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Abstract

This thesis studies some fundamental aspects of wireless systems with
partial channel state information at the transmitter (CSIT), with a special
emphasis on the high signal-to-noise ratio (SNR) regime. The first contri-
bution is a study on multi-layer variable-rate communication systems with
quantized feedback, where the expected rate is chosen as the performance
measure. Iterative algorithms exploiting results in the literature of parallel
broadcast channels are developed to design the system parameters. Necessary
and sufficient conditions for single-layer coding to be optimal are derived. In
contrast to the ergodic case, it is shown that a few bits of feedback information
can improve the expected rate dramatically.

The next part of the thesis is devoted to characterizing the tradeoff be-
tween diversity and multiplexing gains (D–M tradeoff) over slow fading chan-
nels with partial CSIT. In the multiple-input multiple-output (MIMO) case,
we introduce the concept of minimum guaranteed multiplexing gain in the
forward link and show that it influences the D–M tradeoff significantly. It
is demonstrated that power control based on the feedback is instrumental in
achieving the D-M tradeoff, and that rate adaptation is important in obtain-
ing a high diversity gain even at high rates.

Extending the D–M tradeoff analysis to decode-and-forward relay chan-
nels with quantized channel state feedback, we consider several different sce-
narios. In the relay-to-source feedback case, it is found that using just one
bit of feedback to control the source transmit power is sufficient to achieve
the multiantenna upper bound in a range of multiplexing gains. In the
destination-to-source-and-relay feedback scenario, if the source-relay channel
gain is unknown to the feedback quantizer at the destination, the diversity
gain only grows linearly in the number of feedback levels, in sharp contrast
to an exponential growth for MIMO channels.

We also consider the achievable D–M tradeoff of a relay network with the
compress-and-forward protocol when the relay is constrained to make use of
standard source coding. Under a short-term power constraint at the relay,
using source coding without side information results in a significant loss in
terms of the D–M tradeoff. For a range of multiplexing gains, this loss can
be fully compensated for by using power control at the relay.

The final part of the thesis deals with the transmission of an analog Gaus-
sian source over quasi-static fading channels with limited CSIT, taking the
SNR exponent of the end-to-end average distortion as performance measure.
Building upon results from the D–M tradeoff analysis, we develop novel up-
perbounds on the distortion exponents achieved with partial CSIT. We show
that in order to achieve the optimal scaling, the CSIT feedback resolution
must grow logarithmically with the bandwidth ratio for MIMO channels. The
achievable distortion exponent of some hybrid schemes with heavily quantized
feedback is also derived. As for the half-duplex fading relay channel, com-
bining a simple feedback scheme with separate source and channel coding
outperforms the best known no-feedback strategies even with only a few bits
of feedback information.
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Chapter 1

Introduction

The telecommunications industry has been continuing to develop new advanced
technologies to support emerging mobile applications and reduce the performance
gaps between wired and wireless systems, making wireless communications one of
the most rapidly developing research areas over the last couples of decades. Recent
advances in the field not only opened new opportunities to approach these ambitious
goals but also gave rise to many new challenging problems in both practice and
theory.

Using feedback information is common in wireless communications. Tradition-
ally this has been widely used for example in the form of power control in spread-
spectrum communication systems, or in adaptive modulation and coding. In the
more modern view of wireless communications, feedback information also plays a
central role. In addition to the traditional uses, the introduction of novel sophisti-
cated transmission techniques such as linear precoding, beamforming, scheduling,
and pre-cancelling of interference has further emphasized the importance of accu-
rate feedback information in future wireless systems. Practical constraints however
prevent the transmitter side in wireless communications from obtaining feedback
information of arbitrarily high quality; and thus in most cases we have to deal with
scenarios where the amount of feedback is strictly limited.

This thesis aims at a better understanding of the theoretical limitations of wire-
less communication systems with limited feedback information. A particular em-
phasis is placed on applications sensitive to delay, motivating the investigation of
the so-called quasi-static fading channels. Focusing on this channel model, we will
identify and investigate fundamental tradeoffs in many different communication sys-
tems. Our work has some interesting implications in the design of multiple-antenna
systems, cooperative communications, and source–channel coding.

1



2 CHAPTER 1. INTRODUCTION

1.1 Communication Systems

We begin with a brief introduction to some pivotal information-theoretic concepts
and properties of communications over wireless channels. The relations to the topics
treated in the thesis will be discussed when appropriate.

To introduce some important concepts, we consider the simple but quite general
discrete-time model of a communication system depicted in Fig. 1.1. The mission of
the system is to send a message from a transmitter to a receiver over a channel. The
channel is characterized by a conditional probability density of the output given the
input, p(yT1 |xT1 ). This essentially represents the randomness (uncertainty) added
to the transmitted signals, which may come from e.g., thermal noise, interference,
and the physical medium. To protect the message from the possibly detrimental
effect of the channel, some redundancy is added to the actually transmitted signals
in the form of channel coding.

More precisely, at the transmitter, an integer message m, assumed to take
equally likely values on the set {1, . . . , 2RT }, is mapped (encoded) into a sequence of
symbols of length T to be transmitted over the channel, xT1 . We say that the trans-
mission consumes T channel uses. Such a sequence is referred to as a codeword, and
the integer T is the codeword length. The set of all possible 2RT codewords is called
a codebook, which is known to both sides of the communication link. Normally
some cost functions are associated with the codewords to represent the physical
limitations of the transmission. An example of a cost function is the typical power
constraint that keeps either the average or the peak transmit power below a cer-
tain threshold. At the receiver, a decoder attempts to detect which message has
been sent, based on its received sequence yT1 , and the result is the decoded mes-
sage m̂ ∈ {1, . . . , 2RT }. The communication system attempts to convey RT bits
of information through the channel after T channel uses, thus the rate of the code
is said to be R bits per channel use. This definition of code rate should clearly
be distinguished from other definitions used elsewhere, e.g. in [Pro95] where the
code rate, a quantity less than unity, is used to indicate the level of redundancy of
a code. The simple model Fig. 1.1 indeed includes the basic building blocks of a
quite general communication system using channel coding (but perhaps too general
to be actually implemented).

The above model is perhaps the most classical way to represent a point-to-point
communication system, but is not the only one. In Chapter 2, we will deal with
a system employing multi-layer coding where multiple messages m1, . . . ,mL are
mapped into a single sequence to be transmitted and then successively decoded at
the receiver. At a first look, it seems that such an approach is a special case of
the above model because multiple messages can be combined into a single message
with a larger codebook, and therefore the chance of a transmission failure (error)
can only increase. This is not necessarily true, however, because “failure” can be
measured in different ways depending on the applications and characteristics of
the channel considered. Such information-theoretic performance measures will be
discussed in more details in Section 1.5.
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Channel
m m̂

Encoder Decoder
xT1 yT1

p(yT1 |xT1 )

Figure 1.1: A communication system.

1.2 Fading Channels

We will now review the typical characteristics of the physical medium in a wireless
environment and relate these to a more specific model of the “channel” in Fig. 1.1.
In particular, the additive Gaussian noise model where the transmitted signals,
after travelling through a medium, is corrupted by the addition of white Gaussian
noise at the receiver, will be considered. However, one of the most distinguishing
features of a wireless channel does not come from the properties of the noise, but
from the time-varying nature of the underlying physical media.

The time-varying nature of wireless channels is generally governed by two dom-
inating terms. The so-called large-scale fading term is caused by path loss and
shadowing as the transmit signals travel over distance and get obstructed by large
obstacles [TV05]. This however happens in a much larger time scale (i.e., changing
much slower) than the duration of a symbol or a codeword. In this work we are
more interested in smaller-scale effects, described as follows.

In a wireless environment, the transmitted signals normally propagate to the
receiver via many different paths. For example, the transmitted signals from a mo-
bile station can be reflected from buildings, cars and other obstacles before reaching
the receiver. At the receiver, these signal components may add destructively, as
they undergo different attenuations and arrive at different delays. The fluctuation
of received signal strength due to multi-path is known as (small-scale) fading. If the
bandwidth of the transmitted signal is much smaller than the coherence bandwidth
Bm [Pro95] of the channel, all the frequency components of the transmitted signal
will suffer almost the same attenuation and phase shift. Therefore, in this case the
channel is called frequency-nonselective or flat fading. A flat fading channel is well
modelled as an equivalent time-varying one-tap filter with complex-valued coeffi-
cient, illustrated in Fig. 1.2. We usually encounter the case when this coefficient, or
channel gain, is modeled as a zero-mean complex Gaussian random variable. This
represents a rich scattering environment with a lot of reflection paths and no direct
line-of-sight component. Such a channel is called a Rayleigh fading one because the
amplitude of the channel gain is Rayleigh distributed.

On the other hand, when the bandwidth of the transmitted signal is larger than
the coherence bandwidth, the components that separate more than Bm in frequency
will suffer almost uncorrelated gain and phase offset. The channel in this case is
called frequency-selective, and is usually modeled as a time-varying tapped delay line
with complex-valued coefficients. Transmission over a frequency-selective channel
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Channel gain Additive noise

Channel

Figure 1.2: An additive-noise flat fading channel.

results in inter-symbol interference (ISI) and may require complicated equalization
in the time domain. Nowadays, it is generally agreed that a common technique
known as orthogonal frequency division multiplexing (OFDM) can often be applied
to convert a frequency-selective channels into a set of parallel narrow-band, flat-
fading channels (as usual, under some optimistic assumptions). The thesis therefore
focuses only on the flat fading case.

Fading is traditionally seen as problematic for communication systems, as it may
cause significant degradation in the performance, especially in deep fades (when the
received signal power drops too low to be useful). A conventional method to combat
fading is through diversity techniques. The basic idea is to provide several indepen-
dent copies of the transmitted signal to the receiver so that the probability that all
these copies simultaneously suffer deep fades is very small. Common diversity tech-
niques include time, frequency and space diversity, as well as the combinations of
these methods. With frequency diversity, the signals carrying the same information
are transmitted on several carrier frequencies. If the separation between any two
carrier frequencies exceeds the coherence bandwidth Bm, then each received version
can be considered to undergo independent fades. With time diversity, the signals
carrying the same information can be transmitted at different time instants such
that the time separation between any two copies exceeds the coherence time Td of
the channel. One way to achieve this in wireless communications is by interleaving
a codeword before its transmission.

