Lecture 6

Combinatorial and Algebraic Statistics

Nils Hemmingsson 2021-02-26

Structure

- ▶ First, which will be the bulk of the lecture, I will define a few key concepts and provide some statements, one of which I will show the proof of
- ➤ Second, I will talk a little bit about how those concepts can be used in statistics.

All sublattices \mathcal{L} of \mathbb{Z}^k we will consider are such that the only non-negative member is the origin, that is $\mathcal{L} \cap \mathbb{N}^k = \{0\}$. For instance, the kernel of non-negative integer matrices are such.

- All sublattices \mathcal{L} of \mathbb{Z}^k we will consider are such that the only non-negative member is the origin, that is $\mathcal{L} \cap \mathbb{N}^k = \{0\}$. For instance, the kernel of non-negative integer matrices are such.
- ▶ We define the fiber of a lattice in the following way:

$$\mathcal{F}(u) := (u + \mathcal{L}) \cap \mathbb{N}^k = \{ v \in \mathbb{N}^k : u - v \in \mathcal{L} \}$$

for all $u \in \mathbb{N}^k$. This is the set that of all non-negative vectors in the same residue class mod \mathcal{L} .

- All sublattices \mathcal{L} of \mathbb{Z}^k we will consider are such that the only non-negative member is the origin, that is $\mathcal{L} \cap \mathbb{N}^k = \{0\}$. For instance, the kernel of non-negative integer matrices are such.
- ▶ We define the fiber of a lattice in the following way:

$$\mathcal{F}(u) := (u + \mathcal{L}) \cap \mathbb{N}^k = \{ v \in \mathbb{N}^k : u - v \in \mathcal{L} \}$$

for all $u \in \mathbb{N}^k$. This is the the set that of all non-negative vectors in the same residue class mod \mathcal{L} .

▶ The condition above on the lattice \mathcal{L} ensures that the fiber of any point is finite. Indeed, viewing \mathcal{L} as a hyperplane of rank at most k-1 passing through the origin, a finite vector u may only push \mathcal{L} finitely far into $\mathbb{N}^k \subset \mathbb{Z}^k$

- All sublattices \mathcal{L} of \mathbb{Z}^k we will consider are such that the only non-negative member is the origin, that is $\mathcal{L} \cap \mathbb{N}^k = \{0\}$. For instance, the kernel of non-negative integer matrices are such.
- ▶ We define the fiber of a lattice in the following way:

$$\mathcal{F}(u) := (u + \mathcal{L}) \cap \mathbb{N}^k = \{ v \in \mathbb{N}^k : u - v \in \mathcal{L} \}$$

for all $u \in \mathbb{N}^k$. This is the the set that of all non-negative vectors in the same residue class mod \mathcal{L} .

- ▶ The condition above on the lattice \mathcal{L} ensures that the fiber of any point is finite. Indeed, viewing \mathcal{L} as a hyperplane of rank at most k-1 passing through the origin, a finite vector u may only push \mathcal{L} finitely far into $\mathbb{N}^k \subset \mathbb{Z}^k$
- ▶ NB: The sizes of the fibers are not uniformly bounded.

Uses for the bases we will define

- ightharpoonup Counting $\mathcal{F}(u)$
- ightharpoonup Enumerating $\mathcal{F}(u)$
- ▶ Optimizing $\mathcal{F}(u)$, that is, for vectors w minimize $v \cdot w$ for $v \in \mathcal{F}(u)$. A minimum always exists due to finiteness mentioned above.
- ▶ Sampling from $\mathcal{F}(u)$

Different Bases of a Lattice

➤ The bases that we will introduce are the following: Lattice, Markov, Gröbner, Universal Gröbner and Graver Basis. There is the following sequence of inclusions:

Lattice basis \subset Markov basis \subset Gröbner basis \subset Universal Gröbner basis \subset Graver Basis basis which may or may not be strict.

Lattice Basis

▶ A Lattice basis for a lattice $\mathcal{L} \subset \mathbb{Z}^k$ is a set $\{b_1, ..., b_n\} \subset \mathcal{L}$ such that for each $v \in \mathcal{L}$ there is a unique vector $(a_1, a_2, ..., a_n) \in \mathbb{Z}^n$ such that

$$v = \sum_{i=1}^{n} b_i a_i.$$

Note that $b_i = (b_{i_1}, b_{i_2}, ..., b_{i_k})$

▶ This basis is of course not unique, but its cardinality is. The cardinality of the basis is the rank of \mathcal{L} .

