Invariant theory for maximum likelihood estimation Statistics Invariant theory

Given: statistical model sample data S_Y Task: find maximum likelihood estimate (MLE) = point in model that best fits S_Y **Given**: orbit $G \cdot v = \{g \cdot v \mid g \in G\}$

Task: compute **capacity** = closest distance of orbit to origin

Stability notions

The **orbit** of a vector v in a vector space V under an action by a group G is

 $G.v = \{g \cdot v \mid g \in G\} \subset V.$

Stability notions

The **orbit** of a vector v in a vector space V under an action by a group G is

 $\overline{G.v} = \{g \cdot v \mid g \in G\} \subset V.$

• v is unstable iff $0 \in \overline{G.v}$ (i.e. v can be scaled to 0 in the limit)

Stability notions

The **orbit** of a vector v in a vector space V under an action by a group G is

 $G.v = \{g \cdot v \mid g \in G\} \subset V.$

v is unstable iff 0 ∈ G.v (i.e. v can be scaled to 0 in the limit)
 v semistable iff 0 ∉ G.v

Stability notions

The **orbit** of a vector v in a vector space V under an action by a group G is

 $\overline{G.v} = \{g \cdot v \mid g \in G\} \subset V.$

• v is unstable iff $0 \in \overline{G.v}$ (i.e. v can be scaled to 0 in the limit)

- v semistable iff $0 \notin \overline{G.v}$
- v polystable iff $v \neq 0$ and its orbit G.v is closed

Stability notions

The **orbit** of a vector v in a vector space V under an action by a group G is

 $\overline{G.v} = \{g \cdot v \mid g \in G\} \subset V.$

- v is unstable iff $0 \in \overline{G.v}$ (i.e. v can be scaled to 0 in the limit)
- v semistable iff $0 \notin \overline{G.v}$
- v polystable iff $v \neq 0$ and its orbit G.v is closed
- v is stable iff v is polystable and its stabilizer is finite

Null cone membership testing

Classical and often hard question: Describe null cone (essentially equivalent to finding generators for the ring of polynomial invariants)

Modern approach: Provide a test to determine if a vector v lies in null cone

Null cone membership testing

Classical and often hard question: Describe null cone (essentially equivalent to finding generators for the ring of polynomial invariants) Modern approach: Provide a test to determine if a vector v lies in null cone

The capacity of v is

 $\operatorname{cap}_G(v) := \inf_{g \in G} \|g \cdot v\|_2^2.$

Observation: $cap_G(v) = 0$ iff v lies in null cone

Null cone membership testing

Classical and often hard question: Describe null cone (essentially equivalent to finding generators for the ring of polynomial invariants) Modern approach: Provide a test to determine if a vector v lies in null cone

The capacity of v is

 $\operatorname{cap}_{G}(v) := \inf_{g \in G} \|g \cdot v\|_{2}^{2}.$

Observation: $cap_G(v) = 0$ iff v lies in null cone

Hence: Testing null cone membership is a minimization problem. → algorithms: [series of 3 papers in 2017 – 2019 by Bürgisser, Franks, Garg, Oliveira, Walter, Wigderson]

Let $\mathbb{K} \in \{\mathbb{R}, \mathbb{C}\}$ and let $G \subset \operatorname{GL}_m(\mathbb{K})$ be a subgroup.

Let $\mathbb{K}\in\{\mathbb{R},\mathbb{C}\}$ and let ${\it G}\subset {\rm GL}_m(\mathbb{K})$ be a subgroup. Assume that

- G is Zariski closed and
- self-adjoint (i.e., $g \in G \Rightarrow g^* \in G$).

Let $\mathbb{K} \in \{\mathbb{R}, \mathbb{C}\}$ and let $G \subset \operatorname{GL}_m(\mathbb{K})$ be a subgroup. Assume that

- G is Zariski closed and
- self-adjoint (i.e., $g \in G \Rightarrow g^* \in G$).

For $v \in \mathbb{K}^m$, consider $\gamma_v : G \longrightarrow \mathbb{R}, g \longmapsto \|gv\|^2$. Note: $\operatorname{cap}_G(v) = \inf_{g \in G} \gamma_v(g)$

Let $\mathbb{K} \in \{\mathbb{R}, \mathbb{C}\}$ and let $G \subset GL_m(\mathbb{K})$ be a subgroup. Assume that

- G is Zariski closed and
- self-adjoint (i.e., $g \in G \Rightarrow g^* \in G$).

For $v \in \mathbb{K}^m$, consider $\gamma_v : G \longrightarrow \mathbb{R}, g \longmapsto \|gv\|^2$. Note: $\operatorname{cap}_G(v) = \inf_{g \in G} \gamma_v(g)$

Its differential at the identity matrix I_m is $\overline{D_{I_m}\gamma_v}: T_{I_m}G \longrightarrow \mathbb{R}, \dot{g} \longmapsto 2\operatorname{Re}[\operatorname{tr}(\dot{g}vv^*)].$

Let $\mathbb{K} \in \{\mathbb{R}, \mathbb{C}\}$ and let $G \subset \mathrm{GL}_m(\mathbb{K})$ be a subgroup. Assume that

- G is Zariski closed and
- self-adjoint (i.e., $g \in G \Rightarrow g^* \in G$).

For $v \in \mathbb{K}^m$, consider $\gamma_v : G \longrightarrow \mathbb{R}$, $g \longmapsto \|gv\|^2$. Note: $\operatorname{cap}_G(v) = \inf_{g \in G} \gamma_v(g)$

Its differential at the identity matrix I_m is $D_{I_m}\gamma_v: T_{I_m}G \longrightarrow \mathbb{R}, \dot{g} \longmapsto 2\operatorname{Re}[\operatorname{tr}(\dot{g}vv^*)].$

The **moment map** assigns this differential to each vector *v*:

 $\mu: \mathbb{K}^m \longrightarrow \operatorname{Hom}_{\mathbb{R}}(T_{I_m}G, \mathbb{R}), \ v \longmapsto D_{I_m}\gamma_v.$

I\/ _ XX

Let $\mathbb{K} \in \{\mathbb{R}, \mathbb{C}\}$ and let $G \subset \mathrm{GL}_m(\mathbb{K})$ be a subgroup. Assume that

- G is Zariski closed and
- self-adjoint (i.e., $g \in G \Rightarrow g^* \in G$).

