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Overview

Goals for today:

1. Maximum Likelihood Estimation and Connections to Algebraic
Geometry,

2. Discrete Models with Examples,

3. Gaussian Models.
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Maximum Likelihood Estimation

• Consider a statistical model P⇥ = {P✓ : ✓ 2 ⇥}. Given identically
distributed independent random variables X(i)

⇠ P✓ for i = 1, . . . , n,
the likelihood function is given by:

L(✓) :=
nY

i=1

p✓(X
(i)).

We want to find the ✓ that maximizes L; we may equivalently consider
the log-likelihood function ` := logL. (Sometimes a multinomial
coefficient is included in the definition of L(✓).)

• The ML-estimator is the random variable defined as

✓̂ := argmax
✓2⇥

`(✓) = argmax
✓2⇥

L(✓)

Note that it is a random variable since it depends on X(i). The
maximum likelihood estimate of ✓ given data x(i) is obtained as ✓̂ when
substituting X(i) = x(i). Note that this ✓ is a parameter that maximizes
the likelihood of observing x(1), . . . , x(n).
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Algebraic Insights – Part 1

• Sullivant (Algebraic Statistics, page 2) gives the following dictionary:

Probability/Statistics Algebra/Geometry
Probability distribution Point in �
Statistical model Semi-algebraic set
Exponential Family Toric Variety
Conditional Inference Lattice points in polytopes
Maximum likelihood estimation Polynomial optimization
Model selection Geometry of singularities
Multivariate Gaussian distribution Spectrahedral geometry
Phylogenetic model Tensor networks
MAP estimates Tropical geometry
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Algebraic Insights – Part 2

• The score equations (also known as critical equations) are given by
setting @`/@✓i = 0 for each i. A point satisfying the equation is a critical
point. Any local maximum is a critical point under the assumption that
the parameter space ⇥ is open.

• For example, let

log p✓(X) = log q1(✓) + q2(✓) (1)

be a univariate quotient of polynomials of rational coefficients
(meaning qi 2 Q(✓).) The score equation is given by
q01(✓)/q1(✓) + q02(✓) = 0. This is an algebraic expression.

• Recall that solutions to algebraic equations is the main subject of
algebraic geometry.

• We define the ML-degree of a (possibly multivariate) statistical model
of the form (1) to be the number of complex solutions to the score
equations for generic data. Note that this bounds the number of real
solutions.
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Generic Data

• What is generic data? In algebraic geometry, a point in Kn (for some
field K) is generic if it lies in some fixed non-empty Zariski open set
(this is a set on the form Kn

\ V(I) for an ideal h0i 6= I ✓ K[x1, . . . , xn].)
The dimension of an open non-empty set is n and the dimension of the
set of non-generic points is at most n� 1.

• We can think of generic data as “random” data; randomly chosen data
has probability 1 of being generic.

• A statement that is true for generic points in Cn is also true for
generic points in Rn. This is essentially because the Zariski closure of
Rn in Cn is Cn (the Zariski closure of X is the smallest set of the form
V(I) that contains X.)
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Saturation – Part 1

• Let us return to the equation q01(✓)/q1(✓) + q02(✓) = 0. If we want to
solve it we might start by writing q1 = f1/g1 and q2 = f2/g2 so that we
get a polynomial equation:

f 0
1

g1
�

f1g
0
1

g21

f1/g1
�

�f 0
2

g2
�

f2g
0
2

g22

�
= 0 ) (2)

) g22(f
0
1g1 � f1g

0
1)� f1g1(f

0
2g2 � f2g

0
2) = 0. (3)

• We now have a nice polynomial equation, but we have gained
solutions that we did not have before. For example, points x such that
g2(x) = f1(x) = 0 solves the polynomial equation (3), but clearly not
the rational equation (2).

• Problems of this sort are solved using saturation of ideals. In this case
we study the ideal I = hg22(f

0
1g1 � f1g

0
1)� f1g1(f

0
2g2 � f2g

0
2)i and the

ideal of “bad” solutions J = hg1f1g2i.
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Saturation – Part 2

• Let I and J be two ideals of a ring R. We define the ideal quotient as
follows

(I : J) := {r 2 R : rJ ✓ I}.

