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Teeth - Better/cheaper dental care gives nicer teeth.
Scandinavia and Canada - Wealthy countries, good healthcare
Hockey - Expensive sport. Played more in Scandinavia and Canada.
So why does hockey players look like this?

Image removed because
of copyright reasons.
Google “hockey player
missing teeth”.

In fact there is a hidden subset of the population “People who are
punched in the face a lot’.
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Let M⊆ ∆r−1 be our statistical model. Each p1, . . . ,pk ∈M and
π ∈ ∆k−1.

P(H = i) = πi and P(X | H = i) = pi

So we have
P(X = j) =

∑
πip

i
j
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Definition (14.1.1)

The k:th mixture model of the model M⊆ ∆r−1 is the family of
probability distributions

Mixtk(M) :=
{
π1p1 + · · ·+ πkpk : π ∈ ∆k−1,p

1, . . . ,pk ∈M
}
.

Example

Let H be binary “infection status” (we can’t observe because we don’t
have a test). X is symptoms, follows some distribution in M. Then the
distribution of X can be observed in Mixt2(M).
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Example

Consider M(X1⊥⊥X2⊥⊥X3). Can be parameterized as pijn = αiβjγn.

Mixtk(M) =

{
pijn =

k∑
p=1

πpαpiβpjγpn : π ∈ ∆k−1

}

What if we want pi from different models?

Definition (14.1.4)

Let M1, . . . ,Mk ⊆ ∆r−1 be k statistical models. The mixture model
M1 ∗ · · · ∗Mk is the family of probability distributions

M1 ∗ · · · ∗Mk :=
{
π1p1 + · · ·+ πkpk : π ∈ ∆k−1,∀i pi ∈Mi

}
.
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The algebraic side

Definition (14.1.4)

Let V1, . . . ,Vk ⊆ Kr be algebraic varieties. The join variety is the variety

V1 ∗ · · · ∗ Vk :=

{
π1p1 + · · ·+ πkpk :

∑
i

πi = 1 and pi ∈ Vi for all i

}
.

We also define Seck(V ) = V ∗ · · · ∗ V (k times).
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Proposition

We have
Mixtk(M) ⊆ Seck(M) ∩∆R

Example

In the case of k = 1 we get

M = Mixt1(M) ⊆ Sec1(M) ∩∆R =M∩∆R
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Recall rank+(M) = min{k : M =
∑k

i=1 Mi} where each Mi is
non-negative with rank 1. In general rank+(M) ≥ rank(M).

Example (14.1.6)

As before we get

Mixtk (MX1⊥⊥X2) = {P ∈ ∆R : rank+(P) ≤ k} .

Slightly more work

Seck
(
MX1⊥⊥X2

)
∩∆R = {P ∈ ∆R : rank(P) ≤ k} .

Recommended: Proposition 14.1.8
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Definition
A finite sequence X1, . . . ,Xn of R.V. on a countable state space is
exchangeable if for all σ ∈ Sn and a1, . . . , an ∈ X ,

P (X1 = a1, . . . ,Xn = an) = P
(
X1 = aσ(1), . . . ,Xn = aσ(n)

)
An infinite sequence (Xi ) of R.V. is exchangeable if each of its finite
subsequences is exchangeable.

Formal way of saying “only the output matters, not the order”.
Strictly weaker version of i.i.d.
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Theorem (De Finetti)

Let X1,X2, . . . be an infinite sequence of exchangeable random variables
with state space {0, 1}. Then there exists a unique probability measure µ
on [0, 1] such that for all n and a1, . . . , an ∈ {0, 1}

P(X1 = a1, . . . ,Xn = an) =

∫ 1

0

θk(1− θ)n−kdµ(θ),

where k =
∑k

i=1 ai .

Example

Let X1,X2, . . . be i.i.d ∼ Ber(p). Then µ = δp.

Another way to say De Finettis’s theorem is that an infinite ex-
changeable sequence of binary random variables is a mixture of
i.i.d. Bernoulli random variables.
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Idea of proof.

Let us consider X1, . . . ,Xk exchangeable binary R.V. The distributions
that parameterize k i.i.d Bernoulli are on the form
Ck =

{
(θa1+···+ak (1− θ)k−a1−···−ak )

}
where we range the ai ’s over the

outcomes and θ is the parameter in Ber(θ).
Let EXn ⊆ ∆2n−1 be the set of n exchangeable sequences of binary
random variables. Conclude that “exchangeable” is a set of linear
restrictions on EXn, thus this is a polytope. Let πn,k be the action of
computing the margin of all but k of the variables. Then
πn,k(EXn) ⊆ EXk and as each permutation in Sn can be seen as a
permutatoin in Sn+1 we have πn,k(EXn) ⊇ πn+1,k(EXn+1).
Then the proof consists of showing

lim
n→inf

πn,k(EXn) = Mixtk(Ck).
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Example (14.2.1)

Consider the claw tree, fig. 1. This can be parameterized as
pi1i2i3i4 = πi1αi1i2βi1i3γi1i2 .
Thus pi2i3i4 =

∑r1
i1=1 πi1αi1i2βi1i3γi1i2 . This we recognize as

Mixtr1(MX1⊥⊥X2⊥⊥X3).

1

2 3 4

Figure 1: A claw tree.
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Proposition (14.2.2)

Let M⊆ Rm × PDm be an algebraic exponential family with vanishing
ideal I = I (M) ⊆ R[µ,Σ]. Let H t O = [m] be a partition of the index
labeling into hidden variables H and observed variables O. The hidden
variable model consists of all marginal distributions on the variables XO

for a distribution with parameters in M. The vanishing ideal of the
hidden variable model is the elimination ideal

I ∩ R [µO ,ΣO,O ] .

