Let  $\Gamma$  be a decomposable simplicial complex. Let u be data such that all marginals along cliques are positive. Let  $J(\Gamma)$  be a junction tree for  $\Gamma$ . Then the maximum likelihood estimates of the table of frequencies is given by

$$\hat{u}_i = \frac{\prod_{F \in V(J(\Gamma))} (u|_F)_{i_F}}{\prod_{S \in E(J(\Gamma))} (u|_S)_{i_S}}$$

In particular, decomposable models have ML degree one.

- The condition on the cliques makes sure that the denominator is non-zero.
- Recall the underlying hierarchical log-linear model

$$\mathcal{M}_{\Gamma} = \left\{ p \in \Delta : p_i = \frac{1}{Z(\theta)} \prod_F \theta_{i_F}^{(F)} \right\}.$$

Section 1 – MLE and Algeb 0000000 Section 2 – Discrete Models 0000000 Section 3 – Gaussian Models 0000000

< □ > < 同 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Section 4 – Outro O

# **Iterative Proportional Scaling**

• There is no closed-form formula for maximum likelihood estimates for non-decomposable log-linear models. However, the log-likelihood function is convex for these models and therefore computer algorithms are appropriate for computing ML estimates.

• A popular choice for an algorithm is the **Iterative Proportional Scaling Algorithm** (*Lecture Notes on Algebraic Statistics*, page 43.) It inputs  $A \in \mathbb{N}^{d \times k}$ , a table of counts  $u \in \mathbb{N}^k$  and a tolerance  $\epsilon > 0$ , and outputs expected counts  $\hat{u}$ .

Section 1 – MLE and Algeb 0000000 Section 2 – Discrete Models 0000000 Section 3 – Gaussian Models 0000000

< □ > < 同 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Section 4 – Outro O

# **Iterative Proportional Scaling**

• There is no closed-form formula for maximum likelihood estimates for non-decomposable log-linear models. However, the log-likelihood function is convex for these models and therefore computer algorithms are appropriate for computing ML estimates.

• A popular choice for an algorithm is the **Iterative Proportional** Scaling Algorithm (*Lecture Notes on Algebraic Statistics*, page 43.) It inputs  $A \in \mathbb{N}^{d \times k}$ , a table of counts  $u \in \mathbb{N}^k$  and a tolerance  $\epsilon > 0$ , and outputs expected counts  $\hat{u}$ .

Section 1 – MLE and Algebr 0000000 Section 2 – Discrete Models

Section 3 – Gaussian Models •000000

・ロト・ 日本・ エート・ エー・ シックの

Section 4 – Outro

# Gaussian Models

• A *Gaussian model* is described by  $\mathcal{P}_{\Theta} = {\mathcal{N}(\mu, \Sigma) : \theta = (\mu, \Sigma) \in \Theta}$ , where  $\Theta \subseteq \mathbb{R}^m \times \mathrm{PD}_m$  (PD<sub>m</sub> is the cone of symmetric positive definite matrices.) We write  $X \sim \mathcal{N}(\mu, \Sigma)$  for an *m*-dimensional random vector X if it has the density function

$$f_{\mu,\Sigma}(x) = \frac{1}{(2\pi)^{m/2} (\det \Sigma)^{1/2}} e^{-\frac{1}{2}(x-\mu)^T \Sigma^{-1}(x-\mu)},$$

where  $x, \mu \in \mathbb{R}^m$  and  $\Sigma$  is a symmetric positive definite matrix. We call  $\mu$  the mean and  $\Sigma$  is the covariance matrix.

• The log-likelihood function is up to a constant equal to

$$\ell(\mu, \Sigma) = -\frac{n}{2} \log \det \Sigma - \frac{1}{2} \sum (X^{(i)} - \mu)^T \Sigma^{-1} (X^{(i)} - \mu).$$

It is a simple exercise to show that  $v^T A v = trace(Av^T v)$ , implying

$$\ell(\mu, \Sigma) = -\frac{n}{2} \log \det \Sigma - \frac{1}{2} \operatorname{trace} \left( \Sigma^{-1} \sum (X^{(i)} - \mu) (X^{(i)} - \mu)^T \right).$$