1.3 Slow Fading

The classification of fading channels into fast and slow ones is critical in order to
determine a suitable information-theoretic performance measure for the system of
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interest, as will be elaborated in Section 1.5. Throughout this work, the term “slow
fading” does not necessarily reflect the speed of change of the underlying physical
medium like in e.g., [Pro95], but relates to the delay constraints of the transmission.
For applications completely insensitive to delay constraint, the receiver can, in
principle, wait for an unlimited amount of time before attempting to decode. A
codeword therefore can be assumed to span an infinite number of independent fading
blocks. In practice that models a system with a relaxed delay constraint so that it
enjoys near perfect interleaving, and thus a codeword can span a large number of
independent fading states to exploit a significant amount of time diversity. One can
think of downloading a large file for several hours, even days. We will refer to such
a channel as an ergodic one, or less technically, a fast fading channel. On the other
hand, for applications that require a stricter delay constraint such as real-time voice
and video transmission, a codeword can only span a finite, typically small, number
of fading blocks. The length of each fading block, where the channel gain remains
constant, is typically large enough to average out the effect of noise, thus studying
the system behavior in the limit of infinite block length still makes sense, even
though this is seemingly contradicting to the delay-limited assumption [BCT01].
We refer to this kind of channel as a slow (or slowly) fading one to distinguish
this from the fast fading case. Furthermore, in this thesis, we exclusively focus on
the extreme case where a codeword spans a single fading block, i.e., the so-called
quasi-static fading channel.

1.4 Channel-state Information

The performance of a communication system is greatly influenced by the assump-
tions on the available channel-state information (CSI) at both sides of the links.
The term CSI in this thesis refers to the possibly imperfect information about the
realization of the channel gain (or a channel matrix in a multi-antenna channel, as
presented later in Section 1.6). We then distinguish between CSI at the transmitter
(CSIT) and CSI at the receiver (CSIR).

In both theory and practice, CSIR is considered “easier” to acquire. A typical
way to obtain CSIR is by sending a training sequence known a priori to the receiver
so that the it can estimate the channel gain with a certain level of accuracy (as-
suming that the channel gain does not change significantly until the next training
sequence is sent). A thorough analysis of training schemes is presented in [HH03].
On the other hand, CSIT is more difficult to obtain. In time division duplex (TDD)
systems where uplink and downlink transmission takes place in the same frequency,
the reciprocity of the channel can be exploited to estimate the reverse channel gain
(provided that the time separation between uplink and downlink slots is consider-
ably smaller than the coherence time). The reciprocal properties generally cannot
be exploited in frequency division duplex (FDD) systems, where obtaining CSIT
requires some form of feedback.

To simplify the analysis and highlight the effect of partial CSIT, throughout the
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thesis perfect CSIR is always assumed. Of course, in practice, the imperfectness
of CSIR must also be taken into careful consideration because this may lead to
remarkable changes in the behavior of some information-theoretic measures [LM03].
This thesis exclusively focuses on an explicit quantized feedback model where CSIT
is obtained via a noiseless, zero-delay dedicated feedback link, depicted in Fig. 1.3.
In particular, given a channel gain, the receiver employs an index mapping to obtain
an integer feedback index belonging to a finite set {1, . . . ,K} and sends it back to
the transmitter prior to the transmission of a codeword. The constant K is referred
to as the feedback resolution. Clearly for that approach to work the transmitter and
receiver must agree on a common strategy with the parameters designed off-line.
More realistic assumptions regarding the feedback link should be taken into account
for any practical system, e.g., the case of noisy feedback link is treated in [JS04].
Nevertheless, the feedback resolution that we considered in this work is generally
low (corresponding to 1-2 bits of feedback per fading block) so that the feedback
delay can be considered insignificant and low-complexity forms of channel coding
in the feedback link are also possible, making the zero-delay noiseless feedback link
a relatively reasonable assumption.

The explicit quantized feedback model in Fig. 1.3 is not the only model for
limited feedback. Other models may impose different assumptions, for example,
that a noisy estimate of the channel is available at the transmitter [JSO02]. An-
other line of thought assumes that only the long-term statistics of the channel
gain is available at the transmitter, for example, the case of correlated channels
with covariance matrix known at the transmitter is studied thoroughly in e.g.,
[VM01, JB04, JG04, VP06]. A hybrid model combining both long-term statistics
and short-term information regarding the channel gain realization is presented in
[KBLS06]. There are also the interesting and challenging cases when CSI is not
known by any party of the communication link. Such noncoherent communication
systems, see e.g., [MH99, ZT02, GS07], are outside the scope of this thesis.

1.5 Some Information-theoretic Performance Measures on
Fading Channels

Perhaps the most important information-theoretic limitation of a communication
channel is the channel capacity, introduced in Shannon’s seminal work [Sha48] (see
also [CT91]). Roughly speaking, the capacity C of a channel lets us know the
upper limit on the rate of reliable communication over that channel. That is, with
an error defined as the event that the transmitter and receiver disagree on what
has been sent, i.e., m̂ �= m in the model in Fig. 1.1, then for any positive number
R < C, it is possible to find codes of rate R that yield arbitrarily small probability
of error, Pr(m̂ �= m), provided that the codeword length T is sufficiently large.
For a memoryless channel, i.e., if p(yT1 |xT1 ) =

∏T
i=1(yi|xi), the capacity is given by

Shannon’s famous maximum-mutual-information formula.
Fast fading channels belong to a general class of information-stable channels,
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Channel

Channel

Index mapping
Index

Encoder Decoder

Additive noise

Figure 1.3: A quantized feedback model.

that is, roughly speaking, channels for which a capacity-achieving input and the re-
sulting output behave ergodically [VH94]. Naturally, in the literature, the capacity
of a fast fading channel may also be explicitly termed the ergodic capacity.

On the other hands, for slow fading channels the ergodicity assumption does
not hold. To compute the capacity of a slow fading channel, one therefore should
use the general formula introduced in [VH94], which holds for an arbitrary channel.
Slow fading channels are often discussed in the framework of compound channels,
see e.g., [BBT59][RV68], where the transition distribution is parameterized by some
θ, i.e., p(yT1 |xT1 ; θ). A compound channel where the parameter θ is associated with
an a priori distribution is sometimes called a composite channel [EG98, BPS98].
For example, in the flat-fading model in Fig. 1.2, the amplitude of the channel gain
may take the role of θ and be associated with e.g., a Rayleigh distribution.

However, in slow fading channels, the channel capacity generally does not give
a useful and complete picture. For example, a slow fading Rayleigh channel with
perfect CSIR and no CSIT has a pessimistic zero capacity. This therefore motivates
the framework of capacity versus outage, first mentioned in [OSW94]. The instan-
taneous mutual information between the input and the output of a slow fading
channel is a random variable, depending on the actual realization of the channel
gain. Given a code rate, there is a probability that the current realization of the
mutual information is strictly smaller than the code rate, thus reliable communi-
cation is not possible no matter how large the codeword length T is and how good
the codes are. In such a situation, the system is said to be in outage. There is
obviously a tradeoff between the code rate and the probability of an outage event:
High code rates lead to a high outage probability (more unreliable communication),
while a lower code rate increases reliability but also reduces overall throughput.
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The capacity versus outage framework, however, is not the only performance
measure for a slow fading channel. For certain applications, it may be better to
split a message into several ones so that any of them, if successfully decoded at the
receiver, can improve the performance. For example, a coarse version of an image
can be obtained if some messages are correctly decoded, and a finer, higher-quality
image can be reproduced if more information is available. It should be clearly
emphasized that such a multi-layer approach is not suitable for many applications.
For instance, in data communications an error is declared whenever any layer is
incorrectly decoded, thus adding extra layers is generally not an appealing choice.

A frequent performance measure of multi-layer coding is the expected rate.
Herein we avoid the term “expected capacity” as used in e.g., [BPS98] and adopt
the more moderate term “expected rate” from [VH94, Cov72] instead. This is both
to avoid confusion with capacity in the traditional sense of the word and to empha-
size that, to our knowledge, the multi-layer coding approach has not been shown
to be optimal in any sense. Expected rate can be seen as the rate that can be
correctly received, averaged over the randomness of the channel and the noise. This
is therefore also called reliably received rate in [EG98]. Interestingly, one of the
main motivations of Cover’s seminal work on broadcast channels [Cov72] was to
improve the expected rate over a compound channel. This interesting concept has
reemerged recently in [Sha97, SS03], where the asymptotic case with a continuum
of layers using differential rate and power is studied. Later, Liu et al. showed that
most of the gain of infinitely many layers of codes can be realized by a simple two-
layer coding scheme for many common channel distributions [LLTF02]. Multi-layer
coding is closely related to the study of the capacity region for a general broadcast
channel, a long standing problem in information theory [VH94].

All the aforementioned work assumes perfect CSIR and no CSIT. The presence
of CSIT changes the picture dramatically. For fast fading channels, Goldsmith and
Varaiya studied a scalar Gaussian channel with perfect CSI at both sides of the link
and showed that allocating power in a water-filling manner is optimal in a capacity
sense [GV97]. However, for most common channel statistics, the benefit of CSIT in
terms of capacity is not significant, especially at high signal-to-noise ratio (SNR).
The achievability part in [GV97] relies on the multiplexing of multiple codebooks.
It was later clarified that a simpler combination of a single codebook and a CSIT-
dependent power amplifier is sufficient to achieve capacity [CS99]. Furthermore,
such a separated structure is optimal even when CSIT is causal and imperfect,
under certain assumptions. This holds also for multiple-antenna scenarios, where
CSIT-dependent “transmit weighting” and coding are separated [SJ03].

The presence of CSIT in slow fading channels gives rise to the interesting concept
of power control. If the transmit power can be varied according to the current
channel gain, outage can be completely avoided even for a strictly positive code
rate. Under certain assumptions, this is possible with a finite average transmit
power over infinitely many codewords. In other words, the capacity of such a
channel is strictly positive, even though it is a slow fading one. To distinguish this
notion from the (ergodic) capacity in the fast fading case, this is referred to as delay-
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limited capacity in [HT98, CTB99]. Of course, in connection to the discussion in this
section, delay-limited capacity is precisely the capacity in a traditional (Shannon’s)
sense, applied to a special channel model.