For $v \in \mathbb{K}^m$, consider $\gamma_v : G \longrightarrow \mathbb{R}$, $g \mapsto ||gv||^2$. Note: $\operatorname{cap}_G(v) = \inf_{g \in G} \gamma_v(g)$

Its differential at the identity matrix I_m is $D_{I_m}\gamma_v: T_{I_m}G \longrightarrow \mathbb{R}, \dot{g} \longmapsto 2\operatorname{Re}[\operatorname{tr}(\dot{g}vv^*)].$

The **moment map** assigns this differential to each vector *v*:

 $\mu: \mathbb{K}^m \longrightarrow \operatorname{Hom}_{\mathbb{R}}(T_{I_m}G, \mathbb{R}), \ v \longmapsto D_{I_m}\gamma_v.$

I = X X

Note: $\mu(v) = 0 \Leftrightarrow I_m$ is a critical point of γ_v

Let $\mathbb{K} \in \{\mathbb{R}, \mathbb{C}\}$ and let $G \subset \mathrm{GL}_m(\mathbb{K})$ be a subgroup. Assume that

- G is Zariski closed and
- self-adjoint (i.e., $g \in G \Rightarrow g^* \in G$).

For $v \in \mathbb{K}^m$, consider $\gamma_v : G \longrightarrow \mathbb{R}$, $g \longmapsto \|gv\|^2$. Note: $\operatorname{cap}_G(v) = \inf_{g \in G} \gamma_v(g)$

Its differential at the identity matrix I_m is $D_{I_m}\gamma_v: T_{I_m}G \longrightarrow \mathbb{R}, \dot{g} \longmapsto 2\text{Re}[\text{tr}(\dot{g}vv^*)].$

The **moment map** assigns this differential to each vector *v*:

 $\mu: \mathbb{K}^m \longrightarrow \operatorname{Hom}_{\mathbb{R}}(T_{I_m}G, \mathbb{R}), \ v \longmapsto D_{I_m}\gamma_v.$

Note:

 $\mu(v) = 0 \Leftrightarrow I_m$ is a critical point of γ_v

 \Leftrightarrow v is a critical point of the norm minimization problem along its orbit.

|\/ _ XX\/||

Theorem (Kempf, Ness '79 over \mathbb{C} / Richardson, Slodowy '90 over \mathbb{R}) Let $G \subset \operatorname{GL}_m(\mathbb{K})$ be a Zariski closed, self-adjoint subgroup with moment map μ . For $v \in \mathbb{K}^m$, we have:

(a) v is of minimal norm in its orbit $\Leftrightarrow \mu(v) = 0$.

Theorem (Kempf, Ness '79 over \mathbb{C} / Richardson, Slodowy '90 over \mathbb{R}) Let $G \subset \operatorname{GL}_m(\mathbb{K})$ be a Zariski closed, self-adjoint subgroup with moment map μ . For $v \in \mathbb{K}^m$, we have:

- (a) v is of minimal norm in its orbit $\Leftrightarrow \mu(v) = 0$.
- (b) If the orbit $G \cdot v$ is closed, there exists some $w \in G \cdot v$ with $\mu(w) = 0$.

Theorem (Kempf, Ness '79 over \mathbb{C} / Richardson, Slodowy '90 over \mathbb{R}) Let $G \subset \operatorname{GL}_m(\mathbb{K})$ be a Zariski closed, self-adjoint subgroup with moment map μ . For $v \in \mathbb{K}^m$, we have:

- (a) v is of minimal norm in its orbit $\Leftrightarrow \mu(v) = 0$.
- (b) If the orbit $G \cdot v$ is closed, there exists some $w \in G \cdot v$ with $\mu(w) = 0$.
- (c) If $\mu(v) = 0$, the orbit $G \cdot v$ is closed.

Theorem (Kempf, Ness '79 over \mathbb{C} / Richardson, Slodowy '90 over \mathbb{R}) Let $G \subset \operatorname{GL}_m(\mathbb{K})$ be a Zariski closed, self-adjoint subgroup with moment map μ . For $v \in \mathbb{K}^m$, we have:

- (a) v is of minimal norm in its orbit $\Leftrightarrow \mu(v) = 0$.
- (b) If the orbit $G \cdot v$ is closed, there exists some $w \in G \cdot v$ with $\mu(w) = 0$.
- (c) If $\mu(v) = 0$, the orbit $G \cdot v$ is closed.
- (d) v is polystable $\Leftrightarrow \exists 0 \neq w \in G \cdot v : \mu(w) = 0.$

Theorem (Kempf, Ness '79 over \mathbb{C} / Richardson, Slodowy '90 over \mathbb{R}) Let $G \subset \operatorname{GL}_m(\mathbb{K})$ be a Zariski closed, self-adjoint subgroup with moment map μ . For $v \in \mathbb{K}^m$, we have:

(a) v is of minimal norm in its orbit $\Leftrightarrow \mu(v) = 0$.

(b) If the orbit $G \cdot v$ is closed, there exists some $w \in G \cdot v$ with $\mu(w) = 0$.

- (c) If $\mu(v) = 0$, the orbit $G \cdot v$ is closed.
- (d) v is polystable $\Leftrightarrow \exists 0 \neq w \in G \cdot v : \mu(w) = 0.$
- (e) v is semistable $\Leftrightarrow \exists 0 \neq w \in \overline{G \cdot v} : \mu(w) = 0.$

Maximum likelihood estimation

Given:

- *M*: a statistical **model** = a set of probability distributions
- $Y = (Y_1, \dots, Y_n)$: *n* samples of observed **data**

Goal: find a distribution in the model $\mathcal M$ that best fits the empirical data Y

Approach: maximize the likelihood function

 $L_Y(\rho) := \rho(Y_1) \cdots \rho(Y_n), \quad \text{where } \rho \in \mathscr{M}.$

A maximum likelihood estimate (MLE) is a distribution in the model \mathcal{M} that maximizes the likelihood L_Y .

VI - XXVII

Discrete statistical models

A probability distribution on *m* states is determined by is **probability mass** function ρ , where ρ_i is the probability that the *j*-th state occurs.

 ρ is a point in the **probability simplex**

$$\Delta_{m-1} = \left\{ q \in \mathbb{R}^m \mid q_j \geq 0 ext{ and } \sum q_j = 1
ight\}.$$

A discrete statistical model \mathcal{M} is a subset of the simplex Δ_{m-1} .

Discrete statistical models

maximum likelihood estimation

Given data is a vector of counts $Y \in \mathbb{Z}_{\geq 0}^m$, where Y_i is the number of times the *j*-th state occurs.

The empirical distribution is $S_Y = \frac{1}{n}Y \in \Delta_{m-1}$, where $n = Y_1 + \ldots + Y_m$.