Section 1 – MLE and Algebr 0000000 Section 2 – Discrete Models

Section 3 – Gaussian Models • 000000 Section 4 – Outro

# Gaussian Models

• A *Gaussian model* is described by  $\mathcal{P}_{\Theta} = {\mathcal{N}(\mu, \Sigma) : \theta = (\mu, \Sigma) \in \Theta}$ , where  $\Theta \subseteq \mathbb{R}^m \times \mathrm{PD}_m$  (PD<sub>m</sub> is the cone of symmetric positive definite matrices.) We write  $X \sim \mathcal{N}(\mu, \Sigma)$  for an *m*-dimensional random vector X if it has the density function

$$f_{\mu,\Sigma}(x) = \frac{1}{(2\pi)^{m/2} (\det \Sigma)^{1/2}} e^{-\frac{1}{2}(x-\mu)^T \Sigma^{-1}(x-\mu)},$$

where  $x, \mu \in \mathbb{R}^m$  and  $\Sigma$  is a symmetric positive definite matrix. We call  $\mu$  the mean and  $\Sigma$  is the covariance matrix.

• The log-likelihood function is up to a constant equal to

$$\ell(\mu, \Sigma) = -\frac{n}{2} \log \det \Sigma - \frac{1}{2} \sum (X^{(i)} - \mu)^T \Sigma^{-1} (X^{(i)} - \mu).$$

It is a simple exercise to show that  $v^T A v = \text{trace}(A v^T v)$ , implying

$$\ell(\mu, \Sigma) = -\frac{n}{2} \log \det \Sigma - \frac{1}{2} \operatorname{trace} \left( \Sigma^{-1} \sum (X^{(i)} - \mu) (X^{(i)} - \mu)^T \right).$$

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ● □ ● ● ● ●

Section 1 – MLE and Algeb

Section 2 – Discrete Models 00000000 Section 3 – Gaussian Models 000000 Section 4 – Outro

# The Saturated Gaussian Model

• The *saturated* Gaussian model is described by  $\Theta = \mathbb{R}^m \times PD_m$ . For this model, we have the ML-estimates

$$\hat{\mu} = \overline{X} = \frac{1}{n} \sum X^{(i)}, \ \hat{\Sigma} = S = \frac{1}{n} \sum (X^{(i)} - \mu) (X^{(i)} - \mu)^T.$$

# We call $\overline{X}$ the *sample mean* and *S* the *sample covariance*.

• Let us deduce the formula for  $\hat{\mu}$ . Observe that

$$\sum (X^{(i)} - \mu)^T \Sigma^{-1} (X^{(i)} - \mu) = \sum X^{(i)T} \Sigma^{-1} X^{(i)} - 2\mu^T \Sigma^{-1} X^{(i)} + \mu^T \Sigma^{-1} \mu.$$

Using the formula

$$x^T A y = \sum_{ij} A_{ij} x_i y_j,$$

we get the score equations

$$0 = \frac{\partial \ell(\mu, \Sigma)}{\partial \mu_k} = -\frac{1}{2} \sum_i \left( 2 \sum_j \Sigma_{kj}^{-1} \mu_j - 2(\Sigma^{-1} X^{(i)})_k \right) \Rightarrow \sum_i \left( \Sigma^{-1} \mu - \Sigma^{-1} X^i \right) = 0$$

|▲□▶▲圖▶▲圖▶▲圖▶ | 圖||||の��

Section 1 – MLE and Algeb

Section 2 – Discrete Models 00000000 Section 3 – Gaussian Models 000000 Section 4 – Outro O

# The Saturated Gaussian Model

• The *saturated* Gaussian model is described by  $\Theta = \mathbb{R}^m \times PD_m$ . For this model, we have the ML-estimates

$$\hat{\mu} = \overline{X} = \frac{1}{n} \sum X^{(i)}, \ \hat{\Sigma} = S = \frac{1}{n} \sum (X^{(i)} - \mu) (X^{(i)} - \mu)^T.$$

We call  $\overline{X}$  the sample mean and S the sample covariance.

