Lectures on Algebraic Statistics Ch. 3.1 \& 3.2

Lukas Gustafsson

April 11, 2021

Today's goal

- Define Conditional Probability explicitly

Today's goal

- Define Conditional Probability explicitly
- Define Conditional Independence (CI)

Today's goal

- Define Conditional Probability explicitly
- Define Conditional Independence (CI)
- Describe discrete models with Cl

Today's goal

- Define Conditional Probability explicitly
- Define Conditional Independence (CI)
- Describe discrete models with Cl
- Describe Gaussian models with Cl

Today's goal

- Define Conditional Probability explicitly
- Define Conditional Independence (CI)
- Describe discrete models with Cl
- Describe Gaussian models with Cl
- Graphical models, undirected

Probability intro

What is a conditional probability?

Probability intro

What is a conditional probability?
Recall that for two events A, B we define it to be

$$
\mathbb{P}(A \mid B)=\frac{\mathbb{P}(A \cap B)}{\mathbb{P}(B)}
$$

Probability intro

Probability intro

$\mathbb{P}(A)=1 / 2$ while $\mathbb{P}(A \mid B)$ is much smaller.

Conditional probability

How do we define conditional probability of random variables?

Notation

Let X be a random vector then for $c \in \mathbb{R}^{m}$ let $X=c$ denote

$$
\{\omega \in \Omega: \quad X(\omega)=c\}
$$

Conditional probability

If X, Y are discrete

$$
\mathbb{P}(X=i \mid Y=j)=\frac{\mathbb{P}(X=i, Y=j)}{\mathbb{P}(Y=j)}
$$

Conditional probability

If X, Y are discrete

$$
\mathbb{P}(X=i \mid Y=j)=\frac{\mathbb{P}(X=i, Y=j)}{\mathbb{P}(Y=j)}
$$

In other notation

$$
\frac{p_{i j}}{p_{+j}}
$$

Conditional probability

Let $X: \Omega \rightarrow \mathbb{R}^{m}$ with density f_{X}.

Conditional probability

Let $X: \Omega \rightarrow \mathbb{R}^{m}$ with density f_{X}.
If $A \subset[m]$, define subvector of X

$$
X_{A}: \Omega \rightarrow \mathbb{R}^{A}
$$

Conditional probability

Let $X: \Omega \rightarrow \mathbb{R}^{m}$ with density f_{X}.
If $A \subset[m]$, define subvector of X

$$
X_{A}: \Omega \rightarrow \mathbb{R}^{A}
$$

The marginal density

$$
f_{A}\left(x_{A}\right):=\int_{\mathbb{R}^{A} C} f_{X}(x) d x_{A^{C}}
$$

Conditional probability

Given a continuous $X: \Omega \rightarrow \mathbb{R}^{m}$ and $A, B \subset[m]$ disjoint. Then

$$
f_{A \mid B}\left(x_{A} \mid x_{B}\right):=\frac{f_{A \cup B}\left(x_{A}, x_{B}\right)}{f_{B}\left(x_{B}\right)}
$$

Where are we?

Defined conditional probability. Check!

Where are we?

Defined conditional probability. Check! Next?

Where are we?

Defined conditional probability. Check! Next?
Define conditional independence

Conditional independence

Ω

Conditional independence

Conditional independence

Ω

$$
P(B)=18 / 49
$$

Conditional independence

Ω

$$
\begin{gathered}
P(A)=16 / 49 \\
P(B)=18 / 49 \\
P(A \cap B)=6 / 49
\end{gathered}
$$

Not independent!