• For a noetherian ring R (the polynomial rings Q[x],R[x],C[x], are
noetherian,) consider the inclusion of ideals

(I : J) ✓ (I : J2) ✓ (I : J3) ✓ · · · .

The chain stabilizes at some (I : JN ) and we call this the saturation of I
with respect to J and write (I : J1) or sat(I, J).

Proposition (Ideals, Varieties and Algorithms, Theorem 7 p. 195)

Let V(J),V(I) be two algebraic sets defined by ideals. Then

V(I) \ V(J)
Zar

= V(sat(I, J)).
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Saturation – Part 3

Example (2.1.3)

• Consider the score equations with table of counts u and parameters �i

u1 + u12

�1
+

u12

�1 + �2 + 2
�

u2 + u12

�1 + 1
�

u0 + u1 + u2 + u12

�1 + �2 + 1
= 0

u1 + u12

�2
+

u12

�1 + �2 + 2
�

u1 + u12

�2 + 1
�

u0 + u1 + u2 + u12

�1 + �2 + 1
= 0

• In a software like Macaulay2 or Singular, we let I be the ideal gener-
ated by the two equations above after clearing denominators. Let J be
the ideal generated by all the denominators:

J := h�1�2(�1 + 1)(�2 + 1)(�1 + �2 + 1)(�1 + �2 + 2)i

• As explained previously, in V(I), we have to many points. The ideal
that corresponds to the system of Example 2.1.3 is given by sat(I, J) =
(I, J1); this ideal describes the set of solutions that we are interested in.
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Discrete Models – Part 1

• A parametric discrete model is given by an open subset ⇥ ✓ Rd and a
rational map g : ⇥ ! �k�1, meaning each coordinate gi is a rational
function. We consider:

`(✓) = logL(✓) = log
kY

i=1

gi(✓)
ui =

X
ui log gi(✓),

for a table of counts ui = #{j : X(j) = i}.

Example (2.1.2, (1/3))

• The parametrization of the independence model MX??Y is the map
g : �r�1 ⇥�c�1 ! �rc�1, (↵,�) 7! (↵i�j).
• For a table of counts u 2 Nr⇥c, we have the log-likelihood

`(↵,�) =
X

uij log(↵i�j) =
X

i

ui+ log↵i +
X

j

u+j log �j ,

where ui+, u+j are the familiar marginal sums.



Section 0 – Introduction Section 1 – MLE and Algebra Section 2 – Discrete Models Section 3 – Gaussian Models Section 4 – Outro

Discrete Models – Part 1

• A parametric discrete model is given by an open subset ⇥ ✓ Rd and a
rational map g : ⇥ ! �k�1, meaning each coordinate gi is a rational
function. We consider:

`(✓) = logL(✓) = log
kY

i=1

gi(✓)
ui =

X
ui log gi(✓),

for a table of counts ui = #{j : X(j) = i}.

Example (2.1.2, (1/3))

• The parametrization of the independence model MX??Y is the map
g : �r�1 ⇥�c�1 ! �rc�1, (↵,�) 7! (↵i�j).
• For a table of counts u 2 Nr⇥c, we have the log-likelihood

`(↵,�) =
X

uij log(↵i�j) =
X

i

ui+ log↵i +
X

j

u+j log �j ,

where ui+, u+j are the familiar marginal sums.



Section 0 – Introduction Section 1 – MLE and Algebra Section 2 – Discrete Models Section 3 – Gaussian Models Section 4 – Outro

Discrete Models – Part 1

• A parametric discrete model is given by an open subset ⇥ ✓ Rd and a
rational map g : ⇥ ! �k�1, meaning each coordinate gi is a rational
function. We consider:

`(✓) = logL(✓) = log
kY

i=1

gi(✓)
ui =

X
ui log gi(✓),

for a table of counts ui = #{j : X(j) = i}.

Example (2.1.2, (1/3))

• The parametrization of the independence model MX??Y is the map
g : �r�1 ⇥�c�1 ! �rc�1, (↵,�) 7! (↵i�j).
• For a table of counts u 2 Nr⇥c, we have the log-likelihood

`(↵,�) =
X

uij log(↵i�j) =
X

i

ui+ log↵i +
X

j

u+j log �j ,

where ui+, u+j are the familiar marginal sums.



