Invariant theory for maximum likelihood estimation

Statistics

Given: statistical model sample data S_{Y}
Task: find maximum likelihood estimate (MLE)
$=$ point in model that best fits S_{Y}

Invariant theory

Given: orbit $G \cdot v=\{g \cdot v \mid g \in G\}$
Task: compute capacity
= closest distance of orbit to origin

Invariant theory

Stability notions

The orbit of a vector v in a vector space V under an action by a group G is

$$
G . v=\{g \cdot v \mid g \in G\} \subset V .
$$

Invariant theory

Stability notions

The orbit of a vector v in a vector space V under an action by a group G is

$$
G . v=\{g \cdot v \mid g \in G\} \subset V .
$$

- v is unstable iff $0 \in \overline{G . v}$ (i.e. v can be scaled to 0 in the limit)

The null cone of the action by G is the set of unstable vectors v.

Invariant theory

Stability notions

The orbit of a vector v in a vector space V under an action by a group G is

$$
G . v=\{g \cdot v \mid g \in G\} \subset V .
$$

- v is unstable iff $0 \in \overline{G . v}$ (i.e. v can be scaled to 0 in the limit)
- v semistable iff $0 \notin \overline{G . v}$

The null cone of the action by G is the set of unstable vectors v.

Invariant theory

Stability notions

The orbit of a vector v in a vector space V under an action by a group G is

$$
G . v=\{g \cdot v \mid g \in G\} \subset V .
$$

- v is unstable iff $0 \in \overline{G . v}$ (i.e. v can be scaled to 0 in the limit)
- v semistable iff $0 \notin \overline{G . v}$
- v polystable iff $v \neq 0$ and its orbit $G . v$ is closed

The null cone of the action by G is the set of unstable vectors v.

Invariant theory

Stability notions

The orbit of a vector v in a vector space V under an action by a group G is

$$
G . v=\{g \cdot v \mid g \in G\} \subset V
$$

- v is unstable iff $0 \in \overline{G . v}$ (i.e. v can be scaled to 0 in the limit)
- v semistable iff $0 \notin \overline{G . v}$
- v polystable iff $v \neq 0$ and its orbit $G . v$ is closed
- v is stable iff v is polystable and its stabilizer is finite

The null cone of the action by G is the set of unstable vectors v.

Invariant theory

Null cone membership testing
Classical and often hard question: Describe null cone (essentially equivalent to finding generators for the ring of polynomial invariants)
Modern approach: Provide a test to determine if a vector v lies in null cone

Invariant theory

Null cone membership testing
Classical and often hard question: Describe null cone (essentially equivalent to finding generators for the ring of polynomial invariants)
Modern approach: Provide a test to determine if a vector v lies in null cone
The capacity of v is

$$
\operatorname{cap}_{G}(v):=\inf _{g \in G}\|g \cdot v\|_{2}^{2} .
$$

Observation: $\operatorname{cap}_{G}(v)=0$ iff $\quad v$ lies in null cone

Invariant theory

Null cone membership testing
Classical and often hard question: Describe null cone (essentially equivalent to finding generators for the ring of polynomial invariants)
Modern approach: Provide a test to determine if a vector v lies in null cone
The capacity of v is

$$
\operatorname{cap}_{G}(v):=\inf _{g \in G}\|g \cdot v\|_{2}^{2} .
$$

Observation: $\operatorname{cap}_{G}(v)=0$ iff $\quad v$ lies in null cone

Hence: Testing null cone membership is a minimization problem.
\rightsquigarrow algorithms: [series of 3 papers in 2017-2019 by
Bürgisser, Franks, Garg, Oliveira, Walter, Wigderson]

Moment map

Let $\mathbb{K} \in\{\mathbb{R}, \mathbb{C}\}$ and let $G \subset \mathrm{GL}_{m}(\mathbb{K})$ be a subgroup.

Moment map

Let $\mathbb{K} \in\{\mathbb{R}, \mathbb{C}\}$ and let $G \subset \mathrm{GL}_{m}(\mathbb{K})$ be a subgroup. Assume that

- G is Zariski closed and
- self-adjoint (i.e., $g \in G \Rightarrow g^{*} \in G$).

Moment map

Let $\mathbb{K} \in\{\mathbb{R}, \mathbb{C}\}$ and let $G \subset \mathrm{GL}_{m}(\mathbb{K})$ be a subgroup. Assume that

- G is Zariski closed and
- self-adjoint (i.e., $g \in G \Rightarrow g^{*} \in G$).

For $v \in \mathbb{K}^{m}$, consider $\gamma_{v}: G \longrightarrow \mathbb{R}, g \longmapsto\|g v\|^{2}$.
Note: $\operatorname{cap}_{G}(v)=\inf _{g \in G} \gamma_{v}(g)$

Moment map

Let $\mathbb{K} \in\{\mathbb{R}, \mathbb{C}\}$ and let $G \subset \mathrm{GL}_{m}(\mathbb{K})$ be a subgroup. Assume that

- G is Zariski closed and
- self-adjoint (i.e., $g \in G \Rightarrow g^{*} \in G$).

For $v \in \mathbb{K}^{m}$, consider $\gamma_{v}: G \longrightarrow \mathbb{R}, g \longmapsto\|g v\|^{2}$.
Note: $\operatorname{cap}_{G}(v)=\inf _{g \in G} \gamma_{v}(g)$
Its differential at the identity matrix I_{m} is $D_{I_{m}} \gamma_{v}: T_{I_{m}} G \longrightarrow \mathbb{R}, \dot{g} \longmapsto 2 \operatorname{Re}\left[\operatorname{tr}\left(\dot{g} v v^{*}\right)\right]$.

Moment map

Let $\mathbb{K} \in\{\mathbb{R}, \mathbb{C}\}$ and let $G \subset \mathrm{GL}_{m}(\mathbb{K})$ be a subgroup. Assume that

- G is Zariski closed and
- self-adjoint (i.e., $g \in G \Rightarrow g^{*} \in G$).

For $v \in \mathbb{K}^{m}$, consider $\gamma_{v}: G \longrightarrow \mathbb{R}, g \longmapsto\|g v\|^{2}$.
Note: $\operatorname{cap}_{G}(v)=\inf _{g \in G} \gamma_{v}(g)$
Its differential at the identity matrix I_{m} is $D_{I_{m}} \gamma_{v}: T_{I_{m}} G \longrightarrow \mathbb{R}, \dot{g} \longmapsto 2 \operatorname{Re}\left[\operatorname{tr}\left(\dot{g} v v^{*}\right)\right]$.
The moment map assigns this differential to each vector v :

$$
\mu: \mathbb{K}^{m} \longrightarrow \operatorname{Hom}_{\mathbb{R}}\left(T_{I_{m}} G, \mathbb{R}\right), v \longmapsto D_{I_{m}} \gamma_{v} .
$$

Moment map

Let $\mathbb{K} \in\{\mathbb{R}, \mathbb{C}\}$ and let $G \subset \mathrm{GL}_{m}(\mathbb{K})$ be a subgroup. Assume that

- G is Zariski closed and
- self-adjoint (i.e., $g \in G \Rightarrow g^{*} \in G$).

