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Structure

I First, which will be the bulk of the lecture, I will define a
few key concepts and provide some statements, one of
which I will show the proof of

I Second, I will talk a little bit about how those concepts can
be used in statistics.



Preliminaries

I All sublattices L of Zk we will consider are such that the
only non-negative member is the origin, that is
L ∩ Nk = {0}. For instance, the kernel of non-negative
integer matrices are such.

I We define the fiber of a lattice in the following way:

F(u) := (u+ L) ∩ Nk = {v ∈ Nk : u− v ∈ L}

for all u ∈ Nk. This is the the set that of all non-negative
vectors in the same residue class mod L.

I The condition above on the lattice L ensures that the fiber
of any point is finite. Indeed, viewing L as a hyperplane of
rank at most k − 1 passing through the origin, a finite
vector u may only push L finitely far into Nk ⊂ Zk

I NB: The sizes of the fibers are not uniformly bounded.
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Uses for the bases we will define

I Counting F(u)

I Enumerating F(u)

I Optimizing F(u), that is, for vectors w minimize v · w for
v ∈ F(u). A minimum always exists due to finiteness
mentioned above.

I Sampling from F(u)



Different Bases of a Lattice

I The bases that we will introduce are the following: Lattice,
Markov, Gröbner, Universal Gröbner and Graver Basis.
There is the following sequence of inclusions:

Lattice basis ⊂ Markov basis ⊂ Gröbner basis

⊂ Universal Gröbner basis ⊂ Graver Basis basis

which may or may not be strict.



Lattice Basis

I A Lattice basis for a lattice L ⊂ Zk is a set {b1, ..., bn} ⊂ L
such that for each v ∈ L there is a unique vector
(a1, a2, ..., an) ∈ Zn such that

v =

n∑
i=1

biai.

Note that bi = (bi1 , bi2 , ..., bik)

I This basis is of course not unique, but its cardinality is.
The cardinality of the basis is the rank of L.



Running Example

I We will consider the lattice given by the kernel of the linear
map

Z4 → Z4

(u1, u2, u3, u4)→ 3u1 + 3u2 + 4u3 + 5u4

I A lattice basis is given by

(1,−1, 0, 0), (0, 1,−2, 1), (0, 3,−1,−1)
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Markov Basis

I In order to define the Markov Basis of a lattice, we will
need to define a graph F(u)B for each u ∈ Nk and all B ⊂ L

I For each B ⊂ L we define F(u)B as the graph which nodes
are the elements of F(u) and two nodes v, v′ are connected
by an undirected edge iff either v − v′ ∈ B or v′ − v ∈ B.

I A Markov basis for a lattice L ⊂ Zk is a set B ⊂ L such
that for each u ∈ Nk F(u)B is connected.
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Running Example

I Recall that the lattice is given by

3u1 + 3u2 + 4u3 + 5u4 = 0

I A Markov Basis is given by

B = {(1,−1, 0, 0), (0, 1,−2, 1), (0, 3,−1,−1), (0, 2, 1,−2)}

I The fact that the last vector is needed may be seen from
considering the fiber of u = (1, 1, 1, 0).

I Without (0, 2, 1,−2),F(u)B would consist of the two
connected components
C1 = {(2, 0, 1, 0), (1, 1, 1, 0), (0, 2, 1, 0)} and
C2 = {(0, 0, 0, 2)}
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Running Example

{v1, v2, v3, v4} = {(1,−1, 0, 0), (0, 1,−2, 1), (0, 3,−1,−1), (0, 2, 1,−2)}



A few definitions to state and prove a theorem

I For any vector b we define b+, b− as the vectors that are in
Nk and are such that b+ − b− = b. We then define fiber(b)
as

fiber(b) := F(b+) = F(b−).

I Note that indeed, F(b+) = F(b−) since b ∈ L.

I A multiset is a set where we allow multiplity. For instance,

{a} ∪ {a} = {a, a} 6= {a}.