➤ We will consider the lattice given by the kernel of the linear map

$$\mathbb{Z}^4 \to \mathbb{Z}^4$$
$$(u_1, u_2, u_3, u_4) \to 3u_1 + 3u_2 + 4u_3 + 5u_4$$

► We will consider the lattice given by the kernel of the linear map

$$\mathbb{Z}^4 \to \mathbb{Z}^4$$
$$(u_1, u_2, u_3, u_4) \to 3u_1 + 3u_2 + 4u_3 + 5u_4$$

► A lattice basis is given by

$$(1,-1,0,0),(0,1,-2,1),(0,3,-1,-1)$$

Markov Basis

▶ In order to define the Markov Basis of a lattice, we will need to define a graph $\mathcal{F}(u)_{\mathcal{B}}$ for each $u \in \mathbb{N}^k$ and all $\mathcal{B} \subset \mathcal{L}$

Markov Basis

- ▶ In order to define the Markov Basis of a lattice, we will need to define a graph $\mathcal{F}(u)_{\mathcal{B}}$ for each $u \in \mathbb{N}^k$ and all $\mathcal{B} \subset \mathcal{L}$
- ▶ For each $\mathcal{B} \subset \mathcal{L}$ we define $\mathcal{F}(u)_{\mathcal{B}}$ as the graph which nodes are the elements of $\mathcal{F}(u)$ and two nodes v, v' are connected by an undirected edge iff either $v v' \in \mathcal{B}$ or $v' v \in \mathcal{B}$.

Markov Basis

- ▶ In order to define the Markov Basis of a lattice, we will need to define a graph $\mathcal{F}(u)_{\mathcal{B}}$ for each $u \in \mathbb{N}^k$ and all $\mathcal{B} \subset \mathcal{L}$
- ▶ For each $\mathcal{B} \subset \mathcal{L}$ we define $\mathcal{F}(u)_{\mathcal{B}}$ as the graph which nodes are the elements of $\mathcal{F}(u)$ and two nodes v, v' are connected by an undirected edge iff either $v v' \in \mathcal{B}$ or $v' v \in \mathcal{B}$.
- ▶ A Markov basis for a lattice $\mathcal{L} \subset \mathbb{Z}^k$ is a set $\mathcal{B} \subset \mathcal{L}$ such that for each $u \in \mathbb{N}^k$ $\mathcal{F}(u)_{\mathcal{B}}$ is connected.

▶ Recall that the lattice is given by

$$3u_1 + 3u_2 + 4u_3 + 5u_4 = 0$$

▶ Recall that the lattice is given by

$$3u_1 + 3u_2 + 4u_3 + 5u_4 = 0$$

► A Markov Basis is given by

$$\mathcal{B} = \{(1,-1,0,0), (0,1,-2,1), (0,3,-1,-1), (0,2,1,-2)\}$$

► Recall that the lattice is given by

$$3u_1 + 3u_2 + 4u_3 + 5u_4 = 0$$

► A Markov Basis is given by

$$\mathcal{B} = \{(1, -1, 0, 0), (0, 1, -2, 1), (0, 3, -1, -1), (0, 2, 1, -2)\}$$

▶ The fact that the last vector is needed may be seen from considering the fiber of u = (1, 1, 1, 0).

▶ Recall that the lattice is given by

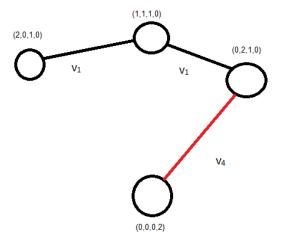
$$3u_1 + 3u_2 + 4u_3 + 5u_4 = 0$$

► A Markov Basis is given by

$$\mathcal{B} = \{(1, -1, 0, 0), (0, 1, -2, 1), (0, 3, -1, -1), (0, 2, 1, -2)\}$$

- ▶ The fact that the last vector is needed may be seen from considering the fiber of u = (1, 1, 1, 0).
- ▶ Without (0, 2, 1, -2), $\mathcal{F}(u)_{\mathcal{B}}$ would consist of the two connected components $C_1 = \{(2, 0, 1, 0), (1, 1, 1, 0), (0, 2, 1, 0)\}$ and $C_2 = \{(0, 0, 0, 2)\}$

$$\{v_1, v_2, v_3, v_4\} = \{(1, -1, 0, 0), (0, 1, -2, 1), (0, 3, -1, -1), (0, 2, 1, -2)\}$$



For any vector b we define b^+, b^- as the vectors that are in \mathbb{N}^k and are such that $b^+ - b^- = b$. We then define fiber(b) as

fiber
$$(b) := \mathcal{F}(b^+) = \mathcal{F}(b^-).$$

For any vector b we define b^+, b^- as the vectors that are in \mathbb{N}^k and are such that $b^+ - b^- = b$. We then define fiber(b) as

fiber
$$(b) := \mathcal{F}(b^+) = \mathcal{F}(b^-).$$

▶ Note that indeed, $\mathcal{F}(b^+) = \mathcal{F}(b^-)$ since $b \in \mathcal{L}$.

