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Today's goal

@ Define Conditional Probability explicitly
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Today's goal

Define Conditional Probability explicitly
Define Conditional Independence (Cl)

°
°

@ Describe discrete models with Cl
@ Describe Gaussian models with Cl
°

Graphical models, undirected
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Probability intro

What is a conditional probability?
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Probability intro

What is a conditional probability?

Recall that for two events A, B we define it to be

P(AN B)

PAIB) = =55,
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Probability intro
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Probability intro

P(A) = 1/2 while P(A|B) is much smaller.
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Conditional probability

How do we define conditional probability of random variables?
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Let X be a random vector then for c € R™ let X = ¢ denote

{weQ: Xw)=c}
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Conditional probability

If X,Y are discrete
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Conditional probability

If X,Y are discrete

In other notation
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Conditional probability

Let X : Q — R™ with density fx.
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Conditional probability

Let X : Q — R™ with density fx.

If A C [m], define subvector of X

Xa: Q> RA
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Conditional probability

Let X : Q — R™ with density fx.

If A C [m], define subvector of X
Xa: Q> RA

The marginal density

fA(XA) = /RAC fx(X)dXAC
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Conditional probability

Given a continuous X : Q — R™ and A, B C [m] disjoint. Then

fau(xa, xB)

fA\B(XA‘XB) = fB(XB)
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Defined conditional probability. Check!
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Defined conditional probability. Check!  Next?
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Defined conditional probability. Check!  Next?

Define conditional independence
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Conditional independence
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Conditional independence

P(A) = 16/49
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Conditional independence

B| P(B) = 18/49
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Conditional independence

o)
A
P(A) = 16/49
P(B) = 18/49
B P(ANB)=6/49

Not independent!
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Conditional independence
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Conditional independence

AlC pac) =13

P(BIC) = 1/2
P(ANBI|C)=1/6
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Conditional independence

A is independent of B if

P(AN B) = P(A) - P(B)
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Conditional independence

A is independent of B if
P(ANnB) =P(A) - P(B)
A is conditionally independent of B given C if

P(AN B|C) = P(A|C) - P(B|C)
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Conditional independence

How do we translate this to random variables?

Xa 1L Xg|Xc
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Conditional independence

Two discrete random vectors X, Y are conditionally indpendent
given Z iff

Vi jk X=ilY=jgivenZ=k
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Conditional independence

For continuous random variables conditional independence means

faus|c(xa; x8|xc) = fajc(xalxc) - fajc(x8lxc)
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Conditional independence

Let A, B, C, D C [m] be pairwise disjoint subsets.
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Conditional Independence

Symmetry
XA aiR XB|XC — XB 1L XA|XC
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Conditional Independence

Decomposition

XA g XBUD’XC — XA Al XB’XC
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Conditional Independence

Decomposition
XA g XBUD’XC — XA Al XB’XC

'If two combined items of information are judged irrelevant to A,
then each separate item is irrelevant as well’

Judea Pearl. Causality: Reasoning and Inference.
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Conditional Independence

Weak union

Xa 1L Xgup|Xc = Xa 1L Xg|Xcup
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Conditional Independence

Weak union

Xa 1L Xgup|Xc = Xa 1L Xg|Xcup

'Learning irrelevant information D cannot help the irrelevant
information B become relevant to A’
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Conditional Independence

Contraction

XA 1 XB|XCUD and XA A XD‘XC — XA gin XBUD|XC
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Conditional Independence

Contraction

XA 1 XB|XCUD and XA A XD‘XC — XA gin XBUD|XC

'If we judge B irrelevant to A after learning some irrelevant
information D , then B must have been irrelevant before we learned
D’
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Conditional Independence

Intersection (only for strictly positive distributions)

XA A XB|XCUD and XA A XC|XBUD — XA jis XBUC|XD
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Conditional Independence

Intersection (only for strictly positive distributions)

XA A XB|XCUD and XA A XC|XBUD — XA jis XBUC|XD

'If B is irrelevant to A when we know C and if C is irrelevant to A
when we know B, then neither C nor B (nor their combination) is
relevant to A’
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Conditional Independence

X4 A X1|X2U3 and X4 AL X2‘X1U3 — X4 A X1U2|X3
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Define and gain intuition for conditional independence. Check!
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Define and gain intuition for conditional independence. Check!
Next?
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Define and gain intuition for conditional independence. Check!
Next?

For a discrete random vector, can we describe conditional

independence of subvectors purely in terms of the 'probability
tensor’ pj i ?
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Conditional independence

Notation:
Given a discrete random vector X = (Xi,..., Xn) we will denote

Pivia...im = IP)()<1 = il, . ,Xm = [m)

the distribution tensor.
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Discrete Cl models

If X is a discrete, then X L Xg|X¢ iff

Plinsissic+) * Plkakssic,+) = Pliakssic,+) * Plkasizsic,+) = 0

for all inska € Ra, i, kg € Rg, and ic € Rc.
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Discrete Cl models

Proof:
The first step is just to untangle the notation.