I We will utilize the poset structure of the fibers of a vector
u ∈ Nk. That is, f ′ ≤ f iff there is u, u′ such that

f = F(u), f ′ = F(u′), u ≤ u′ coordinate wise
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Invariance property of the Markov Basis

Theorem Suppose that B is a Markov Basis for the
lattice L. Then the multiset {fiber(b) : b ∈ B} is an invariant of L

Proof Let f ∈ Nk/L be a fiber, we will construct a graph Gf .

The nodes are the elements of the fiber f , i.e. elements of the
same congruence class mod L. Two nodes v, v′ are connected iff
there is i such that vi 6= 0, v′i 6= 0. Note here that this implies
that {v, v′} is an edge iff fiber(v− v′) 6= f . Note also, and this is
key, that in this case, fiber(v − v′) = f ′ for some f ′ < f .
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Continuing the proof

Introduce the multiset

A = {f ∈ Nk/L : Gf is disconnected}.

f has multiplicity s− 1, where s is the number of disconnected
components in Gf . Let f = F(u) be a specific fiber and let
C1, ..., Cs be the disconnected components of Gf . Define
Bf = {b ∈ B : fiber(b) = f} for some minimal Markov Basis B.
Our aim is to prove that Bf has cardinality s− 1, and in order
to accomplish this we will use induction.
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Continuing the proof

Suppose that Bf ′ has already been constructed for all f ′ < f .

Let B<f be the union of these Bf ′ . The main idea of the proof
is that the connected components of F(u)B<f

are precisely
C1, ..., Cs. This is due to the key thing we pointed out before:
{v, v′} is an edge in Gf iff fiber(v − v′) = f ′ for some f ′ < f .
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Continuing the proof

Now, fix a spanning tree of {C1, ..., Cs}.

That is, make it a
connected graph with as few edges as possible. For each edge
{Ci, Cj} we pick v ∈ Ci, v′ ∈ Cj . We have that fiber(v − v′) = f
and Bf consists of the s− 1 vectors v − v′. It is clear that we
must choose our vectors precisely as we do above, as adding one
more of the same form renders B not minimal. Moreover, we
need all s− 1 vectors v − v′ to make F (u)Bf connected. We are
finished. Note that of course, we might be able to choose v, v′ in
many different ways, hence B is not unique.
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Algorithm obtained from the proof

I Identify the connected components C1, ..., Cs of the graph
Gf .

I Pick a spanning tree on C1, ..., Cs.

I For any edge {Ci, Cj} of the spanning tree, pick points
v ∈ Ci and v′ ∈ Cj .

I Define Bf as the set of s− 1 difference vectors v − v′.
I Move on to the next fiber (unless you are sure to be done).
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Notes on the proof above

I There are certain issues with the combinatorial algorithm
that the proof above provides

I Firstly, it doesn’t give a termination condition - we do not
know when we are finished

I Secondly, As we mentioned before, the fibers can become
arbitrarily large, which makes the number of calculations
needed very large.

I To solve this latter problem, we may use the Graver Basis,
which I will not go into more detail here.

I However, there is another way, which uses tools from
algebra, and we will go through this now



Quick refresh on ideals

I Recall the definition of ideals: they are subsets I of rings R
such that (I,+) is a subgroup of R and for all
r ∈ R and i ∈ I, ri = ir ∈ I.

I

〈a1, a2, ..., an〉 =

{
n∑
i=1

riai, ri ∈ R,n ∈ N

}
is the ideal generated by a1, a2, ..., an.

I A prime ideal is a proper ideal such that if ab ∈ I then
a ∈ I or b ∈ I (or both).

I Recall also that homogeneous polynomials are such that all
terms have the same degree.



Lattice Ideal corresponding to our lattice

I Let L ⊂ Zk be given. The corresponding Lattice Ideal is
given by

IL := 〈pu − pv : u, v ∈ Nk and u− v ∈ L〉 ⊂ R[p1, p2, ., , , pk]

I pi are our indeterminates and pu = pu11 p
u2
2 ...p

uk
k .