For any vector b we define b^+, b^- as the vectors that are in \mathbb{N}^k and are such that $b^+ - b^- = b$. We then define fiber(b) as

fiber
$$(b) := \mathcal{F}(b^+) = \mathcal{F}(b^-).$$

- ▶ Note that indeed, $\mathcal{F}(b^+) = \mathcal{F}(b^-)$ since $b \in \mathcal{L}$.
- ▶ A multiset is a set where we allow multiplity. For instance,

$$\{a\} \cup \{a\} = \{a,a\} \neq \{a\}.$$

For any vector b we define b^+, b^- as the vectors that are in \mathbb{N}^k and are such that $b^+ - b^- = b$. We then define fiber(b) as

fiber
$$(b) := \mathcal{F}(b^+) = \mathcal{F}(b^-).$$

- ▶ Note that indeed, $\mathcal{F}(b^+) = \mathcal{F}(b^-)$ since $b \in \mathcal{L}$.
- ▶ A multiset is a set where we allow multiplity. For instance,

$${a} \cup {a} = {a, a} \neq {a}.$$

We will utilize the poset structure of the fibers of a vector $u \in \mathbb{N}^k$. That is, $f' \leq f$ iff there is u, u' such that

$$f = \mathcal{F}(u), f' = \mathcal{F}(u'), u \leq u'$$
 coordinate wise



Theorem Suppose that \mathcal{B} is a Markov Basis for the lattice \mathcal{L} . Then the multiset {fiber(b) : $b \in \mathcal{B}$ } is an invariant of \mathcal{L}

Proof Let $f \in \mathbb{N}^k/\mathcal{L}$ be a fiber, we will construct a graph G_f .

Theorem Suppose that \mathcal{B} is a Markov Basis for the lattice \mathcal{L} . Then the multiset $\{\text{fiber}(b):b\in\mathcal{B}\}$ is an invariant of \mathcal{L}

Proof Let $f \in \mathbb{N}^k/\mathcal{L}$ be a fiber, we will construct a graph G_f . The nodes are the elements of the fiber f, i.e. elements of the same congruence class mod \mathcal{L} .

Theorem Suppose that \mathcal{B} is a Markov Basis for the lattice \mathcal{L} . Then the multiset $\{\text{fiber}(b):b\in\mathcal{B}\}$ is an invariant of \mathcal{L}

Proof Let $f \in \mathbb{N}^k/\mathcal{L}$ be a fiber, we will construct a graph G_f . The nodes are the elements of the fiber f, i.e. elements of the same congruence class mod \mathcal{L} . Two nodes v, v' are connected iff there is i such that $v_i \neq 0$, $v'_i \neq 0$.

Theorem Suppose that \mathcal{B} is a Markov Basis for the lattice \mathcal{L} . Then the multiset $\{\text{fiber}(b):b\in\mathcal{B}\}$ is an invariant of \mathcal{L}

Proof Let $f \in \mathbb{N}^k/\mathcal{L}$ be a fiber, we will construct a graph G_f . The nodes are the elements of the fiber f, i.e. elements of the same congruence class mod \mathcal{L} . Two nodes v, v' are connected iff there is i such that $v_i \neq 0$, $v_i' \neq 0$. Note here that this implies that $\{v, v'\}$ is an edge iff fiber $(v - v') \neq f$.

Theorem Suppose that \mathcal{B} is a Markov Basis for the lattice \mathcal{L} . Then the multiset $\{\text{fiber}(b):b\in\mathcal{B}\}$ is an invariant of \mathcal{L}

Proof Let $f \in \mathbb{N}^k/\mathcal{L}$ be a fiber, we will construct a graph G_f . The nodes are the elements of the fiber f, i.e. elements of the same congruence class mod \mathcal{L} . Two nodes v, v' are connected iff there is i such that $v_i \neq 0$, $v_i' \neq 0$. Note here that this implies that $\{v, v'\}$ is an edge iff fiber $(v - v') \neq f$. Note also, and this is key, that in this case, fiber(v - v') = f' for some f' < f.