Plin,ig.ic,+) ‘= P(Xa = ia, Xg = ig, Xc = ic)
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Discrete Cl models

By definition all events X4 = is must be conditionally independent
of Xg = ig given X¢ = ic. This means exactly that

Pia,ig,ic,+) _ P(ia,+.ic,+) P(+,igsic,+)
P(+,+.,ic,+) P+ +ic,+) P(+,+,ic,+)
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Discrete Cl models

This means that the matrix for a fix i¢, the conditional probability
matrix 2UaB¢H) g prank 1.
P(+,+,ic,+)

Thus p( must be rank 1 as well.

iA7iB7iC’+)
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Discrete Cl models

However, matrices of rank 1 is a famous variety, namely a Segre
variety with well known equations, these are all the 2 x 2 minors of
the matrix.

Plinsigricr+) * Plkakssic,+) — Plinsks,ic,+) * Plkasigsic,+) = 0
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Discrete Cl models

For the other direction, we regain the conditional probabilities of A
and B by taking marginals of the matrix.

O
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Discrete Cl models

We define the conditional independence ideal

ZAJJ-B|C = <p(iA»iB»iC7+) " P(ka,kg,ic,+) — Plia;ks,ic,+) p(kA»iB7iC7+)>

It can be shown that this is prime (book omits it).
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Discrete Cl models

We define the conditional independence ideal

IAJJ.B'C = <p(iA7tiiC7+) ’ p(kAka7iC7+) B p(iAka7iC7+) ’ p(kAviB7iC7+)>

It can be shown that this is prime (book omits it).

Satisfying several conditional statements amounts to adding the
corresponding Cl. ideals together.
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Example (Marginal independence)

The (marginal) independence statement Xy 1L X, (or Xy L X3|Xp)
checks whether
P11 ... Pin

k| o <1

Prn1 - Pnn
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Example (Marginal independence)

The (marginal) independence statement Xy 1L X, (or Xy L X3|Xp)
checks whether
P11 ... Pin

k| oo <1
Prn1 --- Prn

More generally,

Vi,j Xi AL X; <= tensorrank(pj,...i;,) <1
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Theorem 3.1.11 (Binomial primary decomposition)

Can we paramterize these models?
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Theorem 3.1.11 (Binomial primary decomposition)

Every primary component and associated prime of a binomial ideal
is a binomial ideal. In particular, every irreducible component of a
binomial variety is a toric variety, and is unirational.
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Theorem 3.1.11 (Binomial primary decomposition)

Every primary component and associated prime of a binomial ideal
is a binomial ideal. In particular, every irreducible component of a
binomial variety is a toric variety, and is unirational.

Corollary:

If C consists of CI statements of the form A Ll B|C such that
AU B U C = [m], then every irreducible component of /¢ is a
unirational variety.
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Discrete Cl models. Check!

L. Gustafsson Lectures on Algebraic Statistics Ch. 3.1 & 3.2



Discrete Cl models. Check!  Next?
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Discrete Cl models. Check!  Next?

Cl models of normal distributions.

L. Gustafsson Lectures on Algebraic Statistics Ch. 3.1 & 3.2



Gaussian Cl models

The statement X L Xg|Xc¢ holds for X ~ N(u,X) if and only

rkXauc,Buc < #C
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Gaussian Cl models

The statement X L Xg|Xc¢ holds for X ~ N(u,X) if and only

rkXauc,Buc < #C

> AB ZA,C}

Y auc,BUC = [Zc . Yoo
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Gaussian Cl models

The statement X L Xg|Xc¢ holds for X ~ N(u,X) if and only

rkXauc,Buc < #C

> AB ZA,C}

Y auc,BUC = [Zc . Yoo

These are varieties in the entries of X, oj, . .
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We have a formula for the conditional densities of a normally
distributed r.v.

-1
> aus|c = (XauB,auB — TauB,cX ¢ cXc,AuB)
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We have a formula for the conditional densities of a normally
distributed r.v.

-1
> aus|c = (XauB,auB — TauB,cX ¢ cXc,AuB)

X AL Xg|Xc iff

-1
(XauB,auB — Zaus,cXc cXc,auB)as =0
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We have a formula for the conditional densities of a normally
distributed r.v.

-1
> aus|c = (XauB,auB — TauB,cX ¢ cXc,AuB)

X AL Xg|Xc iff

-1
(XauB,auB — Zaus,cXc cXc,auB)as =0

—1 -1
(ZauB,auB — ZAUB,CX . cXC,AUB)AB = LAB — LACLC (B
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We have a formula for the conditional densities of a normally
distributed r.v.

Y auslc = (ZauB,auB — ZAuta,czalczc,Aws)
Xa AL Xg|Xc iff

2aB— ZA,CZE}CZC,B =0
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We have a formula for the conditional densities of a normally
distributed r.v.