The likelihood function takes the form $L_Y(
ho) =
ho_1^{Y_1} \cdots
ho_m^{Y_m}$, where $ho \in \mathscr{M}$.

An **MLE** is a point in model \mathcal{M} that maximizes the likelihood L_Y of observing Y.

Log-linear models

est of distributions whose logarithms lie in a fixed linear space. Let $A \in \mathbb{Z}^{d \times m}$, and define

 $\mathcal{M}_A = \{ \rho \in \Delta_{m-1} \mid \log \rho \in \operatorname{rowspan}(A) \}.$

We assume that $1 := (1, ..., 1) \in \text{rowspan}(A)$ (i.e., uniform distribution in \mathcal{M}_A).

Log-linear models

= set of distributions whose logarithms lie in a fixed linear space. Let $A \in \mathbb{Z}^{d \times m}$, and define

 $\mathcal{M}_A = \{ \rho \in \Delta_{m-1} \mid \log \rho \in \operatorname{rowspan}(A) \}.$

We assume that $1 := (1, ..., 1) \in \text{rowspan}(A)$ (i.e., uniform distribution in \mathcal{M}_A).

Matrix $A = [a_1 | a_2 | ... | a_m]$ also defines an action by the torus $(\mathbb{C}^{\times})^d$ on \mathbb{C}^m : $g \in (\mathbb{C}^{\times})^d$ acts on $x \in \mathbb{C}^m$ by left multiplication with

$$\begin{bmatrix} g^{a_1} & & \\ & \ddots & \\ & & g^{a_m} \end{bmatrix}, \quad \text{where } g^{a_j} = g_1^{a_{1j}} \dots g_d^{a_{dj}}$$

IX - XXVII

Log-linear models

= set of distributions whose logarithms lie in a fixed linear space. Let $A \in \mathbb{Z}^{d \times m}$, and define

 $\mathcal{M}_{A} = \{ \rho \in \Delta_{m-1} \mid \log \rho \in \operatorname{rowspan}(A) \}.$

We assume that $1 := (1, ..., 1) \in \text{rowspan}(A)$ (i.e., uniform distribution in \mathcal{M}_A).

Matrix $A = [a_1 | a_2 | ... | a_m]$ also defines an action by the torus $(\mathbb{C}^{\times})^d$ on \mathbb{C}^m : $g \in (\mathbb{C}^{\times})^d$ acts on $x \in \mathbb{C}^m$ by left multiplication with

$$\begin{bmatrix} g^{a_1} & & \\ & \ddots & \\ & & g^{a_m} \end{bmatrix}, \quad \text{where } g^{a_j} = g_1^{a_{1j}} \dots g_d^{a_{dj}}.$$

 \mathscr{M}_A is the orbit of the uniform distribution in $\Delta_{m-1} \cap \mathbb{R}^m_{>0}$

 $\begin{array}{c} \mathsf{Example} \\ \mathscr{M}_A = \{ \rho \in \Delta_{m-1} \mid \log \rho \in \mathrm{rowspan}(A) \} \, . \quad A = \left[\begin{array}{cc} 2 & 1 & 0 \\ 0 & 1 & 2 \end{array} \right] \\ g \in (\mathbb{C}^{\times})^2 \text{ acts on } x \in \mathbb{C}^3 \text{ by } \left[\begin{array}{cc} g^{a_1} \\ g^{a_2} \\ g^{a_3} \end{array} \right] = \left[\begin{array}{cc} g_1^2 \\ g_1g_2 \\ g_2^2 \end{array} \right] \, . \end{array}$

Example $\mathcal{M}_{A} = \{ \rho \in \Delta_{m-1} \mid \log \rho \in \operatorname{rowspan}(A) \}. \qquad A = \begin{bmatrix} 2 & 1 & 0 \\ 0 & 1 & 2 \end{bmatrix}$ $g \in (\mathbb{C}^{ imes})^2 ext{ acts on } x \in \mathbb{C}^3 ext{ by } \left| egin{array}{c} g^{a_1} \ g^{a_2} \ g^{a_2} \end{array}
ight| = \left| egin{array}{c} g_1^2 \ g_1 g_2 \ g_2^2 \end{array}
ight|.$ $\mathscr{M}_{\mathcal{A}} = ((\mathbb{C}^{ imes})^2 \cdot \frac{1}{3}\mathbb{1}) \cap \Delta_2 \cap \mathbb{R}^3_{>0}$ $=\left\{\frac{1}{3}\left(g_{1}^{2},g_{1}g_{2},g_{2}^{2}\right) \mid g_{1},g_{2}>0, \ g_{1}^{2}+g_{1}g_{2}+g_{2}^{2}=3\right\}$ 1.5 $= \{ \rho \in \mathbb{R}^3_{>0} \mid \rho_2^2 = \rho_1 \rho_3, \rho_1 + \rho_2 + \rho_3 = 1 \}$ 1.0 0.5 other examples: independence model, graphical models, hierarchical models, ... 0.5 1.0 1.5

Maximum likelihood estimation

for log-linear models

An MLE in \mathscr{M}_A given data Y is a point $\hat{\rho}$ in the model such that

$$A\hat{\rho} = AS_Y$$
, where $S_Y = \frac{1}{n}Y$.

The MLE is unique if it exists!

Model \mathcal{M}_A is not closed: MLE may not exist if S_Y has zeroes. True maximizer could be on boundary of model.

Maximum likelihood estimation

for log-linear models

An MLE in \mathcal{M}_A given data Y is a point $\hat{\rho}$ in the model such that

$$A\hat{\rho} = AS_Y$$
, where $S_Y = \frac{1}{n}Y$.

The MLE is unique if it exists!

Model \mathcal{M}_A is not closed: MLE may not exist if S_Y has zeroes. True maximizer could be on boundary of model.

polyhedral condition for MLE existence: For $A = [a_1 | a_2 | ... | a_m] \in \mathbb{Z}^{d \times m}$, we define

$$P(A) = \operatorname{conv} \{a_1, a_2, \ldots, a_m\} \subset \mathbb{R}^d.$$

Theorem (Eriksson, Fienberg, Rinaldo, Sullivant '06) MLE given Y exists in \mathcal{M}_A iff AS_Y is in relative interior of P(A).

Stability for torus actions

The action of the torus GT_d given by the matrix $A \in \mathbb{Z}^{d \times m}$ is in fact well-defined on projective space \mathbb{P}^{m-1} .

Stability for torus actions

The action of the torus GT_d given by the matrix $A \in \mathbb{Z}^{d \times m}$ is in fact well-defined on projective space \mathbb{P}^{m-1} .