• Let us deduce the formula for  $\hat{\mu}$ . Observe that

$$\sum (X^{(i)} - \mu)^T \Sigma^{-1} (X^{(i)} - \mu) = \sum X^{(i)T} \Sigma^{-1} X^{(i)} - 2\mu^T \Sigma^{-1} X^{(i)} + \mu^T \Sigma^{-1} \mu.$$

Using the formula

$$x^T A y = \sum_{ij} A_{ij} x_i y_j,$$

we get the score equations

$$0 = \frac{\partial \ell(\mu, \Sigma)}{\partial \mu_k} = -\frac{1}{2} \sum_i \left( 2 \sum_j \Sigma_{kj}^{-1} \mu_j - 2(\Sigma^{-1} X^{(i)})_k \right) \Rightarrow \sum_i \left( \Sigma^{-1} \mu - \Sigma^{-1} X^i \right) = 0$$

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ● ○ ○ ○ ○

Section 1 – MLE and Algeb

Section 2 – Discrete Models 00000000 Section 3 – Gaussian Models

Section 4 – Outro

# Special Cases – Part 1

 $\bullet$  Using S, we can rewrite our log-likelihood function

$$\ell(\mu, \Sigma) = -\frac{n}{2} \log \det \Sigma - \frac{n}{2} \operatorname{trace}(S\Sigma^{-1}) - \frac{n}{2} (\overline{X} - \mu)^T (\overline{X} - \mu).$$

#### Proposition (2.1.10)

Suppose that  $\Theta = \Theta_1 \times \{I_m\}$  is the parameter space of a Gaussian model. The MLE  $\hat{\mu}$  of the mean is the point in  $\Theta_1 \subseteq \mathbb{R}^m$  that is the closest to  $\overline{X}$  in the  $L^2$ -norm.

#### Proof.

• When  $\Sigma$  is the identity matrix  $I_m$ , the log-likelihood function reduces to

$$\ell(\mu, \mathbf{I}_m) = -\frac{n}{2} \operatorname{trace} S - \frac{n}{2} (\overline{X} - \mu)^T (\overline{X} - \mu) = -\frac{n}{2} \operatorname{trace} S - \frac{n}{2} \|\overline{X} - \mu\|_2^2.$$

• Therefore, maximizing  $\ell$  over  $\Theta_1$  is equivalent to minimizing  $\|\overline{X} - \mu\|_2$ over  $\Theta_1$ .

▲□▶▲□▶▲□▶▲□▶ □ のへで

Section 1 – MLE and Algeb

Section 2 – Discrete Models 00000000 Section 3 – Gaussian Models

Section 4 – Outro

# Special Cases – Part 1

 $\bullet$  Using S, we can rewrite our log-likelihood function

$$\ell(\mu, \Sigma) = -\frac{n}{2} \log \det \Sigma - \frac{n}{2} \operatorname{trace}(S\Sigma^{-1}) - \frac{n}{2} (\overline{X} - \mu)^T (\overline{X} - \mu).$$

# Proposition (2.1.10)

Suppose that  $\Theta = \Theta_1 \times \{I_m\}$  is the parameter space of a Gaussian model. The MLE  $\hat{\mu}$  of the mean is the point in  $\Theta_1 \subseteq \mathbb{R}^m$  that is the closest to  $\overline{X}$  in the  $L^2$ -norm.

#### Proof.

• When  $\Sigma$  is the identity matrix  $I_m$ , the log-likelihood function reduces to

$$\ell(\mu, \mathbf{I}_m) = -\frac{n}{2} \operatorname{trace} S - \frac{n}{2} (\overline{X} - \mu)^T (\overline{X} - \mu) = -\frac{n}{2} \operatorname{trace} S - \frac{n}{2} \|\overline{X} - \mu\|_2^2.$$

• Therefore, maximizing  $\ell$  over  $\Theta_1$  is equivalent to minimizing  $\|\overline{X} - \mu\|_2$ over  $\Theta_1$ .

▲□▶▲圖▶▲≣▶▲≣▶ ≣ のQ@

Section 1 – MLE and Algeb

Section 2 – Discrete Models 00000000 Section 3 – Gaussian Models

Section 4 – Outro

# Special Cases – Part 1

 $\bullet$  Using S, we can rewrite our log-likelihood function

$$\ell(\mu, \Sigma) = -\frac{n}{2} \log \det \Sigma - \frac{n}{2} \operatorname{trace}(S\Sigma^{-1}) - \frac{n}{2} (\overline{X} - \mu)^T (\overline{X} - \mu).$$

#### Proposition (2.1.10)

Suppose that  $\Theta = \Theta_1 \times \{I_m\}$  is the parameter space of a Gaussian model. The MLE  $\hat{\mu}$  of the mean is the point in  $\Theta_1 \subseteq \mathbb{R}^m$  that is the closest to  $\overline{X}$  in the  $L^2$ -norm.

