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Structure

» First, which will be the bulk of the lecture, I will define a
few key concepts and provide some statements, one of
which I will show the proof of

> Second, I will talk a little bit about how those concepts can
be used in statistics.
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only non-negative member is the origin, that is
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Preliminaries

>

All sublattices £ of ZF we will consider are such that the
only non-negative member is the origin, that is

£ NNF = {0}. For instance, the kernel of non-negative
integer matrices are such.

We define the fiber of a lattice in the following way:
Fu):=u+L) NN ={veN:u—veL}

for all u € N*. This is the the set that of all non-negative
vectors in the same residue class mod L.

The condition above on the lattice £ ensures that the fiber
of any point is finite. Indeed, viewing £ as a hyperplane of
rank at most k& — 1 passing through the origin, a finite
vector u may only push £ finitely far into N*¥ ¢ Z¥

NB: The sizes of the fibers are not uniformly bounded.



Uses for the bases we will define

» Counting F(u)
» Enumerating F(u)

» Optimizing F(u), that is, for vectors w minimize v - w for
v € F(u). A minimum always exists due to finiteness
mentioned above.

» Sampling from F(u)



Different Bases of a Lattice

» The bases that we will introduce are the following: Lattice,
Markov, Grobner, Universal Grobner and Graver Basis.
There is the following sequence of inclusions:

Lattice basis C Markov basis C Grobner basis
C Universal Grébner basis C Graver Basis basis

which may or may not be strict.



Lattice Basis

» A Lattice basis for a lattice £ C ZF is a set {by,...,b,} C L
such that for each v € £ there is a unique vector
(a1, az,...,a,) € Z™ such that

n
v = E biai.
i=1

Note that b,’ = (bil,biw 7bzk)

» This basis is of course not unique, but its cardinality is.
The cardinality of the basis is the rank of L.



Running Example

> We will consider the lattice given by the kernel of the linear
map

7t — 7t

(ula U2, u3, U4) — 3uq + 3ug + 4usz + duy



Running Example

> We will consider the lattice given by the kernel of the linear
map

7t 74
(w1, ug,us, ug) = 3ug + 3uz + 4duz + Suy

> A lattice basis is given by

(1,-1,0,0),(0,1,—-2,1),(0,3,—-1,-1)
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Markov Basis

» In order to define the Markov Basis of a lattice, we will
need to define a graph F(u)g for each v € N¥ and all B C £

» For each B C L we define F(u)p as the graph which nodes
are the elements of F(u) and two nodes v, v’ are connected
by an undirected edge iff either v — v’ € B or v/ — v € B.

» A Markov basis for a lattice £ C ZF is a set B C £ such
that for each v € N¥ F(u)p is connected.
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» The fact that the last vector is needed may be seen from
considering the fiber of v = (1,1,1,0).



Running Example

> Recall that the lattice is given by
3uy + 3uo + 4uz + duy =0
» A Markov Basis is given by
B=1{(1,-1,0,0),(0,1,-2,1),(0,3,—1,-1),(0,2,1,—2)}
» The fact that the last vector is needed may be seen from
considering the fiber of v = (1,1,1,0).
» Without (0,2,1,—2), F(u)p would consist of the two
connected components

¢y ={(2,0,1,0),(1,1,1,0),(0,2,1,0)} and
Cy ={(0,0,0,2)}



Running Example

{1}1,1)2,1)3,1)4} = {(]-a _1a Oa 0)7 (07 17 _27 1)’ (07 37 _]-a _1)3 (07 2’ 17 _2)}

(1.1.1,0)

0.21.0)

(0.0,0,2)



A few definitions to state and prove a theorem

» For any vector b we define b*, b~ as the vectors that are in
N* and are such that b* — b~ = b. We then define fiber(b)

as

fiber(b) := F(b+) = F(b).
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A few definitions to state and prove a theorem

» For any vector b we define b*, b~ as the vectors that are in
N* and are such that b* — b~ = b. We then define fiber(b)
as

fiber(b) := F(b*) = F(b7).
» Note that indeed, F(b") = F(b™) since b € L.

> A multiset is a set where we allow multiplity. For instance,

{a} U{a} = {a,a} # {a}.