Conditional independence

Conditional independence

$$
\begin{gathered}
P(A \mid C)=1 / 3 \\
P(B \mid C)=1 / 2 \\
P(A \cap B \mid C)=1 / 6
\end{gathered}
$$

Conditional independence

A is independent of B if

$$
\mathbb{P}(A \cap B)=\mathbb{P}(A) \cdot \mathbb{P}(B)
$$

Conditional independence

A is independent of B if

$$
\mathbb{P}(A \cap B)=\mathbb{P}(A) \cdot \mathbb{P}(B)
$$

A is conditionally independent of B given C if

$$
\mathbb{P}(A \cap B \mid C)=\mathbb{P}(A \mid C) \cdot \mathbb{P}(B \mid C)
$$

Conditional independence

How do we translate this to random variables?

$$
X_{A} \Perp X_{B} \mid X_{C}
$$

Conditional independence

Two discrete random vectors X, Y are conditionally indpendent given Z iff

$$
\forall i, j, k \quad X=i \Perp Y=j \text { given } Z=k
$$

Conditional independence

For continuous random variables conditional independence means

$$
f_{A \cup B \mid C}\left(x_{A}, x_{B} \mid x_{C}\right)=f_{A \mid C}\left(x_{A} \mid x_{C}\right) \cdot f_{B \mid C}\left(x_{B} \mid x_{C}\right)
$$

Conditional independence

Let $A, B, C, D \subset[m]$ be pairwise disjoint subsets.

Conditional Independence

Symmetry

$$
X_{A} \Perp X_{B}\left|X_{C} \Longrightarrow X_{B} \Perp X_{A}\right| X_{C}
$$

Conditional Independence

Decomposition

$$
X_{A} \Perp X_{B \cup D}\left|X_{C} \Longrightarrow X_{A} \Perp X_{B}\right| X_{C}
$$

Conditional Independence

Decomposition

$$
X_{A} \Perp X_{B \cup D}\left|X_{C} \Longrightarrow X_{A} \Perp X_{B}\right| X_{C}
$$

'If two combined items of information are judged irrelevant to A, then each separate item is irrelevant as well'

Judea Pearl. Causality: Reasoning and Inference.

Conditional Independence

Weak union

$$
X_{A} \Perp X_{B \cup D}\left|X_{C} \Longrightarrow X_{A} \Perp X_{B}\right| X_{C \cup D}
$$

Conditional Independence

Weak union

$$
X_{A} \Perp X_{B \cup D}\left|X_{C} \Longrightarrow X_{A} \Perp X_{B}\right| X_{C \cup D}
$$

'Learning irrelevant information D cannot help the irrelevant information B become relevant to A^{\prime}

Conditional Independence

Contraction

$$
X_{A} \Perp X_{B} \mid X_{C \cup D} \text { and } X_{A} \Perp X_{D}\left|X_{C} \Longrightarrow X_{A} \Perp X_{B \cup D}\right| X_{C}
$$

Conditional Independence

Contraction

$$
X_{A} \Perp X_{B} \mid X_{C \cup D} \text { and } X_{A} \Perp X_{D}\left|X_{C} \Longrightarrow X_{A} \Perp X_{B \cup D}\right| X_{C}
$$

'If we judge B irrelevant to A after learning some irrelevant information D, then B must have been irrelevant before we learned D^{\prime}

Conditional Independence

Intersection (only for strictly positive distributions)

$$
X_{A} \Perp X_{B} \mid X_{C \cup D} \text { and } X_{A} \Perp X_{C}\left|X_{B \cup D} \Longrightarrow X_{A} \Perp X_{B \cup C}\right| X_{D}
$$

Conditional Independence

Intersection (only for strictly positive distributions)

$$
X_{A} \Perp X_{B} \mid X_{C \cup D} \text { and } X_{A} \Perp X_{C}\left|X_{B \cup D} \Longrightarrow X_{A} \Perp X_{B \cup C}\right| X_{D}
$$

'If B is irrelevant to A when we know C and if C is irrelevant to A when we know B, then neither C nor B (nor their combination) is relevant to A^{\prime}

Conditional Independence

$$
X_{4} \Perp X_{1} \mid X_{2 \cup 3} \text { and } X_{4} \Perp X_{2}\left|X_{1 \cup 3} \Longrightarrow X_{4} \Perp X_{1 \cup 2}\right| X_{3}
$$

Where are we?

Define and gain intuition for conditional independence. Check!

Where are we?

Define and gain intuition for conditional independence. Check! Next?