### Proof.

• When  $\Sigma$  is the identity matrix  $\mathbf{I}_m,$  the log-likelihood function reduces to

$$\ell(\mu, \mathbf{I}_m) = -\frac{n}{2} \operatorname{trace} S - \frac{n}{2} (\overline{X} - \mu)^T (\overline{X} - \mu) = -\frac{n}{2} \operatorname{trace} S - \frac{n}{2} \|\overline{X} - \mu\|_2^2.$$

• Therefore, maximizing  $\ell$  over  $\Theta_1$  is equivalent to minimizing  $\|\overline{X} - \mu\|_2$ over  $\Theta_1$ .

▲□▶▲圖▶▲≧▶▲≧▶ 差 のへで

Section 1 – MLE and Algeb 0000000 Section 2 – Discrete Models 00000000 Section 3 – Gaussian Models

Section 4 – Outro

# Special Cases – Part 1

 $\bullet$  Using S, we can rewrite our log-likelihood function

$$\ell(\mu, \Sigma) = -\frac{n}{2} \log \det \Sigma - \frac{n}{2} \operatorname{trace}(S\Sigma^{-1}) - \frac{n}{2} (\overline{X} - \mu)^T (\overline{X} - \mu).$$

#### Proposition (2.1.10)

Suppose that  $\Theta = \Theta_1 \times \{I_m\}$  is the parameter space of a Gaussian model. The MLE  $\hat{\mu}$  of the mean is the point in  $\Theta_1 \subseteq \mathbb{R}^m$  that is the closest to  $\overline{X}$  in the  $L^2$ -norm.

## Proof.

• When  $\Sigma$  is the identity matrix  $\mathbf{I}_m,$  the log-likelihood function reduces to

$$\ell(\mu, \mathbf{I}_m) = -\frac{n}{2}\operatorname{trace} S - \frac{n}{2}(\overline{X} - \mu)^T (\overline{X} - \mu) = -\frac{n}{2}\operatorname{trace} S - \frac{n}{2}\|\overline{X} - \mu\|_2^2.$$

• Therefore, maximizing  $\ell$  over  $\Theta_1$  is equivalent to minimizing  $\|\overline{X} - \mu\|_2$ over  $\Theta_1$ .

|▲□▶▲@▶▲≧▶▲≧▶ 差 のへで

Section 1 – MLE and Algebra

Section 2 – Discrete Models 00000000 Section 3 – Gaussian Models

Section 4 – Outro

# Special Cases – Part 2

#### Proposition (2.1.12)

Suppose that  $\Theta = \mathbb{R}^m \times \Theta_2$ . Then  $\hat{\mu} = \overline{X}$  and  $\hat{\Sigma}$  is the maximizer of

$$\mathcal{E}(\Sigma) = -\frac{n}{2} \log \det \Sigma - \frac{n}{2} \operatorname{trace} S \Sigma^{-1}$$

in the set  $\Theta_2$ .

#### Proof.

• The inverse of  $\Sigma$  is also positive definite (recall that a matrix is positive definite if and only if all its eigenvalues are positive.) Therefore  $(\overline{X} - \mu)^T \Sigma^{-1} (\overline{X} - \mu) \ge 0$  and equality holds if and only if  $\mu = \overline{X}$ .

◆□▶ ◆□▶ ◆目▶ ◆目▶ 目 のへぐ

Section 1 – MLE and Algeb 0000000 Section 2 – Discrete Models 00000000 Section 3 – Gaussian Models 0000000 Section 4 – Outro

# Special Cases – Part 2

#### Proposition (2.1.12)

Suppose that  $\Theta = \mathbb{R}^m \times \Theta_2$ . Then  $\hat{\mu} = \overline{X}$  and  $\hat{\Sigma}$  is the maximizer of

$$\mathcal{E}(\Sigma) = -\frac{n}{2} \log \det \Sigma - \frac{n}{2} \operatorname{trace} S \Sigma^{-1}$$

in the set  $\Theta_2$ .

#### Proof.

• The inverse of  $\Sigma$  is also positive definite (recall that a matrix is positive definite if and only if all its eigenvalues are positive.) Therefore  $(\overline{X} - \mu)^T \Sigma^{-1} (\overline{X} - \mu) \ge 0$  and equality holds if and only if  $\mu = \overline{X}$ .

