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Today’s goal

Define Conditional Probability explicitly

Define Conditional Independence (CI)
Describe discrete models with CI
Describe Gaussian models with CI
Graphical models, undirected
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Probability intro

What is a conditional probability?

Recall that for two events A,B we define it to be

P(A|B) =
P(A ∩ B)

P(B)
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Probability intro

P(A) = 1/2 while P(A|B) is much smaller.
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Conditional probability

How do we define conditional probability of random variables?
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Notation

Let X be a random vector then for c ∈ Rm let X = c denote

{ω ∈ Ω : X (ω) = c}
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Conditional probability

If X ,Y are discrete

P(X = i |Y = j) =
P(X = i ,Y = j)

P(Y = j)

In other notation
pij
p+j
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Conditional probability

Let X : Ω→ Rm with density fX .

If A ⊂ [m], define subvector of X

XA : Ω→ RA

The marginal density

fA(xA) :=

∫
RAC

fX (x)dxAC
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Conditional probability

Given a continuous X : Ω→ Rm and A,B ⊂ [m] disjoint. Then

fA|B(xA|xB) :=
fA∪B(xA, xB)

fB(xB)
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Where are we?

Defined conditional probability. Check!

Next?

Define conditional independence
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Conditional independence
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Conditional independence

L. Gustafsson Lectures on Algebraic Statistics Ch. 3.1 & 3.2



Conditional independence

Not independent!
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Conditional independence
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Conditional independence

A is independent of B if

P(A ∩ B) = P(A) · P(B)

A is conditionally independent of B given C if

P(A ∩ B|C ) = P(A|C ) · P(B|C )
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Conditional independence

How do we translate this to random variables?

XA ⊥⊥ XB |XC
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Conditional independence

Two discrete random vectors X ,Y are conditionally indpendent
given Z iff

∀i , j , k X = i ⊥⊥ Y = j given Z = k
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Conditional independence

For continuous random variables conditional independence means

fA∪B|C (xA, xB |xC ) = fA|C (xA|xC ) · fB|C (xB |xC )
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Conditional independence

Let A,B,C ,D ⊂ [m] be pairwise disjoint subsets.
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Conditional Independence

Symmetry
XA ⊥⊥ XB |XC =⇒ XB ⊥⊥ XA|XC
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Conditional Independence

Decomposition

XA ⊥⊥ XB∪D |XC =⇒ XA ⊥⊥ XB |XC

’If two combined items of information are judged irrelevant to A,
then each separate item is irrelevant as well’

Judea Pearl. Causality: Reasoning and Inference.
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Conditional Independence

Weak union

XA ⊥⊥ XB∪D |XC =⇒ XA ⊥⊥ XB |XC∪D

.

’Learning irrelevant information D cannot help the irrelevant
information B become relevant to A’
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Conditional Independence

Contraction

XA ⊥⊥ XB |XC∪D and XA ⊥⊥ XD |XC =⇒ XA ⊥⊥ XB∪D |XC

.

’If we judge B irrelevant to A after learning some irrelevant
information D , then B must have been irrelevant before we learned
D’
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Conditional Independence

Intersection (only for strictly positive distributions)

XA ⊥⊥ XB |XC∪D and XA ⊥⊥ XC |XB∪D =⇒ XA ⊥⊥ XB∪C |XD

.

’If B is irrelevant to A when we know C and if C is irrelevant to A
when we know B , then neither C nor B (nor their combination) is
relevant to A’
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Conditional Independence

X4 ⊥⊥ X1|X2∪3 and X4 ⊥⊥ X2|X1∪3 =⇒ X4 ⊥⊥ X1∪2|X3
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Where are we?

Define and gain intuition for conditional independence. Check!

Next?