Where are we?

Define and gain intuition for conditional independence. Check! Next?

For a discrete random vector, can we describe conditional independence of subvectors purely in terms of the 'probability tensor' $p_{i_{1} \ldots i_{m}}$?

Conditional independence

Notation:
Given a discrete random vector $X=\left(X_{1}, \ldots, X_{m}\right)$ we will denote

$$
p_{i_{1} i_{2} \ldots i_{m}}:=\mathbb{P}\left(X_{1}=i_{1}, \ldots, X_{m}=i_{m}\right)
$$

the distribution tensor.

Discrete Cl models

If X is a discrete, then $X_{A} \Perp X_{B} \mid X_{C}$ iff

$$
p_{\left(i_{A}, i_{B}, i_{C},+\right)} \cdot p_{\left(k_{A}, k_{B}, i_{C},+\right)}-p_{\left(i_{A}, k_{B}, i_{C},+\right)} \cdot p_{\left(k_{A}, i_{B}, i_{C},+\right)}=0
$$

for all $i_{A}, k_{A} \in \mathcal{R}_{A}, i_{B}, k_{B} \in \mathcal{R}_{B}$, and $i_{C} \in \mathcal{R}_{C}$.

Discrete Cl models

Proof:

The first step is just to untangle the notation.

$$
p_{\left(i_{A}, i_{B}, i_{C},+\right)}:=\mathbb{P}\left(X_{A}=i_{A}, X_{B}=i_{B}, X_{C}=i_{C}\right)
$$

Discrete Cl models

By definition all events $X_{A}=i_{A}$ must be conditionally independent of $X_{B}=i_{B}$ given $X_{C}=i_{C}$. This means exactly that

$$
\frac{p_{\left(i_{A}, i_{B}, i_{C},+\right)}}{p_{\left(+,+, i_{C},+\right)}}=\frac{p_{\left(i_{A},+, i_{C},+\right)}}{p_{\left(+,+, i_{C},+\right)}} \frac{p_{\left(+, i_{B}, i_{C},+\right)}}{p_{\left(+,+, i_{C},+\right)}}
$$

Discrete Cl models

This means that the matrix for a fix i_{C}, the conditional probability matrix $\frac{p_{\left(i_{A}, i_{B}, i_{C},+\right)}}{p_{\left(+,+, i_{C},+\right)}}$ is rank 1 .

Thus $p_{\left(i_{A}, i_{B}, i_{C},+\right)}$ must be rank 1 as well.

Discrete Cl models

However, matrices of rank 1 is a famous variety, namely a Segre variety with well known equations, these are all the 2×2 minors of the matrix.

$$
p_{\left(i_{A}, i_{B}, i_{C},+\right)} \cdot p_{\left(k_{A}, k_{B}, i_{C},+\right)}-p_{\left(i_{A}, k_{B}, i_{C},+\right)} \cdot p_{\left(k_{A}, i_{B}, i_{C},+\right)}=0
$$

Discrete Cl models

For the other direction, we regain the conditional probabilities of A and B by taking marginals of the matrix.

Discrete Cl models

We define the conditional independence ideal

$$
\mathcal{I}_{A \Perp B \mid C}=\left\langle p_{\left(i_{A}, i_{B}, i_{C},+\right)} \cdot p_{\left(k_{A}, k_{B}, i_{C},+\right)}-p_{\left(i_{A}, k_{B}, i_{C},+\right)} \cdot p_{\left(k_{A}, i_{B}, i_{C},+\right)}\right\rangle
$$

It can be shown that this is prime (book omits it).

Discrete Cl models

We define the conditional independence ideal

$$
\mathcal{I}_{A \Perp B \mid C}=\left\langle p_{\left(i_{A}, i_{B}, i_{c},+\right)} \cdot p_{\left(k_{A}, k_{B}, i_{C},+\right)}-p_{\left(i_{A}, k_{B}, i_{C},+\right)} \cdot p_{\left(k_{A}, i_{B}, i_{C},+\right)}\right\rangle
$$

It can be shown that this is prime (book omits it).
Satisfying several conditional statements amounts to adding the corresponding Cl . ideals together.