 $\mathcal{O}$ 

・ロト・ 日本・ エート・ エー・ シックの

Section 1 – MLE and Algebra

Section 2 – Discrete Models 00000000 Section 3 – Gaussian Models 0000000

< □ > < 同 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Section 4 – Outro

# Special Cases – Part 3

Theorem (2.1.14)

Let G = (V, E) be an undirected graph and  $\Theta = \mathbb{R}^m \times \Theta_2$ , where

 $\Theta_2 = \{ \Sigma \in \mathrm{PD}_m : (\Sigma^{-1})_{ij} = 0 \text{ if } ij \notin E \}.$ 

The ML-estimate of  $\Sigma$  given a positive definite sample covariance matrix S is, the unique positive definite matrix  $\hat{\Sigma}$  such that  $\hat{\Sigma}_{ij} = S_{ij}$ ,  $ij \in E$  and  $(\hat{\Sigma}^{-1})_{ij} = 0$  for  $ij \notin E$ .

Models of this form as by definition called *Gaussian graphical models*.
The inverse K = Σ<sup>-1</sup> of the covariance matrix is known as the *concentration* matrix and in some cases it is more convienient to parametrize the model via concentration matrices.

• Observing  $\log \det K = -\log \det \Sigma$  allows us to instead consider the log-likelihood function (up to scaling)

 $K \mapsto \log \det K - \operatorname{trace}(SK).$ 

Section 1 – MLE and Algebra

Section 2 – Discrete Models 00000000 Section 3 – Gaussian Models 0000000

< □ > < 同 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Section 4 – Outro O

# Special Cases – Part 3

Theorem (2.1.14)

Let G = (V, E) be an undirected graph and  $\Theta = \mathbb{R}^m \times \Theta_2$ , where

 $\Theta_2 = \{ \Sigma \in \mathrm{PD}_m : (\Sigma^{-1})_{ij} = 0 \text{ if } ij \notin E \}.$ 

The ML-estimate of  $\Sigma$  given a positive definite sample covariance matrix S is, the unique positive definite matrix  $\hat{\Sigma}$  such that  $\hat{\Sigma}_{ij} = S_{ij}$ ,  $ij \in E$  and  $(\hat{\Sigma}^{-1})_{ij} = 0$  for  $ij \notin E$ .

# • Models of this form as by definition called *Gaussian graphical models*.

• The inverse  $K = \Sigma^{-1}$  of the covariance matrix is known as the *concentration* matrix and in some cases it is more convienient to parametrize the model via concentration matrices.

• Observing  $\log \det K = -\log \det \Sigma$  allows us to instead consider the log-likelihood function (up to scaling)

 $K \mapsto \log \det K - \operatorname{trace}(SK).$ 

Section 1 – MLE and Algebra

Section 2 – Discrete Models 00000000 Section 3 – Gaussian Models 0000000

< □ > < 同 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Section 4 – Outro O

# Special Cases – Part 3

Theorem (2.1.14)

Let G = (V, E) be an undirected graph and  $\Theta = \mathbb{R}^m \times \Theta_2$ , where

 $\Theta_2 = \{ \Sigma \in \mathrm{PD}_m : (\Sigma^{-1})_{ij} = 0 \text{ if } ij \notin E \}.$ 

The ML-estimate of  $\Sigma$  given a positive definite sample covariance matrix S is, the unique positive definite matrix  $\hat{\Sigma}$  such that  $\hat{\Sigma}_{ij} = S_{ij}$ ,  $ij \in E$  and  $(\hat{\Sigma}^{-1})_{ij} = 0$  for  $ij \notin E$ .

• Models of this form as by definition called *Gaussian graphical models*.

• The inverse  $K = \Sigma^{-1}$  of the covariance matrix is known as the *concentration* matrix and in some cases it is more convienient to parametrize the model via concentration matrices.

• Observing  $\log \det K = -\log \det \Sigma$  allows us to instead consider the log-likelihood function (up to scaling)

 $K \mapsto \log \det K - \operatorname{trace}(SK).$ 

Section 1 – MLE and Algebr

Section 2 – Discrete Models 00000000 Section 3 – Gaussian Models 0000000 Section 4 – Outro O

# Special Cases – Part 3

Theorem (2.1.14)

Let G = (V, E) be an undirected graph and  $\Theta = \mathbb{R}^m \times \Theta_2$ , where

 $\Theta_2 = \{ \Sigma \in \mathrm{PD}_m : (\Sigma^{-1})_{ij} = 0 \text{ if } ij \notin E \}.$ 

The ML-estimate of  $\Sigma$  given a positive definite sample covariance matrix S is, the unique positive definite matrix  $\hat{\Sigma}$  such that  $\hat{\Sigma}_{ij} = S_{ij}$ ,  $ij \in E$  and  $(\hat{\Sigma}^{-1})_{ij} = 0$  for  $ij \notin E$ .