A linearization is a consistent action on \mathbb{C}^m , given by a character $b \in \mathbb{Z}^d$:

$$g \in \mathrm{GT}_d$$
 acts on $x \in \mathbb{C}^m$ by $\begin{bmatrix} g^{a_1-b} & & \\ & \ddots & \\ & & g^{a_m-b} \end{bmatrix}$

Stability for torus actions

The action of the torus GT_d given by the matrix $A \in \mathbb{Z}^{d \times m}$ is in fact well-defined on projective space \mathbb{P}^{m-1} .

A linearization is a consistent action on \mathbb{C}^m , given by a character $b \in \mathbb{Z}^d$:

$$g \in \mathrm{GT}_d$$
 acts on $x \in \mathbb{C}^m$ by $\begin{bmatrix} g^{a_1-b} & & \\ & \ddots & \\ & & g^{a_m-b} \end{bmatrix}$.

polyhedral conditions for stability:

Define sub-polytopes of $P(A) = \operatorname{conv}\{a_1, a_2, \ldots, a_m\}$ that depend on $x \in \mathbb{C}^m$:

 $P_{X}(A) = \operatorname{conv} \{a_{j} \mid j \in \operatorname{supp}(x)\}.$

Theorem (standard, proof via Hilbert-Mumford criterion) Consider the action of GT_d given by matrix $A \in \mathbb{Z}^{d \times m}$ with linearization $b \in \mathbb{Z}^d$.

(a)	x unstable	\Leftrightarrow	$b \notin P_x(A)$	can be scaled to 0 in the limit
(b)	x semistable	\Leftrightarrow	$b \in P_x(A)$	cannot be scaled to 0 in the limit
(c)	x polystable	\Leftrightarrow	$b \in \operatorname{relint} P_{x}(A)$	closed orbit
(d)	x stable	\Leftrightarrow	$b \in \operatorname{int} P_{X}(A)$	finite stabilizer _ XX\//

Stability for torus actions

The action of the torus GT_d given by the matrix $A \in \mathbb{Z}^{d \times m}$ is in fact well-defined on projective space \mathbb{P}^{m-1} .

A linearization is a consistent action on \mathbb{C}^m , given by a character $b \in \mathbb{Z}^d$:

$$g \in \mathrm{GT}_d$$
 acts on $x \in \mathbb{C}^m$ by $\left[egin{array}{cc} g^{a_1-b} & & \ & \ddots & \ & & g^{a_m-b} \end{array}
ight].$

polyhedral conditions for stability:

Define sub-polytopes of $P(A) = \operatorname{conv}\{a_1, a_2, \ldots, a_m\}$ that depend on $x \in \mathbb{C}^m$:

 $P_{x}(A) = \operatorname{conv} \{a_{j} \mid j \in \operatorname{supp}(x)\}.$

Theorem (standard, proof via Hilbert-Mumford criterion) Consider the action of GT_d given by matrix $A \in \mathbb{Z}^{d \times m}$ with linearization $b \in \mathbb{Z}^d$.

(a)	x unstable	\Leftrightarrow	$b \notin P_{x}(A)$	can be scaled to 0 in the limit
(b)	x semistable	\Leftrightarrow	$b \in P_{x}(A)$	cannot be scaled to 0 in the limit
(c)	x polystable	\Leftrightarrow	$b \in \operatorname{relint} P_{x}(A)$	closed orbit
(d)	x stable	\Leftrightarrow	$b \in \operatorname{int} P_{X}(A)$	finite stabilizer _ XX\///

Theorem Let $A = [a_1|...|a_m] \in \mathbb{Z}^{d \times m}$ and $Y \in \mathbb{Z}^m$ be a vector of counts with $n = \sum Y_j$.

MLE given Y exists in $\mathcal{M}_A \Leftrightarrow \mathbb{1} \in \mathbb{C}^m$ is polystable under the action of $(\mathbb{C}^{\times})^d$ given by the matrix $[na_1 - AY| ... | na_m - AY]$

Theorem Let $A = [a_1|...|a_m] \in \mathbb{Z}^{d \times m}$ and $Y \in \mathbb{Z}^m$ be a vector of counts with $n = \sum Y_j$.

 \Leftrightarrow

MLE given Y exists in $\mathcal{M}_A \Leftrightarrow \mathbb{1} \in \mathbb{C}^m$ is polystable under the action of $(\mathbb{C}^{\times})^d$ given by the matrix $[na_1 - AY| ... | na_m - AY]$

attains its maximum

attains its minimum

Theorem Let $A = [a_1|...|a_m] \in \mathbb{Z}^{d \times m}$ and $Y \in \mathbb{Z}^m$ be a vector of counts with $n = \sum Y_j$.

MLE given Y exists in $\mathcal{M}_A \Leftrightarrow \mathbb{1} \in \mathbb{C}^m$ is polystable under the action of $(\mathbb{C}^{\times})^d$ given by the matrix $[na_1 - AY| ... | na_m - AY]$

attains its maximum ⇔ attains its minimum How are the two optimal points related?

Theorem (cont'd) If $x \in \mathbb{C}^m$ is a point of minimal norm in the orbit $(\mathbb{C}^{\times})^d \cdot \mathbb{1}$, then the MLE is $\frac{x^{(2)}}{\|x\|^2}$, where $x^{(2)}$ is the vector with *j*-th entry $|x_j|^2$.

algorithms for finding MLE, e.g. iterative proportional scaling (IPS)

↔ scaling algorithms to compute capacity

algorithms for finding MLE, e.g. iterative proportional scaling (IPS)

↔ scaling algorithms to compute capacity

maximize likelihood ⇔ minimize KL divergence

minimize ℓ_2 -norm

algorithms for finding MLE, e.g. iterative proportional scaling (IPS)

↔ scaling algorithms to compute capacity

maximize likelihood ⇔ minimize KL divergence

model lives in $\Delta_{m-1} \cap \mathbb{R}^m_{>0}$

minimize ℓ_2 -norm

orbit lives in \mathbb{C}^m

algorithms for finding MLE, e.g. iterative proportional scaling (IPS)

↔ scaling algorithms to compute capacity

maximize likelihood ⇔ minimize KL divergence

model lives in $\Delta_{m-1} \cap \mathbb{R}^m_{>0}$

trivial linearization b = 0(defines model and steps of IPS) minimize ℓ_2 -norm

orbit lives in \mathbb{C}^m

linearization b = AY

Gaussian statistical models

The density function of an *m*-dimensional Gaussian with mean zero and covariance matrix $\Sigma \in \mathbb{R}^{m \times m}$ is

$$ho_{\Sigma}(y) = rac{1}{\sqrt{\det(2\pi\Sigma)}} \exp\left(-rac{1}{2}y^T \Sigma^{-1}y
ight), \quad ext{where } y \in \mathbb{R}^m.$$

The concentration matrix $\Psi = \Sigma^{-1}$ is symmetric and positive definite. A **Gaussian model** \mathcal{M} is a set of concentration matrices, i.e. a subset of the cone of $m \times m$ symmetric positive definite matrices.