Example (Marginal independence)

The (marginal) independence statement $X_{1} \Perp X_{2}\left(\right.$ or $\left.X_{1} \Perp X_{2} \mid X_{\emptyset}\right)$ checks whether

$$
\mathrm{rk}\left[\begin{array}{ccc}
p_{11} & \ldots & p_{1 r_{2}} \\
\vdots & \ldots & \\
p_{r_{1} 1} & \cdots & p_{r_{1} r_{2}}
\end{array}\right] \leq 1
$$

Example (Marginal independence)

The (marginal) independence statement $X_{1} \Perp X_{2}\left(\right.$ or $\left.X_{1} \Perp X_{2} \mid X_{\emptyset}\right)$ checks whether

$$
\mathrm{rk}\left[\begin{array}{ccc}
p_{11} & \ldots & p_{1 r_{2}} \\
\vdots & \ldots & \\
p_{r_{1} 1} & \cdots & p_{r_{1} r_{2}}
\end{array}\right] \leq 1
$$

More generally,

$$
\forall i, j \quad X_{i} \Perp X_{j} \Longleftrightarrow \text { tensorrank }\left(p_{i_{1} i_{2} \ldots i_{n}}\right) \leq 1
$$

Theorem 3.1.11 (Binomial primary decomposition)

Can we paramterize these models?

Every primary component and associated prime of a binomial ideal is a binomial ideal. In particular, every irreducible component of a binomial variety is a toric variety, and is unirational.

Every primary component and associated prime of a binomial ideal is a binomial ideal. In particular, every irreducible component of a binomial variety is a toric variety, and is unirational.

Corollary:
If \mathcal{C} consists of $C l$ statements of the form $A \Perp B \mid C$ such that $A \cup B \cup C=[m]$, then every irreducible component of $I_{\mathcal{C}}$ is a unirational variety.

Where are we?

Discrete Cl models. Check!

Where are we?

Discrete Cl models. Check! Next?

Where are we?

Discrete Cl models. Check! Next?

Cl models of normal distributions.

Gaussian CI models

The statement $X_{A} \Perp X_{B} \mid X_{C}$ holds for $X \sim \mathcal{N}(\mu, \Sigma)$ if and only

$$
\mathrm{rk} \Sigma_{A \cup C, B \cup C} \leq \# C
$$

Gaussian CI models

The statement $X_{A} \Perp X_{B} \mid X_{C}$ holds for $X \sim \mathcal{N}(\mu, \Sigma)$ if and only

$$
\mathrm{rk} \Sigma_{A \cup C, B \cup C} \leq \# C
$$

$$
\Sigma_{A \cup C, B \cup C}=\left[\begin{array}{ll}
\Sigma_{A, B} & \Sigma_{A, C} \\
\Sigma_{C, B} & \Sigma_{C, C}
\end{array}\right]
$$

Gaussian CI models

The statement $X_{A} \Perp X_{B} \mid X_{C}$ holds for $X \sim \mathcal{N}(\mu, \Sigma)$ if and only

$$
\mathrm{rk} \Sigma_{A \cup C, B \cup C} \leq \# C
$$

$$
\Sigma_{A \cup C, B \cup C}=\left[\begin{array}{ll}
\Sigma_{A, B} & \Sigma_{A, C} \\
\Sigma_{C, B} & \Sigma_{C, C}
\end{array}\right]
$$

These are varieties in the entries of $\Sigma, \sigma_{i_{1} \ldots i_{m}}$.