Section 0 – Introduction Section 1 – MLE and Algebra Section 2 – Discrete Models Section 3 – Gaussian Models Section 4 – Outro

Discrete Models – Part 2

Example (2.1.2, (2/3))

• Observe that ↵i,�j are not independent of each other since they need to
sum to 1. We resolve this by letting

↵r = 1�
r�1X

i=1

↵i, �c = 1�
c�1X

j=1

�j

• The score equations are

@`(↵,�)
@↵i

=
ui+

↵i
�

ur+

1�
Pr�1

k=1 ↵k

= 0, 8i = 1, . . . , r � 1

@`(↵,�)
@�j

=
u+j

�j
�

u+c

1�
Pc�1

k=1 �k

= 0, 8j = 1, . . . , c� 1
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Discrete Models – Part 3

Example (2.1.2, (3/3))

• Clearing denominators gives systems of linear equations. For example, if
↵0 = (↵1, . . . ,↵r�1)

2

6664

u1+ + ur+ u1+ · · · u1+

u2+ u2+ + ur+ · · · u2+

...
...

. . .
...

ur�1+ ur�1+ · · · ur�1+ + ur+

3

7775
↵0 =

2

6664

u1+

u2+

...
ur�1+

3

7775

• Under the assumption that ur+ > 0, the matrix is full-rank and there is a
unique solution. One can check that the following is a solution (the MLE):

↵̂i =
ui+

u++
, �̂j =

u+j

u++
.

• “Having maximum likelihood degree one can be expressed
equivalently by saying that the ML estimate is a rational function of the
data.”
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u1+ + ur+ u1+ · · · u1+

u2+ u2+ + ur+ · · · u2+

...
...

. . .
...

ur�1+ ur�1+ · · · ur�1+ + ur+

3

7775
↵0 =

2

6664

u1+

u2+

...
ur�1+

3

7775

• Under the assumption that ur+ > 0, the matrix is full-rank and there is a
unique solution. One can check that the following is a solution (the MLE):

↵̂i =
ui+

u++
, �̂j =

u+j

u++
.

• “Having maximum likelihood degree one can be expressed
equivalently by saying that the ML estimate is a rational function of the
data.”
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Birch’s Theorem – Part 1

Proposition (2.1.5, Birch’s Theorem)

Let A 2 Nd⇥k and u 2 Nk. The ML-estimate of the frequencies û in MA is
the unique non-negative solution to Aû = Au for û 2 V(IA).

• The MLE û differs from the MLE p̂ by a constant: û = np̂, where
n =

P
ui.

• Recall that IA is the toric ideal hpz � pz
0
: z, z0 2 Nk, z � z0 2 kerZ Ai,

and MA := {p 2 � : log p 2 rowspanA}. Recall that the Zariski closure
of MA is V(IA).

Proof (1/2).

• Let b1, . . . , bl be a basis for kerZ A. Observe that p 2 MA if and only if
log p = ATx and p 2 � if and only if bTj log p = 0 and

P
pi = 1. (For

example, log p = ATx implies bTj log p = (Abj)
Tx = 0.)

• Let v be the non-negative estimated table of counts. The expression
uT log v is up to a constant equal to log

Q
pui
i , if we let pi = vi/n.

• We wish to maximize is uT log v, subject to bTj log v = 0 for all j = 1, . . . , l
and

P
vi = n.
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• The MLE û differs from the MLE p̂ by a constant: û = np̂, where
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Birch’s Theorem – Part 2

Proof (2/2).

• The first constraint, bTj log v = 0, is equivalent to v 2 V(IA). This is
essentially because vz = vz

0
if and only if (z � z0)T log v = 0 (let z = b+j and

z0 = b�j .)
• To solve the optimization problem we use the method of Lagrange
multipliers. Write L(v,�, �) := uT log v �

P
�jb

T
j log v � �(n�

P
vi).

• Putting the gradient of L to zero yields that the critical points are the
solutions to the k + l + 1 equations

ui

vi
+

X
�j

bij
vi

+ � = 0, bTj log v = 0,
X

vi = n.