For a discrete random vector, can we describe conditional
independence of subvectors purely in terms of the ’probability
tensor’ pi1...im?
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Conditional independence

Notation:
Given a discrete random vector X = (X1, . . . ,Xm) we will denote

pi1i2...im := P(X1 = i1, . . . ,Xm = im)

the distribution tensor.
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Discrete CI models

If X is a discrete, then XA ⊥⊥ XB |XC iff

p(iA,iB ,iC ,+) · p(kA,kB ,iC ,+) − p(iA,kB ,iC ,+) · p(kA,iB ,iC ,+) = 0

for all iA, kA ∈ RA, iB , kB ∈ RB , and iC ∈ RC .
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Discrete CI models

Proof:

The first step is just to untangle the notation.

p(iA,iB ,iC ,+) := P(XA = iA,XB = iB ,XC = iC )
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Discrete CI models

By definition all events XA = iA must be conditionally independent
of XB = iB given XC = iC . This means exactly that

p(iA,iB ,iC ,+)

p(+,+,iC ,+)
=

p(iA,+,iC ,+)

p(+,+,iC ,+)

p(+,iB ,iC ,+)

p(+,+,iC ,+)
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Discrete CI models

This means that the matrix for a fix iC , the conditional probability
matrix

p(iA,iB ,iC ,+)

p(+,+,iC ,+)
is rank 1.

Thus p(iA,iB ,iC ,+) must be rank 1 as well.
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Discrete CI models

However, matrices of rank 1 is a famous variety, namely a Segre
variety with well known equations, these are all the 2× 2 minors of
the matrix.

p(iA,iB ,iC ,+) · p(kA,kB ,iC ,+) − p(iA,kB ,iC ,+) · p(kA,iB ,iC ,+) = 0
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Discrete CI models

For the other direction, we regain the conditional probabilities of A
and B by taking marginals of the matrix.

�
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Discrete CI models

We define the conditional independence ideal

IA⊥⊥B|C = 〈p(iA,iB ,iC ,+) · p(kA,kB ,iC ,+) − p(iA,kB ,iC ,+) · p(kA,iB ,iC ,+)〉

It can be shown that this is prime (book omits it).

Satisfying several conditional statements amounts to adding the
corresponding CI. ideals together.
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Example (Marginal independence)

The (marginal) independence statement X1 ⊥⊥ X2 (or X1 ⊥⊥ X2|X∅)
checks whether

rk

p11 . . . p1r2
... . . .

pr11 . . . pr1r2

 ≤ 1

More generally,

∀i , j Xi ⊥⊥ Xj ⇐⇒ tensorrank(pi1i2...in) ≤ 1
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Theorem 3.1.11 (Binomial primary decomposition)

Can we paramterize these models?
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Theorem 3.1.11 (Binomial primary decomposition)

Every primary component and associated prime of a binomial ideal
is a binomial ideal. In particular, every irreducible component of a
binomial variety is a toric variety, and is unirational.

Corollary:
If C consists of CI statements of the form A ⊥⊥ B|C such that
A ∪ B ∪ C = [m], then every irreducible component of IC is a
unirational variety.
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Where are we?

Discrete CI models. Check!

Next?

CI models of normal distributions.
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Gaussian CI models

The statement XA ⊥⊥ XB |XC holds for X ∼ N (µ,Σ) if and only

rk ΣA∪C ,B∪C ≤ #C

ΣA∪C ,B∪C =

[
ΣA,B ΣA,C

ΣC ,B ΣC ,C

]
These are varieties in the entries of Σ, σi1...im .
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Proof idea

We have a formula for the conditional densities of a normally
distributed r.v.

ΣA∪B|C = (ΣA∪B,A∪B − ΣA∪B,CΣ−1
C ,CΣC ,A∪B)

XA ⊥⊥ XB |XC iff

(ΣA∪B,A∪B − ΣA∪B,CΣ−1
C ,CΣC ,A∪B)A,B = 0

(ΣA∪B,A∪B − ΣA∪B,CΣ−1
C ,CΣC ,A∪B)A,B = ΣA,B − ΣA,CΣ−1

C ,CΣC ,B
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Proof idea

Now using that ΣC ,C has rank #C the Guttman rank additivity
formula gives us the desired result

rk ΣA∪C ,B∪C = rk Schur + rk ΣC ,C

rk ΣA∪C ,B∪C = #C

�
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Gaussian CI models

Given disjoint A,B,C ⊂ [m], define

JA⊥⊥B|C = 〈(#C + 1)× (#C + 1) minors of ΣA∪C ,B∪C 〉.