1.6 Multiple-antenna Systems

Using multiple antennas is identified as a promising approach to improve the perfor-
mance of wireless communications in fading environments. Although space diver-
sity has long been utilized by means of multiple receive antennas, only recently has
knowledge about communications with multiple antennas placed at both the trans-
mitter and the receiver reached a new level of maturity. Such so-called multiple-
input multiple-output (MIMO) systems have been an extremely active research
topic over the last decade.

Seminal work by Telatar [Tel99] (see also the work by Foschini [Fos96]) showed
that in a system with only CSIR, using Nt transmit antennas and Nr receive anten-
nas, where the components of the channel matrix are independent and identically
distributed (i.i.d.) zero-mean complex Gaussian, the ergodic capacity at high SNR
is approximately

C ≈ min(Nr, Nt) log SNR.

That is, in terms of capacity a significant gain of min(Nr, Nt) can be expected at
high SNR compared to a single-antenna system. Unsurprisingly, their promising
results have sparked great interests in MIMO communications.

A codeword in a MIMO communication system is a matrix, with both spatial
and temporal dimensions to be exploited, giving rise to the term space-time coding.
In [TSC98], a sufficient condition for a space-time code to achieve “full diversity” is
presented. The developed criterion is quite mild, requiring all codeword difference
matrices to be full rank. A surprisingly simple but extremely powerful space-time
block code for two transmit antennas is introduced by Alamouti in [Ala98]. Among
the attractive properties of Alamouti’s code are its simplicity in combining and de-
coding and its ability to extract the full diversity of the channel. Later, it is shown
in [TJC99] that Alamouti’s codes belong to a general class of orthogonal space-time
block codes (OSTBC). Unfortunately, in [TJC99], it is also shown that “full rate”
OSTBC’s using symbols drawn from a complex constellation (such as QAM) do not
exist for more than two transmit antennas. Some extensions of OSTBC’s are also
proposed in [Jaf01], compromising receiver complexity and performance. However,
except for the setting of two transmit and one receive antennas, OSTBC’s display a
performance loss compared to the more general linear dispersion codes designed to
maximize mutual information in [HH02], over certain ranges of SNR. Decoding lin-
ear dispersion codes generally requires a complicated maximum likelihood receiver
(assuming equally likely codewords), or some near-maximum likelihood such as the
sphere decoder.

The aforementioned space-time codes are of relatively short length. Combining
multiple-antenna and more sophisticated error-correcting codes such as trellis codes
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[TSC98], turbo codes [BGT93], low-density parity check codes [Gal62] and varia-
tions such as repeat-accumulate codes also provides significant extra gains. For
fast fading MIMO channels, very close to capacity performance can be achieved
with long random-like codes and joint iterative detection-decoding, see e.g., [SD01,
HtB03, tKA04, tK03].

Let us briefly review some work in MIMO channels with some forms of CSIT.
In the frontier of fundamental limits, for a constant channel matrix with full CSI at
both sides, a singular value decomposition converts the channel matrix into a set of
parallel spatial channels, and therefore power allocation in a water-filling manner
is optimal in a capacity sense [Tel99]. This is readily extendable to fast fading
channels with full CSI, where water-filling over both time and space is optimal.
With limited feedback, capacity results for fast fading channels are reported in
[SJ03, LLC04b, LLC04a]. For slow fading channels, the probabilistic power control
framework in [CTB99] is extended to the MIMO case in [BCT01]. Their scheme
is not suitable for exploiting time diversity because of a noncausality assumption.
The causal case is solved under a dynamic programming framework in [NC02]. The
concept of minimum rates is independently proposed in [LLYS03] for a single-user
channel and in [JG03] for a broadcast channel, which leads to an interesting solution
combining both water-filling and channel inversion.

More practical use of partial CSIT in multi-antenna systems has attracted a
great deal of attention recently. Given that a large number of complex channel
coefficients needed to be quantized, it becomes more difficult to “imagine” what
to send back to the transmitter with e.g., 1 bit. Early studies include the de-
sign of a precoding matrix influenced by possibly impaired CSIT to improve the
performance of OSTBC’s [JSO02, JS04]. Vector quantization techniques are ap-
plied in [NLTW98] to design feedback schemes under different optimization crite-
ria. Limited feedback design using an elegant geometrical framework is pursued in
[LHS03, LH05, MSEA03].

Cooperative Communications

In certain scenarios, deploying multiple antennas at some parties in a communica-
tion link may be difficult or even infeasible due to practical constraints. Interest-
ingly, even under such restrictive conditions, it is possible to form virtual antenna
arrays by letting these parties cooperate in an intelligent way. While seminal work
in this area appeared a long time ago in the context of relay channels [van71, CE79],
interests in cooperative communications have only renewed with the series of papers
[SEA03a, SEA03b, NBK04, LW03, LTW04, KGG05, HZ05].

Herein we exclusively focus on the classical three-node model of the relay channel
[van71, CE79], where a transmitter (source node) communicates with a receiver
(destination node) with the help of a relay node that can assume a transmitting
and/or a receiving role. Despite the simplicity of the model, the capacity of such
a general relay channel is unknown. In the literature, relaying systems can be
categorized as either half-duplex (the relay cannot receive and transmit at the
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same time) or full-duplex (the relay can transmit and receive simultaneously) ones.
In this thesis, we exclusively focus on half-duplex channels.

1.7 Diversity–Multiplexing Tradeoff

Most early work on space-time coding either tried to extract a “full” diversity gain
[Ala98, TJC99, TSC98], or to achieve “high rates,” e.g., the vertical Bell Labs lay-
ered space-time (BLAST) structure [TV05] and the linear dispersion codes [HH02].
A new line of thought is pursued in [ZT03], where it is shown that both types of
gains can be simultaneously achieved over a slow fading channel, with a fundamen-
tal tradeoff between them. Such an elegantly characterized tradeoff is referred to
as the diversity-multiplexing tradeoff, and has sparked a great deal of attention,
even if it is rather coarse (defined in the limit of SNR → ∞). Roughly speaking,
the diversity gain d lets us know about the asymptotic slope of the error probabil-
ity while the multiplexing gain r reflects how large the code rate is compared to
the capacity of a single-antenna channel at high SNR. At high SNR, given a code
rate R = r log SNR, an error probability in the order of SNR−d can be achieved
with “good” codes. In other words, this is a high-SNR tradeoff between reliabil-
ity and throughput of a multi-antenna system. Notice that the notion of diversity
gain in [ZT03] should not be interpreted (in a traditional way) as the number of
independently faded copies of the transmit signals as seen at the receiver.

The diversity-multiplexing tradeoff is closely related to the theory of error expo-
nents [Gal65, Gal68]. Error exponent techniques however involve an optimization
over all probability distributions that is very difficult to solve in general. By re-
stricting to a Gaussian distribution and letting the SNR grow unbounded, Zheng
and Tse have been able to characterize exactly the asymptotic SNR exponent of
an error event. The key idea is to analyze the asymptotic behavior of the joint
probability density function of the singular values of an i.i.d. complex Gaussian
matrix, under a powerful large-deviations framework.

In the original work [ZT03], it is shown that there exist codes with finite length
that can achieve the optimal diversity-multiplexing tradeoff. In particular, for a
channel matrix of size Nr ×Nt, the codeword length T ≥ Nt +Nr − 1 is sufficient
to achieve an error probability that decays as fast as the outage probability does.
This is rather surprising, as one may have expected that it is only asymptotically
achievable with infinitely long codewords. However, that conclusion is based on
a random coding argument, with the only practical coding scheme known to be
diversity-multiplexing optimal at that time was (again, somewhat surprisingly) the
simple Alamouti’s scheme with a QAM constellation for the 2 × 1 channel. As
an example (from [ZT03]), the diversity-multiplexing tradeoffs achieved by some
space-time codes together with the optimal one over a 2 × 2 channel are plotted
in Fig. 1.4. As can be seen Alamouti’s codes are strictly better in a tradeoff sense
than are the simple repetition codes, even though both can achieve “full diversity,”
i.e., the diversity at very small rates compared to log SNR. However, none of these
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Figure 1.4: Diversity–multiplexing tradeoff over a 2× 2 channel.

schemes are tradeoff optimal, especially at high multiplexing gains (they cannot be
used to achieve “high rates”).

Subsequently, the design of other short-length space-time codes that achieve the
entire diversity-multiplexing tradeoff has then quickly become a very active research
area. Among the first codes designed towards that goal are the lattice space-time
(LAST) codes [ECD04] and their variants [ECD06]. To be precise, LAST is still
a random ensemble, albeit is more structured than a Gaussian ensemble and thus
allows for more efficient algorithms than a maximum likelihood search such as
the sphere decoding, see e.g., [AEVZ02, JO05]. Even randomly generated LAST
codes are shown to perform very well. In [YW03], Yao and Wornell explicitly
constructed a family of codes for the 2-transmit-antenna case (Nt = 2), using
a carefully chosen rotation matrix and symbols taken from QAM constellations.
Interestingly, they showed that there exist codes of length T = 2 that can achieve
the entire tradeoff, for any number of receive antennas Nr ≥ 2, while the Gaussian
coding argument in [ZT03] can only show the existence of codes with length T ≥
Nt +Nr − 1 = Nr + 1 in similar settings. One of the key ideas in [YW03] is to find
a sequence of codes so that all codeword difference matrices have a nonvanishing
or sufficiently slow decaying determinant as the code rate grows. Explicit code
design based on that nonvanishing determinant criterion is studied extensively, see
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e.g., [BRV05, RBV04, EKP+06]. The D–M tradeoff optimality of these codes can
be explained in the framework of approximately universal codes [TV06], which
characterizes codes having all pairwise error probabilities decay exponentially as
SNR → ∞, as long as the channel is not in outage. An alternative, geometric
interpretation of such a class of codes together with their applications in MIMO
channels with feedback are presented in [KS07].

The tradeoff between throughput and reliability naturally exists in slow fading
relay channels. In [LTW04], some basic relaying strategies including AF and DF are
described and investigated. The D–M tradeoffs of the schemes studied in [LTW04]
show that they are not efficient in the high multiplexing gain regime. Furthermore,
it is later clear that these simple schemes are sub-optimal except at zero multiplex-
ing gain (i.e., they can achieve the maximum possible diversity gain). In the context
of multiple-relay AF channels, a novel scheme termed as “slotted AF,” which is pro-
posed and analyzed in [YB07b], can outperform other known AF protocols in the
literature. An intelligent scheme called dynamic DF is proposed in [AES05]. DDF
relaying uses rateless codes at the source node and one acknowledgement bit from
the relay node to inform the source when the decoder at the relay succeeds. It turns
out that the D–M tradeoff of this strategy is strictly optimal for all multiplexing
gains less than 1

2 . For higher multiplexing gains, while it is unclear whether DDF
is still optimal or not, there is no known scheme operating under the same CSI
assumptions that can outperforms DDF. Under a much more relaxed assumption
on the CSI that the relay knows both the relay-destination and source-destination
channel gains, it is shown in [YE07] that compress-and-forward relaying is D–M
tradeoff optimal at all multiplexing gains.