For $v \in \mathbb{K}^{m}$, consider $\gamma_{v}: G \longrightarrow \mathbb{R}, g \longmapsto\|g v\|^{2}$.
Note: $\operatorname{cap}_{G}(v)=\inf _{g \in G} \gamma_{v}(g)$
Its differential at the identity matrix I_{m} is $D_{I_{m}} \gamma_{v}: T_{I_{m}} G \longrightarrow \mathbb{R}, \dot{g} \longmapsto 2 \operatorname{Re}\left[\operatorname{tr}\left(\dot{g} v v^{*}\right)\right]$.
The moment map assigns this differential to each vector v :

$$
\mu: \mathbb{K}^{m} \longrightarrow \operatorname{Hom}_{\mathbb{R}}\left(T_{I_{m}} G, \mathbb{R}\right), v \longmapsto D_{I_{m}} \gamma_{v} .
$$

Note:
$\mu(v)=0 \Leftrightarrow I_{m}$ is a critical point of γ_{v}

Moment map

Let $\mathbb{K} \in\{\mathbb{R}, \mathbb{C}\}$ and let $G \subset \mathrm{GL}_{m}(\mathbb{K})$ be a subgroup. Assume that

- G is Zariski closed and
- self-adjoint (i.e., $g \in G \Rightarrow g^{*} \in G$).

For $v \in \mathbb{K}^{m}$, consider $\gamma_{v}: G \longrightarrow \mathbb{R}, g \longmapsto\|g v\|^{2}$.
Note: $\operatorname{cap}_{G}(v)=\inf _{g \in G} \gamma_{v}(g)$
Its differential at the identity matrix I_{m} is $D_{I_{m}} \gamma_{v}: T_{I_{m}} G \longrightarrow \mathbb{R}, \dot{g} \longmapsto 2 \operatorname{Re}\left[\operatorname{tr}\left(\dot{g} v v^{*}\right)\right]$.
The moment map assigns this differential to each vector v :

$$
\mu: \mathbb{K}^{m} \longrightarrow \operatorname{Hom}_{\mathbb{R}}\left(T_{I_{m}} G, \mathbb{R}\right), v \longmapsto D_{I_{m}} \gamma_{v} .
$$

Note:
$\mu(v)=0 \Leftrightarrow I_{m}$ is a critical point of γ_{v}
$\Leftrightarrow v$ is a critical point of the norm minimization problem along its orbit.

Kempf-Ness theorem

Theorem (Kempf, Ness '79 over $\mathbb{C} /$ Richardson, Slodowy '90 over \mathbb{R}) Let $G \subset \mathrm{GL}_{m}(\mathbb{K})$ be a Zariski closed, self-adjoint subgroup with moment map μ. For $v \in \mathbb{K}^{m}$, we have:
(a) v is of minimal norm in its orbit $\Leftrightarrow \mu(v)=0$.

Kempf-Ness theorem

Theorem (Kempf, Ness '79 over $\mathbb{C} /$ Richardson, Slodowy '90 over \mathbb{R}) Let $G \subset \mathrm{GL}_{m}(\mathbb{K})$ be a Zariski closed, self-adjoint subgroup with moment map μ. For $v \in \mathbb{K}^{m}$, we have:
(a) v is of minimal norm in its orbit $\Leftrightarrow \mu(v)=0$.
(b) If the orbit $G \cdot v$ is closed, there exists some $w \in G \cdot v$ with $\mu(w)=0$.

Kempf-Ness theorem

Theorem (Kempf, Ness '79 over $\mathbb{C} /$ Richardson, Slodowy '90 over \mathbb{R}) Let $G \subset \mathrm{GL}_{m}(\mathbb{K})$ be a Zariski closed, self-adjoint subgroup with moment map μ. For $v \in \mathbb{K}^{m}$, we have:
(a) v is of minimal norm in its orbit $\Leftrightarrow \mu(v)=0$.
(b) If the orbit $G \cdot v$ is closed, there exists some $w \in G \cdot v$ with $\mu(w)=0$.
(c) If $\mu(v)=0$, the orbit $G \cdot v$ is closed.

Kempf-Ness theorem

Theorem (Kempf, Ness '79 over $\mathbb{C} /$ Richardson, Slodowy '90 over \mathbb{R}) Let $G \subset \mathrm{GL}_{m}(\mathbb{K})$ be a Zariski closed, self-adjoint subgroup with moment map μ. For $v \in \mathbb{K}^{m}$, we have:
(a) v is of minimal norm in its orbit $\Leftrightarrow \mu(v)=0$.
(b) If the orbit $G \cdot v$ is closed, there exists some $w \in G \cdot v$ with $\mu(w)=0$.
(c) If $\mu(v)=0$, the orbit $G \cdot v$ is closed.
(d) v is polystable $\Leftrightarrow \exists 0 \neq w \in G \cdot v: \mu(w)=0$.

Kempf-Ness theorem

Theorem (Kempf, Ness '79 over $\mathbb{C} /$ Richardson, Slodowy '90 over \mathbb{R}) Let $G \subset \mathrm{GL}_{m}(\mathbb{K})$ be a Zariski closed, self-adjoint subgroup with moment map μ. For $v \in \mathbb{K}^{m}$, we have:
(a) v is of minimal norm in its orbit $\Leftrightarrow \mu(v)=0$.
(b) If the orbit $G \cdot v$ is closed, there exists some $w \in G \cdot v$ with $\mu(w)=0$.
(c) If $\mu(v)=0$, the orbit $G \cdot v$ is closed.
(d) v is polystable $\Leftrightarrow \exists 0 \neq w \in G \cdot v: \mu(w)=0$.
(e) v is semistable $\Leftrightarrow \exists 0 \neq w \in \overline{G \cdot v}: \mu(w)=0$.

Maximum likelihood estimation

Given:

- \mathscr{M} : a statistical model $=$ a set of probability distributions
- $Y=\left(Y_{1}, \ldots, Y_{n}\right): n$ samples of observed data

Goal: find a distribution in the model \mathscr{M} that best fits the empirical data Y

Approach: maximize the likelihood function

$$
L_{Y}(\rho):=\rho\left(Y_{1}\right) \cdots \rho\left(Y_{n}\right), \quad \text { where } \rho \in \mathscr{M} .
$$

A maximum likelihood estimate (MLE) is a distribution in the model \mathscr{M} that maximizes the likelihood L_{Y}.

Discrete statistical models

A probability distribution on m states is determined by is probability mass function ρ, where ρ_{j} is the probability that the j-th state occurs.
ρ is a point in the probability simplex

$$
\Delta_{m-1}=\left\{q \in \mathbb{R}^{m} \mid q_{j} \geq 0 \text { and } \sum q_{j}=1\right\} .
$$

A discrete statistical model \mathscr{M} is a subset of the simplex Δ_{m-1}.

Discrete statistical models

maximum likelihood estimation

Given data is a vector of counts $Y \in \mathbb{Z}_{\geq 0}^{m}$, where Y_{j} is the number of times the j-th state occurs.

The empirical distribution is $S_{Y}=\frac{1}{n} Y \in \Delta_{m-1}$, where $n=Y_{1}+\ldots+Y_{m}$.
The likelihood function takes the form $\quad L_{Y}(\rho)=\rho_{1}^{Y_{1}} \cdots \rho_{m}^{Y_{m}}$, where $\rho \in \mathscr{M}$.
An MLE is a point in model \mathscr{M} that maximizes the likelihood L_{Y} of observing Y.

Log-linear models

$=$ set of distributions whose logarithms lie in a fixed linear space.
Let $A \in \mathbb{Z}^{d \times m}$, and define

$$
\mathscr{M}_{A}=\left\{\rho \in \Delta_{m-1} \mid \log \rho \in \operatorname{rowspan}(A)\right\} .
$$

We assume that $\mathbb{1}:=(1, \ldots, 1) \in \operatorname{rowspan}(A)$ (i.e., uniform distribution in $\left.\mathscr{M}_{A}\right)$.

