Mixture Models and Hidden Variable Graphical Models

P. Restadh

April 23, 2021
KTH Royal Institute of Technology

Outline

Hidden Variables
Definition
De Finetti's Theorem

Hidden Variable Graphical Models
Mixed Graphs

Teeth - Better/cheaper dental care gives nicer teeth.
Scandinavia and Canada - Wealthy countries, good healthcare Hockey - Expensive sport. Played more in Scandinavia and Canada. So why does hockey players look like this?

```
Image removed because
of copyright reasons.
Google "hockey player
missing teeth".
```

In fact there is a hidden subset of the population "People who are punched in the face a lot'.

Hidden Variables
Definition
De Finetti's Theorem

Hidden Variable Graphical Models Mixed Graphs

Let $\mathcal{M} \subseteq \Delta_{r-1}$ be our statistical model. Each $\mathbf{p}^{1}, \ldots, \mathbf{p}^{k} \in \mathcal{M}$ and $\pi \in \Delta_{k-1}$.

$$
\mathbb{P}(H=i)=\pi_{i} \quad \text { and } \quad \mathbb{P}(X \mid H=i)=\mathbf{p}^{i}
$$

So we have

$$
\mathbb{P}(X=j)=\sum \pi_{i} p_{j}^{i}
$$

Definition (14.1.1)

The k :th mixture model of the model $\mathcal{M} \subseteq \Delta_{r-1}$ is the family of probability distributions

$$
\operatorname{Mixt}^{k}(\mathcal{M}):=\left\{\pi_{1} \mathbf{p}^{1}+\cdots+\pi_{k} \mathbf{p}^{k}: \pi \in \Delta_{k-1}, \mathbf{p}^{1}, \ldots, \mathbf{p}^{k} \in \mathcal{M}\right\}
$$

Example

Let H be binary "infection status" (we can't observe because we don't have a test). X is symptoms, follows some distribution in \mathcal{M}. Then the distribution of X can be observed in $\operatorname{Mixt}^{2}(\mathcal{M})$.

Example

Consider $\mathcal{M}\left(X_{1} \Perp X_{2} \Perp X_{3}\right)$. Can be parameterized as $p_{i j n}=\alpha_{i} \beta_{j} \gamma_{n}$.

$$
\operatorname{Mixt}^{k}(\mathcal{M})=\left\{p_{i j n}=\sum_{p=1}^{k} \pi_{p} \alpha_{p i} \beta_{p j} \gamma_{p n}: \pi \in \Delta_{k-1}\right\}
$$

What if we want \mathbf{p}^{i} from different models?
Definition (14.1.4)
Let $\mathcal{M}_{1}, \ldots, \mathcal{M}_{k} \subseteq \Delta_{r-1}$ be k statistical models. The mixture model $\mathcal{M}_{1} * \cdots * \mathcal{M}_{k}$ is the family of probability distributions

$$
\mathcal{M}_{1} * \cdots * \mathcal{M}_{k}:=\left\{\pi_{1} \mathbf{p}^{1}+\cdots+\pi_{k} \mathbf{p}^{k}: \pi \in \Delta_{k-1}, \forall i \mathbf{p}^{i} \in \mathcal{M}_{i}\right\} .
$$

The algebraic side

Definition (14.1.4)
Let $V_{1}, \ldots, V_{k} \subseteq \mathbb{K}^{r}$ be algebraic varieties. The join variety is the variety
$V_{1} * \cdots * V_{k}:=\overline{\left\{\pi_{1} \mathbf{p}^{1}+\cdots+\pi_{k} \mathbf{p}^{k}: \sum_{i} \pi_{i}=1 \text { and } \mathbf{p}^{i} \in V_{i} \text { for all } i\right\} .}$
We also define $\operatorname{Sec}^{k}(V)=V * \cdots * V(k$ times $)$.