1.8 Distortion Exponent

Inspired by the concept of diversity gains in [ZT03], some researchers have recently
applied the main ideas of the D–M tradeoff to the problem of transmitting an analog
source over slow fading channels [CN05, GE05, HG05]. It is noticeable that even
over a simple scalar point-to-point slow fading channel, the celebrated separation
theorem [CT91, Chapter 8] does not hold when the CSI is not fully known at the
transmitter. That is, designing source and channel coding modules separately does
not necessarily lead to optimal performance. For example, sophisticated hybrid
digital–analog (HDA) joint source–channel coding schemes have been shown to
outperform separate coding significantly [MP02, SPA02].

Focusing on source transmission over slow fading MIMO channels with no CSIT,
the works in [CN05, CN07, GE05, GE08] quantified the asymptotic behavior of the
end–to–end average distortion achieved by different joint source–channel coding
schemes in the regime of high SNR. At high SNR, the average distortion behaves as
SNR−d

′
, bearing a clear similarity to the behavior of the outage probability (and

also the probability of error) when a message is transmitted over the channel. The
quantity d′ is often referred to as the (SNR) distortion exponent, which measures
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the slope of the average end–to–end distortion on a log-log scale at high SNR.
There is a performance tradeoff between the distortion exponent and the so-

called bandwidth ratio b, which is defined as the ratio between the channel band-
width and the source bandwidth. The bandwidth ratio b measures the spectral
efficiency of the system, with a smaller b reflecting a more efficient schemes that
consumes less channel bandwidth to transmit a given source. Note that the band-
width ratio b does not have any direct connection to the multiplexing gain r in the
D–M tradeoff analysis.

The distortion exponent analysis in [CN05, CN07, GE08] provided some fresh
insight into the problem of source transmission over slow fading channels. For
example, in [CN07], it is shown that over MIMO channels a simple HDA scheme is
optimal in the sense that it achieves the best tradeoff between distortion exponent
and bandwidth ratio. This optimality however holds only for a range of sufficiently
small bandwidth ratios, i.e., for highly-compressive systems. In [GE08], a broadcast
strategy where the transmitter sends a layer of codes – as considered in [Sha97] and
also in Chapter 2 – is shown to be optimal in a distortion exponent sense for a
range of sufficiently high bandwidth ratios. The transmission schemes for MIMO
channels [GE08] are later extended to the relay settings in [GE07b].

1.9 Contributions and Outline

The common theme of the thesis is the design and analysis of certain communica-
tions systems with limited feedback over quasi-static fading channels. The thesis is
divided into three parts, with each part treating a different performance metric.

Part I: Chapter 2

This part deals with the optimization of the expected rate over slowly fading scalar
channels with quantized side information. In particular, we consider a multiple-
layer variable-rate system employing quantized feedback to maximize the expected
rate over a single-input single-output slow fading Gaussian channel. The transmit-
ter utilizes partial channel-state information, which is obtained via an optimized
resolution-constrained feedback link, to adapt the power and to assign code layer
rates, subject to different power constraints. To systematically design the system
parameters, we develop a simple iterative algorithm that successfully exploits re-
sults in parallel broadcast channels [Tse97]. We present the necessary and sufficient
condition for single-layer coding to be optimal, irrespective of the number of code
layers that the system can afford. The key observation in this chapter is that un-
like in the ergodic case [GV97], even coarsely quantized feedback can improve the
expected rate considerably. Our results also indicate that with as few as one bit of
feedback information, the role of multi-layer coding reduces significantly.

The material in this chapter has been published as
• T. T. Kim and M. Skoglund. On the expected rate of slowly fading channels
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with quantized side information. In IEEE Transactions on Communica-
tions., volume 55, pp. 820-829, April 2007.

A shorter version also appeared in
• T. T. Kim and M. Skoglund. On the expected rate of slowly fading channels

with quantized side information. In Proc. 39th Asilomar Conference on
Signals, Systems, Computers, Pacific Grove, CA, October-November 2005.

Part II: Chapters 3, 4, and 5

In Chapter 3, we study a slow fading MIMO channel where the transmitter has
access to partial CSIT, which takes the form of log2K noiseless feedback bits. It is
assumed that the code rate grows as the long-term average transmit power increases,
but does not adapt to the channel state, i.e., a single-rate system is considered. We
first characterize the entire tradeoff between the diversity and multiplexing gains
that can be simultaneously achieved over this channel. Partial power control is
shown to be instrumental in achieving the optimal tradeoff over such a system.
Our results indicate that the diversity gain can be increased considerably even with
coarsely quantized channel state information, especially at low multiplexing gains.
For example, as long as at least one side of the communication link has more than
one antenna, the maximum diversity gain of the system grows exponentially in the
number of feedback regions.

We then carry out the D–M tradeoff analysis for a variable-rate MIMO system
with quantized feedback. To make “reliability” more meaningful in this variable-
rate setting, the concept of minimum guaranteed multiplexing gain in the forward
link is introduced and shown to influence the tradeoff remarkably. The results
suggest that the optimal D–M tradeoff can be achieved by using just two codebooks:
one high-rate codebook that determines the multiplexing gain of the system and
the other low-rate codebook that provides the minimum level of quality of service.
This holds even if the number of feedback regions is greater than two. Partial
power control allows for a superior diversity gain, which is possible even in the
high-multiplexing-gain regime.

We then discuss the achievability of the optimal D–M tradeoff by finite-length
codes that exist in the literature. In particular, codes that satisfy the approxi-
mately universal criterion [TV06] are shown to be also D–M tradeoff optimal in our
partial-CSIT scenario. We also present a useful geometrical interpretation of the
approximately universal criterion.

Finally, we present two lower bounds to the optimal D–M tradeoff using Gaus-
sian random coding argument. Unlike in the original setting (no feedback infor-
mation) studied in [ZT03], these lower bounds are only asymptotically tight in the
limit of large block (codeword) lengths. Nevertheless, we show that the new achiev-
able bounds can approach the optimal D–M tradeoff closely even with moderate
codeword lengths.

The material in this chapter has been published in
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• [KS07] T. T. Kim and M. Skoglund. Diversity–multiplexing tradeoff in
MIMO channels with partial CSIT. In IEEE Transactions on Information
Theory., volume 53, pages 2743-2759, August 2007.

Conference versions of this work have also appeared in
• [KS06a] T. T. Kim and M. Skoglund. Diversity–multiplexing tradeoff of

MIMO systems with partial power control. In Proc. 2006 Zurich Seminar
on Communications, Zurich, Switzerland, February 2006.

• [KS06c] T. T. Kim and M. Skoglund. Partial power control. In Proc. 2006
IEEE International Conference on Communications, Istanbul, Turkey, June
2006.

• [KS06b] T. T. Kim and M. Skoglund. Outage behavior of MIMO channels
with partial feedback and minimum multiplexing gains. In Proc. IEEE
Symposium on Information Theory, Seattle, WA, July 2006.

Chapters 4 and 5 investigate the D–M tradeoff of three-node scalar relay chan-
nels under different assumption of CSI at the source and the relay. Chapter 4 con-
siders a relay channel with quantized CSI at the relay and the source. We present
a rather exhaustive study considering many different possible scenarios with quan-
tized (channel state) feedback from the relay to source, from destination to relay,
and from destination to both source and relay. We show that using one bit from the
relay to control the source transmit power is sufficient to achieve the multiantenna
upperbound in a range of multiplexing gains. Systems with feedback from destina-
tion to control relay transmit power slightly outperform DDF at high multiplexing
gains, even with one bit of feedback. Finally, we show that with feedback from
destination, if the source-relay channel gain is unknown to the feedback quantizer
at the destination, the diversity gain only grows linearly in the number of feedback
levels, in sharp contrast to an exponential growth for MIMO channels as shown in
Chapter 3.

In Chapter 5 we study a more idealistic channel where the relay node has perfect
knowledge about the channel gains of the source-destination and relay-destination
links. The motivation of this study is the optimality of the compress-forward relay-
ing protocol using Wyner-Ziv (WZ) coding under the same CSI assumptions [YE07].
We pose the fundamental question: “How much of the gain in the CF scheme [YE07]
comes from the perfect CSIT, and how much comes from WZ coding?” To answer
this question, we quantify the asymptotic loss of compress-forward relaying with
simple quantization at the relay (i.e., without using source coding with side infor-
mation as in [YE07]). It turns out that in terms of the D–M tradeoff, the loss of
not using WZ coding is dramatic. However, we also obtain a more optimistic result
that using power control at the relay can fully compensate for this loss, as long as
the multiplexing gain is not greater than 2

3 .
The material in these chapters has been submitted for possible publication in
• [KCS07a] T. T. Kim, G. Caire, and M. Skoglund. Decode-and-forward relay

channels with quantized channel state feedback: An outage exponent analy-
sis. Submitted to IEEE Transactions on Information Theory, 2007; revised
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2008.
• [KSC07b] T. T. Kim, M. Skoglund, and G. Caire. Quantifying the loss of

compress-forward relaying without Wyzer-Ziv coding. Submitted to IEEE
Transactions on Information Theory, 2007.

A short version has been published in
• [KCS07b] T. T. Kim, G. Caire, and M. Skoglund. On the outage exponent of

fading relay channels with partial channel state information. In Proc. IEEE
Information Workshop, Lake Tahoe, CA, September 2007.

Part III: Chapters 6 and 7

This part considers the transmission of a continuous-amplitude source over a slow
fading channel. We are exclusively interested in the high-SNR regime and the
optimization of the end-to-end expected distortion over the channel.

The main contribution of this part is the investigation of the distortion exponent
in the case of limited feedback. Since the distortion exponent analysis essentially
investigates how fast the end-to-end mean square distortion decays to zero and SNR
grows, the study in these chapters is closely related to D–M analysis. There are
fundamental differences though. In particular, the end-to-end distortion can be im-
proved even under a short-term power constraint (i.e., using only rate adaptation).
This is generally not the case for the outage minimization problem. Furthermore,
combining power control with rate adaptation yields a superior distortion perfor-
mance compared to existing schemes in the literature.