Given data $Y = (Y_1, \ldots, Y_n)$, the likelihood is

 $L_Y(\Psi) =
ho_{\Psi^{-1}}(Y_1) \cdots
ho_{\Psi^{-1}}(Y_n), \quad ext{ where } \Psi \in \mathscr{M}.$

likelihood L_Y can be unbounded from above MLE might not exist MLE might not be unique

Gaussian group model The Gaussian group model of a group G with a representation $G \xrightarrow{\varphi} GL_m$ on \mathbb{R}^m is $\mathcal{M}_{\mathcal{G}} := \left\{ \Psi_{g} = \varphi(g)^{\mathsf{T}} \varphi(g) \mid g \in G
ight\}.$ MLE

Gaussian group model The Gaussian group model of a group G with a representation $G \xrightarrow{\varphi} GL_m$ on \mathbb{R}^m is $\mathcal{M}_G := \left\{ \Psi_g = \varphi(g)^T \varphi(g) \mid g \in G \right\}.$

(depends only on image of G in GL_m , hence may assume $G \subseteq GL_m$)

We want to find an MLE, i.e. a maximizer of

 $L_Y(\Psi_g)$

Gaussian group model The Gaussian group model of a group G with a representation $G \xrightarrow{\varphi} GL_m$ on \mathbb{R}^m is $\mathscr{M}_G := \left\{ \Psi_g = \varphi(g)^T \varphi(g) \mid g \in G \right\}.$

(depends only on image of G in GL_m , hence may assume $G\subseteq\operatorname{GL}_m)$

We want to find an MLE, i.e. a maximizer of

 $\log L_Y(\Psi_g) = \frac{1}{2} \underbrace{\left(n \log \det \Psi_g - \|g \cdot Y\|_2^2 \right)}_{\ell_Y(\Psi_g)} - \frac{nm}{2} \log(2\pi) \quad \text{for } g \in G.$ MLE

$$\sup_{g \in G} \ell_{Y}(\Psi_{g}) = -\inf_{\tau \in \mathbb{R}_{>0}} \left(\tau \left(\inf_{h \in G \cap SL_{m}} \|h \cdot Y\|_{2}^{2} \right) - nm \log \tau \right).$$

Invariant theory classically over \mathbb{C} – can also define Gaussian (group) models over \mathbb{C} For a group $G \subset \operatorname{GL}_m(\mathbb{C})$, define $\mathscr{M}_G := \{g^*g \mid g \in G\}$.

Proposition

For $Y = (Y_1, \ldots, Y_n)$ with $Y_i \in \mathbb{C}^m$ and a group $G \subset GL_m(\mathbb{C})$ closed under non-zero scalar multiples (i.e., $g \in G, \lambda \in \mathbb{C}, \lambda \neq 0 \Rightarrow \lambda g \in G$),

$$\sup_{g \in G} \ell_{Y}(\Psi_{g}) = -\inf_{\tau \in \mathbb{R}_{>0}} \left(\tau \left(\inf_{h \in G \cap SL_{m}} \|h \cdot Y\|_{2}^{2} \right) - nm \log \tau \right)$$

Invariant theory classically over \mathbb{C} – can also define Gaussian (group) models over \mathbb{C} For a group $G \subset \operatorname{GL}_m(\mathbb{C})$, define $\mathscr{M}_G := \{g^*g \mid g \in G\}$.

Proposition

For $Y = (Y_1, ..., Y_n)$ with $Y_i \in \mathbb{C}^m$ and a group $G \subset GL_m(\mathbb{C})$ closed under non-zero scalar multiples (i.e., $g \in G, \lambda \in \mathbb{C}, \lambda \neq 0 \Rightarrow \lambda g \in G$),

$$\sup_{g \in G} \ell_{\mathbf{Y}}(\Psi_g) = -\inf_{\tau \in \mathbb{R}_{>0}} \left(\tau \left(\inf_{h \in G \cap \mathrm{SL}_m} \|h \cdot \mathbf{Y}\|_2^2 \right) - nm \log \tau \right).$$

If $h \cdot Y$ is a point of minimal norm in the $\overline{G \cap SL_m}$ -orbit of Y, then an MLE for the Gaussian group model \mathcal{M}_G is

 $|\tau h^* h$, where τ is the unique value minimizing $\tau ||h \cdot Y||_2^2 - nm \log \tau$.

Invariant theory classically over \mathbb{C} – can also define Gaussian (group) models over \mathbb{C} For a group $G \subset \operatorname{GL}_m(\mathbb{C})$, define $\mathscr{M}_G := \{g^*g \mid g \in G\}$.

Proposition

For $Y = (Y_1, ..., Y_n)$ with $Y_i \in \mathbb{C}^m$ and a group $G \subset GL_m(\mathbb{C})$ closed under non-zero scalar multiples (i.e., $g \in G, \lambda \in \mathbb{C}, \lambda \neq 0 \Rightarrow \lambda g \in G$),

$$\sup_{g \in G} \ell_{\mathbf{Y}}(\Psi_g) = -\inf_{\tau \in \mathbb{R}_{>0}} \left(\tau \left(\inf_{h \in G \cap \mathrm{SL}_m} \|h \cdot \mathbf{Y}\|_2^2 \right) - nm \log \tau \right).$$

If $h \cdot Y$ is a point of minimal norm in the $G \cap SL_m$ -orbit of Y, then an MLE for the Gaussian group model \mathcal{M}_G is

/II _ X)

 $\tau h^* h$, where τ is the unique value minimizing $\tau \|h \cdot Y\|_2^2 - nm \log \tau$. All MLEs, if they exist, are of this form.

Theorem Let Y and G as above.