Introduce the multiset

$$A = \{ f \in \mathbb{N}^k / \mathcal{L} : G_f \text{ is disconnected} \}.$$

Introduce the multiset

$$A = \{ f \in \mathbb{N}^k / \mathcal{L} : G_f \text{ is disconnected} \}.$$

f has multiplicity s-1, where s is the number of disconnected components in G_f .

Introduce the multiset

$$A = \{ f \in \mathbb{N}^k / \mathcal{L} : G_f \text{ is disconnected} \}.$$

f has multiplicity s-1, where s is the number of disconnected components in G_f . Let $f=\mathcal{F}(u)$ be a specific fiber and let $C_1,...,C_s$ be the disconnected components of G_f .

Introduce the multiset

$$A = \{ f \in \mathbb{N}^k / \mathcal{L} : G_f \text{ is disconnected} \}.$$

f has multiplicity s-1, where s is the number of disconnected components in G_f . Let $f=\mathcal{F}(u)$ be a specific fiber and let $C_1,...,C_s$ be the disconnected components of G_f . Define $\mathcal{B}_f=\{b\in\mathcal{B}: \ \text{fiber}(b)=f\}$ for some minimal Markov Basis \mathcal{B} .

Introduce the multiset

$$A = \{ f \in \mathbb{N}^k / \mathcal{L} : G_f \text{ is disconnected} \}.$$

f has multiplicity s-1, where s is the number of disconnected components in G_f . Let $f=\mathcal{F}(u)$ be a specific fiber and let $C_1,...,C_s$ be the disconnected components of G_f . Define $\mathcal{B}_f=\{b\in\mathcal{B}: \mbox{ fiber}(b)=f\}$ for some minimal Markov Basis \mathcal{B} . Our aim is to prove that \mathcal{B}_f has cardinality s-1, and in order to accomplish this we will use induction.

Suppose that $\mathcal{B}_{f'}$ has already been constructed for all f' < f.

Suppose that $\mathcal{B}_{f'}$ has already been constructed for all f' < f. Let $\mathcal{B}_{< f}$ be the union of these $\mathcal{B}_{f'}$.

Suppose that $\mathcal{B}_{f'}$ has already been constructed for all f' < f. Let $\mathcal{B}_{< f}$ be the union of these $\mathcal{B}_{f'}$. The main idea of the proof is that the connected components of $\mathcal{F}(u)_{\mathcal{B}_{< f}}$ are precisely $C_1, ..., C_s$.

Suppose that $\mathcal{B}_{f'}$ has already been constructed for all f' < f. Let $\mathcal{B}_{< f}$ be the union of these $\mathcal{B}_{f'}$. The main idea of the proof is that the connected components of $\mathcal{F}(u)_{\mathcal{B}_{< f}}$ are precisely $C_1, ..., C_s$. This is due to the key thing we pointed out before: $\{v, v'\}$ is an edge in G_f iff fiber(v - v') = f' for some f' < f.

Now, fix a spanning tree of $\{C_1, ..., C_s\}$.

Now, fix a spanning tree of $\{C_1, ..., C_s\}$. That is, make it a connected graph with as few edges as possible.

Now, fix a spanning tree of $\{C_1, ..., C_s\}$. That is, make it a connected graph with as few edges as possible. For each edge $\{C_i, C_j\}$ we pick $v \in C_i, v' \in C_j$.

Now, fix a spanning tree of $\{C_1, ..., C_s\}$. That is, make it a connected graph with as few edges as possible. For each edge $\{C_i, C_j\}$ we pick $v \in C_i, v' \in C_j$. We have that fiber(v - v') = f and \mathcal{B}_f consists of the s - 1 vectors v - v'.

Now, fix a spanning tree of $\{C_1, ..., C_s\}$. That is, make it a connected graph with as few edges as possible. For each edge $\{C_i, C_j\}$ we pick $v \in C_i, v' \in C_j$. We have that fiber(v - v') = f and \mathcal{B}_f consists of the s - 1 vectors v - v'. It is clear that we must choose our vectors precisely as we do above, as adding one more of the same form renders \mathcal{B} not minimal.