• Models of this form as by definition called *Gaussian graphical models*.

• The inverse  $K = \Sigma^{-1}$  of the covariance matrix is known as the *concentration* matrix and in some cases it is more convienient to parametrize the model via concentration matrices.

• Observing  $\log \det K = -\log \det \Sigma$  allows us to instead consider the log-likelihood function (up to scaling)

$$K \mapsto \log \det K - \operatorname{trace}(SK).$$

Section 1 – MLE and Algeb 0000000 Section 2 – Discrete Models 00000000 Section 3 – Gaussian Models 0000000 Section 4 – Outro O

# Linear Spaces of Symmetric Matrices - Part 1

• An LSSM is a linear space (in particular a variety)  $\mathcal{L} \subseteq \mathbb{S}^n$ , where  $\mathbb{S}^n$  is the set of *n*-dimensional symmetric matrices. We assume it contains at least one invertible matrix. Let • denote the trace operator on matrices,  $A \bullet B := \text{trace}(AB)$ .

• The log-likelihood function for the concentration matrix is

 $\ell(K) = \log \det K - \operatorname{trace} SK.$ 

Let  $A_1, \ldots, A_m$  be matrices that span  $\mathcal{L}$ , so that  $\mathcal{L} = \{\sum \lambda_i A_i : \lambda_i \in \mathbb{C}^n\}$ . The score equations are

$$(\ell(M))'_{A_i} = \nabla \ell(M) \bullet A_i = (M^{-1} - S) \bullet A_i = 0.$$

• We define  $\mathcal{L}^{-1} := \overline{\{M^{-1} : M \in \mathcal{L} \cap \operatorname{GL}(\mathbb{S}^n)\}}^{\operatorname{Zar}}$  and  $\mathcal{L}^{\perp} := \{M \in \mathbb{S}^n : \operatorname{trace}(M\mathcal{L}) = 0\}.$ 

 $\bullet$  If we write  $\mathrm{mld}(\mathcal{L})$  for the ML-degree, then for a generic S

$$\operatorname{mld}(\mathcal{L}) = \# ((\mathcal{L}^{-1} - S) \cap \mathcal{L}^{\perp})$$

▲□▶ ▲圖▶ ▲圖▶ ▲圖▶ ▲圖 • ���

Section 1 – MLE and Algebrace

Section 2 – Discrete Models 00000000 Section 3 – Gaussian Models 0000000 Section 4 – Outro

# Linear Spaces of Symmetric Matrices - Part 1

- An LSSM is a linear space (in particular a variety)  $\mathcal{L} \subseteq \mathbb{S}^n$ , where  $\mathbb{S}^n$  is the set of *n*-dimensional symmetric matrices. We assume it contains at least one invertible matrix. Let denote the trace operator on matrices,  $A \bullet B := \text{trace}(AB)$ .
- The log-likelihood function for the concentration matrix is

 $\ell(K) = \log \det K - \operatorname{trace} SK.$ 

Let  $A_1, \ldots, A_m$  be matrices that span  $\mathcal{L}$ , so that  $\mathcal{L} = \{\sum \lambda_i A_i : \lambda_i \in \mathbb{C}^n\}$ . The score equations are

$$(\ell(M))'_{A_i} = \nabla \ell(M) \bullet A_i = (M^{-1} - S) \bullet A_i = 0.$$

• We define  $\mathcal{L}^{-1} := \overline{\{M^{-1} : M \in \mathcal{L} \cap \operatorname{GL}(\mathbb{S}^n)\}}^{\mathbb{Z}^{\operatorname{dr}}}$  and  $\mathcal{L}^{\perp} := \{M \in \mathbb{S}^n : \operatorname{trace}(M\mathcal{L}) = 0\}.$ 

• If we write  $mld(\mathcal{L})$  for the ML-degree, then for a generic S

$$\operatorname{mld}(\mathcal{L}) = \#((\mathcal{L}^{-1} - S) \cap \mathcal{L}^{\perp})$$