• The first conditions after clearing denominators can be written
u+ �B = ��v. We get Au = (��)Av. Since the column sum of A are all
equal, we get

P
(Au)i = a

P
ui = ��a

P
vi, implying � = �1 and Au = Av.

• Uniqueness is due to the strict convexity of the likelihood function. O
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Junction Trees – Part 1

• Let � be a decomposable simplicial complex. A junction tree is a tree
whose vertices are the facets of �, whose edges are labeled by
separators in �, and such that each edge splits the set of facets of � into
two subcomplexes �1,�2 in (�1, S,�2).

• If � = [123][134], then [123]� [134] represents the unique junction
tree. For � = [12][13][14], there are a few different junction trees, for
example [12]� [13]� [14]. A junction tree can be obtained by breaking
down a decomposable complex down to its constituent simplices.
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Junction Trees – Part 2

• A clique in a graph G is a subgraph that is complete, meaning each
vertex is connected to all other vertices by an edge in this subgraph.

Proposition (2.1.7)

Let � be a decomposable simplicial complex. Let u be data such that all
marginals along cliques are positive. Let J(�) be a junction tree for �. Then
the maximum likelihood estimates of the table of frequencies is given by

ûi =

Q
F2V (J(�))(u|F )iFQ
S2E(J(�))(u|S)iS

In particular, decomposable models have ML degree one.

• The condition on the cliques makes sure that the denominator is
non-zero.

• Recall the underlying hierarchical log-linear model

M� =
n
p 2 � : pi =

1
Z(✓)

Y

F

✓(F )
iF

o
.
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ûi =

Q
F2V (J(�))(u|F )iFQ
S2E(J(�))(u|S)iS

In particular, decomposable models have ML degree one.

• The condition on the cliques makes sure that the denominator is
non-zero.

• Recall the underlying hierarchical log-linear model

M� =
n
p 2 � : pi =

1
Z(✓)

Y

F

✓(F )
iF

o
.



Section 0 – Introduction Section 1 – MLE and Algebra Section 2 – Discrete Models Section 3 – Gaussian Models Section 4 – Outro

Iterative Proportional Scaling

• There is no closed-form formula for maximum likelihood estimates
for non-decomposable log-linear models. However, the log-likelihood
function is convex for these models and therefore computer algorithms
are appropriate for computing ML estimates.

• A popular choice for an algorithm is the Iterative Proportional
Scaling Algorithm (Lecture Notes on Algebraic Statistics, page 43.) It
inputs A 2 Nd⇥k, a table of counts u 2 Nk and a tolerance ✏ > 0, and
outputs expected counts û.
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Gaussian Models

• A Gaussian model is described by P⇥ = {N (µ,⌃) : ✓ = (µ,⌃) 2 ⇥}, where
⇥ ✓ Rm

⇥ PDm (PDm is the cone of symmetric positive definite matrices.)
We write X ⇠ N (µ,⌃) for an m-dimensional random vector X if it has the
density function

fµ,⌃(x) =
1

(2⇡)m/2(det⌃)1/2
e�

1
2 (x�µ)T⌃�1(x�µ),

where x, µ 2 Rm and ⌃ is a symmetric positive definite matrix. We call µ the
mean and ⌃ is the covariance matrix.

• The log-likelihood function is up to a constant equal to

`(µ,⌃) = �
n
2
log det⌃�

1
2

X
(X(i)

� µ)T⌃�1(X(i)
� µ).

It is a simple exercise to show that vTAv = trace(AvT v), implying

`(µ,⌃) = �
n
2
log det⌃�

1
2
trace

�
⌃�1

X
(X(i)

� µ)(X(i)
� µ)T

�
.
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The Saturated Gaussian Model

• The saturated Gaussian model is described by ⇥ = Rm
⇥ PDm. For this

model, we have the ML-estimates

µ̂ = X =
1
n

X
X(i), ⌃̂ = S =

1
n

X
(X(i)

� µ)(X(i)
� µ)T .

We call X the sample mean and S the sample covariance.

• Let us deduce the formula for µ̂. Observe that
X

(X(i)
�µ)T⌃�1(X(i)

�µ) =
X

X(i)T⌃�1X(i)
� 2µT⌃�1X(i) +µT⌃�1µ.