Log-linear models

$=$ set of distributions whose logarithms lie in a fixed linear space.
Let $A \in \mathbb{Z}^{d \times m}$, and define

$$
\mathscr{M}_{A}=\left\{\rho \in \Delta_{m-1} \mid \log \rho \in \operatorname{rowspan}(A)\right\} .
$$

We assume that $\mathbb{1}:=(1, \ldots, 1) \in \operatorname{rowspan}(A)$ (i.e., uniform distribution in $\left.\mathscr{M}_{A}\right)$.

Matrix $A=\left[a_{1}\left|a_{2}\right| \ldots \mid a_{m}\right]$ also defines an action by the torus $\left(\mathbb{C}^{\times}\right)^{d}$ on \mathbb{C}^{m} :

$$
g \in\left(\mathbb{C}^{\times}\right)^{d} \text { acts on } x \in \mathbb{C}^{m} \text { by left multiplication with }
$$

$$
\left[\begin{array}{lll}
g^{a_{1}} & & \\
& \ddots & \\
& & g^{a_{m}}
\end{array}\right], \quad \text { where } g^{a_{j}}=g_{1}^{a_{1 j}} \ldots g_{d}^{a_{d j}} .
$$

Log-linear models

$=$ set of distributions whose logarithms lie in a fixed linear space.
Let $A \in \mathbb{Z}^{d \times m}$, and define

$$
\mathscr{M}_{A}=\left\{\rho \in \Delta_{m-1} \mid \log \rho \in \operatorname{rowspan}(A)\right\}
$$

We assume that $\mathbb{1}:=(1, \ldots, 1) \in \operatorname{rowspan}(A)$ (i.e., uniform distribution in $\left.\mathscr{M}_{A}\right)$.

Matrix $A=\left[a_{1}\left|a_{2}\right| \ldots \mid a_{m}\right]$ also defines an action by the torus $\left(\mathbb{C}^{\times}\right)^{d}$ on \mathbb{C}^{m} :

$$
g \in\left(\mathbb{C}^{\times}\right)^{d} \text { acts on } x \in \mathbb{C}^{m} \text { by left multiplication with }
$$

$$
\left[\begin{array}{lll}
g^{a_{1}} & & \\
& \ddots & \\
& & g^{a_{m}}
\end{array}\right], \quad \text { where } g^{a_{j}}=g_{1}^{a_{1 j}} \ldots g_{d}^{a_{d j}}
$$

\mathscr{M}_{A} is the orbit of the uniform distribution in $\Delta_{m-1} \cap \mathbb{R}_{>0}^{m} \times-X X \vee \|$

Example

$$
\begin{aligned}
& \mathscr{M}_{A}=\left\{\rho \in \Delta_{m-1} \mid \log \rho \in \operatorname{rowspan}(A)\right\} . \quad A=\left[\begin{array}{lll}
2 & 1 & 0 \\
0 & 1 & 2
\end{array}\right] \\
& g \in\left(\mathbb{C}^{\times}\right)^{2} \text { acts on } x \in \mathbb{C}^{3} \text { by }\left[\begin{array}{lll}
g^{a_{1}} & & \\
& g^{a_{2}} & \\
& & g^{a_{3}}
\end{array}\right]=\left[\begin{array}{lll}
g_{1}^{2} & & \\
& g_{1} g_{2} & \\
& & g_{2}^{2}
\end{array}\right] \text {. }
\end{aligned}
$$

Example

$$
\begin{aligned}
& \mathscr{M}_{A}=\left\{\rho \in \Delta_{m-1} \mid \log \rho \in \operatorname{rowspan}(A)\right\} . \quad A=\left[\begin{array}{lll}
2 & 1 & 0 \\
0 & 1 & 2
\end{array}\right] \\
& g \in\left(\mathbb{C}^{\times}\right)^{2} \text { acts on } x \in \mathbb{C}^{3} \text { by }\left[\begin{array}{lll}
g^{a_{1}} & & \\
& g^{a_{2}} & \\
& & g^{a_{3}}
\end{array}\right]=\left[\begin{array}{lll}
g_{1}^{2} & & \\
& g_{1} g_{2} & \\
& & g_{2}^{2}
\end{array}\right] .
\end{aligned}
$$

Example

$$
\begin{aligned}
& \mathscr{M}_{A}=\left\{\rho \in \Delta_{m-1} \mid \log \rho \in \operatorname{rowspan}(A)\right\} . \quad A=\left[\begin{array}{lll}
2 & 1 & 0 \\
0 & 1 & 2
\end{array}\right] \\
& g \in\left(\mathbb{C}^{\times}\right)^{2} \text { acts on } x \in \mathbb{C}^{3} \text { by }\left[\begin{array}{lll}
g^{a_{1}} & & \\
& g^{a_{2}} & \\
& & g^{a_{3}}
\end{array}\right]=\left[\begin{array}{lll}
g_{1}^{2} & & \\
& g_{1} g_{2} & \\
& & g_{2}^{2}
\end{array}\right] .
\end{aligned}
$$

Example

$$
\begin{aligned}
& \mathscr{M}_{A}=\left\{\rho \in \Delta_{m-1} \mid \log \rho \in \operatorname{rowspan}(A)\right\} . \quad A=\left[\begin{array}{lll}
2 & 1 & 0 \\
0 & 1 & 2
\end{array}\right] \\
& g \in\left(\mathbb{C}^{\times}\right)^{2} \text { acts on } x \in \mathbb{C}^{3} \text { by }\left[\begin{array}{lll}
g^{a_{1}} & & \\
& g^{a_{2}} & \\
& g^{a_{3}}
\end{array}\right]=\left[\begin{array}{lll}
g_{1}^{2} & & \\
& g_{1} g_{2} & \\
& & g_{2}^{2}
\end{array}\right] \\
& \mathscr{M}_{A}=\left(\left(\mathbb{C}^{\times}\right)^{2} \cdot \frac{1}{3} \mathbb{1}\right) \cap \Delta_{2} \cap \mathbb{R}_{>0}^{3} \\
& =\left\{\begin{array}{l}
\left.\left.\frac{1}{3}\left(g_{1}^{2}, g_{1} g_{2}, g_{2}^{2}\right) \right\rvert\, g_{1}, g_{2}>0, g_{1}^{2}+g_{1} g_{2}+g_{2}^{2}=3\right\} \\
1.5 \\
\\
\\
\\
\end{array}\right. \\
& =\left\{\rho \in \mathbb{R}_{>0}^{3} \mid \rho_{2}^{2}=\rho_{1} \rho_{3}, \rho_{1}+\rho_{2}+\rho_{3}=1\right\}
\end{aligned}
$$

other examples: independence model, graphical models, hierarchical models, ...

Maximum likelihood estimation

for log-linear models
An MLE in \mathscr{M}_{A} given data Y is a point $\hat{\rho}$ in the model such that

$$
A \hat{\rho}=A S_{Y}, \quad \text { where } S_{Y}=\frac{1}{n} Y
$$

The MLE is unique if it exists!

Model \mathscr{M}_{A} is not closed: MLE may not exist if S_{Y} has zeroes. True maximizer could be on boundary of model.

Maximum likelihood estimation

for log-linear models
An MLE in \mathscr{M}_{A} given data Y is a point $\hat{\rho}$ in the model such that

$$
A \hat{\rho}=A S_{Y}, \quad \text { where } S_{Y}=\frac{1}{n} Y .
$$

The MLE is unique if it exists!