Proposition

We have

$$
\operatorname{Mixt}^{k}(\mathcal{M}) \subseteq \operatorname{Sec}^{k}(\overline{\mathcal{M}}) \cap \Delta_{\mathcal{R}}
$$

Example

In the case of $k=1$ we get

$$
\mathcal{M}=\operatorname{Mixt}^{1}(\mathcal{M}) \subseteq \operatorname{Sec}^{1}(\overline{\mathcal{M}}) \cap \Delta_{\mathcal{R}}=\overline{\mathcal{M}} \cap \Delta_{\mathcal{R}}
$$

Recall rank $_{+}(M)=\min \left\{k: M=\sum_{i=1}^{k} M_{i}\right\}$ where each M_{i} is non-negative with rank 1. In general $\operatorname{rank}_{+}(M) \geq \operatorname{rank}(M)$.
Example (14.1.6)
As before we get

$$
\operatorname{Mixt}^{k}\left(\mathcal{M}_{X_{1} \Perp x_{2}}\right)=\left\{P \in \Delta_{\mathcal{R}}: \operatorname{rank}_{+}(P) \leq k\right\}
$$

Slightly more work

$$
\operatorname{Sec}^{k}\left(\overline{\mathcal{M}_{X_{1} \Perp X_{2}}}\right) \cap \Delta_{\mathcal{R}}=\left\{P \in \Delta_{\mathcal{R}}: \operatorname{rank}(P) \leq k\right\} .
$$

Recommended: Proposition 14.1.8

Definition

A finite sequence X_{1}, \ldots, X_{n} of R.V. on a countable state space is exchangeable if for all $\sigma \in S_{n}$ and $a_{1}, \ldots, a_{n} \in \mathcal{X}$,

$$
\mathbb{P}\left(X_{1}=a_{1}, \ldots, X_{n}=a_{n}\right)=\mathbb{P}\left(X_{1}=a_{\sigma(1)}, \ldots, X_{n}=a_{\sigma(n)}\right)
$$

An infinite sequence (X_{i}) of R.V. is exchangeable if each of its finite subsequences is exchangeable.
Formal way of saying "only the output matters, not the order". Strictly weaker version of i.i.d.

Theorem (De Finetti)

Let X_{1}, X_{2}, \ldots be an infinite sequence of exchangeable random variables with state space $\{0,1\}$. Then there exists a unique probability measure μ on $[0,1]$ such that for all n and $a_{1}, \ldots, a_{n} \in\{0,1\}$

$$
\mathbb{P}\left(X_{1}=a_{1}, \ldots, X_{n}=a_{n}\right)=\int_{0}^{1} \theta^{k}(1-\theta)^{n-k} d \mu(\theta)
$$

where $k=\sum_{i=1}^{k} a_{i}$.

Example

Let X_{1}, X_{2}, \ldots be i.i.d $\sim \operatorname{Ber}(p)$. Then $\mu=\delta_{p}$.
Another way to say De Finettis's theorem is that an infinite exchangeable sequence of binary random variables is a mixture of i.i.d. Bernoulli random variables.

Idea of proof.

Let us consider X_{1}, \ldots, X_{k} exchangeable binary R.V. The distributions that parameterize k i.i.d Bernoulli are on the form
$\mathcal{C}_{k}=\left\{\left(\theta^{a_{1}+\cdots+a_{k}}(1-\theta)^{k-a_{1}-\cdots-a_{k}}\right)\right\}$ where we range the a_{i} 's over the outcomes and θ is the parameter in $\operatorname{Ber}(\theta)$.
Let $E X_{n} \subseteq \Delta_{2^{n}-1}$ be the set of n exchangeable sequences of binary random variables. Conclude that "exchangeable" is a set of linear restrictions on $E X_{n}$, thus this is a polytope. Let $\pi_{n, k}$ be the action of computing the margin of all but k of the variables. Then $\pi_{n, k}\left(E X_{n}\right) \subseteq E X_{k}$ and as each permutation in S_{n} can be seen as a permutatoin in S_{n+1} we have $\pi_{n, k}\left(E X_{n}\right) \supseteq \pi_{n+1, k}\left(E X_{n+1}\right)$.
Then the proof consists of showing

$$
\lim _{n \rightarrow \text { inf }} \pi_{n, k}\left(E X_{n}\right)=\operatorname{Mixt}^{k}\left(\mathcal{C}_{k}\right)
$$

Hidden Variables Definition De Finetti's Theorem

Hidden Variable Graphical Models
Mixed Graphs

Example (14.2.1)

Consider the claw tree, fig. 1. This can be parameterized as $p_{i_{1} i_{2} i_{3} i_{4}}=\pi_{i_{1}} \alpha_{i_{1} i_{2}} \beta_{i_{1} i_{3}} \gamma_{i_{1} i_{2}}$.
Thus $p_{i_{2} i_{3} i_{4}}=\sum_{i_{1}=1}^{r_{1}} \pi_{i_{1}} \alpha_{i_{1} i_{2}} \beta_{i_{1} i_{3}} \gamma_{i_{1} i_{2}}$. This we recognize as $\operatorname{Mixt}{ }^{r_{1}}\left(\mathcal{M}_{X_{1}} \Perp X_{2} \Perp X_{3}\right)$.