Now, fix a spanning tree of $\{C_1, ..., C_s\}$. That is, make it a connected graph with as few edges as possible. For each edge $\{C_i, C_j\}$ we pick $v \in C_i, v' \in C_j$. We have that fiber(v - v') = f and \mathcal{B}_f consists of the s-1 vectors v-v'. It is clear that we must choose our vectors precisely as we do above, as adding one more of the same form renders \mathcal{B} not minimal. Moreover, we need all s-1 vectors v-v' to make $F(u)_{\mathcal{B}_f}$ connected. We are finished.

Now, fix a spanning tree of $\{C_1, ..., C_s\}$. That is, make it a connected graph with as few edges as possible. For each edge $\{C_i, C_j\}$ we pick $v \in C_i, v' \in C_j$. We have that fiber(v - v') = f and \mathcal{B}_f consists of the s-1 vectors v-v'. It is clear that we must choose our vectors precisely as we do above, as adding one more of the same form renders \mathcal{B} not minimal. Moreover, we need all s-1 vectors v-v' to make $F(u)_{\mathcal{B}_f}$ connected. We are finished. Note that of course, we might be able to choose v, v' in many different ways, hence \mathcal{B} is not unique.

▶ Identify the connected components $C_1, ..., C_s$ of the graph G_f .

- ▶ Identify the connected components $C_1, ..., C_s$ of the graph G_f .
- ▶ Pick a spanning tree on $C_1, ..., C_s$.

- ▶ Identify the connected components $C_1, ..., C_s$ of the graph G_f .
- ▶ Pick a spanning tree on $C_1, ..., C_s$.
- For any edge $\{C_i, C_j\}$ of the spanning tree, pick points $v \in C_i$ and $v' \in C_j$.

- ▶ Identify the connected components $C_1, ..., C_s$ of the graph G_f .
- ▶ Pick a spanning tree on $C_1, ..., C_s$.
- For any edge $\{C_i, C_j\}$ of the spanning tree, pick points $v \in C_i$ and $v' \in C_j$.
- ▶ Define \mathcal{B}_f as the set of s-1 difference vectors v-v'.

- ▶ Identify the connected components $C_1, ..., C_s$ of the graph G_f .
- ▶ Pick a spanning tree on $C_1, ..., C_s$.
- For any edge $\{C_i, C_j\}$ of the spanning tree, pick points $v \in C_i$ and $v' \in C_j$.
- ▶ Define \mathcal{B}_f as the set of s-1 difference vectors v-v'.
- ▶ Move on to the next fiber (unless you are sure to be done).

Notes on the proof above

- ► There are certain issues with the combinatorial algorithm that the proof above provides
- ➤ Firstly, it doesn't give a termination condition we do not know when we are finished
- Secondly, As we mentioned before, the fibers can become arbitrarily large, which makes the number of calculations needed very large.
- ➤ To solve this latter problem, we may use the Graver Basis, which I will not go into more detail here.
- ► However, there is another way, which uses tools from algebra, and we will go through this now

Quick refresh on ideals

▶ Recall the definition of ideals: they are subsets I of rings R such that (I, +) is a subgroup of R and for all $r \in R$ and $i \in I$, $ri = ir \in I$.

$$\langle a_1, a_2, ..., a_n \rangle = \left\{ \sum_{i=1}^n r_i a_i, r_i \in R, n \in \mathbb{N} \right\}$$

is the ideal generated by $a_1, a_2, ..., a_n$.

- ▶ A prime ideal is a proper ideal such that if $ab \in I$ then $a \in I$ or $b \in I$ (or both).
- ▶ Recall also that homogeneous polynomials are such that all terms have the same degree.

Lattice Ideal corresponding to our lattice

▶ Let $\mathcal{L} \subset \mathbb{Z}^k$ be given. The corresponding *Lattice Ideal* is given by

$$I_{\mathcal{L}} := \langle p^u - p^v : u, v \in \mathbb{N}^k \text{ and } u - v \in \mathcal{L} \rangle \subset \mathbb{R}[p_1, p_2, ..., p_k]$$

- $ightharpoonup p_i$ are our indeterminates and $p^u = p_1^{u_1} p_2^{u_2} ... p_k^{u_k}$.
- ▶ In our setting, we will let $p_i = P(X = i)$ where X is some random variable with k outcomes.
- ▶ We know that every ideal in $\mathbb{R}[p_1,...,p_k]$ is finitely generated. With this fact, the theorem below proves finiteness of the Markov Basis. Note that we have proved constant cardinality, but not finiteness.
- ▶ Theorem $\mathcal{B} \subset \mathcal{L}$ is a Markov Basis iff the set of binomials $\{p^{b^+} p^{b^-} : b \in \mathcal{B}\}$ generates $I_{\mathcal{L}}$.