-X

Theorem Let Y and G as above. If G is Zariski closed and self-adjoint (i.e., $g \in G \Rightarrow g^* \in G$),

Theorem

Let Y and G as above. If G is Zariski closed and self-adjoint (i.e., $g \in G \Rightarrow g^* \in G$), ML estimation for \mathcal{M}_G relates to the action by $G \cap SL_m(\mathbb{C})$ as follows:

- (a) Y unstable (b) (c) (d)
 - <u>Y s</u>emistable ⇔ Y polystable \Leftrightarrow
- L_Y not bounded from above $L_{\mathbf{V}}$ bounded from above MLE exists Y stable ↔ finitely many MLEs exist

unique MLE

Real examples

X - XX

Real examples

Theorem

(d)

Let $Y = (Y_1, \ldots, Y_n)$ with $Y_i \in \mathbb{R}^m$, and let $G \subset GL_m(\mathbb{R})$ be a Zariski closed, self-adjoint group that is closed under non-zero scalar multiples.

ML estimation for \mathcal{M}_G relates to the action by $G \cap SL_m(\mathbb{R})$ as follows:

- Y unstable $\Leftrightarrow \ell_Y$ not bounded from above (a)
- (b) Y semistable $\Leftrightarrow \ell_Y$ bounded from above
- (c) Y polystable \Leftrightarrow

- MLE exists
- / Y stable \Rightarrow finitely many MLEs exist \Leftrightarrow unique MLE

Real examples

Theorem

Let $Y = (Y_1, ..., Y_n)$ with $Y_i \in \mathbb{R}^m$, and let $\overline{G} \subset GL_m(\mathbb{R})$ be a Zariski closed, self-adjoint group that is closed under non-zero scalar multiples. ML estimation for \mathcal{M}_G relates to the action by $G \cap SL_m(\mathbb{R})$ as follows: (a) Y unstable $\Leftrightarrow \ell_Y$ not bounded from above (b) Y semistable $\Leftrightarrow \ell_Y$ bounded from above (c) Y polystable $\Leftrightarrow MLE$ exists

(d) \forall Stable \Rightarrow finitely many MLEs exist \Leftrightarrow unique MLE

Examples: full Gaussian model, independence model, matrix normal model

Real examples

Theorem

Let $Y = (Y_1, \ldots, Y_n)$ with $Y_i \in \mathbb{R}^m$, and let $G \subset GL_m(\mathbb{R})$ be a Zariski closed, self-adjoint group that is closed under non-zero scalar multiples. ML estimation for \mathcal{M}_G relates to the action by $G \cap SL_m(\mathbb{R})$ as follows: (a) Y unstable $\Leftrightarrow \ell_Y$ not bounded from above (b) Y semistable $\Leftrightarrow \ell_Y$ bounded from above (c) Y polystable \Leftrightarrow MLE exists

(d) Y stable \Rightarrow finitely many MLEs exist \Leftrightarrow unique MLE

Examples: full Gaussian model, independence model, matrix normal model

Theorem

Let $Y = (Y_1, \ldots, Y_n)$ with $Y_i \in \mathbb{R}^m$, and let $G \subset \operatorname{GL}_m(\mathbb{R})$ be a group that is closed under non-zero scalar multiples, but not necessarily Zariski closed and self-adjoint. ML estimation for \mathcal{M}_G relates to the action by $G \cap SL_m^{\pm}(\mathbb{R})$ as follows:

IX - XX

- (a) Y unstable $\Leftrightarrow \ell_Y$ not bounded from above
- (b) Y semistable $\Leftrightarrow \ell_Y$ bounded from above
- (c) Y polystable \Rightarrow MLE exists

Real examples

Theorem

Let $Y = (Y_1, ..., Y_n)$ with $Y_i \in \mathbb{R}^m$, and let $G \subset GL_m(\mathbb{R})$ be a Zariski closed, self-adjoint group that is closed under non-zero scalar multiples. ML estimation for \mathcal{M}_G relates to the action by $G \cap SL_m(\mathbb{R})$ as follows: (a) Y unstable $\Leftrightarrow \ell_Y$ not bounded from above (b) Y semistable $\Leftrightarrow \ell_Y$ bounded from above (c) Y polystable $\Leftrightarrow MLE$ exists

(d) Y stable \Rightarrow finitely many MLEs exist \Leftrightarrow unique MLE

Examples: full Gaussian model, independence model, matrix normal model

Theorem

Let $Y = (Y_1, ..., Y_n)$ with $Y_i \in \mathbb{R}^m$, and let $G \subset GL_m(\mathbb{R})$ be a group that is closed under non-zero scalar multiples, but not necessarily Zariski closed and self-adjoint. ML estimation for \mathcal{M}_G relates to the action by $G \cap SL_m^{\pm}(\mathbb{R})$ as follows:

XIX - XXVI

- (a) Y unstable $\Leftrightarrow \ell_Y$ not bounded from above
- (b) Y semistable \Leftrightarrow ℓ_Y bounded from above
- (c) Y polystable \Rightarrow MLE exists

Example: Gaussian graphical models defined by transitive DAGs

Real examples

Proposition

For $Y = (Y_1, ..., Y_n)$ with $Y_i \in \mathbb{R}^m$ and a group $G \subset GL_m(\mathbb{R})$ closed under non-zero scalar multiples,

$$\sup_{g\in G} \ell_{Y}(\Psi_{g}) = -\inf_{\tau\in\mathbb{R}>0} \left(\tau\left(\inf_{h\in G\cap \mathrm{SL}_{m}^{\pm}} \|h\cdot Y\|_{2}^{2}\right) - nm\log\tau\right).$$

If $h \cdot Y$ is a point of minimal norm in the $G \cap SL_m^{\pm}$ -orbit of Y, then an MLE for the Gaussian group model \mathcal{M}_G is

 $\tau h^T h$, where τ is the unique value minimizing $\tau \|h \cdot Y\|_2^2 - nm \log \tau$. All MLEs, if they exist, are of this form.

Real examples

Proposition

For $Y = (Y_1, \ldots, Y_n)$ with $Y_i \in \mathbb{R}^m$ and a group $G \subset GL_m(\mathbb{R})$ closed under non-zero scalar multiples,

$$\sup_{g\in G} \ell_Y(\Psi_g) = -\inf_{\tau\in\mathbb{R}_{>0}} \left(\tau\left(\inf_{h\in G\cap \mathrm{SL}_m^\pm} \|h\cdot Y\|_2^2\right) - nm\log\tau\right).$$

If $h \cdot Y$ is a point of minimal norm in the $G \cap SL_m^{\pm}$ -orbit of Y, then an MLE for the Gaussian group model \mathcal{M}_G is

 $\tau h^T h$, where τ is the unique value minimizing $\tau \|h \cdot Y\|_2^2 - nm \log \tau$.

All MLEs, if they exist, are of this form.

Remark

If G contains an orthogonal matrix of determinant -1, then we can work with SL_m instead of SL_m^{\pm} .