Using the formula
xTAy =

X

ij

Aijxiyj ,

we get the score equations

0 =
@`(µ,⌃)
@µk

= �
1
2

X

i

⇣
2
X

j

⌃�1
kj µj�2(⌃�1X(i))k

⌘
)

X

i

⇣
⌃�1µ�⌃�1Xi

⌘
= 0
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Special Cases – Part 1

• Using S, we can rewrite our log-likelihood function

`(µ,⌃) = �
n
2
log det⌃�

n
2
trace(S⌃�1)�

n
2
(X � µ)T (X � µ).

Proposition (2.1.10)

Suppose that ⇥ = ⇥1 ⇥ {Im} is the parameter space of a Gaussian model.
The MLE µ̂ of the mean is the point in ⇥1 ✓ Rm that is the closest to X in
the L2-norm.

Proof.
• When ⌃ is the identity matrix Im, the log-likelihood function reduces to

`(µ, Im) = �
n
2
traceS �

n
2
(X � µ)T (X � µ) = �

n
2
traceS �

n
2
kX � µk22.
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Special Cases – Part 2

Proposition (2.1.12)

Suppose that ⇥ = Rm
⇥⇥2. Then µ̂ = X and ⌃̂ is the maximizer of

`(⌃) = �
n
2
log det⌃�

n
2
traceS⌃�1

in the set ⇥2.

Proof.
• The inverse of ⌃ is also positive definite (recall that a matrix is positive
definite if and only if all its eigenvalues are positive.) Therefore
(X � µ)T⌃�1(X � µ) � 0 and equality holds if and only if µ = X.

O
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Special Cases – Part 3

Theorem (2.1.14)

Let G = (V,E) be an undirected graph and ⇥ = Rm
⇥⇥2, where

⇥2 = {⌃ 2 PDm : (⌃�1)ij = 0 if ij 62 E}.

The ML-estimate of ⌃ given a positive definite sample covariance matrix S is,
the unique positive definite matrix ⌃̂ such that ⌃̂ij = Sij , ij 2 E and
(⌃̂�1)ij = 0 for ij 62 E.

• Models of this form as by definition called Gaussian graphical models.

• The inverse K = ⌃�1 of the covariance matrix is known as the
concentration matrix and in some cases it is more convienient to
parametrize the model via concentration matrices.

• Observing log detK = � log det⌃ allows us to instead consider the
log-likelihood function (up to scaling)

K 7! log detK � trace(SK).
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Linear Spaces of Symmetric Matrices – Part 1

• An LSSM is a linear space (in particular a variety) L ✓ Sn, where Sn is
the set of n-dimensional symmetric matrices. We assume it contains at
least one invertible matrix. Let • denote the trace operator on matrices,
A •B := trace(AB).

• The log-likelihood function for the concentration matrix is

`(K) = log detK � traceSK.

Let A1, . . . , Am be matrices that span L, so that
L = {

P
�iAi : �i 2 Cn

}. The score equations are

(`(M))0Ai
= r`(M) •Ai = (M�1

� S) •Ai = 0.

• We define L
�1 := {M�1 : M 2 L \GL(Sn)}

Zar
and

L
? := {M 2 Sn : trace(ML) = 0}.

• If we write mld(L) for the ML-degree, then for a generic S

mld(L) = #
�
(L�1

� S) \ L
?�
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Linear Spaces of Symmetric Matrices – Part 2

• Observe that the set (L�1
� S) \ L

? is a variety. We can use software
to calculate the cardinality. Generically, there is no non-invertible
matrix in this intersection.

• We simulate generic points by taking random rational data (and do
this a few times to make sure that we did not get a non-generic point.)

• The degree of a variety is the degree of its defining radical ideal. The
definition is a bit technical, but can be calculated with software.

Proposition (Linear spaces of symmetric matrices with
non-maximal maximum likelihood degree, Theorem 1.1)

The ML-degree of a linear space L ⇢ Sn is at most the degree of the variety
PL�1. This is an equality if and only if the intersection PL�1

\ PL? is empty.
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Outro

• Thank you for listening!