I In our setting, we will let pi = P (X = i) where X is some
random variable with k outcomes.

I We know that every ideal in R[p1, ..., pk] is finitely
generated. With this fact, the theorem below proves
finiteness of the Markov Basis. Note that we have proved
constant cardinality, but not finiteness.

I Theorem B ⊂ L is a Markov Basis iff the set of binomials
{pb+ − pb− : b ∈ B} generates IL.



Gröbner Basis

I In order to define a Gröbner Basis, we let a vector w ∈ Rk
be given. We suppose that w is such that the problem of
minimizing v · w for v ∈ F(u) has a unique solution for
each u ∈ Nk. The complement of the set of such w have
zero measure.

I Next, let B ⊂ L be such that for b ∈ B, b · w < 0.

I We once again define the graph F(u)B which nodes are the
vectors in F(u) and for any two vectors v, v′ ∈ F(u), we
introduce a directed edge v −→ v′ if v′ − v ∈ B.



The graph F(u)B
I Directed edge v −→ v′ if v′ − v ∈ B

B = {v1, v2, v3, v4}
= {(1,−1, 0, 0), (0, 1,−2, 1), (0, 3,−1,−1), (0, 2, 1,−2)}

I The basis above is NOT a Gröbner basis!



Sink vs. not a sink



Gröbner Basis

I We say that B is a Gröbner basis if for each u ∈ F(u),
F(u)B has a unique sink.

I A Gröbner Basis always exists since if (v′ − v) · w < 0 and
(v′′ − v′) · w < 0 then

(v′′ − v) · w < 0

I A Gröbner basis is such that the sink is the minimizer of
the optimization problem defined above.

I Gröbner bases are not unique, even when fixing w.



Running Example

I Recall that the lattice is given by

3u1 + 3u2 + 4u3 + 5u4 = 0

I We let w = (100, 10, 1, 0)

I To the Markov Basis

{(1,−1, 0, 0), (0, 1,−2, 1), (0, 3,−1,−1), (0, 2, 1,−2)}

we add (0, 1, 3,−3), (0, 0, 5,−4)
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Universal Gröbner Basis

I A reduced Gröbner Basis is the a set B such that if b ∈ B,
then b− is a sink, b+ is not a sink but b+ − ei is a sink for
all i such that b+i 6= 0.

I The reduced Gröbner basis is unique for fixed w.

I The Universal Gröbner Basis is the union of all reduced
Gröbner bases.

I As the name suggests, the Universal Gröbner Basis is
unique.
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Graver Basis

I We are finally ready to define the last basis. Let a sign
vector σ ∈ {−1, 1}k be given and consider

Lσ = {v ∈ L : ∀i, σivi ≥ 0}

I This set is closed under addition and has a unique, minimal
and finite generating set Gσ.

I We define the Graver Basis G of L as

G =
⋃

σ∈{−1,1}k
Gσ.

I The Graver basis is the unique smallest subset of L that is
such that for each v ∈ L there is λg ∈ N such that

v =
∑
g∈G

λgg, |vi| =
∑
g∈G

λg|gi|



Running Example

I Recall that the lattice is given by

3u1 + 3u2 + 4u3 + 5u4 = 0

I In order to form a Graver Basis, we add to the Universal
Gröbner Basis above the vectors

(1, 1, 1,−2), (1, 2,−1,−1), (2, 1,−1,−1), (1, 3,−3, 0), (2, 2,−3, 0),

(3, 1,−3, 0), (1, 4, 0,−3), (2, 3, 0,−3), (3, 2, 0,−3), (4, 1, 0,−3).
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Back to the story of log-linear models

I Let A = (ai,j) ∈ Nd×k be a matrix which column sums are
all equal.

I Every column aj = (a1j , ..., adj )
T represents a monomial

θaj = θ
a1j
1 ...θ

adj
d .

