Markov Bases:
 Hypothesis Tests for Contingency Tables

Session 4
Danai

Outline

We will talk about

- contingency tables
- statistical models
- hypothesis tests
- Markov bases.

A contingency table contains counts obtained by cross-classifying observed cases according to two or more discrete criteria.

	Death Penalty		
Race	Yes	No	Total
White	19	141	160
Black	17	149	166
Total	36	290	326

Classification of 326 homicide indictments in Florida in 1970s.

A contingency table contains counts obtained by cross-classifying observed cases according to two or more discrete criteria.

	Death Penalty		
Race	Yes	No	Total
White	19	141	160
Black	17	149	166
Total	36	290	326

Classification of 326 homicide indictments in Florida in 1970s.

Were the death penalty decisions made independently of the defendant's race?

Independent variables

Consider two random variables X, Y with outcomes

$$
[r]:=\{1, \ldots, r\} \quad \text { and } \quad[c]:=\{1, \ldots, c\} .
$$

Recall that $p=\left(p_{i j}\right)$, where

- $p_{i j}=P(X=i, Y=j)$,
- $p_{i+}=p_{i 1}+\cdots+p_{i c}$,
- $p_{+j}=p_{1 j}+\cdots+p_{r j}$.

Independent variables

Consider two random variables X, Y with outcomes

$$
[r]:=\{1, \ldots, r\} \quad \text { and } \quad[c]:=\{1, \ldots, c\} .
$$

Recall that $p=\left(p_{i j}\right)$, where

- $p_{i j}=P(X=i, Y=j)$,
- $p_{i+}=p_{i 1}+\cdots+p_{i c}$,
- $p_{+j}=p_{1 j}+\cdots+p_{r j}$.

The random variables X and Y are independent if the joint probabilities factor as $p_{i j}=p_{i+} p_{+j}$ for all $i \in[r], j \in[c]$. We denote it by $X \Perp Y$.

Proposition
$X \Perp Y \Longleftrightarrow p=\left(p_{i j}\right)$ has rank 1.

Independence

Proposition

$X \Perp Y \Longleftrightarrow p=\left(p_{i j}\right)$ has rank 1 .
Proof.
(\Longrightarrow) If $X \Perp Y$ then

$$
\begin{gathered}
\left(p_{i j}\right)=\left(\begin{array}{cccc}
p_{11} & p_{12} & \ldots & p_{1 c} \\
\vdots & \vdots & \vdots & \vdots \\
p_{r 1} & p_{r 2} & \ldots & p_{r c}
\end{array}\right)=\left(\begin{array}{cccc}
p_{1+} p_{+1} & p_{1+} p_{+2} & \ldots & p_{1+} p_{+c} \\
\vdots & \vdots & \vdots & \vdots \\
p_{r+} p_{+1} & p_{r+} p_{+2} & \ldots & p_{r+} p_{+c}
\end{array}\right) \\
=\left(\begin{array}{c}
p_{1+} \\
p_{2+} \\
\vdots \\
p_{r+}
\end{array}\right)\left(\begin{array}{llll}
p_{+1} & p_{+2} & \ldots & p_{+c}
\end{array}\right)
\end{gathered}
$$

Independence

Proposition

$X \Perp Y \Longleftrightarrow p=\left(p_{i j}\right)$ has rank 1 .

Proof.

(\Longrightarrow) If $X \Perp Y$ then

$$
\begin{gathered}
\left(p_{i j}\right)=\left(\begin{array}{cccc}
p_{11} & p_{12} & \ldots & p_{1 c} \\
\vdots & \vdots & \vdots & \vdots \\
p_{r 1} & p_{r 2} & \ldots & p_{r c}
\end{array}\right)=\left(\begin{array}{cccc}
p_{1+} p_{+1} & p_{1+} p_{+2} & \ldots & p_{1+} p_{+c} \\
\vdots & \vdots & \vdots & \vdots \\
p_{r+} p_{+1} & p_{r+} p_{+2} & \ldots & p_{r+} p_{+c}
\end{array}\right) \\
=\left(\begin{array}{c}
p_{1+} \\
p_{2+} \\
\vdots \\
p_{r+}
\end{array}\right)\left(\begin{array}{llll}
p_{+1} & p_{+2} & \ldots & p_{+c}
\end{array}\right)
\end{gathered}
$$

The map $\left(p_{i+}, p_{j+}\right) \mapsto p_{i+} p_{j+} \quad$ is a Segre embedding.

Independence

Proposition

$X \Perp Y \Longleftrightarrow p=\left(p_{i j}\right)$ has rank 1.

Proof.

(\Longleftarrow) If $\operatorname{rank}(p)=1$, then $p=\alpha b^{T}$, for $\alpha \in \mathbb{R}^{r}, b \in \mathbb{R}^{c}$. We choose α, b to be non-negative. Let $\alpha+=\sum_{i=1}^{r} \alpha_{i}$,
$b+=\sum_{i=1}^{c} b_{i}$. Then $p_{i j}=\alpha_{i} b_{j}$, hence

$$
p_{i+}=\alpha_{i} b_{+}, \quad p_{+j}=\alpha_{+} b_{j}, \quad \text { and } \alpha_{+} b_{+}=b_{+} \alpha_{+}=1
$$

Hence, $\quad p_{i j}=\alpha_{i} b_{j}=\alpha_{i} b_{+} \alpha_{+} b_{j}=p_{i+} p_{+j}, \quad$ for all $i \in[r], j \in[c]$.