» We will utilize the poset structure of the fibers of a vector
uw € NF. That is, f' < f iff there is u, v’ such that

f=F(u),f =F),u<u coordinate wise



Invariance property of the Markov Basis

Theorem Suppose that B is a Markov Basis for the
lattice £. Then the multiset {fiber(b) : b € B} is an invariant of £

Proof Let f € N¥/L be a fiber, we will construct a graph Gy.
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Invariance property of the Markov Basis

Theorem Suppose that B is a Markov Basis for the
lattice £. Then the multiset {fiber(b) : b € B} is an invariant of £

Proof Let f € N¥/L be a fiber, we will construct a graph Gy.
The nodes are the elements of the fiber f, i.e. elements of the
same congruence class mod £. Two nodes v,v" are connected iff
there is ¢ such that v; # 0, v} # 0. Note here that this implies
that {v,v'} is an edge iff fiber(v — v") # f. Note also, and this is
key, that in this case, fiber(v — v’) = f’ for some [’ < f.
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Continuing the proof

Introduce the multiset
A={feN¥/L: Gy is disconnected}.

f has multiplicity s — 1, where s is the number of disconnected
components in Gy. Let f = F(u) be a specific fiber and let
(1, ...,Cs be the disconnected components of G . Define

By ={be B: fiber(b) = f} for some minimal Markov Basis B.
Our aim is to prove that By has cardinality s — 1, and in order
to accomplish this we will use induction.
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Continuing the proof

Suppose that By has already been constructed for all f* < f.
Let By be the union of these By. The main idea of the proof
is that the connected components of F(u)s_, are precisely
Ci,...,Cs. This is due to the key thing we pointed out before:
{v,v'} is an edge in Gy iff fiber(v —v’) = f’ for some f’ < f.
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Continuing the proof

Now, fix a spanning tree of {C1, ...,Cs}. That is, make it a
connected graph with as few edges as possible. For each edge
{C;, C;} we pick v € Cj,v" € Cj. We have that fiber(v — ') = f
and By consists of the s — 1 vectors v — v It is clear that we
must choose our vectors precisely as we do above, as adding one
more of the same form renders B not minimal. Moreover, we
need all s — 1 vectors v — v to make F(u)s, connected. We are
finished. Note that of course, we might be able to choose v, v’ in
many different ways, hence B is not unique.



Algorithm obtained from the proof

» Identify the connected components C1, ..., Cs of the graph
Gy .



Algorithm obtained from the proof

» Identify the connected components C1, ..., Cs of the graph
Gy .
» Pick a spanning tree on (1, ..., Cs.



Algorithm obtained from the proof

» Identify the connected components C1, ..., Cs of the graph
Gy .

» Pick a spanning tree on (1, ..., Cs.

» For any edge {C;, C;} of the spanning tree, pick points
v e Cyand v € Cj.



Algorithm obtained from the proof

» Identify the connected components C1, ..., Cs of the graph
Gy .
» Pick a spanning tree on (1, ..., Cs.

» For any edge {C;, C;} of the spanning tree, pick points
v e Cyand v € Cj.

» Define B; as the set of s — 1 difference vectors v — v,



Algorithm obtained from the proof

v

Identify the connected components C', ..., Cs of the graph
Gy .

Pick a spanning tree on Cf, ..., Cs.

vy

For any edge {C;, C;} of the spanning tree, pick points
v e Cyand v € Cj.
» Define By as the set of s — 1 difference vectors v — v'.

» Move on to the next fiber (unless you are sure to be done).



Notes

on the proof above

There are certain issues with the combinatorial algorithm
that the proof above provides

Firstly, it doesn’t give a termination condition - we do not
know when we are finished

Secondly, As we mentioned before, the fibers can become
arbitrarily large, which makes the number of calculations
needed very large.

To solve this latter problem, we may use the Graver Basis,
which I will not go into more detail here.

However, there is another way, which uses tools from
algebra, and we will go through this now



Quick refresh on ideals

» Recall the definition of ideals: they are subsets I of rings R
such that (I,+) is a subgroup of R and for all
reRandiel,ri=1irel.

| 2
n
(a1,a2, ..., ap) = {Z ria;, ;i € R,n € N}

i=1
is the ideal generated by a1, as, ..., Gy.

» A prime ideal is a proper ideal such that if ab € I then
a€lorbel (or both).

» Recall also that homogeneous polynomials are such that all
terms have the same degree.



Lattice Ideal corresponding to our lattice

» Let £ C Z* be given. The corresponding Lattice Ideal is
given by

IE = <pu—pv U, eNk and u — v S £> CR[pbP?u'vMpk]

> p; are our indeterminates and p* = py"'py2...p.".
» In our setting, we will let p; = P(X = i) where X is some
random variable with k£ outcomes.