Figure 1: A claw tree.

Proposition (14.2.2)

Let $\mathcal{M} \subseteq \mathbb{R}^{m} \times \mathrm{PD}_{m}$ be an algebraic exponential family with vanishing ideal $I=I(\mathcal{M}) \subseteq \mathbb{R}[\mu, \Sigma]$. Let $H \sqcup O=[m]$ be a partition of the index labeling into hidden variables H and observed variables O. The hidden variable model consists of all marginal distributions on the variables X_{O} for a distribution with parameters in \mathcal{M}. The vanishing ideal of the hidden variable model is the elimination ideal

$$
I \cap \mathbb{R}\left[\mu_{O}, \Sigma_{O, o}\right] .
$$

Finding generators is relatively easy in the Gaussian case ${ }^{1}$.

[^0]
Remark

From here everything is Gaussian.

Example

Recall parametrized Gaussian directed graphical models. $G=(V, D)$ is DAG, each edge $v \rightarrow u$ was given weight $\lambda_{v u}$.

$$
X_{v}=\varepsilon_{v}+\sum_{u \in \operatorname{pa}_{G}(v)} \lambda_{u v} X_{u}
$$

where ε were independent ($\sim \mathcal{N}(0, \Omega), \Omega$ diagonal). Then $X=\left(X_{v}\right)_{v \in V}$ was multivariate Gaussian with covariance matrix

$$
\Sigma=(I-\Lambda)^{-T} \Omega(I-\Lambda)^{-1}
$$

Mixed graphs

$G=(V, D, B)$ is a mixed graph, V is set of vertices, D directed edges, B bidirected edges.

Example

Compare to

So let $G=([m], D, B)$ be a mixed graph.

$$
\begin{aligned}
\operatorname{PD}(B) & :=\left\{\Omega \in \mathrm{PD}_{m}: \omega_{i j}=0 \text { if } i \neq j \text { and } i \leftrightarrow j \notin B\right\} \\
\mathbb{R}^{D} & :=\left\{\Lambda \in \mathbb{R}^{m \times m}: \lambda_{i j}=0 \text { if } i \rightarrow j \notin D\right\}
\end{aligned}
$$

Let $\varepsilon \sim \mathcal{N}(0, \Omega)$ for some $\Omega \in \operatorname{PD}(B)$. Then we can define

$$
X_{v}=\varepsilon_{v}+\sum_{u \in \operatorname{pa}_{G}(v)} \lambda_{u v} X_{u}
$$

Proposition (14.2.8)
Let $G=(V, D, B)$ be a mixed graph. Let $\Omega \in \operatorname{PD}(B), \varepsilon \sim \mathcal{N}(0, \Omega)$, and $\Lambda \in \mathbb{R}^{D}$. Then the random vector X is a multivariate normal random variable with covariance matrix

$$
\Sigma=(I-\Lambda)^{-T} \Omega(I-\Lambda)^{-1} .
$$

Definition

Let $G=(V, D, B)$ be a mixed graph. The linear structural equation model $\mathcal{M}_{G} \subseteq \mathrm{PD}_{m}$ consists of all covariance matrices

$$
\mathcal{M}_{G}:=\left\{(I-\Lambda)^{-T} \Omega(I-\Lambda)^{-1}: \Omega \in \operatorname{PD}(B), \Lambda \in \mathbb{R}^{D}\right\}
$$

Definition (14.2.10)
Let $G=(V, D, B)$ be a mixed graph. Let $G^{\text {sub }}$ be the directed graph obtained from G whose vertex set is $V \cup B$ and with edge set

$$
D \cup\{b \rightarrow i: i \leftrightarrow j \in B\}
$$

The resulting graph $G^{\text {sub }}$ is the bidirected subdivision of G.

Proposition (14.2.11)

Let $G=(V, D, B)$ be a mixed graph with m vertices and $G^{\text {sub }}$ the bidirected subdivision. Let $\mathcal{M}_{G} \subseteq \mathrm{PD}_{m}$ be the linear structural equation model associated to G and \mathcal{M}_{G}^{\prime} sub be the Gaussian graphical model associated to the directed graph $G^{\text {sub }}$ where all variables B are hidden variables. Then $\mathcal{M}_{G}^{\prime}{ }_{\text {sub }} \subseteq \mathcal{M}_{G}$ and $I\left(\mathcal{M}_{G}^{\prime}{ }^{\text {sub }}\right)=I\left(\mathcal{M}_{G}\right)$.