Statistical model

Consider a n-sample of independent and identically distributed pairs of random variables

$$
\begin{gathered}
\binom{X^{(1)}}{Y^{(1)}},\binom{X^{(2)}}{Y^{(2)}}, \ldots,\binom{X^{(n)}}{Y^{(n)}}, \\
P\left(X^{(k)}=i, Y^{(k)}=j\right)=p_{i j}, \forall i \in[r], j \in[c], k \in[n] .
\end{gathered}
$$

The joint probability matrix $p=\left(p_{i j}\right) \in \Delta_{r c-1}$,

$$
\Delta_{r c-1}=\left\{q \in \mathbb{R}^{r \times c} \mid q_{i j} \geq 0, \sum_{i=1}^{r} \sum_{j=1}^{c} q_{i j}=1, \forall i, j\right\}
$$

A statistical model \mathcal{M} is a subset of $\Delta_{r c-1}$.

Independence model

The independence model for X and Y is the set

$$
\begin{gathered}
\mathcal{M}_{X \Perp Y}:=\left\{p \in \Delta_{r c-1}: \operatorname{rank}(p)=1\right\} . \\
\text { Then } p=\left(\begin{array}{cccc}
p_{11} & p_{12} & \ldots & p_{1 c} \\
p_{21} & p_{22} & \ldots & p_{2 c} \\
\vdots & \vdots & \vdots & \vdots \\
p_{r 1} & p_{r 2} & \ldots & p_{r c}
\end{array}\right) \text { and } \\
\operatorname{rank}(p)=1 \Longleftrightarrow p_{i j} p_{k l}-p_{i l} p_{j k}=0 .
\end{gathered}
$$

Independence model

The independence model for X and Y is the set

$$
\begin{gathered}
\mathcal{M}_{X \Perp Y}:=\left\{p \in \Delta_{r c-1}: \operatorname{rank}(p)=1\right\} . \\
\text { Then } p=\left(\begin{array}{cccc}
p_{11} & p_{12} & \ldots & p_{1 c} \\
p_{21} & p_{22} & \ldots & p_{2 c} \\
\vdots & \vdots & \vdots & \vdots \\
p_{r 1} & p_{r 2} & \ldots & p_{r c}
\end{array}\right) \text { and } \\
\operatorname{rank}(p)=1 \Longleftrightarrow p_{i j} p_{k l}-p_{i l} p_{j k}=0 .
\end{gathered}
$$

$$
\text { Let } S=\left\{x_{i j} x_{k l}-x_{i l} x_{j k} \mid 1 \leq i<k \leq r, 1 \leq j<I \leq c\right\} \subset \mathbb{R}\left[x_{11}, x_{12}, \ldots, x_{r c}\right] .
$$

$$
V(S)=\left\{p \in \mathbb{R}^{r \times c} \mid \forall f\left(x_{11}, x_{12}, \ldots, x_{r c}\right) \in S: f(p)=0\right\}
$$

$$
\mathcal{M}_{X \Perp Y}=\Delta_{r c-1} \cap V(S)
$$

Independence model

The independence model for X and Y is the set

$$
\begin{gathered}
\mathcal{M}_{X \Perp Y}:=\left\{p \in \Delta_{r c-1}: \operatorname{rank}(p)=1\right\} \\
\text { Then } p=\left(\begin{array}{cccc}
p_{11} & p_{12} & \ldots & p_{1 c} \\
p_{21} & p_{22} & \ldots & p_{2 c} \\
\vdots & \vdots & \vdots & \vdots \\
p_{r 1} & p_{r 2} & \cdots & p_{r c}
\end{array}\right) \text { and } \\
\operatorname{rank}(p)=1 \Longleftrightarrow p_{i j} p_{k l}-p_{i l} p_{j k}=0
\end{gathered}
$$

$$
\text { Let } S=\left\{x_{i j} x_{k l}-x_{i l} x_{j k} \mid 1 \leq i<k \leq r, 1 \leq j<I \leq c\right\} \subset \mathbb{R}\left[x_{11}, x_{12}, \ldots, x_{r c}\right]
$$

$$
V(S)=\left\{p \in \mathbb{R}^{r \times c} \mid \forall f\left(x_{11}, x_{12}, \ldots, x_{r c}\right) \in S: f(p)=0\right\}
$$

$$
\mathcal{M}_{X \Perp Y}=\Delta_{r c-1} \cap V(S) . \quad \text { Segre variety }
$$

Contingency tables

Having

$$
\binom{X^{(1)}}{Y^{(1)}},\binom{X^{(2)}}{Y^{(2)}}, \ldots,\binom{X^{(n)}}{Y^{(n)}}
$$

we summarize the observations in a table of counts

$$
U_{i j}=\sum_{k=1}^{n} 1_{\left\{X^{(k)}=i, Y^{(k)}=j\right\}}, \quad i \in[r], j \in[c],
$$

The table $U=\left(U_{i j}\right)$ is a two-way contingency table.
The set of contingency tables that arise for sample size n is

$$
\mathcal{T}(n):=\left\{u \in \mathbb{N}^{r \times c}: \sum_{i=1}^{r} \sum_{j=1}^{c} u_{i j}=n\right\} .
$$

	Death Penalty		
Race	Yes	No	Total
White	19	141	160
Black	17	149	166
Total	36	290	326

Classification of 326 homicide indictments in Florida in 1970s.

The contingency table shown above is represented as the table

$$
u=(19,141,17,149) \in \mathcal{T}(326)
$$

Also $(14,146,22,144),(20,140,16,150), \ldots \in \mathcal{T}(326)$.

Hypothesis testing

Consider the hypothesis testing problem

$$
H_{0}: p \in \mathcal{M}_{X \Perp Y} \quad \text { (null hypothesis). }
$$

\diamond Chi-square test of independence.
\diamond Fisher's exact test.

Hypothesis testing

Consider the hypothesis testing problem

$$
H_{0}: p \in \mathcal{M}_{X \Perp Y} \quad \text { (null hypothesis). }
$$

\diamond Chi-square test of independence.
\diamond Fisher's exact test.

Chi-square test of independence-Sketch

- If H_{0} is true, then $p_{i j}=p_{i+} p_{+j}$, and the expected number of occurrences of the joint event $\{X=i, Y=j\}$ is $n p_{i+} p_{+j}$.