Model \mathscr{M}_{A} is not closed: MLE may not exist if S_{Y} has zeroes. True maximizer could be on boundary of model.
polyhedral condition for MLE existence: For $A=\left[a_{1}\left|a_{2}\right| \ldots \mid a_{m}\right] \in \mathbb{Z}^{d \times m}$, we define

$$
P(A)=\operatorname{conv}\left\{a_{1}, a_{2}, \ldots, a_{m}\right\} \subset \mathbb{R}^{d}
$$

Theorem (Eriksson, Fienberg, Rinaldo, Sullivant '06) MLE given Y exists in \mathscr{M}_{A} iff $A S_{Y}$ is in relative interior of $P(A)$.

Stability for torus actions

The action of the torus GT_{d} given by the matrix $A \in \mathbb{Z}^{d \times m}$ is in fact well-defined on projective space \mathbb{P}^{m-1}.

Stability for torus actions

The action of the torus GT_{d} given by the matrix $A \in \mathbb{Z}^{d \times m}$ is in fact well-defined on projective space \mathbb{P}^{m-1}.
A linearization is a consistent action on \mathbb{C}^{m}, given by a character $b \in \mathbb{Z}^{d}$:

$$
g \in \mathrm{GT}_{d} \text { acts on } x \in \mathbb{C}^{m} \text { by }\left[\begin{array}{lll}
g^{a_{1}-b} & & \\
& \ddots & \\
& & g^{a_{m}-b}
\end{array}\right] .
$$

Stability for torus actions

The action of the torus GT_{d} given by the matrix $A \in \mathbb{Z}^{d \times m}$ is in fact well-defined on projective space \mathbb{P}^{m-1}.
A linearization is a consistent action on \mathbb{C}^{m}, given by a character $b \in \mathbb{Z}^{d}$:

$$
g \in \mathrm{GT}_{d} \text { acts on } x \in \mathbb{C}^{m} \text { by }\left[\begin{array}{lll}
g^{a_{1}-b} & & \\
& \ddots & \\
& & g^{a_{m}-b}
\end{array}\right] .
$$

polyhedral conditions for stability:
Define sub-polytopes of $P(A)=\operatorname{conv}\left\{a_{1}, a_{2}, \ldots, a_{m}\right\}$ that depend on $x \in \mathbb{C}^{m}$:

$$
P_{x}(A)=\operatorname{conv}\left\{a_{j} \mid j \in \operatorname{supp}(x)\right\} .
$$

Theorem (standard, proof via Hilbert-Mumford criterion)
Consider the action of GT_{d} given by matrix $A \in \mathbb{Z}^{d \times m}$ with linearization $b \in \mathbb{Z}^{d}$.
(a) x unstable $\Leftrightarrow b \notin P_{x}(A) \quad$ can be scaled to 0 in the limit
(b) x semistable $\Leftrightarrow \quad b \in P_{x}(A) \quad$ cannot be scaled to 0 in the limit
(c) x polystable $\Leftrightarrow b \in \operatorname{relint} P_{x}(A)$
(d) $\quad x$ stable $\Leftrightarrow b \in \operatorname{int} P_{x}(A)$

Stability for torus actions

The action of the torus GT_{d} given by the matrix $A \in \mathbb{Z}^{d \times m}$ is in fact well-defined on projective space \mathbb{P}^{m-1}.
A linearization is a consistent action on \mathbb{C}^{m}, given by a character $b \in \mathbb{Z}^{d}$:

$$
g \in \mathrm{GT}_{d} \text { acts on } x \in \mathbb{C}^{m} \text { by }\left[\begin{array}{lll}
g^{a_{1}-b} & & \\
& \ddots & \\
& & g^{a_{m}-b}
\end{array}\right] .
$$

polyhedral conditions for stability:
Define sub-polytopes of $P(A)=\operatorname{conv}\left\{a_{1}, a_{2}, \ldots, a_{m}\right\}$ that depend on $x \in \mathbb{C}^{m}$:

$$
P_{x}(A)=\operatorname{conv}\left\{a_{j} \mid j \in \operatorname{supp}(x)\right\} .
$$

Theorem (standard, proof via Hilbert-Mumford criterion)
Consider the action of GT_{d} given by matrix $A \in \mathbb{Z}^{d \times m}$ with linearization $b \in \mathbb{Z}^{d}$.
(a) x unstable $\Leftrightarrow b \notin P_{x}(A) \quad$ can be scaled to 0 in the limit
(b) x semistable $\Leftrightarrow b \in P_{x}(A)$ cannot be scaled to 0 in the limit
(c) x polystable $\Leftrightarrow b \in \operatorname{relint} P_{x}(A)$
(d) $\quad x$ stable $\Leftrightarrow b \in \operatorname{int} P_{x}(A)$ closed orbit
finite stabilizer

Combining both worlds

Theorem

Let $A=\left[a_{1}|\ldots| a_{m}\right] \in \mathbb{Z}^{d \times m}$ and $Y \in \mathbb{Z}^{m}$ be a vector of counts with $n=\sum Y_{j}$.
MLE given Y exists in $\mathscr{M}_{A} \Leftrightarrow \mathbb{1} \in \mathbb{C}^{m}$ is polystable under the action of $\left(\mathbb{C}^{\times}\right)^{d}$ given by the matrix $\left[n a_{1}-A Y|\ldots| n a_{m}-A Y\right]$

> XIII - XXVII

Combining both worlds

Theorem

Let $A=\left[a_{1}|\ldots| a_{m}\right] \in \mathbb{Z}^{d \times m}$ and $Y \in \mathbb{Z}^{m}$ be a vector of counts with $n=\sum Y_{j}$.
MLE given Y exists in $\mathscr{M}_{A} \Leftrightarrow \mathbb{1} \in \mathbb{C}^{m}$ is polystable under the action of $\left(\mathbb{C}^{\times}\right)^{d}$ given by the matrix $\left[n a_{1}-A Y|\ldots| n a_{m}-A Y\right]$

attains its maximum

attains its minimum
XIII - XXVII

Combining both worlds

Theorem

Let $A=\left[a_{1}|\ldots| a_{m}\right] \in \mathbb{Z}^{d \times m}$ and $Y \in \mathbb{Z}^{m}$ be a vector of counts with $n=\sum Y_{j}$.
MLE given Y exists in $\mathscr{M}_{A} \Leftrightarrow \mathbb{1} \in \mathbb{C}^{m}$ is polystable under the action of $\left(\mathbb{C}^{\times}\right)^{d}$ given by the matrix $\left[n a_{1}-A Y|\ldots| n a_{m}-A Y\right]$

attains its maximum

attains its minimum

How are the two optimal points related?