Idea of proof.

Let $M \in \mathcal{M}_{G \text { sub }}^{\prime}$ be given by Λ^{\prime} and Ω^{\prime}. Choose $\Lambda=\Lambda_{V, V}^{\prime}$. Construct $\Omega=\left(\omega_{i j}\right)$ via letting

$$
\omega_{i j}=\omega_{b b}^{\prime} \lambda_{b i} \lambda_{b j} \text { and } \omega_{i i}=\omega_{i i}^{\prime}+\sum_{b=i \rightarrow j \in B} \omega_{b b}^{\prime} \lambda_{b i}^{2}
$$

for each bidirected edge $b=i \leftrightarrow j$. Then apply trek rule.

Definition (14.2.12)

Let $G=(V, D, B)$ be a mixed graph. A trek from i to j in G consists of either

1. a directed path P_{L} ending in i and a directed path P_{R} ending in j which have the same source, or
2. a directed path P_{L} ending in i and a directed path P_{R} ending in j such that the sources of P_{L} and P_{R} are connected by a bidirected edge.
Let $\mathcal{T}_{G}(i, j)$ denote the set of all treks in G connecting i and j.
To each trek T we associate a monomial m_{T} which is the product of all $\lambda_{\text {st }}$ over all edges appearing in T times $\omega_{\text {st }}$, where s and t are the sources of P_{L} and P_{R}.

Proposition (14.2.13, Trek rule)
Let $G=(V, D, B)$ be a mixed graph. Let $\Omega \in \operatorname{PD}(B), \Lambda \in \mathbb{R}^{D}$, and $\Sigma=(I-\Lambda)^{-T} \Omega(I-\Lambda)^{-1}$. Then

$$
\sigma_{i j}=\sum_{T \in \mathcal{T}_{G}(i, j)} m_{T}
$$

Example (14.2.14)

The following slides has propositions that where not talked about in the lecture.

Proposition (14.1.8)

Let $V \subseteq \mathbb{P}^{r-1}$ and suppose that $\operatorname{Sec}^{k}(V)$ is not a linear space. Then $\operatorname{Sec}^{k-1}(V)$ is in the singular locus of $\operatorname{Sec}^{k}(V)$.
This propostition tells how the sequence

$$
\operatorname{Sec}^{1}(V) \subseteq \operatorname{Sec}^{2}(V) \subseteq \ldots
$$

behaves. Thus we, in some sense, get a upper bound on

$$
\operatorname{Mixt}^{1}(\mathcal{M}) \subseteq \operatorname{Mixt}^{2}(\mathcal{M}) \subseteq \ldots
$$

behaves, by the proposition on slide 8 .

Definition (14.2.4)
Let $G=(V, D)$ be a directed acyclic graph, and let $H \sqcup O=[m]$ be a partition of the index labeling into hidden variables H and observed variables O. The hidden variables are said to be upstream of the observed variables if there is no edge $o \rightarrow h$, where $o \in O$ and $h \in H$. If this is the case we introduce the following two-dimensional grading on $\mathbb{R}[\Sigma]$, associated to this partition of the variables:

$$
\operatorname{deg} \sigma_{i j}=\binom{1}{\#(\{i\} \cap O)+\#(\{j\} \cap O)} .
$$

Proposition (14.2.5)

Let $G=(V, D)$ be a directed acyclic graph, and let $H \sqcup O=[m]$ be a partition of the index labeling into hidden variables H and observed variables O, where the H variables are upstream. The ideal $J_{G} \subseteq \mathbb{R}[\Sigma]$ is homogeneous with respect to the upstream grading (defined above). In particular, any homogeneous generating set of J_{G} in this grading contains as a subset a generating ser of the vanishing ideal of the hidden variable model $J_{G} \cap \mathbb{R}\left[\Sigma_{O, O}\right]$.
As mentioned in the lecture, this tells us that we easily can find a representation of $J_{G} \cap \mathbb{R}\left[\Sigma_{O, O}\right]$. However, it requires that we can find a "nice" set of generators to J_{G}.

[^0]: ${ }^{1}$ Given appropriate assumptions, see Proposition 14.2.5.