Chi-square test of independence-Sketch

- If H_{0} is true, then $p_{i j}=p_{i+} p_{+j}$, and the expected number of occurrences of the joint event $\{X=i, Y=j\}$ is $n p_{i+} p_{+j}$.
- Use the empirical proportions

$$
\hat{p}_{i+}=\frac{U_{i+}}{n} \quad \text { and } \quad \hat{p}_{+j}=\frac{U_{+j}}{n},
$$

to estimate the marginal probabilities p_{i+}, p_{+j},

Chi-square test of independence-Sketch

- If H_{0} is true, then $p_{i j}=p_{i+} p_{+j}$, and the expected number of occurrences of the joint event $\{X=i, Y=j\}$ is $n p_{i+} p_{+j}$.
- Use the empirical proportions

$$
\hat{p}_{i+}=\frac{U_{i+}}{n} \quad \text { and } \quad \hat{p}_{+j}=\frac{U_{+j}}{n},
$$

to estimate the marginal probabilities p_{i+}, p_{+j},

- estimate $n p_{i+} p_{+j}$ by $\hat{u}_{i j}:=n \hat{p}_{i+} \hat{p}_{+j}$,

Chi-square test of independence-Sketch

- If H_{0} is true, then $p_{i j}=p_{i+} p_{+j}$, and the expected number of occurrences of the joint event $\{X=i, Y=j\}$ is $n p_{i+} p_{+j}$.
- Use the empirical proportions

$$
\hat{p}_{i+}=\frac{U_{i+}}{n} \quad \text { and } \quad \hat{p}_{+j}=\frac{U_{+j}}{n},
$$

to estimate the marginal probabilities p_{i+}, p_{+j},

- estimate $n p_{i+} p_{+j}$ by $\hat{u}_{i j}:=n \hat{p}_{i+} \hat{p}_{+j}$,
- compute the chi-square statistic

$$
X^{2}(U):=\sum_{i=1}^{r} \sum_{j=1}^{c} \frac{\left(U_{i j}-\hat{u}_{i j}\right)^{2}}{\hat{u}_{i j}}
$$

Chi-square test of independence-Sketch

- compute the probability

$$
P\left(X^{2}(U) \geq X^{2}(u) \mid H_{0} \text { is true }\right)
$$

Chi-square test of independence-Sketch

- compute the probability

$$
P\left(X^{2}(U) \geq X^{2}(u) \mid H_{0} \text { is true }\right)
$$

- This is known as the p-value of the statistical test. If the p-value is low (usually <0.05) then we conclude that the null hypothesis was wrong. If the p-value is not low, then the chi-square test is inconclusive.

Example

	Death Penalty		
Race	Yes	No	Total
White	19	141	160
Black	17	149	166
Total	36	290	326

Classification of 326 homicide indictments in Florida in 1970s.

Starting with the matrix $u=(19,17,141,149), r=c=2$, we can use R to compute that

$$
p \text {-value }=0.638
$$

The p-value is large; there is no evidence against the hypothesis.

Hypothesis testing

Consider the hypothesis testing problem

$$
H_{0}: p \in \mathcal{M}_{X \Perp Y} \quad \text { (null hypothesis). }
$$

\diamond Chi-square test of independence.
\diamond Fisher's exact test.

Fisher's exact test

Proposition

Let $r=c=2$. If $p=\left(p_{i j}\right) \in \mathcal{M}_{X \Perp Y}$ and $u \in \mathcal{T}(n)$, then

$$
P\left(U_{11}=u_{11} \mid U_{1+}=u_{1+}, U_{+1}=u_{+1}\right)=\frac{\binom{u_{1+}}{u_{11}}\binom{n-u_{1+}}{u_{+1}-u_{11}}}{\binom{n}{u_{+1}}}
$$

for $u_{11} \in\left\{\max \left(0, u_{1+}+u_{+1}-n\right), \ldots, \min \left(u_{1+}, u_{+1}\right)\right\}$ and zero otherwise.

Fisher's exact test

Proposition

Let $r=c=2$. If $p=\left(p_{i j}\right) \in \mathcal{M}_{X \Perp Y}$ and $u \in \mathcal{T}(n)$, then

$$
P\left(U_{11}=u_{11} \mid U_{1+}=u_{1+}, U_{+1}=u_{+1}\right)=\frac{\binom{u_{1+}}{u_{11}}\binom{n-u_{1+}}{u_{+1}-u_{11}}}{\binom{n}{u_{+1}}}
$$

for $u_{11} \in\left\{\max \left(0, u_{1+}+u_{+1}-n\right), \ldots, \min \left(u_{1+}, u_{+1}\right)\right\}$ and zero otherwise.

Proof. Recall that

$$
\begin{aligned}
P(U & =u)=\binom{n}{u} \prod_{i=1}^{r} \prod_{j=1}^{c} p_{i j} u_{i j} \\
& =\frac{n!}{u_{11}!u_{12}!\ldots u_{r c}!} \prod_{i=1}^{r} \prod_{j=1}^{c} p_{i j} j_{i j}
\end{aligned}
$$