Theorem (cont'd)

If $x \in \mathbb{C}^{m}$ is a point of minimal norm in the orbit $\left(\mathbb{C}^{\times}\right)^{d} \cdot \mathbb{1}$, then the MLE is

$$
\frac{x^{(2)}}{\|x\|^{2}}, \quad \text { where } x^{(2)} \text { is the vector with } j \text {-th entry }\left|x_{j}\right|^{2} .
$$

Algorithmic consequences

algorithms for finding MLE, e.g. iterative proportional scaling (IPS)

$\leftrightarrow \quad$ scaling algorithms to compute capacity

Algorithmic consequences

algorithms for finding MLE, e.g. iterative proportional scaling (IPS)
maximize likelihood \Leftrightarrow minimize KL divergence

$\leftrightarrow \quad$ scaling algorithms to compute capacity minimize ℓ_{2}-norm

Algorithmic consequences

algorithms for finding MLE, e.g. iterative proportional scaling (IPS)
maximize likelihood \Leftrightarrow minimize KL divergence model lives in $\Delta_{m-1} \cap \mathbb{R}_{>0}^{m}$

$\leftrightarrow \quad$ scaling algorithms to compute capacity minimize ℓ_{2}-norm orbit lives in \mathbb{C}^{m}

Algorithmic consequences

algorithms for finding MLE, e.g. iterative proportional scaling (IPS)
maximize likelihood \Leftrightarrow minimize KL divergence
model lives in $\Delta_{m-1} \cap \mathbb{R}_{>0}^{m}$
trivial linearization $b=0$
(defines model and steps of IPS)

$\leftrightarrow \quad$ scaling algorithms to compute capacity minimize ℓ_{2}-norm orbit lives in \mathbb{C}^{m}
linearization $b=A Y$

Gaussian statistical models

The density function of an m-dimensional Gaussian with mean zero and covariance matrix $\Sigma \in \mathbb{R}^{m \times m}$ is

$$
\rho_{\Sigma}(y)=\frac{1}{\sqrt{\operatorname{det}(2 \pi \Sigma)}} \exp \left(-\frac{1}{2} y^{T} \Sigma^{-1} y\right), \quad \text { where } y \in \mathbb{R}^{m}
$$

The concentration matrix $\Psi=\Sigma^{-1}$ is symmetric and positive definite.
A Gaussian model \mathscr{M} is a set of concentration matrices, i.e. a subset of the cone of $m \times m$ symmetric positive definite matrices.

Given data $Y=\left(Y_{1}, \ldots, Y_{n}\right)$, the likelihood is

likelihood L_{Y} can be unbounded from above MLE might not exist MLE might not be unique

Gaussian group model

The Gaussian group model of a group G with a representation $G \xrightarrow{\varphi} \mathrm{GL}_{m}$ on \mathbb{R}^{m} is

$$
\mathscr{M}_{G}:=\left\{\Psi_{g}=\varphi(g)^{T} \varphi(g) \mid g \in G\right\} .
$$

(depends only on image of G in GL_{m}, hence may assume $G \subseteq \mathrm{GL}_{m}$)

Gaussian group model

The Gaussian group model of a group G with a representation $G \xrightarrow{\varphi} \mathrm{GL}_{m}$ on \mathbb{R}^{m} is

$$
\mathscr{M}_{G}:=\left\{\Psi_{g}=\varphi(g)^{T} \varphi(g) \mid g \in G\right\} .
$$

(depends only on image of G in GL_{m}, hence may assume $G \subseteq \mathrm{GL}_{m}$)

We want to find an MLE, i.e. a maximizer of

$$
L_{Y}\left(\Psi_{g}\right)
$$

Gaussian group model

The Gaussian group model of a group G with a representation $G \xrightarrow{\varphi} \mathrm{GL}_{m}$ on \mathbb{R}^{m} is

$$
\mathscr{M}_{G}:=\left\{\Psi_{g}=\varphi(g)^{T} \varphi(g) \mid g \in G\right\} .
$$

(depends only on image of G in GL_{m}, hence may assume $G \subseteq \mathrm{GL}_{m}$)

We want to find an MLE, i.e. a maximizer of

$$
\log L_{Y}\left(\Psi_{g}\right)=\frac{1}{2} \underbrace{\left(n \log \operatorname{det} \Psi_{g}-\|g \cdot Y\|_{2}^{2}\right)}_{\ell_{Y}\left(\Psi_{g}\right)}-\frac{n m}{2} \log (2 \pi) \quad \text { for } g \in G \text {. }
$$

Combining both worlds

$$
\sup _{g \in G} \ell_{Y}\left(\Psi_{g}\right)=-\inf _{\tau \in \mathbb{R}_{>0}}\left(\tau\left(\inf _{h \in G \cap S L_{\mathrm{m}}}\|h \cdot Y\|_{2}^{2}\right)-n m \log \tau\right) .
$$

Combining both worlds

Invariant theory classically over \mathbb{C} - can also define Gaussian (group) models over \mathbb{C} For a group $G \subset \mathrm{GL}_{m}(\mathbb{C})$, define $\mathscr{M}_{G}:=\left\{g^{*} g \mid g \in G\right\}$.

Proposition

For $Y=\left(Y_{1}, \ldots, Y_{n}\right)$ with $Y_{i} \in \mathbb{C}^{m}$ and a group $G \subset \mathrm{GL}_{m}(\mathbb{C})$ closed under non-zero scalar multiples (i.e., $g \in G, \lambda \in \mathbb{C}, \lambda \neq 0 \Rightarrow \lambda g \in G$),

$$
\sup _{g \in G} \ell_{Y}\left(\Psi_{g}\right)=-\inf _{\tau \in \mathbb{R}_{>0}}\left(\tau\left(\inf _{h \in G \cap S L_{\mathrm{m}}}\|h \cdot Y\|_{2}^{2}\right)-n m \log \tau\right) .
$$

Combining both worlds

Invariant theory classically over \mathbb{C} - can also define Gaussian (group) models over \mathbb{C} For a group $G \subset \mathrm{GL}_{m}(\mathbb{C})$, define $\mathscr{M}_{G}:=\left\{g^{*} g \mid g \in G\right\}$.

Proposition

For $Y=\left(Y_{1}, \ldots, Y_{n}\right)$ with $Y_{i} \in \mathbb{C}^{m}$ and a group $G \subset \mathrm{GL}_{m}(\mathbb{C})$ closed under non-zero scalar multiples (i.e., $g \in G, \lambda \in \mathbb{C}, \lambda \neq 0 \Rightarrow \lambda g \in G$),

$$
\sup _{g \in G} \ell_{Y}\left(\Psi_{g}\right)=-\inf _{\tau \in \mathbb{R}>0}\left(\tau\left(\inf _{h \in G \cap S L_{\mathrm{m}}}\|h \cdot Y\|_{2}^{2}\right)-n m \log \tau\right) .
$$

If $h \cdot Y$ is a point of minimal norm in the $G \cap \mathrm{SL}_{m}$-orbit of Y, then an MLE for the Gaussian group model \mathscr{M}_{G} is
$\tau h^{*} h$, where τ is the unique value minimizing $\tau\|h \cdot Y\|_{2}^{2}-n m \log \tau$.

Combining both worlds

Invariant theory classically over \mathbb{C} - can also define Gaussian (group) models over \mathbb{C} For a group $G \subset \mathrm{GL}_{m}(\mathbb{C})$, define $\mathscr{M}_{G}:=\left\{g^{*} g \mid g \in G\right\}$.

Proposition

For $Y=\left(Y_{1}, \ldots, Y_{n}\right)$ with $Y_{i} \in \mathbb{C}^{m}$ and a group $G \subset \mathrm{GL}_{m}(\mathbb{C})$ closed under non-zero scalar multiples (i.e., $g \in G, \lambda \in \mathbb{C}, \lambda \neq 0 \Rightarrow \lambda g \in G$),

$$
\sup _{g \in G} \ell_{Y}\left(\Psi_{g}\right)=-\inf _{\tau \in \mathbb{R}>0}\left(\tau\left(\inf _{h \in G \cap S L_{\mathrm{m}}}\|h \cdot Y\|_{2}^{2}\right)-n m \log \tau\right) .
$$

If $h \cdot Y$ is a point of minimal norm in the $G \cap \mathrm{SL}_{m}$-orbit of Y, then an MLE for the Gaussian group model \mathscr{M}_{G} is
$\tau h^{*} h$, where τ is the unique value minimizing $\tau\|h \cdot Y\|_{2}^{2}-n m \log \tau$.
All MLEs, if they exist, are of this form.