Proof idea

We have a formula for the conditional densities of a normally distributed r.v.

$$
\Sigma_{A \cup B \mid C}=\left(\Sigma_{A \cup B, A \cup B}-\Sigma_{A \cup B, C} \Sigma_{C, C}^{-1} \Sigma_{C, A \cup B}\right)
$$

We have a formula for the conditional densities of a normally distributed r.v.

$$
\Sigma_{A \cup B \mid C}=\left(\Sigma_{A \cup B, A \cup B}-\Sigma_{A \cup B, C} \Sigma_{C, C}^{-1} \Sigma_{C, A \cup B}\right)
$$

$X_{A} \Perp X_{B} \mid X_{C}$ iff

$$
\left(\Sigma_{A \cup B, A \cup B}-\Sigma_{A \cup B, C} \Sigma_{C, C}^{-1} \Sigma_{C, A \cup B}\right)_{A, B}=0
$$

We have a formula for the conditional densities of a normally distributed r.v.

$$
\Sigma_{A \cup B \mid C}=\left(\Sigma_{A \cup B, A \cup B}-\Sigma_{A \cup B, C} \Sigma_{C, C}^{-1} \Sigma_{C, A \cup B}\right)
$$

$X_{A} \Perp X_{B} \mid X_{C}$ iff

$$
\left(\Sigma_{A \cup B, A \cup B}-\Sigma_{A \cup B, C} \Sigma_{C, C}^{-1} \Sigma_{C, A \cup B}\right)_{A, B}=0
$$

$\left(\Sigma_{A \cup B, A \cup B}-\Sigma_{A \cup B, C} \Sigma_{C, C}^{-1} \Sigma_{C, A \cup B}\right)_{A, B}=\Sigma_{A, B}-\Sigma_{A, C} \Sigma_{C, C}^{-1} \Sigma_{C, B}$

We have a formula for the conditional densities of a normally distributed r.v.

$$
\Sigma_{A \cup B \mid C}=\left(\Sigma_{A \cup B, A \cup B}-\Sigma_{A \cup B, C} \Sigma_{C, C}^{-1} \Sigma_{C, A \cup B}\right)
$$

$X_{A} \Perp X_{B} \mid X_{C}$ iff

$$
\Sigma_{A, B}-\Sigma_{A, C} \Sigma_{C, C}^{-1} \Sigma_{C, B}=0
$$

We have a formula for the conditional densities of a normally distributed r.v.

$$
\Sigma_{A \cup B \mid C}=\left(\Sigma_{A \cup B, A \cup B}-\Sigma_{A \cup B, C} \Sigma_{C, C}^{-1} \Sigma_{C, A \cup B}\right)
$$

$X_{A} \Perp X_{B} \mid X_{C}$ iff

$$
\Sigma_{A, B}-\Sigma_{A, C} \Sigma_{C, C}^{-1} \Sigma_{C, B}=0
$$

This is the 'Schur complement' of $\Sigma_{C, C}$ in

$$
\Sigma_{A \cup C, B \cup C}=\left[\begin{array}{ll}
\Sigma_{A, B} & \Sigma_{A, C} \\
\Sigma_{C, B} & \Sigma_{C, C}
\end{array}\right]
$$

Proof idea

Now using that $\Sigma_{C, C}$ has rank \#C the Guttman rank additivity formula gives us the desired result

$$
\operatorname{rk} \Sigma_{A \cup C, B \cup C}=\mathrm{rk} S c h u r+\operatorname{rk} \Sigma_{C, C}
$$

Proof idea

Now using that $\Sigma_{C, C}$ has rank \#C the Guttman rank additivity formula gives us the desired result

$$
\begin{gathered}
\mathrm{rk} \Sigma_{A \cup C, B \cup C}=\mathrm{rk} \text { Schur }+\mathrm{rk} \Sigma_{C, C} \\
\mathrm{rk} \Sigma_{A \cup C, B \cup C}=\# C
\end{gathered}
$$

Gaussian Cl models

Given disjoint $A, B, C \subset[m]$, define

$$
J_{A \Perp B \mid C}=\left\langle(\# C+1) \times(\# C+1) \text { minors of } \Sigma_{A \cup C, B \cup C}\right\rangle .
$$

This is an ideal of $\mathbb{R}\left[\sigma_{i j}, 1 \leq i \leq j \leq m\right]$.