» We know that every ideal in R[py, ..., px] is finitely
generated. With this fact, the theorem below proves
finiteness of the Markov Basis. Note that we have proved
constant cardinality, but not finiteness.

» Theorem B C £ is a Markov Basis iff the set of binomials
{(p"" —p"” : b € B} generates I.



Grobner Basis

» In order to define a Grobner Basis, we let a vector w € RF
be given. We suppose that w is such that the problem of
minimizing v - w for v € F(u) has a unique solution for
each v € N¥. The complement of the set of such w have
Z€ro measure.

> Next, let B C £ be such that for b€ B, b-w < 0.

» We once again define the graph F(u)g which nodes are the
vectors in F(u) and for any two vectors v,v" € F(u), we
introduce a directed edge v — v’ if v/ — v € B.



The graph F(u)p

» Directed edge v — v’ if v/ —v € B

B — {Ul,UQ,U3,U4}
={(1,-1,0,0),(0,1,-2,1),(0,3,—1,-1),(0,2,1,—2)}
» The basis above is NOT a Grobner basis!

{1,1.1,0)

0,0,0.2)



Sink vs. not a sink

O



Grobner Basis

» We say that B is a Grobner basis if for each u € F(u),
F(u)p has a unique sink.

» A Grobner Basis always exists since if (v/ —v) - w < 0 and
(v = ") - w < 0 then

(W =) w<0

» A Grobner basis is such that the sink is the minimizer of
the optimization problem defined above.

» Grobner bases are not unique, even when fixing w.



Running Example

> Recall that the lattice is given by

3uy + 3ug + 4uz + duy =0
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Running Example

> Recall that the lattice is given by
3uy + 3ug + 4uz + duy =0

» We let w = (100, 10,1,0)
» To the Markov Basis

{(1,-1,0,0),(0,1,-2,1),(0,3,—1,-1),(0,2,1,-2)}

we add (0,1, 3,-3),(0,0,5,—4)



Universal Grobner Basis

» A reduced Groébner Basis is the a set B such that if b € B,
then b~ is a sink, b™ is not a sink but b™ — ¢; is a sink for
all ¢ such that bj #0.

» The reduced Grobner basis is unique for fixed w.

» The Universal Grobner Basis is the union of all reduced
Grobner bases.

» As the name suggests, the Universal Grobner Basis is
unique.



Running Example

> Recall that the lattice is given by

3ui + 3uo + 4uz + dug =0
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Running Example

> Recall that the lattice is given by
3ui + 3uo + 4uz + dug =0

» We let w = (100, 10,1,0)
» To the Grobner basis

{(17 _17 Oa 0)’ (07 15 _27 1)7 (073a _17 _1)7 (07 27 17 _2)7

(0,1,3,-3),(0,0,5,—4)}
we add

(1,0,-2,1),(3,0,—1,-1),(2,0,1,-2), (1,0, 3,—-3),

(0,4,-3,0), (4,0,—3,0), (0,5,0,—3), (5,0,0, —3)



Graver Basis

>

We are finally ready to define the last basis. Let a sign
vector o € {—1,1}* be given and consider

ﬁg:{U€£ZVi,JiviZO}

This set is closed under addition and has a unique, minimal
and finite generating set G,.

We define the Graver Basis G of L as

g = U ga-

oe{-1,1}k

The Graver basis is the unique smallest subset of £ that is
such that for each v € L there is A\, € N such that

v = Z)\gg, lvs| = Z)\g|gi|

9€g 9€g



Running Example

> Recall that the lattice is given by

3ui + 3uo + 4usz + dug =0



Running Example

> Recall that the lattice is given by
3ui + 3uo + 4usz + dug =0

» In order to form a Graver Basis, we add to the Universal
Grobner Basis above the vectors

(1,1,1,-2),(1,2,—1,-1), (2,1, -1, —1),(1,3,-3,0), (2,2, —3,0),

(3,1,-3,0),(1,4,0,-3),(2,3,0,-3),(3,2,0,—3), (4,1,0, —3).



Back to the story of log-linear models

> Let A = (a;;) € N*¥ be a matrix which column sums are
all equal.



Back to the story of log-linear models

> Let A = (a;;) € N*¥ be a matrix which column sums are
all equal.

> Every column a; = (ay;, ..., aq )y

ad;

6% =6, .0,

represents a monomial



Back to the story of log-linear models

> Let A = (a;;) € N*¥ be a matrix which column sums are
all equal.

T represents a monomial

> Every column a; = (ay,, ..., aq;)
R
6% =6,7..0,".