Combining both worlds

Theorem

Let Y and G as above.

Combining both worlds

Theorem

Let Y and G as above.
If G is Zariski closed and self-adjoint (i.e., $g \in G \Rightarrow g^{*} \in G$),

Combining both worlds

Theorem

Let Y and G as above.
If G is Zariski closed and self-adjoint (i.e., $g \in G \Rightarrow g^{*} \in G$),
ML estimation for \mathscr{M}_{G} relates to the action by $G \cap \mathrm{SL}_{m}(\mathbb{C})$ as follows:
(a) Y unstable $\Leftrightarrow L_{Y}$ not bounded from above
(b) Y semistable $\Leftrightarrow \quad L_{Y}$ bounded from above
(c) Y polystable $\Leftrightarrow \quad$ MLE exists
(d) Y stable \Leftrightarrow finitely many MLEs exist \Leftrightarrow unique MLE

Combining both worlds
 Real examples

Combining both worlds

Real examples

Theorem

Let $Y=\left(Y_{1}, \ldots, Y_{n}\right)$ with $Y_{i} \in \mathbb{R}^{m}$, and let $G \subset \mathrm{GL}_{m}(\mathbb{R})$ be a Zariski closed, self-adjoint group that is closed under non-zero scalar multiples.
ML estimation for \mathscr{M}_{G} relates to the action by $G \cap \operatorname{SL}_{m}(\mathbb{R})$ as follows:
(a) $\quad Y$ unstable $\Leftrightarrow \ell_{Y}$ not bounded from above
(b) Y semistable $\Leftrightarrow \quad \ell_{Y}$ bounded from above
(c) Y polystable $\Leftrightarrow \quad$ MLE exists
(d) $\quad Y$ stable \Rightarrow finitely many MLEs exist $\quad \Leftrightarrow$ unique MLE

Combining both worlds

Real examples

Theorem

Let $Y=\left(Y_{1}, \ldots, Y_{n}\right)$ with $Y_{i} \in \mathbb{R}^{m}$, and let $G \subset \mathrm{GL}_{m}(\mathbb{R})$ be a Zariski closed, self-adjoint group that is closed under non-zero scalar multiples.
ML estimation for \mathscr{M}_{G} relates to the action by $G \cap \operatorname{SL}_{m}(\mathbb{R})$ as follows:
(a) $\quad Y$ unstable $\Leftrightarrow \ell_{Y}$ not bounded from above
(b) Y semistable $\Leftrightarrow \quad \ell_{Y}$ bounded from above
(c) Y polystable $\Leftrightarrow \quad$ MLE exists
(d) $\quad Y$ stable \Rightarrow finitely many MLEs exist \Leftrightarrow unique MLE

Examples: full Gaussian model, independence model, matrix normal model

Combining both worlds

Real examples

Theorem

Let $Y=\left(Y_{1}, \ldots, Y_{n}\right)$ with $Y_{i} \in \mathbb{R}^{m}$, and let $G \subset \mathrm{GL}_{m}(\mathbb{R})$ be a Zariski closed, self-adjoint group that is closed under non-zero scalar multiples.
ML estimation for \mathscr{M}_{G} relates to the action by $G \cap \mathrm{SL}_{m}(\mathbb{R})$ as follows:
(a) $\quad Y$ unstable $\Leftrightarrow \ell_{Y}$ not bounded from above
(b) Y semistable $\Leftrightarrow \quad \ell_{Y}$ bounded from above
(c) Y polystable $\Leftrightarrow \quad$ MLE exists
(d) $\quad Y$ stable \Rightarrow finitely many MLEs exist $\quad \Leftrightarrow$ unique MLE

Examples: full Gaussian model, independence model, matrix normal model

Theorem

Let $Y=\left(Y_{1}, \ldots, Y_{n}\right)$ with $Y_{i} \in \mathbb{R}^{m}$, and let $G \subset \mathrm{GL}_{m}(\mathbb{R})$ be a group that is closed under non-zero scalar multiples, but not necessarily Zariski closed and self-adjoint.
ML estimation for \mathscr{M}_{G} relates to the action by $G \cap \operatorname{SL}_{m}^{ \pm}(\mathbb{R})$ as follows:
(a) $\quad Y$ unstable $\Leftrightarrow \ell_{Y}$ not bounded from above
(b) Y semistable $\Leftrightarrow \quad \ell_{Y}$ bounded from above
(c) Y polystable $\Rightarrow \quad$ MLE exists

Combining both worlds

Real examples

Theorem

Let $Y=\left(Y_{1}, \ldots, Y_{n}\right)$ with $Y_{i} \in \mathbb{R}^{m}$, and let $G \subset \mathrm{GL}_{m}(\mathbb{R})$ be a Zariski closed, self-adjoint group that is closed under non-zero scalar multiples.
ML estimation for \mathscr{M}_{G} relates to the action by $G \cap \operatorname{SL}_{m}(\mathbb{R})$ as follows:
(a) $\quad Y$ unstable $\Leftrightarrow \ell_{Y}$ not bounded from above
(b) Y semistable $\Leftrightarrow \quad \ell_{Y}$ bounded from above
(c) Y polystable $\Leftrightarrow \quad$ MLE exists
(d) $\quad Y$ stable \Rightarrow finitely many MLEs exist \Leftrightarrow unique MLE

Examples: full Gaussian model, independence model, matrix normal model

Theorem

Let $Y=\left(Y_{1}, \ldots, Y_{n}\right)$ with $Y_{i} \in \mathbb{R}^{m}$, and let $G \subset \mathrm{GL}_{m}(\mathbb{R})$ be a group that is closed under non-zero scalar multiples, but not necessarily Zariski closed and self-adjoint.
ML estimation for \mathscr{M}_{G} relates to the action by $G \cap \operatorname{SL}_{m}^{ \pm}(\mathbb{R})$ as follows:
(a) $\quad Y$ unstable $\Leftrightarrow \ell_{Y}$ not bounded from above
(b) Y semistable $\Leftrightarrow \quad \ell_{Y}$ bounded from above
(c) Y polystable $\Rightarrow \quad$ MLE exists

Example: Gaussian graphical models defined by transitive DAGs

Combining both worlds

Real examples

Proposition

For $Y=\left(Y_{1}, \ldots, Y_{n}\right)$ with $Y_{i} \in \mathbb{R}^{m}$ and a group $G \subset \mathrm{GL}_{m}(\mathbb{R})$ closed under non-zero scalar multiples,

$$
\sup _{g \in G} \ell_{Y}\left(\Psi_{g}\right)=-\inf _{\tau \in \mathbb{R}>0}\left(\tau\left(\inf _{h \in G \cap S L_{m}^{ \pm}}\|h \cdot Y\|_{2}^{2}\right)-n m \log \tau\right) .
$$

If $h \cdot Y$ is a point of minimal norm in the $G \cap \mathrm{SL}_{m}^{ \pm}$-orbit of Y, then an MLE for the Gaussian group model \mathscr{M}_{G} is
$\tau h^{T} h$, where τ is the unique value minimizing $\tau\|h \cdot Y\|_{2}^{2}-n m \log \tau$.
All MLEs, if they exist, are of this form.