Directed acyclic graphs

 X_1

12

 λ_{42}

Important family of statistical models that represent interaction structures between several random variables:

- Consider a directed acyclic graph (DAG) *G* with *m* nodes.
- Each node j represents a random variable X_j (e.g., Gaussian).
- Each edge $j \rightarrow i$ encodes (conditional) dependence: X_j 'causes' X_i .
- The parents of *i* are $pa(i) = \{j \mid j \to i\}$.

The model is defined by the recursive linear equation:

$$X_i = \sum_{j \in ext{pa}(i)} \lambda_{ij} X_j + arepsilon_i$$

where λ_{ij} is the edge coefficient and ε_i is Gaussian error.

It can be written as $X = \Lambda X + \varepsilon$ where $\Lambda \in \mathbb{R}^{m \times m}$ satisfies $\lambda_{ij} = 0$ for $j \not\rightarrow i$ in \mathscr{G} and $\varepsilon \sim N(0, \Omega)$ with Ω diagonal, positive definite.

coming from groups

From $X = \Lambda X + \varepsilon$, we rewrite

$$X = (I - \Lambda)^{-1}\varepsilon$$

so that $X \sim N(0, \Sigma)$ with

$$\Sigma = (I - \Lambda)^{-1} \Omega (I - \Lambda)^{-T} \quad \& \quad \Psi = (I - \Lambda)^T \Omega^{-1} (I - \Lambda).$$

The **Gaussian graphical model** $\mathcal{M}_{\mathscr{G}}^{\rightarrow}$ consists of concentration matrices Ψ of this form.

coming from groups

From $X = \Lambda X + \varepsilon$, we rewrite

$$X = (I - \Lambda)^{-1}\varepsilon$$

so that $X \sim N(0, \Sigma)$ with

$$\Sigma = (I - \Lambda)^{-1} \Omega (I - \Lambda)^{-T}$$
 & $\Psi = (I - \Lambda)^T \Omega^{-1} (I - \Lambda).$

The Gaussian graphical model $\mathcal{M}_{\mathcal{G}}^{\rightarrow}$ consists of concentration matrices Ψ of this form. Consider the set

$$G(\mathscr{G}) = \{g \in \operatorname{GL}_m \mid g_{ij} = 0 \text{ for } i \neq j \text{ with } j \not\rightarrow i \text{ in } \mathscr{G}\}.$$

coming from groups

From $X = \Lambda X + \varepsilon$, we rewrite

$$X = (I - \Lambda)^{-1}\varepsilon$$

so that $X \sim N(0, \Sigma)$ with

$$\Sigma = (I - \Lambda)^{-1} \Omega (I - \Lambda)^{-T}$$
 & $\Psi = (I - \Lambda)^T \Omega^{-1} (I - \Lambda).$

The Gaussian graphical model $\mathcal{M}_{\mathcal{G}}^{\rightarrow}$ consists of concentration matrices Ψ of this form. Consider the set

$$G(\mathscr{G}) = \{g \in \operatorname{GL}_m \mid g_{ij} = 0 \text{ for } i \neq j \text{ with } j \not\rightarrow i \text{ in } \mathscr{G}\}$$

Proposition

The set of matrices $G(\mathscr{G})$ is a group if and only if \mathscr{G} is a **transitive** directed acyclic graph (TDAG), i.e., $k \to j$ and $j \to i$ in \mathscr{G} imply $k \to i$. In this case,

 $\mathscr{M}_{\mathscr{G}}^{\rightarrow} = \mathscr{M}_{G(\mathscr{G})}.$

TDAG group models

Example Let *G* be the TDAG

The corresponding group $G(\mathscr{G}) \subseteq \operatorname{GL}_3$ consists of invertible matrices g of the form

$$g = \begin{bmatrix} * & 0 & * \\ 0 & * & * \\ 0 & 0 & * \end{bmatrix}.$$

TDAG group models

Example Let *G* be the TDAG

The corresponding group $G(\mathscr{G}) \subseteq \operatorname{GL}_3$ consists of invertible matrices g of the form

$$g = egin{bmatrix} * & 0 & * \ 0 & * & * \ 0 & 0 & * \end{bmatrix}.$$

The Gaussian graphical model $\mathcal{M}_{\mathcal{G}}^{\rightarrow}$ is a 5-dimensional linear subspace of the cone of symmetric positive definite 3×3 matrices:

 $\mathscr{M}_{\mathscr{G}}^{\rightarrow} = \{ g^{\mathsf{T}}g \mid g \in G(\mathscr{G}) \} = \{ \Psi \in \mathrm{PD}_3 \mid \psi_{12} = \psi_{21} = 0 \}.$

TDAG group models

Example Let *G* be the TDAG

The corresponding group $G(\mathscr{G}) \subseteq \operatorname{GL}_3$ consists of invertible matrices g of the form

$$g = egin{bmatrix} * & 0 & * \ 0 & * & * \ 0 & 0 & * \end{bmatrix}.$$

The Gaussian graphical model $\mathcal{M}_{\mathcal{G}}^{\rightarrow}$ is a 5-dimensional linear subspace of the cone of symmetric positive definite 3×3 matrices:

$$\mathscr{M}_{\mathscr{G}}^{\rightarrow} = \{ g^{\mathsf{T}}g \mid g \in G(\mathscr{G}) \} = \{ \Psi \in \mathrm{PD}_3 \mid \psi_{12} = \psi_{21} = 0 \}.$$

Note that $G(\mathscr{G})$ is not self-adjoint!

Theorem

Let $Y \in \mathbb{R}^{m \times n}$ be a tuple of *n* samples. If some row of Y corresponding to vertex *i* is in the linear span of the rows corresponding to the parents of *i*,

then Y is unstable under the action by G(𝔅) ∩ SL_m,
 i.e. the likelihood is unbounded;

• otherwise, Y is polystable, i.e. an MLE exists.

Theorem

Let $Y \in \mathbb{R}^{m \times n}$ be a tuple of *n* samples. If some row of Y corresponding to vertex *i* is in the linear span of the rows corresponding to the parents of *i*,

then Y is unstable under the action by G(𝔅) ∩ SL_m,
 i.e. the likelihood is unbounded;

• otherwise, Y is polystable, i.e. an MLE exists.