Example (Gaussian conditional and marginal independence)

$$
\begin{aligned}
\text { Let } \mathcal{C} & =\{1 \Perp 3, \quad 1 \Perp 3 \mid 2\} . \\
J_{\mathcal{C}} & =J_{1 \Perp 3}+J_{1 \Perp 3 \mid 2}=\left\{\mathrm{rk}\left[\sigma_{13}\right]=0\right\} \text { and }\left\{\mathrm{rk}\left[\begin{array}{cc}
\sigma_{12} & \sigma_{13} \\
\sigma_{22} & \sigma_{23}
\end{array}\right]=1\right\}
\end{aligned}
$$

Example (Gaussian conditional and marginal independence)

$$
\begin{aligned}
& \text { Let } \mathcal{C}=\{1 \Perp 3, \quad 1 \Perp 3 \mid 2\} \text {. } \\
& \qquad \begin{array}{l}
J_{\mathcal{C}}=J_{1 \Perp 3}+J_{1 \Perp 3 \mid 2}=\left\{\operatorname{rk}\left[\sigma_{13}\right]=0\right\} \text { and }\left\{\mathrm{rk}\left[\begin{array}{ll}
\sigma_{12} & \sigma_{13} \\
\sigma_{22} & \sigma_{23}
\end{array}\right]=1\right\} \\
\\
\Longrightarrow\left\langle\sigma_{13}, \sigma_{12} \sigma_{23}-\sigma_{13} \sigma_{22}\right\rangle
\end{array}
\end{aligned}
$$

Example (Gaussian conditional and marginal independence)

$$
\begin{aligned}
& \text { Let } \mathcal{C}=\{1 \Perp 3, \quad 1 \Perp 3 \mid 2\} . \\
& \qquad \begin{array}{l}
J_{\mathcal{C}}=J_{1 \Perp 3}+J_{1 \Perp 3 \mid 2}=\left\{\mathrm{rk}\left[\sigma_{13}\right]=0\right\} \text { and }\left\{\mathrm{rk}\left[\begin{array}{cc}
\sigma_{12} & \sigma_{13} \\
\sigma_{22} & \sigma_{23}
\end{array}\right]=1\right\} \\
\Longrightarrow\left\langle\sigma_{13}, \sigma_{12} \sigma_{23}-\sigma_{13} \sigma_{22}\right\rangle . \\
J_{\mathcal{C}}=\left\langle\sigma_{13}, \sigma_{12} \sigma_{23}\right\rangle=\left\langle\sigma_{12}, \sigma_{13}\right\rangle \cap\left\langle\sigma_{13}, \sigma_{23}\right\rangle=J_{1 \Perp\{2,3\}} \cap J_{\{1,2\} \Perp 3}
\end{array}
\end{aligned}
$$

Example (Gaussian conditional and marginal independence)

$$
\begin{aligned}
& \text { Let } \mathcal{C}=\{1 \Perp 3, \quad 1 \Perp 3 \mid 2\} . \\
& \qquad \begin{array}{l}
J_{\mathcal{C}}=J_{1 \Perp 3}+J_{1 \Perp 3 \mid 2}=\left\{\mathrm{rk}\left[\sigma_{13}\right]=0\right\} \text { and }\left\{\mathrm{rk}\left[\begin{array}{ll}
\sigma_{12} & \sigma_{13} \\
\sigma_{22} & \sigma_{23}
\end{array}\right]=1\right\} \\
\Longrightarrow\left\langle\sigma_{13}, \sigma_{12} \sigma_{23}-\sigma_{13} \sigma_{22}\right\rangle . \\
J_{\mathcal{C}}=\left\langle\sigma_{13}, \sigma_{12} \sigma_{23}\right\rangle=\left\langle\sigma_{12}, \sigma_{13}\right\rangle \cap\left\langle\sigma_{13}, \sigma_{23}\right\rangle=J_{1 \Perp\{2,3\}} \cap J_{\{1,2\} \Perp 3} \\
\text { It follows that } \\
X_{1} \Perp X_{3} \mid X_{2} \text { and } X_{1} \Perp X_{3} \Longleftrightarrow X_{1} \Perp\left(X_{2}, X_{3}\right) \text { or }\left(X_{1}, X_{2}\right) \Perp X_{3},
\end{array}
\end{aligned}
$$ holds for multivariate normal random vectors.