Finding generators is relatively easy in the Gaussian case1.

1Given appropriate assumptions, see Proposition 14.2.5.
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Remark
From here everything is Gaussian.

Example

Recall parametrized Gaussian directed graphical models. G = (V ,D) is
DAG, each edge v → u was given weight λvu.

Xv = εv +
∑

u∈paG (v)

λuvXu

where ε were independent (∼ N (0,Ω), Ω diagonal). Then X = (Xv )v∈V
was multivariate Gaussian with covariance matrix

Σ = (I − Λ)−TΩ(I − Λ)−1
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Mixed graphs

G = (V ,D,B) is a mixed graph, V is set of vertices, D directed edges,
B bidirected edges.

Example

1 2 3

Compare to

1 2 3

4
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So let G = ([m],D,B) be a mixed graph.

PD(B) := {Ω ∈ PDm : ωij = 0 if i 6= j and i ↔ j /∈ B}
RD :=

{
Λ ∈ Rm×m : λij = 0 if i → j /∈ D

}
Let ε ∼ N (0,Ω) for some Ω ∈ PD(B). Then we can define

Xv = εv +
∑

u∈paG (v)

λuvXu

Proposition (14.2.8)

Let G = (V ,D,B) be a mixed graph. Let Ω ∈ PD(B), ε ∼ N (0,Ω), and
Λ ∈ RD . Then the random vector X is a multivariate normal random
variable with covariance matrix

Σ = (I − Λ)−TΩ(I − Λ)−1.
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Definition
Let G = (V ,D,B) be a mixed graph. The linear structural equation
model MG ⊆ PDm consists of all covariance matrices

MG :=
{

(I − Λ)−TΩ(I − Λ)−1 : Ω ∈ PD(B),Λ ∈ RD
}

Definition (14.2.10)

Let G = (V ,D,B) be a mixed graph. Let G sub be the directed graph
obtained from G whose vertex set is V ∪ B and with edge set

D ∪ {b → i : i ↔ j ∈ B} .

The resulting graph G sub is the bidirected subdivision of G .
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Proposition (14.2.11)

Let G = (V ,D,B) be a mixed graph with m vertices and G sub the
bidirected subdivision. Let MG ⊆ PDm be the linear structural equation
model associated to G and M′G sub be the Gaussian graphical model
associated to the directed graph G sub where all variables B are hidden
variables. Then M′G sub ⊆MG and I (M′G sub) = I (MG ).

Idea of proof.

Let M ∈M′G sub be given by Λ′ and Ω′. Choose Λ = Λ′V ,V . Construct
Ω = (ωij) via letting

ωij = ω′bbλbiλbj and ωii = ω′ii +
∑

b=i→j∈B

ω′bbλ
2
bi

for each bidirected edge b = i ↔ j . Then apply trek rule.
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Definition (14.2.12)

Let G = (V ,D,B) be a mixed graph. A trek from i to j in G consists of
either

1. a directed path PL ending in i and a directed path PR ending in j
which have the same source, or

2. a directed path PL ending in i and a directed path PR ending in j
such that the sources of PL and PR are connected by a bidirected
edge.

Let TG (i , j) denote the set of all treks in G connecting i and j .

To each trek T we associate a monomial mT which is the product of all
λst over all edges appearing in T times ωst , where s and t are the
sources of PL and PR .
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Proposition (14.2.13, Trek rule)

Let G = (V ,D,B) be a mixed graph. Let Ω ∈ PD(B), Λ ∈ RD , and
Σ = (I − Λ)−TΩ(I − Λ)−1. Then

σij =
∑

T∈TG (i,j)

mT .

Example (14.2.14)

1 2 3
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The following slides has propositions that where not talked about in the
lecture.
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Proposition (14.1.8)

Let V ⊆ Pr−1 and suppose that Seck(V ) is not a linear space. Then
Seck−1(V ) is in the singular locus of Seck(V ).

This propostition tells how the sequence

Sec1(V ) ⊆ Sec2(V ) ⊆ . . .

behaves. Thus we, in some sense, get a upper bound on

Mixt1(M) ⊆ Mixt2(M) ⊆ . . .

behaves, by the proposition on slide 8.
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Definition (14.2.4)

Let G = (V ,D) be a directed acyclic graph, and let H t O = [m] be a
partition of the index labeling into hidden variables H and observed
variables O. The hidden variables are said to be upstream of the
observed variables if there is no edge o → h, where o ∈ O and h ∈ H.

If this is the case we introduce the following two-dimensional grading on
R[Σ], associated to this partition of the variables:

deg σij =

(
1

#({i} ∩ O) + #({j} ∩ O)

)
.
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Proposition (14.2.5)

Let G = (V ,D) be a directed acyclic graph, and let H t O = [m] be a
partition of the index labeling into hidden variables H and observed
variables O, where the H variables are upstream. The ideal JG ⊆ R[Σ] is
homogeneous with respect to the upstream grading (defined above). In
particular, any homogeneous generating set of JG in this grading contains
as a subset a generating ser of the vanishing ideal of the hidden variable
model JG ∩ R[ΣO,O ].

As mentioned in the lecture, this tells us that we easily can find a
representation of JG ∩ R[ΣO,O ]. However, it requires that we can find a
“nice” set of generators to JG .
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