This is an ideal of R[σij , 1 ≤ i ≤ j ≤ m].
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Example (Gaussian conditional and marginal independence)

Let C = {1 ⊥⊥ 3, 1 ⊥⊥ 3|2}.

JC = J1⊥⊥3 + J1⊥⊥3|2 = {rk[σ13] = 0} and {rk
[
σ12 σ13
σ22 σ23

]
= 1}

=⇒ 〈σ13, σ12σ23 − σ13σ22〉.

JC = 〈σ13, σ12σ23〉 = 〈σ12, σ13〉 ∩ 〈σ13, σ23〉 = J1⊥⊥{2,3} ∩ J{1,2}⊥⊥3

It follows that

X1 ⊥⊥ X3|X2 and X1 ⊥⊥ X3 ⇐⇒ X1 ⊥⊥ (X2,X3) or (X1,X2) ⊥⊥ X3,

holds for multivariate normal random vectors.
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Where are we?

CI models of normal distributions. Check!

Next?

Graphical models!
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Undirected graphical CI models

A graph will describe the conditional independence relations. i.e. it
describes C which can generate either IC or JC .
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Undirected graphical CI models

Suppose all edges in the graph G = (V ,E ) are undirected.

A random vector X satisfies the undirected pairwise Markov
property associated to G iff

∀(v ,w) 6∈ E Xv ⊥⊥ Xw |XV \{v ,w}
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Undirected graphical CI models

In this chain, every pair of non-neighbours are independent given
the other two.
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Undirected graphical CI models

For Gaussians these conditions correspond to

det(Σ(V \{w})×(V \{v})) = 0 ⇐⇒ (Σ−1)vw = 0.

It is a linear concentration model!

For discrete models this will correspond to the hierarchical model
associated to the simplicial complex whose facets are maximal
cliques of G .

L. Gustafsson Lectures on Algebraic Statistics Ch. 3.1 & 3.2



Undirected graphical CI models

For Gaussians these conditions correspond to

det(Σ(V \{w})×(V \{v})) = 0 ⇐⇒ (Σ−1)vw = 0.

It is a linear concentration model!

For discrete models this will correspond to the hierarchical model
associated to the simplicial complex whose facets are maximal
cliques of G .

L. Gustafsson Lectures on Algebraic Statistics Ch. 3.1 & 3.2



Undirected global Markov property

The global Markov property corresponding to G is the set of
constraints

A,B separated in GV \C XA ⊥⊥ XB |XC

A and B non-empty
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Undirected global Markov property

Theorem 3.2.2 . If the random vector X has a joint distribution PX

that satisfies the intersection axiom.

Then PX obeys the pairwise Markov property for an undirected
graph G if and only if it obeys the global Markov property for G.
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Undirected global Markov property

From this we could easily see that the conditions

Xi ⊥⊥ X{1,2,...,i−2}|Xi−1
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Undirected global Markov property

Proof:

One direction is trivial. Every pairwise condition is a global
condition since every pair of non-neighbouring vertices are
separated by the complement.
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Undirected global Markov property

Induction

[A ⊥⊥ B|C ] ≤ [A′ ⊥⊥ B ′|C ′] ⇐⇒ #C ≥ #C ′
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Undirected global Markov property

Case 1: A ∪ B ∪ C = [m]

Induction gives us that

XA ⊥⊥ Bi |XBj∪C

Intersection axiom
XA ⊥⊥ XB |XC
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Undirected global Markov property

Case 2: A ∪ B ∪ C ( [m]

Induction gives us that

XA ⊥⊥ XB |X{v}∪C
XA ⊥⊥ X{v}|XB∪C

Intersection and decomposition gives

XA ⊥⊥ XB∪{v}|XC =⇒ XA ⊥⊥ XB |XC

�
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Undirected global Markov property

Proposition 3.2.3 (Completeness of the undirected global Markov
property).

Suppose A,B,C ⊂ V are pairwise disjoint subset with A and B
non-empty. If C does not separate A and B in the undirected graph
G, then there exists a joint distribution for the random vector X
that obeys the undirected global Markov property for G but for
which XA ⊥⊥ XB |XC does not hold.
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Undirected global Markov property

Thanks for listening!

L. Gustafsson Lectures on Algebraic Statistics Ch. 3.1 & 3.2