Gröbner Basis

- ▶ In order to define a Gröbner Basis, we let a vector $w \in \mathbb{R}^k$ be given. We suppose that w is such that the problem of minimizing $v \cdot w$ for $v \in \mathcal{F}(u)$ has a unique solution for each $u \in \mathbb{N}^k$. The complement of the set of such w have zero measure.
- ▶ Next, let $\mathcal{B} \subset \mathcal{L}$ be such that for $b \in \mathcal{B}$, $b \cdot w < 0$.
- ▶ We once again define the graph $\mathcal{F}(u)_{\mathcal{B}}$ which nodes are the vectors in $\mathcal{F}(u)$ and for any two vectors $v, v' \in \mathcal{F}(u)$, we introduce a directed edge $v \longrightarrow v'$ if $v' v \in \mathcal{B}$.

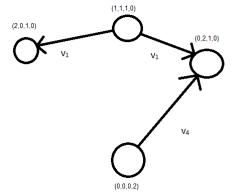
The graph $\mathcal{F}(u)_{\mathcal{B}}$

▶ Directed edge $v \longrightarrow v'$ if $v' - v \in \mathcal{B}$

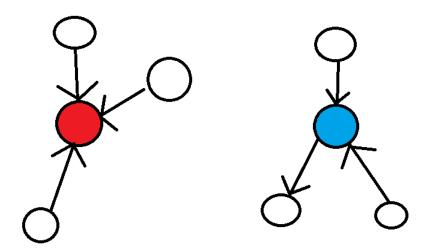
$$\mathcal{B} = \{v_1, v_2, v_3, v_4\}$$

= $\{(1, -1, 0, 0), (0, 1, -2, 1), (0, 3, -1, -1), (0, 2, 1, -2)\}$

▶ The basis above is NOT a Gröbner basis!



Sink vs. not a sink



Gröbner Basis

- ▶ We say that \mathcal{B} is a Gröbner basis if for each $u \in \mathcal{F}(u)$, $\mathcal{F}(u)_{\mathcal{B}}$ has a unique sink.
- ▶ A Gröbner Basis always exists since if $(v'-v) \cdot w < 0$ and $(v''-v') \cdot w < 0$ then

$$(v'' - v) \cdot w < 0$$

- ▶ A Gröbner basis is such that the sink is the minimizer of the optimization problem defined above.
- \triangleright Gröbner bases are not unique, even when fixing w.

▶ Recall that the lattice is given by

$$3u_1 + 3u_2 + 4u_3 + 5u_4 = 0$$

▶ Recall that the lattice is given by

$$3u_1 + 3u_2 + 4u_3 + 5u_4 = 0$$

• We let w = (100, 10, 1, 0)

▶ Recall that the lattice is given by

$$3u_1 + 3u_2 + 4u_3 + 5u_4 = 0$$

- We let w = (100, 10, 1, 0)
- ► To the Markov Basis

$$\{(1,-1,0,0),(0,1,-2,1),(0,3,-1,-1),(0,2,1,-2)\}$$

we add (0, 1, 3, -3), (0, 0, 5, -4)

Universal Gröbner Basis

- ▶ A reduced Gröbner Basis is the a set \mathcal{B} such that if $b \in \mathcal{B}$, then b^- is a sink, b^+ is not a sink but $b^+ e_i$ is a sink for all i such that $b_i^+ \neq 0$.
- ightharpoonup The reduced Gröbner basis is unique for fixed w.
- ► The Universal Gröbner Basis is the union of all reduced Gröbner bases.
- ► As the name suggests, the Universal Gröbner Basis is unique.

▶ Recall that the lattice is given by

$$3u_1 + 3u_2 + 4u_3 + 5u_4 = 0$$

▶ Recall that the lattice is given by

$$3u_1 + 3u_2 + 4u_3 + 5u_4 = 0$$

• We let w = (100, 10, 1, 0)

► Recall that the lattice is given by

$$3u_1 + 3u_2 + 4u_3 + 5u_4 = 0$$

- We let w = (100, 10, 1, 0)
- ► To the Gröbner basis

$$\{(1, -1, 0, 0), (0, 1, -2, 1), (0, 3, -1, -1), (0, 2, 1, -2),$$

 $(0, 1, 3, -3), (0, 0, 5, -4)\}$

we add

$$(1,0,-2,1), (3,0,-1,-1), (2,0,1,-2), (1,0,3,-3),$$

 $(0,4,-3,0), (4,0,-3,0), (0,5,0,-3), (5,0,0,-3)$

Graver Basis

▶ We are finally ready to define the last basis. Let a sign vector $\sigma \in \{-1,1\}^k$ be given and consider

$$\mathcal{L}_{\sigma} = \{ v \in \mathcal{L} : \forall i, \sigma_i v_i \ge 0 \}$$