▲□▶▲□▶▲□▶▲□▶ ▲□ シヘ⊙

Section 1 – MLE and Algeb 0000000 Section 2 – Discrete Models 00000000 Section 3 – Gaussian Models 0000000 Section 4 – Outro

# Linear Spaces of Symmetric Matrices - Part 1

- An LSSM is a linear space (in particular a variety)  $\mathcal{L} \subseteq \mathbb{S}^n$ , where  $\mathbb{S}^n$  is the set of *n*-dimensional symmetric matrices. We assume it contains at least one invertible matrix. Let denote the trace operator on matrices,  $A \bullet B := \text{trace}(AB)$ .
- The log-likelihood function for the concentration matrix is

 $\ell(K) = \log \det K - \operatorname{trace} SK.$ 

Let  $A_1, \ldots, A_m$  be matrices that span  $\mathcal{L}$ , so that  $\mathcal{L} = \{\sum \lambda_i A_i : \lambda_i \in \mathbb{C}^n\}$ . The score equations are

$$(\ell(M))'_{A_i} = \nabla \ell(M) \bullet A_i = (M^{-1} - S) \bullet A_i = 0.$$

• We define  $\mathcal{L}^{-1} := \overline{\{M^{-1} : M \in \mathcal{L} \cap \operatorname{GL}(\mathbb{S}^n)\}}^{\operatorname{Zar}}$  and  $\mathcal{L}^{\perp} := \{M \in \mathbb{S}^n : \operatorname{trace}(M\mathcal{L}) = 0\}.$ 

 $\bullet$  If we write  $\mathrm{mld}(\mathcal{L})$  for the ML-degree, then for a generic S

$$\mathrm{mld}(\mathcal{L}) = \# \big( (\mathcal{L}^{-1} - S) \cap \mathcal{L}^{\perp} \big)$$

・ロト・「聞・・」 「」・ 「 」・ ( 」・

Section 1 – MLE and Algeb 0000000 Section 2 – Discrete Models 00000000 Section 3 – Gaussian Models 0000000 Section 4 – Outro O

# Linear Spaces of Symmetric Matrices - Part 1

- An LSSM is a linear space (in particular a variety)  $\mathcal{L} \subseteq \mathbb{S}^n$ , where  $\mathbb{S}^n$  is the set of *n*-dimensional symmetric matrices. We assume it contains at least one invertible matrix. Let denote the trace operator on matrices,  $A \bullet B := \text{trace}(AB)$ .
- The log-likelihood function for the concentration matrix is

 $\ell(K) = \log \det K - \operatorname{trace} SK.$ 

Let  $A_1, \ldots, A_m$  be matrices that span  $\mathcal{L}$ , so that  $\mathcal{L} = \{\sum \lambda_i A_i : \lambda_i \in \mathbb{C}^n\}$ . The score equations are

$$(\ell(M))'_{A_i} = \nabla \ell(M) \bullet A_i = (M^{-1} - S) \bullet A_i = 0.$$

• We define  $\mathcal{L}^{-1} := \overline{\{M^{-1} : M \in \mathcal{L} \cap \operatorname{GL}(\mathbb{S}^n)\}}^{\operatorname{Zar}}$  and  $\mathcal{L}^{\perp} := \{M \in \mathbb{S}^n : \operatorname{trace}(M\mathcal{L}) = 0\}.$ 

 $\bullet$  If we write  $\mathrm{mld}(\mathcal{L})$  for the ML-degree, then for a generic S

$$\operatorname{mld}(\mathcal{L}) = \#((\mathcal{L}^{-1} - S) \cap \mathcal{L}^{\perp})$$

◆□▶ ◆□▶ ◆目▶ ◆目▶ 目 のへぐ

Section 1 – MLE and Algebr 0000000 Section 2 – Discrete Models 00000000 Section 3 – Gaussian Models 0000000 Section 4 – Outro

# Linear Spaces of Symmetric Matrices – Part 2

• Observe that the set  $(\mathcal{L}^{-1} - S) \cap \mathcal{L}^{\perp}$  is a variety. We can use software to calculate the cardinality. Generically, there is no non-invertible matrix in this intersection.

• We simulate generic points by taking random rational data (and do this a few times to make sure that we did not get a non-generic point.)

