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Conditional independence and undirected graphical models
Conditional independence

• In short, we say that x and y are conditionally independent given z if

p(x, y | z) = p(x | z)p(y | z).

This may be understood as x and y not providing any further information about
each other when already knowing z .
• As a concrete example, suppose that the sample {xi}i is drawn from a normal
distribution N(θ, 1). We usually ﴾in a Bayesian setting﴿ say that the xi are
conditionally independent given the mean θ—that is, the xi “communicate”
through θ. Indeed, we have the factorization

p({xi}i | θ) =
∏
i

p(xi | θ) =
∏
i

1
√
2π
exp

(
−
(xi − θ)2

2

)
.
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Conditional independence and undirected graphical models
Undirected graphical models

• In certain settings, it is useful to represent conditional independence relations for a
set {xi}i of random variables by an undirected graph. This is known as an
undirected graphical model or Markov random field. Each variable is represented as
a vertex.
• The pairwise Markov property is the assertion that each pair of non‐adjacent
variables are conditionally independent given all other variables. The local Markov
property is the assertion that given its neighbors, a variable is conditionally
independent of all other variables. The global Markov property is the assertion that
{xi}i∈A ⊥ {xi}i∈B | {xi}i∈C if and only if C separates A and B in the graph.
• The properties are in general ordered from weakest to strongest, but equivalent
for positive distributions.

Figure 1: Example of an undirected graphical model.
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Conditional independence and undirected graphical models
Undirected graphical models

• As an example, consider measuring some quantity in the ground ﴾e.g. pH value﴿ at
different locations on a site. The measurement values should then be dependent
on each other, with correlations higher the closer the locations are. Suppose, for
simplicity, that the locations are distributed on a grid. Similar setups are common
in spatial statistics.
• One way of constructing a conditional independence model is through an
undirected graphical model. In particular, we may construct it according to below:

Figure 2: Undirected graphical model according to a rectangular grid.
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Parameterizations of undirected graphical models
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Parameterizations of undirected graphical models
Preliminaries

• Let G = ([m], E) be an undirected graph with vertices [m] = {1, . . . , m} and
edges E. We consider an undirected graphical model of {xi}mi=1 associated with G.
• A clique C ⊆ [m] is a collection of fully connected vertices, i.e. (i , j) ∈ E for all
i , j ∈ C. The set of maximal cliques is denoted C(G).
• For each C ∈ C(G), we introduce a potential function ψC(· | θ) of {xi}i∈C required
to be continuous and such that ψC({xi}i∈C | θ) ≥ 0 everywhere.
• The parameterized undirected graphical model consists of all joint likelihoods on
the form

p({xi}mi=1 | θ) =
1

Z(θ)

∏
C∈C(G)

ψC({xi}i∈C | θ),

where

Z(θ) =

ˆ ∏
C∈C(G)

ψC({xi}i∈C | θ)
m∏
i=1

dxi

We say that the likelihood factorizes according to G if it can be written in the above
form.
• The Hammersley–Clifford theorem states that a positive density satisfies the
Markov properties on G if and only if it factorizes according to G. This is
fundamental for working with parameterizations of undirected graphical models.
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Parameterizations of undirected graphical models
Discrete models

• Suppose that each xi is one‐dimensional and takes values in [ri ], so that the joint
state space is R =

∏m

i=1
[ri ]. The graphical model associated with G is a subset of

the simplex ∆R−1.
• The Hammersley–Clifford parameterization is on the following monomial form:

p(x1 = i1, . . . , xm = im | θ) = ϕi1...im (θ) =
1

Z(θ)

∏
C∈C(G)

θ
(C)
iC
,

with θ = (θ(C))C∈C(G) nonnegative.
• The parameterized discrete undirected graphical model associated with G consists
of all probability distributions in ∆R−1 of the form
p(x1 = i1, . . . , xm = im | θ) = ϕi1...im (θ). In particular, the positive part is precisely
the hierarchical log‐linear model on the complex C(G) of cliques.
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Parameterizations of undirected graphical models
Discrete models

• Denote by IG the toric ideal of the graphical model at hand. From before, we know
that IG is the ideal generated by the binomials pu − pv corresponding to the
Markov basis. Let also V∆(IG) be the variety of IG in the closed simplex ∆R−1. We
want to compare V∆(IG) with conditional independence models V∆(IC), where C
ranges over conditional independence constraints implied by G.
• Let

pairs(G) = {i ⊥ j | [m]\{i , j} : (i , j) /∈ E}

and
global(G) = {A ⊥ B | C : C separates A from B}.