Chapter 6 deals with MIMO channels. We derive upper bounds on the distortion
exponents achieved with partial CSIT under a long-term power constraint. It is
shown that the exponent achieved with any feedback link of fixed, finite resolution
is bounded above by a polynomial of the product between the number of transmit
and number of receive antennas. This behavior can be explained in connection with
the D–M tradeoff results in Chapter 3. The achievable distortion exponent of some
hybrid schemes with heavily quantized feedback is then derived. The results show
that dramatic performance improvement over the case of no CSIT can be achieved
by combining simple schemes with a very coarse CSIT feedback.

Chapter 6 treats the DF relay channels. It is shown that under a short-term
power constraint, combining a simple feedback scheme with separate source and
channel coding outperforms the best known no-feedback strategies even with only a
few bits of feedback information. Partial power control is shown to be instrumental
in achieving a very fast decaying average distortion, especially in the regime of
high bandwidth ratios. Performance limitation due to the lack of full channel
state information at the destination is also investigated, where the degradation in
terms of the distortion exponent is shown to be significant. However, even in such
restrictive scenarios, using partial feedback still yields distortion exponents superior
to any no-feedback schemes.

The material in these chapters has been submitted for publication as:
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• [KSC08b] T. T. Kim, M. Skoglund, and G. Caire “On source transmission
over MIMO channels with limited feedback,” submitted to IEEE Transac-
tions on Signal Processing, 2008.

• [KSC08a] T. T. Kim, M. Skoglund, and G. Caire. On cooperative source
transmission with partial rate and power control. Accepted for publication
in IEEE Journal of Selected Area in Communications, 2008.

A short version has been published in
• [KSC07a] T. T. Kim, M. Skoglund, and G. Caire. Distortion exponents over

fading MIMO channels with quantized feedback. In Proc. IEEE Interna-
tional Symposium on Information Theory, Nice, France, June 2007.

Contributions Outside the Scope of the Thesis

In addition to the material reported herein, some contributions that are not formally
included in the thesis are summarized below.

Combining Linear Precoding and Outer Coding

We propose a simple linear structure to exploit CSIT in a single-user multi-antenna
system. When combined with turbo-coded modulation, the proposed scheme per-
forms very close to the capacity limits. With only a few bits per channel use to
feedback CSIT, we can achieve a substantial portion of the possible gain with per-
fect CSIT. The converge behavior of the proposed scheme is then analyzed using
extrinsic information transfer charts. Our results show that with the proposed
technique, a fixed outer code can interact efficiently with the inner detector under
different assumptions about the quality of CSIT.

This work has been presented in
• [KJS04b] T. T. Kim, G. Jöngren, and M. Skoglund. Weighted space-time

bit-interleaved coded modulation. In Proc. IEEE Information Theory Work-
shop, San Antonio, TX, October 2004.

• [KJS04a] T. T. Kim, G. Jöngren, and M. Skoglund. On the convergence
behavior of weighted space-time bit-interleaved coded modulation. In Proc.
Asilomar Conference on Signals, Systems, and Computers, Pacific Grove,
CA, November 2004.

Limited Feedback Design for Fast Fading MIMO Channels

We propose a transmission scheme combining both short-term and long-term chan-
nel state information at the transmitter of a single-user MIMO communication
system. Partial short-term CSIT in the form of a weighting matrix is obtained
via a resolution-constrained feedback link, combined with a unitary transformation
based on the long-term channel statistics. The feedback link is optimized under
different power constraints, using vector quantization techniques. Simulations in-
dicate the benefits of the proposed scheme in all scenarios considered.
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We later extend the vector-quantization-based approach to the case of the down-
link (broadcast) channel, to jointly design the scheduler, the (finite) set of precoding
matrices, and the feedback link.

These works have been published in
• [KBLS08] T. T. Kim, M. Bengtsson, E. G. Larsson, and M. Skoglund. Com-

bining long-term and low rate short-term channel state information over
correlated MIMO channels. To appear in IEEE Transactions on Wireless
Communications, 2008.

• [KBLS06] T. T. Kim, M. Bengtsson, E. G. Larsson, and M. Skoglund. Com-
bining short-term and long-term channel state information over correlated
MIMO channels. In Proc. IEEE Conference on Acoustic, Speech, Signal
Processing, Toulouse, France, May 2006.

• [KBS07] T. T. Kim, M. Bengtsson, and M. Skoglund. Quantized feedback
design for MIMO broadcast channels. In Proc. IEEE International Confer-
ence on Acoustics, Speech, Signal Processing, Honolulu, HI, May 2007.

1.10 Notation and Acronyms

In this section we clarify some notation and acronyms used throughout this work.

Notation
A A calligraphic uppercase letter denotes a set.
x A boldface lowercase letter denotes a vector.
X A boldface uppercase letter denotes a matrix.
IN Identity matrix of size N .
xT The transpose of a vector x.
xH The conjugate transpose of a vector x.
tr(X) The trace of a matrix X.
det X The determinant of a matrix X.
‖X‖F The Frobenius norm of a matrix X.
X−1 The inverse of a nonsingular matrix X.
.= The exponential equality, cf. Chapter 3, Section 3.2.
	x
 The smallest integer that is not smaller than a (real) scalar x.
�x� The largest integer that is not larger than a (real) scalar x.
(x)+ Denotes max(x, 0).
|A| The cardinality of a set A.
A× B The Cartesian product of two sets A and B.
E[x] The expected value of a random variable x.
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Acronyms
AF amplify-and-forward
ARQ automatic retransmission request
AWGN additive white Gaussian noise
BLAST Bell Labs layered space-time
CF compress-and-forward
CSF channel-state feedback
CSI channel-state information
CSIR channel-state information at the receiver
CSIT channel-state information at the transmitter
DDF dynamic decode-and-forward
DF decode-and-forward
D–M diversity-multiplexing
FDD frequency division duplex
HDA hybrid digital-analog
i.i.d. independent and identically distributed
ISI inter-symbol interference
KKT Karush-Kuhn-Tucker
LAST lattice space-time
MIMO multiple-input multiple-output
MISO multiple-input single-output
MMSE minimum mean-square error
OFDM orthogonal frequency division multiplexing
OSTBC orthogonal space-time block codes
p.d.f. probability density function
QAM quadrature amplitude modulation
SIMO single-input multiple-output
SISO single-input single-output
SNR signal-to-noise ratio
TDD time division duplex
WZ Wyner-Ziv
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Chapter 2

Expected Rate Maximization

In this chapter, we will show how a scalar measure of performance over the slow
fading channels that takes into account both the outage probability and the trans-
mission rate can be improved using partial channel state feedback. We will study
a multiple-layer variable-rate system employing quantized feedback to maximize
the expected rate over a single-input single-output slowly fading Gaussian channel.
The transmitter utilizes partial channel-state information, which is obtained via an
optimized resolution-constrained feedback link, to adapt the power and to assign
code layer rates, subject to different power constraints. To systematically design
the system parameters, we develop a simple iterative algorithm that successfully ex-
ploits results in the study of parallel broadcast channels. We present the necessary
and sufficient conditions for single-layer coding to be optimal, irrespective of the
number of code layers that the system can afford. Unlike in the ergodic case, even
coarsely quantized feedback is shown to improve the expected rate considerably.
Our results also indicate that with as few as one bit of feedback information, the
role of multi-layer coding reduces significantly.

2.1 Introduction

Consider coded data transmission over a slowly fading frequency-flat wireless link.
One of the most important performance criteria in this scenario is “throughput”
versus “cost” of transmission. Throughput can be measured in many different ways.
In this chapter we consider an information-theoretic approach, and will investigate
the “achievable expected rate” over a large number of blocks transmitted at variable
rates. The cost of transmission will be measured as either “short-term” or “long-
term” average power.

To study capacity and related notions over slowly fading channels one needs to
be specific about the assumed delay-sensitivity of the applications considered. In
applications completely insensitive to delay, a transmitted codeword can be assumed
to span infinitely many independent fading blocks, even over very slowly varying

23
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channels. In such delay-unconstrained cases, the ergodic capacity [GV97, Tel99]
is a valid performance limit. However, many wireless applications require a strict
constraint on transmission delay. This motivates the block fading Gaussian channel
model [OSW94], where a transmitted codeword is assumed to span a fixed and
finite number of independent fading blocks. In such scenarios, capacity in the
traditional sense of the term [CT91] is generally not a useful performance measure.
For example, a block fading Rayleigh channel has capacity zero, since no positive
rates are achievable over this channel [BPS98]. Therefore, other ways to characterize
the channel, for example in terms of throughput versus outage probability [OSW94,
CTB99], are often considered in these cases.

When characterizing the achievable performance over a fading channel, one
needs also to be specific about the available channel-state information. As in most
previous related works, we will assume perfect CSI at the receiver, motivated by
the separate transmission, at negligible rate-loss, of a training sequence [BPS98].
When available, CSI at the transmitter can be utilized to adapt resources and
the transmission strategy and can greatly improve the performance over a slowly
fading channel. A fixed-rate system with non-causal and perfect CSIT, employing
power control based on the CSIT to minimize the outage probability, was studied in
[CTB99, BCT01]. These results were then later extended to the causal-CSIT case
using dynamic programming in [NC02]. A great deal of research has also focused
on systems where the amount of CSIT is positive but strictly limited, the case
we will refer to as partial CSIT. The paper [BSA02] considers a fixed-rate system
and deals with power control to minimize the outage probability based on partial
CSIT. On the other hand, [MSEA03] focuses on quantizing the direction of the
beamforming vector of a multiple-input single-output system without performing
power control. Some specific adaptive digital modulation and coding schemes are
studied in [GC97, GC98, VG03, LF00, LYS03, GØH05]. Intelligent use of imperfect
feedback information is also shown to improve various performance measures of
multiple-antenna systems in e.g., [NLTW98, VM01, JSO02, JS04, LHS03].