Y auslc = (ZauB,auB — ZAuta,czalczc,Aws)
Xa 1L Xg|Xc iff
2aB— ZA,CZE}CZC,B =0
This is the 'Schur complement’ of X ¢ ¢ in

Y AB ZA,C:|

Y auc,BUC = [Zc . Yoo
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Now using that ¥ ¢ ¢ has rank # C the Guttman rank additivity
formula gives us the desired result

rk X auc,Buc = rkSchur +rkX¢ ¢
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Now using that ¥ ¢ ¢ has rank # C the Guttman rank additivity
formula gives us the desired result

rk X auc,Buc = rkSchur +rkX¢ ¢

rkXauc,Buc = #C

L. Gustafsson Lectures on Algebraic Statistics Ch. 3.1 & 3.2



Gaussian Cl models

Given disjoint A, B, C C [m], define

Jausic = ((#C + 1) x (#C + 1) minors of Zauc,Buc)-

This is an ideal of R[oj;,1 < i< j < ml].

L. Gustafsson Lectures on Algebraic Statistics Ch. 3.1 & 3.2



Example (Gaussian conditional and marginal independence)

LetC = {113, 11 3[2}.

Je=hus+ J1L3|2 = {rk[o13] = 0} and {rk [012 013] =1}
022 023
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Example (Gaussian conditional and marginal independence)

LetC = {113, 11 3[2}.

Je=hus+ J1L3|2 = {rk[o13] = 0} and {rk [012 013] =1}
022 023

— <013, 012023 — 013022>-
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Example (Gaussian conditional and marginal independence)

LetC = {113, 11 3[2}.

Je=hus+ J1L3|2 = {rk[o13] = 0} and {rk [012 013] =1}
022 023

— <013, 012023 — 013022>-

Jo = (013,012023) = (012,013) N (013,023) = J1 11233 N 103113
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Example (Gaussian conditional and marginal independence)

LetC = {113, 11 3[2}.

Jo=1J Jr 3 = {rk[o13] = 0} and {rk |7*? "13]:1
c 13 + Jruzp = {rk[ois] }and {r [022 o3 }

— <013, 012023 — 013022>-

Jo = (013,012023) = (012,013) N (013,023) = J1 11233 N 103113
It follows that

X1 AL X3|X2 and X1 AL X3 <~ X1 HIR (XQ,X3) or (Xl,X2) AL X3,

holds for multivariate normal random vectors.
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Cl models of normal distributions. Check!
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Cl models of normal distributions. Check!  Next?
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Cl models of normal distributions. Check!  Next?

Graphical models!
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Undirected graphical CI models

A graph will describe the conditional independence relations. i.e. it
describes C which can generate either /¢ or Jc.
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Undirected graphical CI models

Suppose all edges in the graph G = (V, E) are undirected.

A random vector X satisfies the undirected pairwise Markov
property associated to G iff

Y(v,w) ¢ E Xy AL XW‘XV\{V,W}
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Undirected graphical CI models

In this chain, every pair of non-neighbours are independent given
the other two.

O OO0
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Undirected graphical CI models

For Gaussians these conditions correspond to

det(Z(V\{w})x(V\{v})) =0 <— (Zil)vw =0.

It is a linear concentration modell

L. Gustafsson Lectures on Algebraic Statistics Ch. 3.1 & 3.2



Undirected graphical CI models

For Gaussians these conditions correspond to
det(Z(v\ fwhx(V\(v) =0 == (Z7)w = 0.
It is a linear concentration model!

For discrete models this will correspond to the hierarchical model
associated to the simplicial complex whose facets are maximal
cliques of G.
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Undirected global Markov property

The global Markov property corresponding to G is the set of
constraints

A, B separated in Gy ¢ Xa 1L Xg|Xc

A and B non-empty
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Undirected global Markov property

Theorem 3.2.2 . If the random vector X has a joint distribution PX
that satisfies the intersection axiom.

Then PX obeys the pairwise Markov property for an undirected
graph G if and only if it obeys the global Markov property for G.
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Undirected global Markov property

From this we could easily see that the conditions

Xi 1L Xp10....i—2 |1 Xi-1

O—(0—(—®
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Undirected global Markov property

Proof:
One direction is trivial. Every pairwise condition is a global

condition since every pair of non-neighbouring vertices are
separated by the complement.
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Undirected global Markov property

Induction

[ALL BIC]<[A 1L B|C] = #C>#C
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Undirected global Markov property

Case 1: AUBUC = [m]

Induction gives us that
Xa 1L Bj|Xg,uc

Intersection axiom
Xa 1L Xg|Xc

L. Gustafsson Lectures on Algebraic Statistics Ch. 3.1 & 3.2



Undirected global Markov property

Case 2: AUBUC C [m]

Induction gives us that
Xa 1L Xg|X{v3uc
Xa AL X¢11XBuc
Intersection and decomposition gives
Xa AL Xgupy|Xe = Xa 1L Xg|Xc
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Undirected global Markov property

Proposition 3.2.3 (Completeness of the undirected global Markov
property).

Suppose A, B, C C V are pairwise disjoint subset with A and B
non-empty. If C does not separate A and B in the undirected graph
G, then there exists a joint distribution for the random vector X
that obeys the undirected global Markov property for G but for
which X4 1L Xg|X¢ does not hold.
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Undirected global Markov property

Thanks for listening!

L. Gustafsson Lectures on Algebraic Statistics Ch. 3.1 & 3.2