- ▶ This set is closed under addition and has a unique, minimal and finite generating set \mathcal{G}_{σ} .
- \blacktriangleright We define the Graver Basis \mathcal{G} of \mathcal{L} as

$$\mathcal{G} = \bigcup_{\sigma \in \{-1,1\}^k} \mathcal{G}_{\sigma}.$$

► The Graver basis is the unique smallest subset of \mathcal{L} that is such that for each $v \in \mathcal{L}$ there is $\lambda_g \in \mathbb{N}$ such that

$$v = \sum_{g \in \mathcal{G}} \lambda_g g, |v_i| = \sum_{g \in \mathcal{G}} \lambda_g |g_i|$$

▶ Recall that the lattice is given by

$$3u_1 + 3u_2 + 4u_3 + 5u_4 = 0$$

▶ Recall that the lattice is given by

$$3u_1 + 3u_2 + 4u_3 + 5u_4 = 0$$

► In order to form a Graver Basis, we add to the Universal Gröbner Basis above the vectors

$$(1, 1, 1, -2), (1, 2, -1, -1), (2, 1, -1, -1), (1, 3, -3, 0), (2, 2, -3, 0),$$

 $(3, 1, -3, 0), (1, 4, 0, -3), (2, 3, 0, -3), (3, 2, 0, -3), (4, 1, 0, -3).$

▶ Let $A = (a_{i,j}) \in \mathbb{N}^{d \times k}$ be a matrix which column sums are all equal.

- Let $A = (a_{i,j}) \in \mathbb{N}^{d \times k}$ be a matrix which column sums are all equal.
- Every column $a_j = (a_{1_j},...,a_{d_j})^T$ represents a monomial $\theta^{a_j} = \theta_1^{a_{1_j}}...\theta_d^{a_{d_j}}$.

- Let $A = (a_{i,j}) \in \mathbb{N}^{d \times k}$ be a matrix which column sums are all equal.
- Every column $a_j = (a_{1_j}, ..., a_{d_j})^T$ represents a monomial $\theta^{a_j} = \theta_1^{a_{1_j}} ... \theta_d^{a_{d_j}}$.
- ▶ A defines a map $\phi_A : \mathbb{C}^d \to \mathbb{C}^k$ by

$$\theta \to (\theta^{a_1}, \theta^{a_2}, ..., \theta^{a_k})$$

- Let $A = (a_{i,j}) \in \mathbb{N}^{d \times k}$ be a matrix which column sums are all equal.
- Every column $a_j = (a_{1_j}, ..., a_{d_j})^T$ represents a monomial $\theta^{a_j} = \theta_1^{a_{1_j}} ... \theta_d^{a_{d_j}}$.
- ▶ A defines a map $\phi_A : \mathbb{C}^d \to \mathbb{C}^k$ by

$$\theta \to (\theta^{a_1}, \theta^{a_2}, ..., \theta^{a_k})$$

The closure of the image of this map is called the Affine Toric Variety, V_A .

- Let $A = (a_{i,j}) \in \mathbb{N}^{d \times k}$ be a matrix which column sums are all equal.
- Every column $a_j = (a_{1_j}, ..., a_{d_j})^T$ represents a monomial $\theta^{a_j} = \theta_1^{a_{1_j}} ... \theta_d^{a_{d_j}}$.
- ▶ A defines a map $\phi_A : \mathbb{C}^d \to \mathbb{C}^k$ by

$$\theta \rightarrow (\theta^{a_1}, \theta^{a_2}, ..., \theta^{a_k})$$

- The closure of the image of this map is called the Affine Toric Variety, V_A .
- ▶ If we restrict ϕ_A to $\mathbb{R}^d_{\geq 0}$ and consider its image in the probability simplex Δ_{k-1} we obtain the log-linear model \mathcal{M}_A .