While outage probability is a valid measure of the performance of a fixed-
rate system over slowly fading channels, for certain applications it may be more
reasonable to consider the achievable expected rate over multiple fading blocks
[Cov72, BPS98]. Expected rate can also be seen as a measure of reliably decod-
able rate, from the receiver’s perspective [EG98]. With perfect CSIR the receiver
knows whether the transmission of the present block is in outage, and it can there-
fore disregard unreliable blocks. Hence, from the receiver’s perspective, loss of
data may occur while there will never be any transmission errors. Consequently,
all codewords, at rates allocated by the transmitter, are either supported without
errors or lost. It therefore makes sense to discuss expected rate in the sense of
the average number of reliably received bits, per channel use over a large number
of transmitted codewords. Interestingly, the traditional outage approach has been
shown to be suboptimal in an expected-rate sense, as higher rates can be achieved
using a broadcast strategy or multi-layer coding [Sha97, SS03, LLTF02]. This idea
was first proposed in Cover’s seminal work on broadcast channels [Cov72]. The
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multi-layer approach is particularly appealing for, e.g., successive refinement sys-
tems, which can produce a coarse version of a source such as an image, when some
information is available and gradually improve the quality of the reproduced source
as more information is received.

In this chapter we consider a slowly fading frequency non-selective link with
perfect CSIR, and quantized channel feedback information. Our aim is to study
the properties of adaptive systems optimal in an expected-rate sense based on some
particular coding strategies, and with optimized quantizers in the feedback link. In
contrast to a fixed-rate system considered in some previous related works on limited
feedback, we study a multi-layer variable-rate coding scheme under different power
constraints. We assume a fairly general framework, valid for any continuous channel
distribution, and we explicitly formulate the feedback design problem. Essentially,
quantized CSIT transforms the original channel, which can be viewed as a composite
one [BPS98], into a finite number of parallel composite channels. By exploiting the
inherent connection between our design and problems in parallel broadcast channels
[Tse97], we develop simple iterative algorithms to optimize the feedback and the
power allocation, as well as some strategy-dependent parameters. This is vastly
different from feedback design for an ergodic channel [SJ03, LLC04b] where there is
only a single centroid, namely the power, associated with each quantization region.
Furthermore, unlike in the ergodic channel [GV97, LLC04b] where even perfect
CSIT improves the ergodic capacity only marginally, our results show that coarsely
quantized CSIT provides a significant improvement on the expected rate. With as
few as one bit of feedback information, the role of multi-layer coding is shown to
decrease dramatically. Finally, we develop the necessary and sufficient conditions
for single-layer coding over a conditional channel to be optimal, irrespective of the
number of code layers that the system can afford.

2.2 System Model

Consider the discrete-time complex-baseband model of a flat-fading single-input
single-output communication system illustrated in Fig. 2.1, where the complex-
valued channel gain is assumed to be random but constant during one fading block
consisting of N channel uses. The received signal at time instant t within fading
block m, m = 1, 2, . . ., can be written as

ym(t) = hmsm(t) + wm(t), t = 1, . . . , N, (2.1)

where hm denotes the channel gain and the sm(t)’s are the transmitted symbols.
The noise samples wm(t) are i.i.d. complex Gaussian with zero mean and unit
variance. We assume that the hm’s are i.i.d. according to some distribution. Let
γm

Δ= |hm|2, that is the resulting i.i.d. channel powers. In this chapter, we exclu-
sively consider the case that any transmitted codeword spans only a single fading
block. As pointed out in [CTB99, BCT01], it is reasonable to study the case
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Figure 2.1: System model.

N → ∞, modeling a scenario with very slow fading and a delay constraint on the
transmitted codeword.

For brevity, the fading block index m will be omitted in the following discussion
whenever this does not cause any confusion. With a slight abuse of notation,
both the random variable representing the channel power and its realization will
be denoted by γ. We assume that γ is a continuous random variable. Denote the
cumulative distribution function and the probability density function of γ as F (γ)
and f(γ), respectively. Furthermore, assume that F (γ) and f(γ) are continuous
and f(γ) takes on positive values over the entire region (0,∞).

The channel coefficient h is assumed to be known perfectly at the receiver. Given
γ = |h|2, the receiver employs a deterministic index mapping I(γ) that partitions
the non-negative real line into K quantization regions

I(γ) = i, if γ ∈ [γb
i , γ

b
i+1), i = 0, . . . ,K − 1, (2.2)

where the γb
i ’s denote the boundary points of the quantization regions. For conve-

nience, we use the convention γb
K = ∞ and γb

0 = 0. Herein K is a given positive
integer, i.e., we consider a resolution-constrained quantizer. The index i = I(γ) is
sent to the transmitter via a noiseless, zero-delay feedback channel. Conditioned
on a feedback index i, any transmitted sequence {s(0), . . . , s(N −1)} is constrained
to satisfy

1
N

N−1∑
t=0
|s(t)|2 ≤ P(i) (2.3)

where P(i) is a deterministic mapping from an integer index to power allocated.



2.3. SINGLE-LAYER CODING 27

Denote Pi = P(i), i = 0, . . . ,K − 1. We then consider two different types
of power constraint [CTB99]. The short-term power constraint requires that the
power allocated cannot exceed P , independently of the feedback index, i.e.,

Pi ≤ P, ∀i ∈ {0, . . . ,K − 1}. (2.4)

Under the more relaxed long-term power constraint, the transmitter can adapt
the power based on the feedback index, such that the average power over multiple
blocks does not exceed P ,

lim
M→∞

1
M

M∑
m=1
P(I(γm)) = Eγ [P(I(γ))] ≤ P, (2.5)

where the first equality holds with probability one. This is, in the scenario consid-
ered, equivalent to

K−1∑
i=0

[
F (γb

i+1)− F (γb
i )
]
Pi ≤ P. (2.6)

Due to our assumption of non-zero and continuous density, the channel condi-
tioned on a feedback index is still a composite one [BPS98], as in the case of no
CSIT, however with a smaller support. That is, the range of uncertainty of the
only partially known γ decreases with the feedback resolution. The coding scheme
to maximize the expected rate over such a conditionally composite channel is still
unknown in general. We focus our attention on two specific strategies: the tra-
ditional outage approach, which is also referred to as single-layer coding, and the
broadcast strategy or multiple-layer coding. Clearly, single-layer coding is a special
case of the more general multi-layer coding. We, however, consider this special case
separately because the problem is more analytically tractable and therefore, more
instructive. The main challenge is to optimize the index mapper I(γ), the allocated
power P(i) and some strategy-dependent parameters jointly. In the discussion, we
often refer to the set of all parameters to be designed as a feedback scheme.

2.3 Single-layer Coding

With the single-layer coding approach, given an index i, the transmitter selects a
codeword from a rate-Ri capacity-achieving codebook where Ri, i = 0, . . . ,K−1 are
design parameters. The system is in outage if the instantaneous mutual information
of the channel is smaller than the operating rate Ri [OSW94].

It is convenient to review some results obtained under the assumption of perfect
and no CSIT respectively, providing performance bounds to the quantized-CSIT
system of interest. Without any CSIT, the transmitter selects an operating rate
of R0 = log(1 + γ0P ) for some γ0. (All logarithms in this chapter are natural,
unless otherwise stated.) Since a codeword is successfully decoded only if γ ≥ γ0,
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maximizing the expected rate becomes

max
γ0≥0

[1− F (γ0)] log(1 + γ0P ). (2.7)

Setting the first derivative to zero yields a necessary condition for a γ∗0 to be optimal,
which we write in the following form for a later reference

1 = F (γ∗0 ) + f(γ∗0 )1 + γ∗0P
P

log(1 + γ∗0P ). (2.8)

When perfect CSIT is available, assuming a short-term power constraint, it is
clear that for a realization γ, the transmitter should match its rate to the current
realization of the channel mutual information, i.e., log(1 + γP ), resulting in the
following maximum expected rate

R∗S−∞ =
∫ ∞

0
log(1 + γP )f(γ)dγ, (2.9)

Under the long-term power constraint, the maximum expected rate of the slowly
fading channel is equal to the capacity of an ergodic channel with perfect channel
side information [GV97],

R∗L−∞ =
∫ ∞
λ∗

log
( γ
λ∗
)
f(γ)dγ, (2.10)

which is obtained by allocating power in a water-filling manner over multiple blocks.
The water level 1

λ∗ satisfies
∫∞
λ∗

(
1
λ∗ − 1

γ

)
f(γ)dγ = P . Intuitively, the transmitter

does not waste power on weak channel realizations and spends the saved power on
strong channel realizations. The gain by optimally allocating power compared the
short-term case is, however, insignificant for many frequently encountered channel
distributions, especially at high SNR [GV97].

Feedback Design Under a Short-term Power Constraint

Let us now focus on the problem of limited feedback design under the short-term
power constraint. It is clear that with a short-term power constraint, the optimal
power P ∗i = P , ∀i, as there is no cost incurred with increasing the power allocated
to each fading block up to the upper limit. Given an index i, the transmitter
chooses an operating rate Ri, which is associated with a reconstruction point γi via
the relation Ri = log(1 + γiP ). Since the transmitter knows that the channel can
support at least a rate of log(1 + γb

i P ) but cannot support any rates larger than
log(1 + γb

i+1P ), to maximize the expected rate it is necessary that γi ∈ [γb
i , γ

b
i+1).

If the actual channel power γ ≥ γi, the codeword will be successfully decoded. On
the other hand, if γb

i ≤ γ < γi, the system is in outage. Designing a feedback
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scheme optimal in the sense of expected rate is, therefore, equivalent to solving the
following optimization problem

max
{γi, γb

i
}

K−1∑
i=0

[
F (γb

i+1)− F (γi)
]

log(1 + γiP )

s.t. γb
i+1 − γi ≥ 0, γi − γb

i ≥ 0.

(2.11)

By a direct investigation of the activeness of the linear constraints, we can
simplify the Karush-Kuhn-Tucker (KKT) conditions for a scheme {γ∗i , γb∗

i } to be
optimal to:

γb∗
i = γ∗i , i = 1, . . . ,K − 1 (2.12a)

F (γ∗i+1) = F (γ∗i ) + f(γ∗i )
1 + γ∗i P
P

log 1 + γ∗i P
1 + γ∗i−1P

, i = 0, . . . ,K − 1 (2.12b)

with the convention γ∗−1 = 0, γ∗K = ∞. In the special case of K = 1, i.e., the no-
CSIT case, the necessary condition reduces to (2.8). The intuition behind (2.12a)
can be explained as follows. Given a fixed set {γ∗i }, the system is in outage ∀γ ∈
[γb
i , γ
∗
i ). By increasing γb

i up to γ∗i , we effectively replace the expected rate of zero
in the outage region with R∗i−1 = log(1 + γ∗i−1P ) > 0 and hence, strictly increase
the objective function of (2.11). A direct consequence of (2.12a) is that an outage,
defined as the event that the channel cannot support the operating rate, can only
occur if the zero index (i = 0) is received at the transmitter.