Combining both worlds

Real examples

Proposition

For $Y=\left(Y_{1}, \ldots, Y_{n}\right)$ with $Y_{i} \in \mathbb{R}^{m}$ and a group $G \subset \mathrm{GL}_{m}(\mathbb{R})$ closed under non-zero scalar multiples,

$$
\sup _{g \in G} \ell_{Y}\left(\Psi_{g}\right)=-\inf _{\tau \in \mathbb{R}_{>0}}\left(\tau\left(\inf _{h \in G \cap S L_{m}^{ \pm}}\|h \cdot Y\|_{2}^{2}\right)-n m \log \tau\right) .
$$

If $h \cdot Y$ is a point of minimal norm in the $G \cap \mathrm{SL}_{m}^{ \pm}$-orbit of Y, then an MLE for the Gaussian group model \mathscr{M}_{G} is
$\tau h^{T} h$, where τ is the unique value minimizing $\tau\|h \cdot Y\|_{2}^{2}-n m \log \tau$.
All MLEs, if they exist, are of this form.

Remark

If G contains an orthogonal matrix of determinant -1 , then we can work with SL_{m} instead of $\mathrm{SL}_{m}^{ \pm}$.

Gaussian graphical models

Directed acyclic graphs
Important family of statistical models that represent interaction structures between several random variables:

- Consider a directed acyclic graph (DAG) \mathscr{G} with m nodes.
- Each node j represents a random variable X_{j} (e.g., Gaussian).
- Each edge $j \rightarrow i$ encodes (conditional) dependence: X_{j} 'causes' X_{i}.
- The parents of i are $\mathrm{pa}(i)=\{j \mid j \rightarrow i\}$.

The model is defined by the recursive linear equation:

$$
X_{i}=\sum_{j \in \mathrm{pa}(i)} \lambda_{i j} X_{j}+\varepsilon_{i}
$$

where $\lambda_{i j}$ is the edge coefficient and ε_{i} is Gaussian error.

It can be written as $X=\Lambda X+\varepsilon$ where $\Lambda \in \mathbb{R}^{m \times m}$ satisfies $\lambda_{i j}=0$ for $j \nrightarrow i$ in \mathscr{G} and $\varepsilon \sim N(0, \Omega)$ with Ω diagonal, positive definite.

Gaussian graphical models coming from groups

From $X=\Lambda X+\varepsilon$, we rewrite

$$
X=(I-\Lambda)^{-1} \varepsilon
$$

so that $X \sim N(0, \Sigma)$ with

$$
\Sigma=(I-\Lambda)^{-1} \Omega(I-\Lambda)^{-T} \quad \& \quad \psi=(I-\Lambda)^{T} \Omega^{-1}(I-\Lambda) .
$$

The Gaussian graphical model $\mathscr{M}_{\mathscr{G}}$ consists of concentration matrices ψ of this form.

Gaussian graphical models coming from groups

From $X=\Lambda X+\varepsilon$, we rewrite

$$
X=(I-\Lambda)^{-1} \varepsilon
$$

so that $X \sim N(0, \Sigma)$ with

$$
\Sigma=(I-\Lambda)^{-1} \Omega(I-\Lambda)^{-T} \quad \& \quad \psi=(I-\Lambda)^{T} \Omega^{-1}(I-\Lambda) .
$$

The Gaussian graphical model $\mathscr{M}_{\mathscr{g}}$ consists of concentration matrices ψ of this form. Consider the set

$$
G(\mathscr{G})=\left\{g \in \mathrm{GL}_{m} \mid g_{i j}=0 \text { for } i \neq j \text { with } j \nrightarrow i \text { in } \mathscr{G}\right\} .
$$

Gaussian graphical models

 coming from groupsFrom $X=\Lambda X+\varepsilon$, we rewrite

$$
X=(I-\Lambda)^{-1} \varepsilon
$$

so that $X \sim N(0, \Sigma)$ with

$$
\Sigma=(I-\Lambda)^{-1} \Omega(I-\Lambda)^{-T} \quad \& \quad \psi=(I-\Lambda)^{T} \Omega^{-1}(I-\Lambda) .
$$

The Gaussian graphical model $\mathscr{M}_{\mathscr{G}}$ consists of concentration matrices ψ of this form. Consider the set

$$
G(\mathscr{G})=\left\{g \in \mathrm{GL}_{m} \mid g_{i j}=0 \text { for } i \neq j \text { with } j \nrightarrow i \text { in } \mathscr{G}\right\} .
$$

Proposition

The set of matrices $G(\mathscr{G})$ is a group if and only if \mathscr{G} is a transitive directed acyclic graph (TDAG), i.e., $k \rightarrow j$ and $j \rightarrow i$ in \mathscr{G} imply $k \rightarrow i$. In this case,

$$
\mathscr{M}_{\mathscr{G}}=\mathscr{M}_{G(\mathscr{G})} .
$$

TDAG group models

Example

Let \mathscr{G} be the TDAG

The corresponding group $G(\mathscr{G}) \subseteq \mathrm{GL}_{3}$ consists of invertible matrices g of the form

$$
g=\left[\begin{array}{lll}
* & 0 & * \\
0 & * & * \\
0 & 0 & *
\end{array}\right] .
$$

TDAG group models

Example

Let \mathscr{G} be the TDAG

The corresponding group $G(\mathscr{G}) \subseteq \mathrm{GL}_{3}$ consists of invertible matrices g of the form

$$
g=\left[\begin{array}{ccc}
* & 0 & * \\
0 & * & * \\
0 & 0 & *
\end{array}\right] .
$$

The Gaussian graphical model $\mathscr{M}_{\mathscr{g}}$ is a 5-dimensional linear subspace of the cone of symmetric positive definite 3×3 matrices:

$$
\mathscr{M}_{\mathscr{G}} \overrightarrow{ }=\left\{g^{\top} g \mid g \in G(\mathscr{G})\right\}=\left\{\Psi \in \mathrm{PD}_{3} \mid \psi_{12}=\psi_{21}=0\right\} .
$$

TDAG group models

Example

Let \mathscr{G} be the TDAG

The corresponding group $G(\mathscr{G}) \subseteq \mathrm{GL}_{3}$ consists of invertible matrices g of the form

$$
g=\left[\begin{array}{lll}
* & 0 & * \\
0 & * & * \\
0 & 0 & *
\end{array}\right] .
$$

The Gaussian graphical model $\mathscr{M}_{\vec{g}}$ is a 5-dimensional linear subspace of the cone of symmetric positive definite 3×3 matrices:

$$
\mathscr{M}_{\mathscr{G}}=\left\{g^{\top} g \mid g \in G(\mathscr{G})\right\}=\left\{\Psi \in \mathrm{PD}_{3} \mid \psi_{12}=\psi_{21}=0\right\} .
$$

Note that $G(\mathscr{G})$ is not self-adjoint!

MLE existence

Theorem

Let $Y \in \mathbb{R}^{m \times n}$ be a tuple of n samples. If some row of Y corresponding to vertex i is in the linear span of the rows corresponding to the parents of i,

- then Y is unstable under the action by $G(\mathscr{G}) \cap \mathrm{SL}_{m}$, i.e. the likelihood is unbounded;
- otherwise, Y is polystable, i.e. an MLE exists.

MLE existence

Theorem

Let $Y \in \mathbb{R}^{m \times n}$ be a tuple of n samples. If some row of Y corresponding to vertex i is in the linear span of the rows corresponding to the parents of i,

- then Y is unstable under the action by $G(\mathscr{G}) \cap \mathrm{SL}_{m}$, i.e. the likelihood is unbounded;
- otherwise, Y is polystable, i.e. an MLE exists.