Fisher's exact test

Fix u_{1+} and u_{+1}. Then, as a function of u_{11}, the conditional probability

$$
\begin{gathered}
P\left(U_{11}=u_{11} \mid U_{1+}=u_{1+}, U_{+1}=u_{+1}\right)=\frac{P\left(U_{11}=u_{11}, U_{1+}=u_{1+}, U_{+1}=u_{+1}\right)}{P\left(U_{1+}=u_{1+}, U_{+1}=u_{+1}\right)} \\
=\frac{\binom{n}{u_{1}+}\binom{u_{1+}}{u_{11}}\binom{n-u_{1+}}{u_{+1}-u_{11}} p_{1+}^{u_{1+}} p_{2+}^{n-u_{1+}} p_{+1}^{u_{+1}} p_{+2}^{n-u_{+1}}}{\sum_{u_{11}}\binom{n}{u_{1}+}\binom{u_{1+}}{u_{11}}\binom{n-u_{1+}+}{u_{+1}-u_{11}} p_{1+}^{u_{1+}} p_{2+}^{n-u_{1+}} p_{+1}^{u_{+1} p_{+2}^{n-u_{+1}}}} \\
=\frac{\binom{u_{1+}}{u_{11}}\binom{n-u_{1+}}{u_{+1}-u_{11}}}{\binom{n}{u_{+1}}}, \text { since } \\
\sum_{u_{11}}\binom{u_{1+}}{u_{11}}\binom{n-u_{1+}}{u_{+1}-u_{11}}=\binom{n}{u_{1+}} .
\end{gathered}
$$

Fisher's exact test

Let $u \in \mathcal{T}(n)$ be an observed 2×2-contingency table. Then

$$
P\left(X^{2}(U) \geq X^{2}(u) \mid U_{1+}=u_{1+}, U_{+1}=u_{+1}\right)
$$

can be computed by summing over the probabilities

$$
P\left(U_{11}=v_{11} \mid U_{1+}=v_{1+}, U_{+1}=v_{+1}\right)=\frac{\binom{u_{1+}+}{v_{11}}\binom{n-u_{1+}}{u_{+1}-v_{11}}}{\binom{n}{u_{+1}}}
$$

for all values $v_{11} \in\left\{\max \left(0, u_{1+}+u_{+1}-n\right), \ldots, \min \left(u_{1+}, u_{+1}\right)\right\}$ such that $X^{2}(v) \geq X^{2}(u)$. In other words, the p-value is

$$
\sum_{v_{11}} 1_{X^{2}(v) \geq X^{2}(u)} \frac{\binom{u_{1+}}{v_{11}}\binom{n-u_{1+}}{u_{+1}-v_{11}}}{\binom{n}{u_{+1}}}
$$

Example

	Death Penalty		
Race	Yes	No	Total
White	19	141	160
Black	17	149	166
Total	36	290	326

Classification of 326 homicide indictments in Florida in 1970s.

For the contigency table $u=(19,141,17,149) \in \mathcal{T}(326)$, the p-value is

$$
\sum_{0 \leq v_{11} \leq 36} 1_{X^{2}(v) \geq X^{2}(u)} \frac{\binom{160}{v_{11}}\binom{166}{160-v_{11}}}{\binom{326}{36}}
$$

General case

Let X_{1}, \ldots, X_{m} be discrete random variables; X_{i} takes values in $\left[r_{i}\right]$.

General case

Let X_{1}, \ldots, X_{m} be discrete random variables; X_{i} takes values in $\left[r_{i}\right]$.

$$
\text { Let } \mathcal{R}:=\prod_{i=1}^{m}\left[r_{i}\right]=\left[r_{1}\right] \times\left[r_{2}\right] \times \cdots \times\left[r_{m}\right] \text {. }
$$

General case

Let X_{1}, \ldots, X_{m} be discrete random variables; X_{i} takes values in $\left[r_{i}\right]$.
Let $\mathcal{R}:=\prod_{i=1}^{m}\left[r_{i}\right]=\left[r_{1}\right] \times\left[r_{2}\right] \times \cdots \times\left[r_{m}\right]$.
Consider the joint probabilities

$$
p_{i}=P\left(X_{1}=i_{1}, \ldots, X_{m}=i_{m}\right), \quad i=\left(i_{1}, \ldots, i_{m}\right) \in \mathcal{R}
$$

The probability table $p=\left(p_{i} \mid i \in \mathcal{R}\right)$ is in the $\# \mathcal{R}-1-$ simplex

$$
\Delta_{\mathcal{R}-1}=\left\{q \in \mathbb{R}^{\mathcal{R}} \mid q_{i} \geq 0, \sum_{i \in \mathcal{R}} q_{i}=1\right\}
$$

General case

Let X_{1}, \ldots, X_{m} be discrete random variables; X_{i} takes values in $\left[r_{i}\right]$. Let $\mathcal{R}:=\prod_{i=1}^{m}\left[r_{i}\right]=\left[r_{1}\right] \times\left[r_{2}\right] \times \cdots \times\left[r_{m}\right]$.

Consider the joint probabilities

$$
p_{i}=P\left(X_{1}=i_{1}, \ldots, X_{m}=i_{m}\right), \quad i=\left(i_{1}, \ldots, i_{m}\right) \in \mathcal{R}
$$

The probability table $p=\left(p_{i} \mid i \in \mathcal{R}\right)$ is in the $\# \mathcal{R}-1-$ simplex

$$
\Delta_{\mathcal{R}-1}=\left\{q \in \mathbb{R}^{\mathcal{R}} \mid q_{i} \geq 0, \sum_{i \in \mathcal{R}} q_{i}=1\right\}
$$

Let $\operatorname{int}\left(\Delta_{\mathcal{R}-1}\right)$ be the interior of $\Delta_{\mathcal{R}-1}$,

$$
\operatorname{int}\left(\Delta_{\mathcal{R}-1}\right):=\left\{p \in \Delta_{\mathcal{R}-1} \mid p>0\right\}
$$

Log-linear model

Fix a matrix $A \in \mathbb{Z}^{d \times \mathcal{R}}$, whose columns all sum to the same value, $d \in \mathbb{N}$. The log-linear model (toric model) associated with A is the set of positive probability tables

$$
\mathcal{M}_{A}=\left\{p=\left(p_{i}\right) \in \operatorname{int}\left(\Delta_{\mathcal{R}-1}\right): \log p \in \operatorname{rowspan}(A)\right\}
$$

where rowspan $(A)=A^{T} b$ is the linear space spanned by the rows of A.