• It turns out that the following conditions are equivalent:
1 IG = Iglobal(G).
2 IG is generated by quadrics.
3 The ML degree of V∆(IG) is one.
4 G is a decomposable graph.

• This connects the Hammersley–Clifford parameterization to the global ﴾and also
pairwise﴿ Markov property.
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Parameterizations of undirected graphical models
Gaussian models

• Again, suppose that each xi is one‐dimensional and that x = (xi )mi=1 ∼ N(µ,K−1).
The likelihood is written as

p(x | θ) ∝ exp
(
−
1

2
(x − µ)TK(x − µ)

)
=

m∏
i=1

exp

(
−
Ki i

2
(xi − µi )2

) ∏
1≤i<j≤m

exp
(
−Ki j (xi − µi )(xj − µj )

)
,

with θ = (µ,K). In particular, this factorizes into pairwise potentials and according
to G = ([m], E) if and only if Ki j = 0 for all (i , j) /∈ E.
• In other words, the parameterized Gaussian undirected graphical model consists of
the set of pairs (µ,K) ∈ Rm × PDm with Ki j = 0 for all (i , j) /∈ E.
• In terms of covariance matrices Σ = K−1, by the adjoint formula for the inverse,
we may obtain a rational parameterization of the covariance matrices satisfying the
Markov properties of the graphical model.
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Parameterizations of undirected graphical models
Other models

• k‐nearest neighbor classification may be extended to a probabilistic setting by
modeling distance relations graphically.
• Suppose that we have a dataset {(xi , yi )}mi=1, where the xi are covariates and yi are
binary labels. Let nbk(i) be the set of the k nearest neighbors to xi . We may define
the joint likelihood as

p({yi}mi=1 | {xi}
m
i=1, θ) ∝ exp

(
β

k

m∑
i=1

∑
j∈nbk (i)

1yi = yj

)
,

with θ = (β, k). The full conditionals are

p(yi | {yj}j ̸=i , {xj}mj=1, θ) ∝ exp

(
β

k

( ∑
j∈nbk (i)

+
∑

j : i∈nbk (j)

)
1yi = yj

)
.
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Directed acyclic graphical models
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Directed acyclic graphical models
Preliminaries

• Undirected graphical models were useful for variables which could not be arranged
into any particular hierarchical order. For many models, however, there is a natural
hierarchical order, and this may then be articulated through directed edges.
• In a directed acyclic graph ﴾DAG﴿ G = (V, E), the edges are directed and there
exists no sequence of vertices {vi}ni=1 such that (v1, v2), . . . (vn−1, vn), (vn, v1) are
all in E. The set pa(v) of parents of a node v ∈ V are the nodes w such that
(w, v) ∈ E. The set de(v) of descendants comprise the nodes w such that there is
a directed path from v to w . The non‐descendants nd(v) are all nodes that are not
v or a descendant to v .

Figure 3: A directed and an undirected graph.
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Directed acyclic graphical models
Definition and examples

• For a set {xi}mi=1 of random variables and a DAG G = ([m], E), the directed local
Markov property associates the conditional independence constraints

xi ⊥ xnd(i)\ pa(i) | xpa(i).

A directed graphical model ﴾or Bayesian network﴿ of {xi}mi=1 with respect to a DAG
G is a graphical model with the local Markov property on G. In many practical
examples, the directedness of the edges represent causal relationships.
• As an example, we have the ﴾Bayesian﴿ parametric model of {xi}mi=1 being
conditionally independent given θ ﴾see figure below﴿. Here, θ may be seen to
“cause” the xi .

Figure 4: A parametric model as an directed graphical model.
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Directed acyclic graphical models
Definition and examples

• Another example is the modeling of variables measured in an intensive care unit.
The so called ALARM network ﴾see below﴿ models causal relationships of these
variables, 37 in total.

Figure 5: The ALARM network.
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Directed acyclic graphical models
Definition and examples

• Yet another example are ﴾feedforward﴿ Bayesian neural networks, in which the
network weights are regarded as model parameters with priors and posteriors.
These are useful for articulating uncertainties in predictions.