It is relatively simple to solve for {γ∗i } from (2.12b) since one can express
γ∗1 , . . . , γ

∗
K−1, as a function of γ∗0 . (Recall that F (γ) is invertible due to our as-

sumption of non-zero density.) Therefore, (2.12b) with i = K − 1 can be expressed
as an equation with a single unknown γ∗0 , which can be solved numerically. Given
a γ∗0 (the solution may not be unique), one can successively compute γ∗1 , . . . , γ∗K−1
(in that order) using (2.12b). We observe that for many common channel distri-
butions, (2.12b) appears to have a unique solution. Furthermore, our experiments
show that solving (2.12b) directly is much more efficient than using standard opti-
mization methods, which generally require a large number of initial random seeds
due to the non-concavity of (2.11).

Feedback Design Under a Long-term Power Constraint

Under the more relaxed long-term power constraint, given an index i, the trans-
mitter selects a codeword from a codebook of rate Ri = log(1 + γiPi). In this case,
the operating rate Ri depends not only on the reconstruction point γi but also on
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the power allocated Pi. The feedback design problem can thus be formulated as

max
{γb
i
, γi, Pi}

K−1∑
i=0

[
F (γb

i+1)− F (γi)
]

log(1 + γiPi)

s.t. P −
K−1∑
i=0

[
F (γb

i+1)− F (γb
i )
]
Pi ≥ 0,

Pi ≥ 0, γb
i+1 − γi ≥ 0, γi − γb

i ≥ 0,

(2.13)

which is more challenging than (2.11) due to the non-linear power constraint.
Throughout this section, we assume that a constraint qualification holds at the
maximizers of (2.13), so that the KKT conditions are necessary-optimality condi-
tions [FGW02, BV04]. Let us introduce the Lagrange multiplier λ ≥ 0 associated
with the power constraint.

Let {γ∗i , γb∗
i , P

∗
i }K−1
i=0 be an optimal scheme and λ∗ be the corresponding optimal

Lagrange multiplier. Note that for any i ≥ 1, γb∗
i solves the linearly-constrained

maximization problem

max
x∈[γ∗

i−1,γ
∗
i

]

[
F (x)− F (γ∗i−1)

]
log(1 + γ∗i−1P

∗
i−1)

− λ∗ ([F (x)− F (γb
i−1)]P ∗i−1 + [F (γb∗

i+1)− F (x)]P ∗i
)
.

The sign of the first derivative of the objective function does not depend on x since
by assumption, f(x) > 0, ∀x > 0. Therefore, we either have γb∗

i = γ∗i−1 or γb∗
i = γ∗i .

But if γb∗
i = γ∗i−1, the region [γb∗

i−1, γ
b∗
i ) contributes nothing to the expected rate

and neither does the outage region [γb∗
i , γ

∗
i ). In this case, we can merge those two

regions forming a new scheme with γb�
i−1 = γ�i−1 = γ∗i−1, γb�

i = γ�i = γ∗i that achieves
the same expected rate without violating the power constraint. This means that we
can consider γb

i = γi, ∀i ≥ 1 without loss of optimality and focus on the following
dual problem

min
λ

max
{γi, Pi}

K−1∑
i=0

[F (γi+1)− F (γi)] log(1 + γiPi)

− λ
(
F (γ1)P0 +

K−1∑
i=1

[F (γi+1)− F (γi)]Pi

) (2.14)

A simple iterative, Lloyd-like [GG92] algorithm can be developed to obtain a
sequence of feedback schemes and dual variable {γ(k)

i , P
(k)
i , λ

(k)}. For simplicity, we
will omit the iteration index k whenever this does not cause any confusion. Given
a set {γi} so that γK−1 > · · · > γ0, solving the dual problem (2.14) is equivalent to
allocating power over a set of parallel scalar additive white Gaussian noise (AWGN)
channels to maximize a linear combination of the achievable rates. The solution is
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readily obtained by the following water-filling algorithm

P0 =
(
F (γ1)− F (γ0)
F (γ1)

1
λ
− 1
γ0

)+

(2.15a)

Pi =
(

1
λ
− 1
γi

)+

i = 1, . . . ,K − 1, (2.15b)

where (x)+ Δ= max(x, 0) and λ is chosen such that the power constraint is active.
Since γK−1 > · · · > γ0, there exists an i0 such that Pi > 0, ∀i ≥ i0 and Pi = 0,
∀i < i0. In the next step, we fix λ and {Pi} and solve (2.14) for {γi}. Setting the
first partial derivatives to zero and simplifying leads to

F (γi+1) = F (γi) + f(γi)
1 + γiPi
Pi

[
log 1 + γiPi

1 + γi−1Pi−1
+ λ (Pi − Pi−1)

]
, i ≥ i0

(2.16)

which can be solved with the same technique used to solve (2.12b). For i < i0,
we can choose some values arbitrarily so that γi > γi−1, ∀i. The two basic steps
described above are iterated until convergence. The procedure is summarized in
Algorithm 1. A natural termination condition for the algorithm is to check whether

R̄(k+1) − R̄(k)

R̄(k+1)
≤ ε

where R̄(k) is the value of the objective function in (2.14) evaluated at {γ(k)
i , P

(k)
i }

and λ(k), and ε is a small positive number. Selecting the initial values is also an
important issue. It is clear from (2.16) that by choosing P (0)

i = P, ∀i, we can
arbitrarily select λ(0). Moreover, with this particular choice of initial values, (2.16)
reduces to (2.12b) and the first step in the algorithm is to solve the short-term
power constraint problem. This prevents the algorithm from converging to a local
optimum that is smaller than that obtained under a short-term power constraint.
While we do not claim global optimality of the solution due to the non-concavity
of (2.13), numerical results indicate that among a large number of random initial
values, this judicious choice always yields the highest expected rate.

It is also possible to introduce a peak power constraint that limits the power
allocated to any fading block. Such a constraint arises frequently in practice due
to e.g., hardware limitations. In such a case, the design problem can be stated as
follows: Solve (2.13) with the additional constraints Pi ≤ Pm, i = 0, . . . ,K − 1
where Pm > P . (If Pm ≤ P , we return to the short-term power constraint case.)
By introducing additional Lagrange multipliers, it can be shown that the optimal
power allocation scheme given {γ(k)

i } is a modified version of (2.15a)-(2.15b) where
we redefine (x)+ Δ= max(min(x, Pm), 0), i.e., water-filling up to Pm is performed.
The partitioning step (2.16) still applies in this case.
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Algorithm 1: Single-layer Coding with a Long-term Power Constraint
Initialize k = 0, P (0)

i = P , ∀i, arbitrary λ(0);
repeat

Fix {P (k)
i } and λ(k), solve for {γ(k)

i } using (2.16);
Fix {γ(k)

i }, determine {P (k+1)
i } and λ(k+1) by the water-filling algorithm

(2.15a), (2.15b) ;
k ←− k + 1;

until Convergence ;

2.4 Multiple-layer Coding

A higher expected rate over a composite channel can be achieved by means of
superposition coding. This approach exploits the degradedness of scalar AWGN
broadcast channels. The transmitter sends the superposition of L codewords taken
from L different codebooks, hence the term multi-layer coding. The receiver em-
ploys a successive decoder and the amount of data that can be successfully decoded
depends on the actual realization of the channel. The no-CSIT case has been con-
sidered in [Sha97, SS03, LLTF02]. Notice that conditioned on perfect CSIT, the
transmitter no longer sees a composite channel, thus the single-layer results (2.9)
and (2.10) apply.

Feedback Design Under a Short-term Power Constraint
Assume that L-layer coding is employed over each quantization region. Given a
feedback index i, the transmitter sends the superposition of L codewords taken
from L capacity-achieving codebooks. The rate of codebook j, j = 0, . . . , L− 1, is
designed so that

Rij = log
(

1 + γijPij

1 + γij
∑L−1
k=j+1 Pik

)
,

where γij ’s are referred to as the reconstruction points, and Pij is the power con-
straint of codebook j. Without loss of generality, assume that γij < γi(j+1), ∀i, j.

Note that the mapping from feedback index to reconstruction points {γij} is one-
to-many, meaning that each code layer utilizes the index differently. Herein γij ’s can
be interpreted as the channel powers of L users among infinitely many users of an
imaginative broadcast channel that the transmitters chooses to communicate with,
and Pij ’s can be seen as the power allocated to these users [LLTF02, Sha97, SS03].

The receiver performs successive decoding, i.e., it decodes layer j treating all
other layers k, k > j as AWGN. This is possible due to the fact that the distri-
bution of the codewords of a capacity-achieving codebook can be considered to be
Gaussian, in the limit N → ∞ [Cov72, SV97]. Due to the degradedness of the
scalar AWGN broadcast channel [CT91] and by definition of Rij , code layer j is
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successfully decoded and subtracted from the received signals if and only if γ > γij .
The short-term power problem is, therefore, explicitly formulated as

max
{γb
i
, γij , Pij}

K−1∑
i=0

L−1∑
j=0

[
F (γb

i+1)− F (γij)
]

log
(

1 + γijPij

1 + γij
∑L−1
k=j+1 Pik

)

s.t. P ≥
L−1∑
j=0
Pij , Pij ≥ 0, γij ≥ γi(j−1), γ

b
i+1 ≥ γi(L−1), γi0 ≥ γb

i .

(2.17)

Similar to the single-layer coding case, it is necessary that γb∗
i = γ∗i0, ∀i > 0

for a scheme to be optimal. However, unlike the single-layer case, the necessary
conditions in general cannot be solved directly. Herein we focus on a low-complexity
iterative algorithm that successfully exploits results in parallel broadcast channels
[Tse97]. We first fix the boundaries of the quantization regions {γ(k)

i0 } and the power
levels {P (k)

ij } to find the optimal {γ(k)
ij }, j > 0. Next {γ(k)

ij } are fixed to find the
optimal power levels. Finally, the newly obtained set of powers and reconstruction
points is fixed to find new boundaries {γ(k+1)

i0 }. The procedure is summarized in
Algorithm 2 and the details are presented in the following. For clarity, from now
on we omit the iteration indices.