Where are we?

Cl models of normal distributions. Check!

Where are we?

Cl models of normal distributions. Check! Next?

Where are we?

Cl models of normal distributions. Check! Next?

Graphical models!

Undirected graphical CI models

A graph will describe the conditional independence relations. i.e. it describes C which can generate either I_{C} or J_{C}.

Undirected graphical CI models

Suppose all edges in the graph $G=(V, E)$ are undirected.
A random vector X satisfies the undirected pairwise Markov property associated to G iff

$$
\forall(v, w) \notin E \quad X_{v} \Perp X_{w} \mid X_{v \backslash\{v, w\}}
$$

Undirected graphical CI models

In this chain, every pair of non-neighbours are independent given the other two.

Undirected graphical CI models

For Gaussians these conditions correspond to

$$
\operatorname{det}\left(\Sigma_{(V \backslash\{w\}) \times(V \backslash\{v\})}\right)=0 \Longleftrightarrow\left(\Sigma^{-1}\right)_{v w}=0
$$

It is a linear concentration model!

Undirected graphical CI models

For Gaussians these conditions correspond to

$$
\operatorname{det}\left(\Sigma_{(V \backslash\{w\}) \times(V \backslash\{v\})}\right)=0 \Longleftrightarrow\left(\Sigma^{-1}\right)_{v w}=0
$$

It is a linear concentration model!

For discrete models this will correspond to the hierarchical model associated to the simplicial complex whose facets are maximal cliques of G.

Undirected global Markov property

The global Markov property corresponding to G is the set of constraints

$$
A, B \text { separated in } G_{V \backslash C} \quad X_{A} \Perp X_{B} \mid X_{C}
$$

A and B non-empty

Undirected global Markov property

Theorem 3.2.2. If the random vector X has a joint distribution \mathcal{P}^{X} that satisfies the intersection axiom.

Then \mathcal{P}^{X} obeys the pairwise Markov property for an undirected graph G if and only if it obeys the global Markov property for G.

Undirected global Markov property

From this we could easily see that the conditions

$$
X_{i} \Perp X_{\{1,2, \ldots, i-2\}} \mid X_{i-1}
$$

Undirected global Markov property

Proof:

One direction is trivial. Every pairwise condition is a global condition since every pair of non-neighbouring vertices are separated by the complement.

Undirected global Markov property

Induction

$$
[A \Perp B \mid C] \leq\left[A^{\prime} \Perp B^{\prime} \mid C^{\prime}\right] \quad \Longleftrightarrow \quad \# C \geq \# C^{\prime}
$$

Undirected global Markov property

Case 1: $A \cup B \cup C=[m]$

Induction gives us that

$$
X_{A} \Perp B_{i} \mid X_{B_{j} \cup C}
$$

Intersection axiom

$$
X_{A} \Perp X_{B} \mid X_{C}
$$

Undirected global Markov property

Case 2: $A \cup B \cup C \subsetneq[m]$

Induction gives us that

$$
\begin{aligned}
& X_{A} \Perp X_{B} \mid X_{\{v\} \cup C} \\
& X_{A} \Perp X_{\{v\}} \mid X_{B \cup C}
\end{aligned}
$$

Intersection and decomposition gives

$$
X_{A} \Perp X_{B \cup\{v\}}\left|X_{C} \Longrightarrow X_{A} \Perp X_{B}\right| X_{C}
$$

Undirected global Markov property

Proposition 3.2.3 (Completeness of the undirected global Markov property).

Suppose $A, B, C \subset V$ are pairwise disjoint subset with A and B non-empty. If C does not separate A and B in the undirected graph G, then there exists a joint distribution for the random vector X that obeys the undirected global Markov property for G but for which $X_{A} \Perp X_{B} \mid X_{C}$ does not hold.

Undirected global Markov property

Thanks for listening!