Example Let $n=2$ in

$$
Y^{1}=\left(\begin{array}{ll}
1 & 2 \\
0 & 1 \\
0 & 0
\end{array}\right), \quad Y^{2}=\left(\begin{array}{ll}
1 & 2 \\
0 & 1 \\
2 & 4
\end{array}\right), \quad Y^{3}=\left(\begin{array}{ll}
1 & 0 \\
0 & 1 \\
3 & 2
\end{array}\right)
$$

Using the theorem, we see that

MLE existence

Theorem

Let $Y \in \mathbb{R}^{m \times n}$ be a tuple of n samples. If some row of Y corresponding to vertex i is in the linear span of the rows corresponding to the parents of i,

- then Y is unstable under the action by $G(\mathscr{G}) \cap \mathrm{SL}_{m}$, i.e. the likelihood is unbounded;
- otherwise, Y is polystable, i.e. an MLE exists.

Example Let $n=2$ in

$$
Y^{1}=\left(\begin{array}{ll}
1 & 2 \\
0 & 1 \\
0 & 0
\end{array}\right), \quad Y^{2}=\left(\begin{array}{ll}
1 & 2 \\
0 & 1 \\
2 & 4
\end{array}\right), \quad Y^{3}=\left(\begin{array}{ll}
1 & 0 \\
0 & 1 \\
3 & 2
\end{array}\right)
$$

Using the theorem, we see that Y^{1} and Y^{2} are unstable and Y^{3} is polystable.
XXIV - XXVII

MLE existence

Theorem

Let $Y \in \mathbb{R}^{m \times n}$ be a tuple of n samples. If some row of Y corresponding to vertex i is in the linear span of the rows corresponding to the parents of i,

- then Y is unstable under the action by $G(\mathscr{G}) \cap \mathrm{SL}_{m}$, i.e. the likelihood is unbounded;
- otherwise, Y is polystable, i.e. an MLE exists.

Example Let $n=2$ in

$$
Y^{1}=\left(\begin{array}{ll}
1 & 2 \\
0 & 1 \\
0 & 0
\end{array}\right), \quad Y^{2}=\left(\begin{array}{ll}
1 & 2 \\
0 & 1 \\
2 & 4
\end{array}\right), \quad Y^{3}=\left(\begin{array}{ll}
1 & 0 \\
0 & 1 \\
3 & 2
\end{array}\right) .
$$

Using the theorem, we see that Y^{1} and Y^{2} are unstable and Y^{3} is polystable. The null cone has two components: $V\left(y_{11} y_{32}-y_{12} y_{31}\right) \cup V\left(y_{21} y_{32}-y_{22} y_{31}\right)$.

Null cones of TDAGs

Corollary Let \mathscr{G} be a TDAG with m nodes and n samples. Each irreducible component of the Zariski closure of the null cone under the action of $G(\mathscr{G}) \cap \mathrm{SL}_{m}$ on $\mathbb{R}^{m \times n}$ is defined by the maximal minors of the submatrix whose rows are a childless node and its parents.

Null cones of TDAGs

Corollary Let \mathscr{G} be a TDAG with m nodes and n samples.
Each irreducible component of the Zariski closure of the null cone under the action of $G(\mathscr{G}) \cap \mathrm{SL}_{m}$ on $\mathbb{R}^{m \times n}$ is defined by the maximal minors of the submatrix whose rows are a childless node and its parents.

Example

Let \mathscr{G} be the TDAG

- The null cone is not Zariski closed for $n \geq 2$. Its Zariski closure is the variety of matrices of rank at most two.

Null cones of TDAGs

Corollary Let \mathscr{G} be a TDAG with m nodes and n samples.
Each irreducible component of the Zariski closure of the null cone under the action of $G(\mathscr{G}) \cap \mathrm{SL}_{m}$ on $\mathbb{R}^{m \times n}$ is defined by the maximal minors of the submatrix whose rows are a childless node and its parents.

Example

Let \mathscr{G} be the TDAG

- The null cone is not Zariski closed for $n \geq 2$. Its Zariski closure is the variety of matrices of rank at most two.
- For $n=2, Y$ is not in the null cone but in its Zariski closure $\left(=\mathbb{R}^{3 \times 2}\right)$:

$$
Y=\left(\begin{array}{ll}
1 & 0 \\
1 & 0 \\
0 & 1
\end{array}\right)
$$

Null cones of TDAGs

Corollary Let \mathscr{G} be a TDAG with m nodes and n samples.
Each irreducible component of the Zariski closure of the null cone under the action of $G(\mathscr{G}) \cap \mathrm{SL}_{m}$ on $\mathbb{R}^{m \times n}$ is defined by the maximal minors of the submatrix whose rows are a childless node and its parents.

Example

Let \mathscr{G} be the TDAG

- The null cone is not Zariski closed for $n \geq 2$. Its Zariski closure is the variety of matrices of rank at most two.
- For $n=2, Y$ is not in the null cone but in its Zariski closure $\left(=\mathbb{R}^{3 \times 2}\right)$:

$$
Y=\left(\begin{array}{ll}
1 & 0 \\
1 & 0 \\
0 & 1
\end{array}\right)
$$

Hence, an MLE given Y exists.

Null cones of TDAGs

Corollary Let \mathscr{G} be a TDAG with m nodes and n samples.
Each irreducible component of the Zariski closure of the null cone under the action of $G(\mathscr{G}) \cap \mathrm{SL}_{m}$ on $\mathbb{R}^{m \times n}$ is defined by the maximal minors of the submatrix whose rows are a childless node and its parents.

Example

Let \mathscr{G} be the TDAG

- The null cone is not Zariski closed for $n \geq 2$. Its Zariski closure is the variety of matrices of rank at most two.
- For $n=2, Y$ is not in the null cone but in its Zariski closure $\left(=\mathbb{R}^{3 \times 2}\right)$:

$$
Y=\left(\begin{array}{ll}
1 & 0 \\
1 & 0 \\
0 & 1
\end{array}\right)
$$

Hence, an MLE given Y exists. What is it? Is it unique? Homework!

Undirected Graphical Models

Which TDAGs have Zariski closed null cones?

Undirected Graphical Models

Which TDAGs have Zariski closed null cones?

Corollary Let \mathscr{G} be a TDAG with m nodes. The null cone under the action of $G(\mathscr{G}) \cap \mathrm{SL}_{m}$ on $\mathbb{R}^{m \times n}$ is Zariski closed for every n iff \mathscr{G} has no unshielded colliders.

Undirected Graphical Models

Which TDAGs have Zariski closed null cones?

Corollary Let \mathscr{G} be a TDAG with m nodes. The null cone under the action of $G(\mathscr{G}) \cap \mathrm{SL}_{m}$ on $\mathbb{R}^{m \times n}$ is Zariski closed for every n iff \mathscr{G} has no unshielded colliders.

An unshielded collider of \mathscr{G} is a subgraph $j \rightarrow i \leftarrow k$ with no edge between j and k.

Undirected Graphical Models

Which TDAGs have Zariski closed null cones?
Corollary Let \mathscr{G} be a TDAG with m nodes. The null cone under the action of $G(\mathscr{G}) \cap \mathrm{SL}_{m}$ on $\mathbb{R}^{m \times n}$ is Zariski closed for every n iff \mathscr{G} has no unshielded colliders.

An unshielded collider of \mathscr{G} is a subgraph $j \rightarrow i \leftarrow k$ with no edge between j and k. This is a very interesting condition in statistics! \mathscr{G} has no unshielded colliders if and only if it has the same graphical model as its underlying undirected graph.

Summary