I A defines a map φA : Cd → Ck by

θ → (θa1 , θa2 , ..., θak)

I The closure of the image of this map is called the Affine
Toric Variety, VA.

I If we restrict φA to Rd≥0 and consider its image in the
probability simplex ∆k−1 we obtain the log-linear model
MA.
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Theorem

Theorem If L = kerZ(A) then the lattice ideal IL is a prime
ideal. The homogeneous polynomials contained in it are exactly
the homogeneous polynomials in R[p1, ..., pk] that vanish on
probability distributions in the log-linear model specified by the
matrix A. In other words, the toric variety VA = V (IL) is the
Zariski closure of the log-linear model MA



Application of the Lattice Ideal

Let

A =

3 0 0 2 1 2 1 0 0
0 3 0 1 2 0 0 2 1
0 0 3 0 0 1 2 1 2


and consider the the assicoated log-linear model MA. We may
find the Markov Basis for the lattice L = kerZ(A) using the
algorithm from the proof above, and after each step (or doing it
smarter) checking if the corresponding binomials
{pb+ − pb− : b ∈ B} generate the lattice ideal IL. The basis has
17 vectors so in practice, we would certainly use a computer.



Rock Paper Scissors

Suppose now Bobby and Sally plays a game of Rock Paper
Scissors, each round consists of three games and you may pick
at most 2 different choices each round. After 1000 rounds, Sally
want to analyze Bobby’s choices and suspects he picks the three
choices independently, but not necessarily with equal
probability. She introduces

u = (urrr, uppp, usss, urrp, urrs, uppr, upps, ussr, ussp)

where urrs is the number of rounds Bobby played 2 rocks and 1
scissor, and so forth.



Rock Paper Scissors

Let pppp, prrr... be the true probabilities of bobbys choices.
Sally introduces

v = (3prrr, 3pppp, 3psss, prrp, prrs, pppr, ppps, pssr, pssp)

Under the null hypothesis of random independent choices we
have v ∈MA and so we have that v ∈ VA, i.e. v vanishes for all
f ∈ IL (L = kerZ(A)). That is, if p = v then pw − pw′ = 0 for all
w,w′ ∈ Nk, w − w′ ∈ L.



Rock Paper Scissors

Hence, all Sally needs to do to test if Bobby is indeed making
independent choices is to use the Markov Basis of L =kerZ(A),
the Metropolis-Hastings Algorithm and the hypothesis testing
methods from Lecture 1. However, we need to change a few
terms in the hypergeometric distribution slightly in order to
take the constant 3 in

v = (3prrr, 3pppp, 3psss, prrp, prrs, pppr, ppps, pssr, pssp)

into consideration.



Relational data in practice - A few notes on the method
above

I The Markov Bases may be complicated to compute and the
algebra used to find them may produce moves that
inapplicable to observed data.

I For certain models, new algorithms have been found to
circumvent this, which also provides a scalable exact
conditional test.



Relational data in practice - Heuristic Tests

I Heuristic tests are based on graphical comparisons between
observed statistics and random ones obtained from the
fitted model.

I Say we want to estimate how well a model Pθ(G) fits an
observed graph gobs

I We compute a maximum likelihood estimator for θ̂ of θ.

I We calculate some network statistics s(gobs), say number of
edges or the degrees of the nodes, and then compare it to
s(g1), .., .s(gn) where gi are simulated graphs from Pθ̂.

I One issue that there is no obvious discrepancy measure
between the observed graph and the model.

I A second is that the distribution of s(g) is not immediately
known under the hypothesis that gobs fits the model Pθ(G).



Relational data in practice - Asymptotic tests

I Asymptotic tests solves the issues presented above by
providing formal testing criteria for evaluating model fit

I However, classical tools such as the log-likelihood ratio test
are not directly applicable since the usual asymptotics do
not apply to many complex models, since the iid
assumption on random edges does not hold.

I There are remedies to these issues, but they are often used
on a case-by-case basis.