» A defines a map ¢4 : C* — CF by

0 — (6%,0%2, ..., 0%)



Back to the story of log-linear models

> Let A = (a;;) € N*¥ be a matrix which column sums are
all equal.

> Every column a; = (ay;, ..., aq )y
. ai ad .

6% =6,7..0,".

» A defines a map ¢4 : C* — CF by

represents a monomial

0 — (6%,0%2, ..., 0%)

» The closure of the image of this map is called the Affine
Toric Variety, Va.



Back to the story of log-linear models

> Let A = (a;;) € N*¥ be a matrix which column sums are
all equal.

> Every column a; = (ay;, ..., aq )y
X ai ad .

6% =6,7..0,".

» A defines a map ¢4 : C* — CF by

represents a monomial

0 — (6%,0%2, ..., 0%)

» The closure of the image of this map is called the Affine
Toric Variety, Va.

> If we restrict ¢4 to R‘éo and consider its image in the
probability simplex Ag_1 we obtain the log-linear model

May.



Theorem

Theorem If £ = kerz(A) then the lattice ideal I is a prime
ideal. The homogeneous polynomials contained in it are exactly
the homogeneous polynomials in R[py, ..., px] that vanish on
probability distributions in the log-linear model specified by the
matrix A. In other words, the toric variety V4 = V(I.) is the
Zariski closure of the log-linear model M 4



Application of the Lattice Ideal

Let
300212100
A=10 3 01 2 0 0 2 1
003 001212

and consider the the assicoated log-linear model M 4. We may
find the Markov Basis for the lattice £ = kerz(A) using the
algorithm from the proof above, and after each step (or doing it
smarter) checking if the corresponding binomials

{pb+ —p® : b B} generate the lattice ideal Iz. The basis has
17 vectors so in practice, we would certainly use a computer.



Rock Paper Scissors

Suppose now Bobby and Sally plays a game of Rock Paper
Scissors, each round consists of three games and you may pick
at most 2 different choices each round. After 1000 rounds, Sally
want to analyze Bobby’s choices and suspects he picks the three
choices independently, but not necessarily with equal
probability. She introduces

u = (urrm Uppp,r Usssy Urrps Wrrsy Uppry Upps, Ussr ussp)

where ;s is the number of rounds Bobby played 2 rocks and 1
scissor, and so forth.



Rock Paper Scissors

Let pppp, prrr... be the true probabilities of bobbys choices.
Sally introduces

V= (Sprrra 3ppppu 3Pssss DPrrps Prrs, Ppprs Pppss Pssr pssp)

Under the null hypothesis of random independent choices we
have v € M4 and so we have that v € Vy, i.e. v vanishes for all
f €I (L =kerg(A)). That is, if p = v then p¥ — p* = 0 for all
w,w € NF,w—w' € L.



Rock Paper Scissors

Hence, all Sally needs to do to test if Bobby is indeed making
independent choices is to use the Markov Basis of £ =kerz(A),
the Metropolis-Hastings Algorithm and the hypothesis testing
methods from Lecture 1. However, we need to change a few
terms in the hypergeometric distribution slightly in order to
take the constant 3 in

v = (3p7’7’r7 3pppp7 3Pssss DPrrps Prrs, Ppprs Pppss Pssr pssp)

into consideration.



Relational data in practice - A few notes on the method
above

> The Markov Bases may be complicated to compute and the
algebra used to find them may produce moves that
inapplicable to observed data.

> For certain models, new algorithms have been found to
circumvent this, which also provides a scalable exact
conditional test.



Relational data in practice - Heuristic Tests

» Heuristic tests are based on graphical comparisons between
observed statistics and random ones obtained from the
fitted model.

» Say we want to estimate how well a model Py(G) fits an
observed graph gops

» We compute a maximum likelihood estimator for 6 of 6.

» We calculate some network statistics s(gops), say number of

edges or the degrees of the nodes, and then compare it to
5(g1),..,-5(gn) where g; are simulated graphs from P;.

» One issue that there is no obvious discrepancy measure
between the observed graph and the model.

» A second is that the distribution of s(g) is not immediately
known under the hypothesis that g.s fits the model Py(G).



Relational data in practice - Asymptotic tests

>

| 2

Asymptotic tests solves the issues presented above by
providing formal testing criteria for evaluating model fit

However, classical tools such as the log-likelihood ratio test
are not directly applicable since the usual asymptotics do
not apply to many complex models, since the iid
assumption on random edges does not hold.

There are remedies to these issues, but they are often used
on a case-by-case basis.