Figure 6: A feedforward neural network.
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Directed acyclic graphical models
d‐separation

• To understand the conditional independence constraints that the local Markov
property implies, we need a more refined notion of separation.
• Let an(C) = {w ∈ V : there exists a v ∈ V such that v ∈ de(w)} be the set of

ancestors of a subset C ⊆ V . On an undirected path π = (v0, . . . , vn), the vertex vi
is a collider if the indicent edges are on the form

vi−1 → vi ← vi+1.

• We say that v, w ∈ V are d‐connected given a conditioning set C ⊆ V \{v, w} if
there is a path π from v to w such that

1 all colliders on π are in an(C), and
2 no non‐collider on π is in C.

If A,B, C are pairwise disjoint with A and B nonempty, then C d‐separates A and
B provided that no two nodes v ∈ A and w ∈ B are d‐connected given C.
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Directed acyclic graphical models
d‐separation

• With this, we have the directed global Markov property, which is the assertion that

{xi}i∈A ⊥ {xi}i∈B | {xi}i∈C

for all A, B, C such that C d‐separates A and B.
• Analogously to undirected graphical models, it holds that a model for {xi} satisfies
the directed local Markov property for a DAG G if and only if it satisfies the
directed global Markov property for G.
• An issue with directed graphical models is that two DAGs may possess identical
d‐separation relations and thus encode the same conditional independence
relations. The graphs are then called Markov equivalent. One can determine
Markov equivalence by the fact that two DAGs G1 = (V, E1) and G2 = (V, E2) are
Markov equivalent if and only if

1 G1 and G2 have the same skeleton, and
2 G1 and G2 have the same collider triplets.
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Parameterizations of directed acyclic graphical models

20 / 24



Parameterizations of directed graphical models
Recursive factorization

• Every DAG G = ([m], E) has a topological ordering, i.e. a permutation σ of [m]
such that the vertices (σ(1), . . . , σ(m)) are ordered from starting earlier to
starting later.
• Writing

p({xi}mi=1 | θ) =
m∏
i=1

p(xσ(i) | {xσ(j)}i−1j=1, θ),

we may use the directed local Markov property to reduce this to

p({xi}mi=1 | θ) =
m∏
i=1

p(xi | {xj}j∈pa(i), θ).

This is called the parametric directed graphical model, and this factorization is
equivalent to satisfying the local or global Markov properties.
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Parameterizations of directed graphical models
Discrete models

• Suppose that each xi is one‐dimensional and takes values in [ri ], so that the joint
state space is R =

∏m

i=1
[ri ]. The directed graphical model associated with a DAG

G has the parametric form

p(x1 = i1, . . . , xm = im | θ) = ϕi1...im (θ) =
m∏
j=1

θ(j)(ij | ipa(j))

with the constraints
rj∑
k=1

θ(j)(k | ipa(j)) = 1

for all j and tuples ipa(j) ∈ Rpa(j).
• Denote by ϕ≥0 the restriction of ϕ to nonnegative parameters and local(G) the
conditional independence constraints associated with the local Markov property.
We have

imϕ≥0 = V∆(Ilocal(G)).
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Parameterizations of directed graphical models
Gaussian models

• To characterize Gaussian directed graphical models, we assume that {xi}mi=1 are
ordered from early to late. Let ϵi ∼ N(νi , ω2i ) for all i ∈ [m] independently and
construct

xi =
∑
j∈pa(i)

λj ixj + ϵi , i ∈ [m].

This is sometimes known as an autoregressive model.
• The random vector x = (xi )mi=1 is then multivariate normal. In particular, let
ν = (νi )

m
i=1

, Ω = diagω2 = diag (ω2
i
)m
i=1

and

Λi j =


1 if i = j,
−λi j if (i , j) ∈ E,
0 otherwise.

We then have by back‐substitution that ΛTx = ω2 and thus

x ∼ N(Λ−Tν,Λ-TΩΛ−1).

23 / 24



Parameterizations of directed graphical models
Gaussian models

• The density N(x | µ,Σ) of a multivariate normal distribution satisfies the recursive
factorization property if and only if Σ = Λ−TΩΛ−1.
• In other words, the parameterized Gaussian directed graphical model associated
with G corresponds to all pairs (µ,Σ) ∈ Rm × PDm such that one can write
Σ = Λ−TΩΛ−1, where Λ is upper‐triangular and Ω diagonal with positive diagonal
entries.
• Let Iglobal(G) be the ideal generated by all constraints arising from the global
Markov property of G, and let IG be the vanishing ideal of all covariance matrices
which factorize on the above form. We have that

V (Iglobal(G)) ∩ PDm = V (IG) ∩ PDm .
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