$$
\mathcal{M}_{A}=\Delta_{\mathcal{R}-1} \cap V(I)
$$

Observation

Let $p \in \mathcal{M}_{X \Perp Y}$. If p has all positive entries $\left(p \in \operatorname{int}\left(\Delta_{\mathcal{R}-1}\right)\right)$ then

$$
\begin{aligned}
& \log p=\left(\log p_{1+} p_{+1}, \log p_{1+} p_{+2}, \log p_{2+} p_{+1}, \log p_{2+} p_{+2}\right) \\
& =\left(\log p_{1+}+\log p_{+1}, \log p_{1+}+\log p_{+2}, \log p_{2+}+\log p_{+1}, \log p_{2+}+\log p_{+2}\right) \\
& \quad=\log p_{1+}(1,1,0,0)+\log p_{2+}(0,0,1,1)+\log p_{+1}(1,0,1,0) \\
& \quad+\log p_{+2}(0,1,0,1) .
\end{aligned}
$$

Observation

Let $p \in \mathcal{M}_{X \Perp Y}$. If p has all positive entries $\left(p \in \operatorname{int}\left(\Delta_{\mathcal{R}-1}\right)\right)$ then

$$
\begin{aligned}
& \log p=\left(\log p_{1+} p_{+1}, \log p_{1+} p_{+2}, \log p_{2+} p_{+1}, \log p_{2+} p_{+2}\right) \\
& =\left(\log p_{1+}+\log p_{+1}, \log p_{1+}+\log p_{+2}, \log p_{2+}+\log p_{+1}, \log p_{2+}+\log p_{+2}\right) \\
& \quad=\log p_{1+}(1,1,0,0)+\log p_{2+}(0,0,1,1)+\log p_{+1}(1,0,1,0) \\
& \quad+\log p_{+2}(0,1,0,1) .
\end{aligned}
$$

Thus $\log p \in \mathcal{M}_{A}$, where $A \in \mathbb{Z}^{4 \times 4}$ is the matrix

$$
A=\left(\begin{array}{llll}
1 & 1 & 0 & 0 \\
0 & 0 & 1 & 1 \\
1 & 0 & 1 & 0 \\
0 & 1 & 0 & 1
\end{array}\right)
$$

m-way tables

Consider a vector of counts

$$
U_{i}=\sum_{k=1}^{n} 1_{\left\{x_{1}^{(k)}=i_{1}, \ldots, x_{m}^{(k)}=i_{m}\right\}}, \quad i=\left(i_{1}, \ldots, i_{m}\right) \in \mathcal{R},
$$

based on a random n-sample of independent and identically distributed vectors

$$
\left(\begin{array}{c}
X_{1}^{(1)} \\
\vdots \\
X_{m}^{(1)}
\end{array}\right),\left(\begin{array}{c}
X_{1}^{(2)} \\
\vdots \\
X_{m}^{(2)}
\end{array}\right), \ldots,\left(\begin{array}{c}
X_{1}^{(n)} \\
\vdots \\
X_{m}^{(n)}
\end{array}\right)
$$

The counts U_{i} now form an m-way table $U=\left(U_{i}\right) \in \mathbb{N}^{\mathcal{R}}$. Let

$$
\mathcal{T}(n)=\left\{u \in \mathbb{N}^{\mathcal{R}}: \sum_{i \in \mathcal{R}} u_{i}=n\right\} .
$$

Fiber

The vector $A u$ is called the minimal sufficient statistic(s) for \mathcal{M}_{A}.
The set of tables

$$
\mathcal{F}(u)=\left\{v \in \mathbb{N}^{\mathcal{R}}: A v=A u\right\}
$$

is called the fiber of the table $u \in \mathcal{T}(n)$ with respect to \mathcal{M}_{A}.

Fiber

The vector $A u$ is called the minimal sufficient statistic(s) for \mathcal{M}_{A}.
The set of tables

$$
\mathcal{F}(u)=\left\{v \in \mathbb{N}^{\mathcal{R}}: A v=A u\right\}
$$

is called the fiber of the table $u \in \mathcal{T}(n)$ with respect to \mathcal{M}_{A}.
We assumed that the columns of $A=\left(\alpha_{j i}\right)$ sum to the same value, say $\sum_{j \in[d]} \alpha_{j i}=k$. Hence the tables in the fiber $\mathcal{F}(u)$ sum to n.

$$
\begin{aligned}
A v=A u & \Rightarrow \sum_{i \in \mathcal{R}} \sum_{j \in[d]} \alpha_{j i} v_{i}=\sum_{i \in \mathcal{R}} \sum_{j \in[d]} \alpha_{j i} u_{i} \\
& \Rightarrow k \sum_{i \in \mathcal{R}} v_{i}=k \sum_{i \in \mathcal{R}} u_{i}=k n .
\end{aligned}
$$

Proposition
If $p=e^{A^{T} b} \in \mathcal{M}_{A}$ and $u \in \mathcal{T}(n)$, then

$$
P(U=u)=\binom{n}{u} e^{b^{\top}(A u)}, \quad \text { where }\binom{n}{u}=\frac{n!}{\prod_{i \in \mathcal{R}} u_{i}!} .
$$

Moreover, $P(U=u \mid A U=A u)$ does not depend on A or p.

Proof.

$$
\begin{aligned}
P(U=u)= & \binom{n}{u} \prod_{i \in \mathcal{R}} p_{i}^{u_{i}}=\binom{n}{u} \prod_{i \in \mathcal{R}} e^{\left(A^{T} b\right)_{i} u_{i}}=\binom{n}{u} e^{b^{T}(A u)} \\
& \text { and } P(A U=A u)=\sum_{v \in \mathcal{F}(u)} P(U=v) \\
= & \sum_{v \in \mathcal{F}(u)}\binom{n}{v} e^{b^{T}(A v)}=e^{b^{T}(A u)} \sum_{v \in \mathcal{F}(u)}\binom{n}{v}
\end{aligned}
$$

Proposition

If $p=e^{A^{T} b} \in \mathcal{M}_{A}$ and $u \in \mathcal{T}(n)$, then

$$
P(U=u)=\binom{n}{u} e^{b^{\top}(A u)}, \quad \text { where }\binom{n}{u}=\frac{n!}{\prod_{i \in \mathcal{R}} u_{i}!} .
$$

Moreover, $P(U=u \mid A U=A u)$ does not depend on A or p.