Theorem

Theorem If $\mathcal{L} = \ker_Z(A)$ then the lattice ideal $I_{\mathcal{L}}$ is a prime ideal. The homogeneous polynomials contained in it are exactly the homogeneous polynomials in $\mathbb{R}[p_1, ..., p_k]$ that vanish on probability distributions in the log-linear model specified by the matrix A. In other words, the toric variety $V_A = V(I_{\mathcal{L}})$ is the Zariski closure of the log-linear model \mathcal{M}_A

Application of the Lattice Ideal

Let

$$A = \begin{bmatrix} 3 & 0 & 0 & 2 & 1 & 2 & 1 & 0 & 0 \\ 0 & 3 & 0 & 1 & 2 & 0 & 0 & 2 & 1 \\ 0 & 0 & 3 & 0 & 0 & 1 & 2 & 1 & 2 \end{bmatrix}$$

and consider the the assicoated log-linear model \mathcal{M}_A . We may find the Markov Basis for the lattice $\mathcal{L} = \ker_{\mathbb{Z}}(A)$ using the algorithm from the proof above, and after each step (or doing it smarter) checking if the corresponding binomials $\{p^{b^+} - p^{b^-} : b \in \mathcal{B}\}$ generate the lattice ideal $I_{\mathcal{L}}$. The basis has 17 vectors so in practice, we would certainly use a computer.

Rock Paper Scissors

Suppose now Bobby and Sally plays a game of Rock Paper Scissors, each round consists of three games and you may pick at most 2 different choices each round. After 1000 rounds, Sally want to analyze Bobby's choices and suspects he picks the three choices independently, but not necessarily with equal probability. She introduces

$$u = (u_{rrr}, u_{ppp}, u_{sss}, u_{rrp}, u_{rrs}, u_{ppr}, u_{pps}, u_{ssr}, u_{ssp})$$

where u_{rrs} is the number of rounds Bobby played 2 rocks and 1 scissor, and so forth.

Rock Paper Scissors

Let $p_{ppp}, p_{rrr}...$ be the true probabilities of bobbys choices. Sally introduces

$$v = \left(3p_{rrr}, 3p_{ppp}, 3p_{sss}, p_{rrp}, p_{rrs}, p_{ppr}, p_{pps}, p_{ssr}, p_{ssp}\right)$$

Under the null hypothesis of random independent choices we have $v \in \mathcal{M}_A$ and so we have that $v \in V_A$, i.e. v vanishes for all $f \in I_{\mathcal{L}}$ ($\mathcal{L} = \ker_{\mathbb{Z}}(A)$). That is, if p = v then $p^w - p^{w'} = 0$ for all $w, w' \in \mathbb{N}^k, w - w' \in \mathcal{L}$.

Rock Paper Scissors

Hence, all Sally needs to do to test if Bobby is indeed making independent choices is to use the Markov Basis of $\mathcal{L} = \ker_{\mathbb{Z}}(A)$, the Metropolis-Hastings Algorithm and the hypothesis testing methods from Lecture 1. However, we need to change a few terms in the hypergeometric distribution slightly in order to take the constant 3 in

$$v = (3p_{rrr}, 3p_{ppp}, 3p_{sss}, p_{rrp}, p_{rrs}, p_{ppr}, p_{pps}, p_{ssr}, p_{ssp})$$

into consideration.

Relational data in practice - A few notes on the method above

- ▶ The Markov Bases may be complicated to compute and the algebra used to find them may produce moves that inapplicable to observed data.
- ► For certain models, new algorithms have been found to circumvent this, which also provides a scalable exact conditional test.

Relational data in practice - Heuristic Tests

- ▶ Heuristic tests are based on graphical comparisons between observed statistics and random ones obtained from the fitted model.
- Say we want to estimate how well a model $P_{\theta}(G)$ fits an observed graph g_{obs}
- ▶ We compute a maximum likelihood estimator for $\hat{\theta}$ of θ .
- ▶ We calculate some network statistics $s(g_{obs})$, say number of edges or the degrees of the nodes, and then compare it to $s(g_1), ..., s(g_n)$ where g_i are simulated graphs from $P_{\hat{\theta}}$.
- ▶ One issue that there is no obvious discrepancy measure between the observed graph and the model.
- A second is that the distribution of s(g) is not immediately known under the hypothesis that g_{obs} fits the model $P_{\theta}(G)$.

Relational data in practice - Asymptotic tests

- ► Asymptotic tests solves the issues presented above by providing formal testing criteria for evaluating model fit
- ▶ However, classical tools such as the log-likelihood ratio test are not directly applicable since the usual asymptotics do not apply to many complex models, since the iid assumption on random edges does not hold.
- ► There are remedies to these issues, but they are often used on a case-by-case basis.