Example Let n = 2 in

and consider three different pairs of samples:

$$Y^{1} = \begin{pmatrix} 1 & 2 \\ 0 & 1 \\ 0 & 0 \end{pmatrix}, \quad Y^{2} = \begin{pmatrix} 1 & 2 \\ 0 & 1 \\ 2 & 4 \end{pmatrix}, \quad Y^{3} = \begin{pmatrix} 1 & 0 \\ 0 & 1 \\ 3 & 2 \end{pmatrix}$$

Using the theorem, we see that

Theorem

Let $Y \in \mathbb{R}^{m \times n}$ be a tuple of *n* samples. If some row of Y corresponding to vertex *i* is in the linear span of the rows corresponding to the parents of *i*,

then Y is unstable under the action by G(𝔅) ∩ SL_m,
 i.e. the likelihood is unbounded;

• otherwise, Y is polystable, i.e. an MLE exists.

Example Let n = 2 in

and consider three different pairs of samples:

$$Y^{1} = \begin{pmatrix} 1 & 2 \\ 0 & 1 \\ 0 & 0 \end{pmatrix}, \quad Y^{2} = \begin{pmatrix} 1 & 2 \\ 0 & 1 \\ 2 & 4 \end{pmatrix}, \quad Y^{3} = \begin{pmatrix} 1 & 0 \\ 0 & 1 \\ 3 & 2 \end{pmatrix}$$

Using the theorem, we see that Y^1 and Y^2 are unstable and Y^3 is polystable.

Theorem

Let $Y \in \mathbb{R}^{m \times n}$ be a tuple of *n* samples. If some row of Y corresponding to vertex *i* is in the linear span of the rows corresponding to the parents of *i*,

then Y is unstable under the action by G(𝔅) ∩ SL_m,
 i.e. the likelihood is unbounded;

• otherwise, Y is polystable, i.e. an MLE exists.

Example Let n = 2 in

and consider three different pairs of samples:

$$Y^{1} = \begin{pmatrix} 1 & 2 \\ 0 & 1 \\ 0 & 0 \end{pmatrix}, \quad Y^{2} = \begin{pmatrix} 1 & 2 \\ 0 & 1 \\ 2 & 4 \end{pmatrix}, \quad Y^{3} = \begin{pmatrix} 1 & 0 \\ 0 & 1 \\ 3 & 2 \end{pmatrix}$$

Using the theorem, we see that Y^1 and Y^2 are unstable and Y^3 is polystable. The null cone has two components: $V(y_{11}y_{32} - y_{12}y_{31}) \cup V(y_{21}y_{32} - y_{22}y_{31})$.

Corollary Let \mathscr{G} be a TDAG with m nodes and n samples. Each irreducible component of the Zariski closure of the null cone under the action of $G(\mathscr{G}) \cap SL_m$ on $\mathbb{R}^{m \times n}$ is defined by the maximal minors of the submatrix whose rows are a childless node and its parents.

-X

Corollary Let \mathscr{G} be a TDAG with m nodes and n samples. Each irreducible component of the Zariski closure of the null cone under the action of $G(\mathscr{G}) \cap SL_m$ on $\mathbb{R}^{m \times n}$ is defined by the maximal minors of the submatrix whose rows are a childless node and its parents.

Example Let *G* be the TDAG

The null cone is not Zariski closed for n ≥ 2.
 Its Zariski closure is the variety of matrices of rank at most two.

Corollary Let \mathscr{G} be a TDAG with m nodes and n samples. Each irreducible component of the Zariski closure of the null cone under the action of $G(\mathscr{G}) \cap SL_m$ on $\mathbb{R}^{m \times n}$ is defined by the maximal minors of the submatrix whose rows are a childless node and its parents.

Example Let *G* be the TDAG

- The null cone is not Zariski closed for n ≥ 2.
 Its Zariski closure is the variety of matrices of rank at most two.
- For n = 2, Y is not in the null cone but in its Zariski closure $(=\mathbb{R}^{3\times 2})$:

$$Y=egin{pmatrix} 1&0\1&0\0&1\end{pmatrix}.$$

Corollary Let \mathscr{G} be a TDAG with m nodes and n samples. Each irreducible component of the Zariski closure of the null cone under the action of $G(\mathscr{G}) \cap SL_m$ on $\mathbb{R}^{m \times n}$ is defined by the maximal minors of the submatrix whose rows are a childless node and its parents.

Example Let *G* be the TDAG

The null cone is not Zariski closed for n ≥ 2.
 Its Zariski closure is the variety of matrices of rank at most two.

• For n = 2, Y is not in the null cone but in its Zariski closure $(=\mathbb{R}^{3\times 2})$:

$$Y=egin{pmatrix} 1&0\ 1&0\ 0&1 \end{pmatrix}.$$

Hence, an MLE given Y exists.

Corollary Let \mathscr{G} be a TDAG with m nodes and n samples. Each irreducible component of the Zariski closure of the null cone under the action of $G(\mathscr{G}) \cap SL_m$ on $\mathbb{R}^{m \times n}$ is defined by the maximal minors of the submatrix whose rows are a childless node and its parents.

Example Let *G* be the TDAG

The null cone is not Zariski closed for n ≥ 2.
 Its Zariski closure is the variety of matrices of rank at most two.

• For n = 2, Y is not in the null cone but in its Zariski closure $(=\mathbb{R}^{3\times 2})$:

$$Y=egin{pmatrix} 1&0\1&0\0&1 \end{pmatrix},$$

\/ _ XX

Hence, an MLE given Y exists. What is it? Is it unique? Homework!

Which TDAGs have Zariski closed null cones?

Which TDAGs have Zariski closed null cones?

Corollary Let \mathscr{G} be a TDAG with m nodes. The null cone under the action of $G(\mathscr{G}) \cap SL_m$ on $\mathbb{R}^{m \times n}$ is Zariski closed for every n iff \mathscr{G} has no unshielded colliders.

Which TDAGs have Zariski closed null cones?

Corollary Let \mathscr{G} be a TDAG with *m* nodes. The null cone under the action of $G(\mathscr{G}) \cap SL_m$ on $\mathbb{R}^{m \times n}$ is Zariski closed for every *n* iff \mathscr{G} has no unshielded colliders.

An **unshielded collider** of \mathscr{G} is a subgraph $j \rightarrow i \leftarrow k$ with no edge between j and k.

Which TDAGs have Zariski closed null cones?

Corollary Let \mathscr{G} be a TDAG with *m* nodes. The null cone under the action of $G(\mathscr{G}) \cap SL_m$ on $\mathbb{R}^{m \times n}$ is Zariski closed for every *n* iff \mathscr{G} has no unshielded colliders.

An **unshielded collider** of \mathscr{G} is a subgraph $j \rightarrow i \leftarrow k$ with no edge between j and k. **This is a very interesting condition in statistics!** \mathscr{G} has no unshielded colliders if and only if it has the same graphical model as its underlying **undirected graph**.

Summary

XXVII - XXVII