Proof.

Hence

$$
\begin{aligned}
& P(U=u \mid A U=A u)=\frac{P(U=u)}{P(A U=A u)} \\
= & \frac{e^{b^{\top}(A u)}\binom{n}{u}}{e^{b^{T}(A u)} \sum_{v \in \mathcal{F}(u)}\binom{n}{v}}=\frac{\binom{n}{u}}{\sum_{v \in \mathcal{F}(u)}\binom{n}{v}} .
\end{aligned}
$$

Generalised Fisher test

Consider the hypothesis testing problem

$$
H_{0}: p \in \mathcal{M}_{A} \quad \text { (null hypothesis). }
$$

Let

$$
X^{2}(U):=\sum_{i \in \mathcal{R}} \frac{\left(U_{i}-\hat{u}_{i}\right)^{2}}{\hat{u}_{i}}
$$

We can generalize Fisher's exact test by computing the p-value

$$
\begin{gathered}
P\left(X^{2}(U) \geq X^{2}(u) \mid A U=A u\right) \\
=\sum_{w \in \mathcal{F}(u)} 1_{X^{2}(w) \geq X^{2}(u)} P(U=w \mid A U=A w)=\frac{\sum_{w \in \mathcal{F}(u)} 1_{X^{2}(w) \geq X^{2}(u)} \cdot\binom{n}{w}}{\sum_{v \in \mathcal{F}(u)}\binom{n}{v}} .
\end{gathered}
$$

Markov bases

- $A \in \mathbb{Z}^{d \times(\mathcal{R})}$ whose columns sum to the same row,

Markov bases

- $A \in \mathbb{Z}^{d \times(\mathcal{R})}$ whose columns sum to the same row,
- $\mathcal{M}_{A}=\left\{p \in \operatorname{int}\left(\Delta_{\mathcal{R}-1}\right): \log p \in \operatorname{rowspan}(A)\right\}$,

Markov bases

- $A \in \mathbb{Z}^{d \times(\mathcal{R})}$ whose columns sum to the same row,
- $\mathcal{M}_{A}=\left\{p \in \operatorname{int}\left(\Delta_{\mathcal{R}-1}\right): \log p \in \operatorname{rowspan}(A)\right\}$,
- $\operatorname{ker}_{\mathbb{Z}}(A)=\left\{v \in \mathbb{N}^{\mathcal{R}}: A v=0\right\}$ is the integer kernel of A,

Markov bases

- $A \in \mathbb{Z}^{d \times(\mathcal{R})}$ whose columns sum to the same row,
- $\mathcal{M}_{A}=\left\{p \in \operatorname{int}\left(\Delta_{\mathcal{R}-1}\right): \log p \in \operatorname{rowspan}(A)\right\}$,
- $\operatorname{ker}_{\mathbb{Z}}(A)=\left\{v \in \mathbb{N}^{\mathcal{R}}: A v=0\right\}$ is the integer kernel of A,

Example

$$
\begin{aligned}
& A v=\left(\begin{array}{llll}
1 & 1 & 0 & 0 \\
0 & 0 & 1 & 1 \\
1 & 0 & 1 & 0 \\
0 & 1 & 0 & 1
\end{array}\right)\left(\begin{array}{l}
v_{11} \\
v_{12} \\
v_{21} \\
v_{22}
\end{array}\right)=0 \\
& \Longleftrightarrow\left(\begin{array}{l}
v_{11}+v_{12} \\
v_{21}+v_{22} \\
v_{11}+v_{21} \\
v_{12}+v_{22}
\end{array}\right)=\left(\begin{array}{l}
v_{1+} \\
v_{2+} \\
v_{+1} \\
v_{+2}
\end{array}\right)=0 \\
& \text { hence } \operatorname{ker}_{\mathbb{Z}}(A)=\langle(1,-1,-1,1)\rangle
\end{aligned}
$$

Markov bases

- $A \in \mathbb{Z}^{d \times(\mathcal{R})}$ whose columns sum to the same row,
- $\mathcal{M}_{A}=\left\{p \in \operatorname{int}\left(\Delta_{\mathcal{R}-1}\right): \log p \in \operatorname{rowspan}(A)\right\}$,
- $\operatorname{ker}_{\mathbb{Z}}(A)=\left\{v \in \mathbb{N}^{\mathcal{R}}: A v=0\right\}$ is the integer kernel of A,

Markov bases

- $A \in \mathbb{Z}^{d \times(\mathcal{R})}$ whose columns sum to the same row,
- $\mathcal{M}_{A}=\left\{p \in \operatorname{int}\left(\Delta_{\mathcal{R}-1}\right): \log p \in \operatorname{rowspan}(A)\right\}$,
- $\operatorname{ker}_{\mathbb{Z}}(A)=\left\{v \in \mathbb{N}^{\mathcal{R}}: A v=0\right\}$ is the integer kernel of A,
- $\mathcal{T}(n)=\left\{u \in \mathbb{N}^{\mathcal{R}}: \sum_{i \in \mathcal{R}} u_{i}=n\right\}$,

Markov bases

- $A \in \mathbb{Z}^{d \times(\mathcal{R})}$ whose columns sum to the same row,
- $\mathcal{M}_{A}=\left\{p \in \operatorname{int}\left(\Delta_{\mathcal{R}-1}\right): \log p \in \operatorname{rowspan}(A)\right\}$,
- $\operatorname{ker}_{\mathbb{Z}}(A)=\left\{v \in \mathbb{N}^{\mathcal{R}}: A v=0\right\}$ is the integer kernel of A,
- $\mathcal{T}(n)=\left\{u \in \mathbb{N}^{\mathcal{R}}: \sum_{i \in \mathcal{R}} u_{i}=n\right\}$,
- $\mathcal{F}(u)=\left\{v \in \mathbb{N}^{\mathcal{R}}: A v=A u\right\}$,