• The *degree* of a variety is the *degree* of its defining radical ideal. The definition is a bit technical, but can be calculated with software.

Proposition (Linear spaces of symmetric matrices with non-maximal maximum likelihood degree, Theorem 1.1)

The ML-degree of a linear space  $\mathcal{L} \subset \mathbb{S}^n$  is at most the degree of the variety  $\mathbb{P}\mathcal{L}^{-1}$ . This is an equality if and only if the intersection  $\mathbb{P}\mathcal{L}^{-1} \cap \mathbb{P}\mathcal{L}^{\perp}$  is empty.

#### ▲□▶▲□▶▲□▶▲□▶ ▲□ ● ● ●

Section 1 – MLE and Algebr 0000000 Section 2 – Discrete Models 00000000 Section 3 – Gaussian Models 0000000 Section 4 – Outro

# Linear Spaces of Symmetric Matrices – Part 2

• Observe that the set  $(\mathcal{L}^{-1} - S) \cap \mathcal{L}^{\perp}$  is a variety. We can use software to calculate the cardinality. Generically, there is no non-invertible matrix in this intersection.

# • We simulate generic points by taking random rational data (and do this a few times to make sure that we did not get a non-generic point.)

• The *degree* of a variety is the *degree* of its defining radical ideal. The definition is a bit technical, but can be calculated with software.

Proposition (Linear spaces of symmetric matrices with non-maximal maximum likelihood degree, Theorem 1.1)

The ML-degree of a linear space  $\mathcal{L} \subset \mathbb{S}^n$  is at most the degree of the variety  $\mathbb{P}\mathcal{L}^{-1}$ . This is an equality if and only if the intersection  $\mathbb{P}\mathcal{L}^{-1} \cap \mathbb{P}\mathcal{L}^{\perp}$  is empty.

#### ▲□▶▲□▶▲□▶▲□▶ ▲□ ● ● ●

Section 1 – MLE and Algebr 0000000 Section 2 – Discrete Models 00000000 Section 3 – Gaussian Models 0000000

< □ > < 同 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Section 4 – Outro

# Linear Spaces of Symmetric Matrices – Part 2

• Observe that the set  $(\mathcal{L}^{-1} - S) \cap \mathcal{L}^{\perp}$  is a variety. We can use software to calculate the cardinality. Generically, there is no non-invertible matrix in this intersection.

• We simulate generic points by taking random rational data (and do this a few times to make sure that we did not get a non-generic point.)

• The *degree* of a variety is the *degree* of its defining radical ideal. The definition is a bit technical, but can be calculated with software.

Proposition (Linear spaces of symmetric matrices with non-maximal maximum likelihood degree, Theorem 1.1)

The ML-degree of a linear space  $\mathcal{L} \subset \mathbb{S}^n$  is at most the degree of the variety  $\mathbb{P}\mathcal{L}^{-1}$ . This is an equality if and only if the intersection  $\mathbb{P}\mathcal{L}^{-1} \cap \mathbb{P}\mathcal{L}^{\perp}$  is empty.
Section 0 – Introduction O Section 1 – MLE and Algebr 0000000 Section 2 – Discrete Models 00000000 Section 3 – Gaussian Models

Section 4 – Outro O

## Linear Spaces of Symmetric Matrices – Part 2

• Observe that the set  $(\mathcal{L}^{-1} - S) \cap \mathcal{L}^{\perp}$  is a variety. We can use software to calculate the cardinality. Generically, there is no non-invertible matrix in this intersection.

• We simulate generic points by taking random rational data (and do this a few times to make sure that we did not get a non-generic point.)

• The *degree* of a variety is the *degree* of its defining radical ideal. The definition is a bit technical, but can be calculated with software.

Proposition (Linear spaces of symmetric matrices with non-maximal maximum likelihood degree, Theorem 1.1)

The ML-degree of a linear space  $\mathcal{L} \subset \mathbb{S}^n$  is at most the degree of the variety  $\mathbb{P}\mathcal{L}^{-1}$ . This is an equality if and only if the intersection  $\mathbb{P}\mathcal{L}^{-1} \cap \mathbb{P}\mathcal{L}^{\perp}$  is empty.

Section 0 – Introduction O

Section 1 – MLE and Algebra

Section 2 – Discrete Models 00000000

Section 3 – Gaussian Models 0000000 Section 4 – Outro

## Outro

• Thank you for listening!