Markov bases

- $A \in \mathbb{Z}^{d \times(\mathcal{R})}$ whose columns sum to the same row,
- $\mathcal{M}_{A}=\left\{p \in \operatorname{int}\left(\Delta_{\mathcal{R}-1}\right): \log p \in \operatorname{rowspan}(A)\right\}$,
- $\operatorname{ker}_{\mathbb{Z}}(A)=\left\{v \in \mathbb{N}^{\mathcal{R}}: A v=0\right\}$ is the integer kernel of A,
- $\mathcal{T}(n)=\left\{u \in \mathbb{N}^{\mathcal{R}}: \sum_{i \in \mathcal{R}} u_{i}=n\right\}$,
- $\mathcal{F}(u)=\left\{v \in \mathbb{N}^{\mathcal{R}}: A v=A u\right\}$,

Definition

A finite subset $\mathcal{B} \subset \operatorname{ker}_{\mathbb{Z}}(A)$ is a Markov basis for \mathcal{M}_{A} if for all $u \in \mathcal{T}(n)$ and all pairs $v, v^{\prime} \in \mathcal{F}(u)$, there exists a sequence $u_{1}, . ., u_{L} \in \mathcal{B}$, such that

$$
v^{\prime}=v+\sum_{k=1}^{L} u_{k} \quad \& \quad v+\sum_{k=1}^{m} u_{k} \geq 0 \quad \text { for all } m=1, \ldots, L .
$$

The elements of the Markov basis are called moves.

A finite subset $\mathcal{B} \subset \operatorname{ker}_{\mathbb{Z}}(A)$ is a Markov basis for \mathcal{M}_{A} if for all $u \in \mathcal{T}(n)$ and all pairs $v, v^{\prime} \in \mathcal{F}(u)$, there exists a sequence $u_{1}, . ., u_{L} \in \mathcal{B}$, such that

$$
v^{\prime}=v+\sum_{k=1}^{L} u_{k} \quad \& \quad v+\sum_{k=1}^{m} u_{k} \geq 0 \quad \text { for all } m=1, \ldots, L .
$$

The elements of the Markov basis are called moves.

Example

$$
\begin{aligned}
& \text { If } v=(14,146,22,144), v^{\prime}=(20,140,16,150) \in \mathcal{F}(u) \text { and } \\
& \qquad(1,-1,-1,1) \in \mathcal{B} \text {, then } \\
& v^{\prime}=v+4(1,-1,-1,1) \& v+m(1,-1,-1,1) \geq 0, \quad m \in[4] .
\end{aligned}
$$

Example

$$
\begin{gathered}
A=\left(\begin{array}{llll}
1 & 1 & 0 & 0 \\
0 & 0 & 1 & 1 \\
1 & 0 & 1 & 0 \\
0 & 1 & 0 & 1
\end{array}\right) \Rightarrow \operatorname{ker}_{\mathbb{Z}}(A)=\langle(1,-1,-1,1)\rangle \\
u=\left(u_{11}, u_{12}, u_{21}, u_{22}\right)=(19,141,17,149) \in \mathcal{T}(326) \Rightarrow \\
\mathcal{F}(u)=\left\{(19+m, 141-m, 17-m, 149+m) \mid-19 \leq m \leq 17 \in \mathbb{N}^{4}\right\}
\end{gathered}
$$

Example

$$
\begin{aligned}
& \operatorname{ker}_{\mathbb{Z}}(A)=\langle(1,-1,-1,1)\rangle, \\
& \mathcal{F}(u)=\left\{(19+m, 141-m, 17-m, 149+m) \mid-19 \leq m \leq 17 \in \mathbb{N}^{4}\right\} . \\
& \text { If } v, v^{\prime} \in \mathcal{F}(u), \mathcal{B}=\{ \pm(1,-1,-1,1)\} \text {, then either } \\
& v^{\prime}=v+L(1,-1,-1,1) \& v+m(1,-1,-1,1) \geq 0, m=1, \ldots, L, \text { or } \\
& v^{\prime}=v+L(-1,1,1,-1) \& v+m(-1,1,1,-1) \geq 0, m=1, \ldots, L,
\end{aligned}
$$

hence \mathcal{B} is a Markov basis for \mathcal{M}_{A}.

Example

$$
\begin{aligned}
& \operatorname{ker}_{\mathbb{Z}}(A)=\langle(1,-1,-1,1)\rangle \\
& \mathcal{F}(u)=\left\{(19+m, 141-m, 17-m, 149+m) \mid-19 \leq m \leq 17 \in \mathbb{N}^{4}\right\} . \\
& \text { If } v, v^{\prime} \in \mathcal{F}(u), \mathcal{B}=\{ \pm(1,-1,-1,1)\} \text {, then either } \\
& v^{\prime}=v+L(1,-1,-1,1) \& v+m(1,-1,-1,1) \geq 0, \quad m=1, \ldots, L \text {, or } \\
& v^{\prime}=v+L(-1,1,1,-1) \& v+m(-1,1,1,-1) \geq 0, \quad m=1, \ldots, L
\end{aligned}
$$

hence \mathcal{B} is a Markov basis for \mathcal{M}_{A}.

- Is it unique?

Example

$$
\begin{aligned}
& \operatorname{ker}_{\mathbb{Z}}(A)=\langle(1,-1,-1,1)\rangle \\
& \mathcal{F}(u)=\left\{(19+m, 141-m, 17-m, 149+m) \mid-19 \leq m \leq 17 \in \mathbb{N}^{4}\right\} . \\
& \text { If } v, v^{\prime} \in \mathcal{F}(u), \mathcal{B}=\{ \pm(1,-1,-1,1)\} \text {, then either } \\
& v^{\prime}=v+L(1,-1,-1,1) \& v+m(1,-1,-1,1) 0, m=1, \ldots, L \text {, or } \\
& v^{\prime}=v+L(-1,1,1,-1) \& v+m(-1,1,1,-1) 0, m=1, \ldots, L
\end{aligned}
$$

hence \mathcal{B} is a Markov basis for \mathcal{M}_{A}.

- Is it unique?
- Is it "minimal"?

TEMPERATURE

MEDICINE UP DOWN STABLE TOTAL

CORTICOID	160	180	23	363
ANTIBIOTIC	82	91	15	188
PLACEBO	54	60	15	129
TOTAL	296	331	53	680

Let $A \in \mathbb{Z}^{6 \times 9}$, be the matrix whose columns sum to 2 :

$$
A=\left(\begin{array}{lllllllll}
1 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 1 \\
1 & 1 & 0 & 0 & 0 & 0 & 1 & 0 & 0 \\
0 & 1 & 1 & 0 & 0 & 0 & 0 & 1 & 0 \\
0 & 0 & 1 & 1 & 0 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 1 & 1 & 1 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 1 & 0 & 0 & 1 & 1
\end{array}\right)
$$

TEMPERATURE

MEDICINE UP DOWN STABLE TOTAL

CORTICOID	160	180	23	363
ANTIBIOTIC	82	91	15	188
PLACEBO	54	60	15	129
TOTAL	296	331	53	680

Let $A \in \mathbb{Z}^{6 \times 9}$, be the matrix whose columns sum to 2 :

$$
\begin{aligned}
A=\left(\begin{array}{ccccccccc}
1 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 1 \\
1 & 1 & 0 & 0 & 0 & 0 & 1 & 0 & 0 \\
0 & 1 & 1 & 0 & 0 & 0 & 0 & 1 & 0 \\
0 & 0 & 1 & 1 & 0 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 1 & 1 & 1 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 1 & 0 & 0 & 1 & 1
\end{array}\right) . \\
\mathcal{B}= \pm\{(1,-1,0,0,0,0,0,1,-1),(0,0,1,-1,1,0,0,-1,0),(1,0,0,1,0,-1,-1,0,0)\}
\end{aligned}
$$

Random walk in $\mathcal{F}(u)$

Starting with a contingency table $u \in \mathcal{T}(n)$ and a Markov basis \mathcal{B} for the model \mathcal{M}_{A} we can use Metropolis-Hastings algorithm to compute a sequence $\left(X^{2}\left(v_{t}\right)\right)_{t=1}^{\infty}$, where $v_{t} \in \mathcal{F}(u)$.

Theorem

With probability one, the output sequence $\left(X^{2}\left(v_{t}\right)\right)_{t=1}^{\infty}$ satisfies

$$
\lim _{M \rightarrow \infty} \frac{1}{M} \sum_{t=1}^{M} 1_{\left\{X^{2}\left(v_{t}\right) \geq X^{2}(u)\right\}}=P\left(X^{2}(U) \geq X^{2}(u) \mid A U=A u\right)
$$

which is the p-value in the generalized Fisher's exact test!

Metropolis-Hastings algorithm

Input: $u \in \mathcal{T}(n), \mathcal{B}$ Markov basis for the model \mathcal{M}_{A}.
Output: A sequence $\left(X^{2}\left(v_{t}\right)\right)_{t=1}^{\infty}$ for tables v_{t} in the fiber $\mathcal{F}(u)$.
Step 1: Initialize $v_{1}=u$.
Step 2: For $t=1,2, \ldots$ repeat the following steps:
(i) Select uniformly at random a move $u_{t} \in \mathcal{B}$.
(ii) If $\min \left(v_{t}+u_{t}\right)<0$, then set $v_{t+1}=v_{t}$, else set

$$
v_{t+1}=\left\{\begin{array} { l }
{ v _ { t } + u _ { t } } \\
{ v _ { t } }
\end{array} \quad \text { with probability } \left\{\begin{array}{l}
q \\
1-q
\end{array}\right.\right.
$$

where

$$
q=\min \left\{1, \frac{P\left(U=v_{t}+u_{t} \mid A U=A u\right)}{P\left(U=v_{t} \mid A U=A u\right)}\right\}
$$

(iii) Compute $X^{2}\left(v_{t}\right)$.

Metropolis-Hastings algorithm

Input: $u \in \mathcal{T}(n), \mathcal{B}$ Markov basis for the model \mathcal{M}_{A}.
Output: A sequence $\left(X^{2}\left(v_{t}\right)\right)_{t=1}^{\infty}$ for tables v_{t} in the fiber $\mathcal{F}(u)$.
Step 1: Initialize $v_{1}=u$.
Step 2: For $t=1,2, \ldots$ repeat the following steps:
(i) Select uniformly at random a move $u_{t} \in \mathcal{B}$.
(ii) If $\min \left(v_{t}+u_{t}\right)<0$, then set $v_{t+1}=v_{t}$, else set

$$
v_{t+1}=\left\{\begin{array} { l }
{ v _ { t } + u _ { t } } \\
{ v _ { t } }
\end{array} \quad \text { with probability } \left\{\begin{array}{l}
q \\
1-q
\end{array}\right.\right.
$$

where

$$
q=\min \left\{1, \frac{P\left(U=v_{t}+u_{t} \mid A U=A u\right)}{P\left(U=v_{t} \mid A U=A u\right)}\right\}
$$

(iii) Compute $X^{2}\left(v_{t}\right)$.

$$
P(U=u \mid A U=A u)=\frac{\binom{n}{u}}{\sum_{v \in \mathcal{F}(u)}\binom{n}{v}}
$$