First, given {γi0} and {Pij}, the joint optimization in (2.17) over {γij}, j > 0,
decouples into the optimization of each individual γij , which can be done efficiently
using numerical methods [GMW81]. Next, given {γij}, the optimal Pij ’s can be
found separately for each quantization region. Over the quantization region i, the
optimization problem is equivalent to allocating a total power of P to maximize a
linear combination of the achievable rates of an L-user scalar Gaussian broadcast
channel, where user j has channel power γij and rate reward

[
F (γ(i+1)0)− F (γij)

]
.

This can be solved by a simple algorithm [Tse97]. In particular, consider the func-
tion

J(z) = arg max
j

F (γ(i+1)0)− F (γij)
1
γij

+ z
− λi (2.18)

where z ∈ [0, P ] and

λi = max
j

F (γ(i+1)0)− F (γij)
1
γij

+ P
(2.19)

For any j, the set of all z ∈ [0, P ] such that J(z) = j is shown to be either empty
or a single interval [Tse97]. The length of such an interval is equal to the optimal
power allocated to the code layer associated with γij .

Finally, we need to find optimal {γi0} given {γij}, j > 0 and {Pij}. The
necessary conditions can be simplified to

F (γ(i+1)0) = F (γi0) + f(γi0) (1 + γi0P )(1 + γi0(P − Pi0))
Pi0

(Ri0 −Ri−1) (2.20)

where Ri
Δ=
∑L−1
j=0 Rij . Clearly, (2.12b) is a special case of (2.20) where Pi0 = P ,

∀i. Again, we solve (2.20) with standard non-derivative numerical techniques.
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Algorithm 2: Multi-layer Coding with a Short-term Power Constraint
Initialize k = 0, {γ(0)

i0 }, {P (0)
ij } s.t.

∑
j P

(0)
ij = P ;

repeat
Fix {P (k)

ij }, {γ(k)
i0 }, find optimal {γ(k)

ij }, ∀j > 0;
Fix {γ(k)

ij }, ∀j, find optimal {P (k+1)
ij } using (2.18);

Fix {P (k+1)
ij }, ∀j and {γ(k)

ij }, ∀j > 0, find optimal {γ(k+1)
i0 } using (2.20);

k ←− k + 1;
until Convergence ;

Feedback Design Under a Long-term Power Constraint

In this section, we consider the most general case, when multi-layer coding is em-
ployed and temporal power control is also possible. The design problem has the
following form

max
{γb
i
, γij , Pij}

K−1∑
i=0

L−1∑
j=0

[
F (γb

i+1)− F (γij)
]

log
(

1 + γijPij

1 + γij
∑L−1
k=j+1 Pik

)

s.t. P ≥
K−1∑
i=0

[
F (γb

i+1)− F (γb
i )
] L−1∑
j=0
Pij ,

Pij ≥ 0, γij ≥ γi(j−1), γ
b
i+1 ≥ γi(L−1), γi0 ≥ γb

i .

(2.21)

Assuming a constraint qualification at the optimal point, we can extend the algo-
rithm in Section 2.4 to take into account the Lagrange multiplier λ associated with
the power constraint. As in Section 2.3, we consider only γb

i = γi0, ∀i > 0. Given
{γi0}, {Pij}, the set {γij} (for j > 0) can be found similarly to the short-term
power constraint case. The solution does not depend on λ.

Next, for a fixed {γij}, the optimal power allocation and corresponding La-
grange multiplier λ can be found with a greedy algorithm for parallel scalar AWGN
broadcast channels [Tse97]. In the currently investigated scenario, we first need to
find the optimal power allocated to each quantization region

Pi =
(

max
j

(
F (γ(i+1)0)− F (γij)
F (γ(i+1)0)− F (γi0)

1
λ
− 1
γij

))+

(2.22)

where λ is chosen such that the power constraint is active. We can then apply
(2.18), where λi, i = 0, . . . ,K − 1, is replaced by λ, to find the individual Pij ’s.
(The total power assigned to each conditional channel is no longer P .) Note that a
peak power constraint can be directly incorporated into (2.22). In this case, each
quantization region is allocated power up to some Pm.
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Finally, given the set {γij} for j > 0, {Pij} and λ, the optimal {γi0} can be
found by solving

F (γ(i+1)0) = F (γi0) + f(γi0) (1 + γi0Pi)(1 + γi0(Pi − Pi0))
Pi0

· [Ri0 −Ri−1 + λ(Pi − Pi−1)] ,
(2.23)

which is a generalization of (2.16). The entire procedure is outlined in Algorithm 3.
For the same reasons as in the single-layer coding case, the initial power levels are
chosen so that

∑
j P

(0)
ij = P , ∀i.

Algorithm 3: Multi-layer Coding with a Long-term Power Constraint
Initialize k = 0, {γ(0)

i0 }, {P (0)
ij } s.t.

∑
j P

(0)
ij = P ∀i, arbitrary λ(0);

repeat
Fix {P (k)

ij }, {γ(k)
i0 }, λ(k), find optimal {γ(k)

ij }, j > 0;
Fix {γ(k)

ij }, ∀j, find optimal {P (k+1)
ij }, λ(k+1) using (2.18), (2.22);

Fix λ(k+1), {P (k+1)
ij }, ∀j and {γ(k)

ij }, j > 0, find optimal {γ(k+1)
i0 } using

(2.23);
k ←− k + 1;

until Convergence ;

Single-layer Optimality Conditions
The special structure of the feedback problem allows us to obtain some interesting
results. Clearly, it is not necessary that all the coding levels are assigned non-
zero power. The following proposition states the necessary and sufficient condition
for single-layer coding to be optimal, independent of the number of code layers
L that the system can afford. More interestingly, we show that if the single-layer
optimality condition is satisfied, then the single reconstruction point must be the
left boundary of the quantization region, i.e., the conditionally worst-case channel
realization.

Proposition 2.1. Consider a quantization region
[
γb
i , γ

b
i+1
)
. Suppose that L-layer

coding is employed. For any L ≥ 2, allocating all the available power to a single
reconstruction point is optimal in an expected-rate sense if and only if

γb
i ∈ arg max

γ∈[γb
i
, γb
i+1)

[
F (γb

i+1)− F (γ)
]
γ. (2.24)

If (2.24) holds, the optimal reconstruction point that receives all the available power
is γ∗i0 = γb

i .

Proof. See Appendix A.
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Intuitively, (2.24) states that the layer corresponding to γb
i is the first layer

to be allocated power. However, γb
i also corresponds to the weakest layer and

according to [Tse97], this must also be the last layer to be allocated power. But
the power allocated to each layer corresponds to a single interval, implying that
the layer γb

i receives all the available power. This is indeed single-layer coding.
The condition (2.24) is rather interesting because it only depends on the nature
of the channel distribution. As an example, consider a Rayleigh channel with a
mean channel power of γ̄, i.e., F (γ) = 1 − exp(−γγ̄ ). One can verify that for
any quantization region such that γb

i ≥ γ̄, (2.24) is satisfied independently of the
upper boundary γb

i+1 of the region considered. Hence, upon receiving a feedback
index corresponding to such a region, the transmitter can employ the traditional
single-layer coding without any loss in expected rate.

The condition (2.24) is particularly useful in our proposed iterative procedures.
Since the boundaries are known a priori in the iteration steps, the region where
single-layer coding is optimal can be quickly determined. The feedback design,
however, requires joint optimization of the boundaries and other parameters. Find-
ing stronger conditions that hold even if the boundaries are not known a priori
remains an interesting open problem.

2.5 Numerical Results

In Fig. 2.2, we plot the expected rate achieved by several feedback schemes with
different numbers of quantization regions and different numbers of code layers over
a Rayleigh channel with unit mean power, i.e., F (γ) = 1− exp(−γ). A short-term
power constraint is assumed. The average signal-to-noise ratio is defined as SNR Δ=
P/σ2

n = P since the noise variance σ2
n is assumed to be unit. Significant gains

can be observed even with coarsely quantized systems. For example, to achieve
a target expected rate of 2 nats per channel use, feedback schemes with 2 and 4
quantization regions require a power of roughly 3 and 5 dB less than a no-CSIT
system does, respectively. Most of the gain of multi-layer coding is observed in
the high-SNR regime. Furthermore, the benefit of multi-layer coding appears to be
more pronounced as the SNR increases. However, as the quality of partial CSIT
improves, the role of multi-layer coding reduces substantially. For instance, in a
system with K = 4 quantization regions, there is practically no benefit of using
2-layer coding over single-layer coding for any SNR smaller than 30 dB. This can
be attributed to at least two factors. Firstly, as the feedback resolution increases,
the support of a conditional channel becomes smaller, hence the “users” of the
virtual broadcast channel experience almost the same channel power. There is
therefore little benefit in optimally allocating power among those users. Secondly,
we experimentally observed that more quantization regions satisfy the single-layer
optimality condition (2.24) as the feedback resolution increases.

The difference between the expected rates achieved by different schemes and
that achieved by a single-layer coding system under a short-term power constraint
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Figure 2.2: Expected rate achieved with different feedback schemes over a Rayleigh
channel. A short-term power constraint is assumed.

is plotted in Fig. 2.3. We will refer to this difference as the absolute gain. As
can be seen, under a short-term power constraint, multiple-layer coding provides
an increasing absolute gain as the SNR increases. On the other hand, long-term
power control (with single-layer coding) yields a decreasing absolute gain as the
SNR increases. Thus combining multi-layer coding and long-term power control
results in an interesting effect: The absolute gain appears to be minimum at some
intermediate SNR. Another observation is that the most significant absolute gain is
obtained when the number of code layers increases from L = 1 to L = 2, a behavior
that can also be observed in systems without feedback [LLTF02].

To emphasize the promising role of long-term (temporal) power control in sys-
tems with very limited power, we plot the expected rate in the low-SNR region
in Fig. 2.4. It should be noted that the SNR range depicted may not be relevant
for some wireless communication systems. Since multi-layer coding only provides
a negligible improvement, we only plot the expected rate achieved by single-layer
coding. Interestingly, a system controlling transmit power with coarsely quantized
CSIT, namelyK = 2 or 1-bit feedback, outperforms a short-term power constrained
system with perfect CSIT for any SNR smaller than −5 dB. Although a long-term
power constraint is clearly more relaxed, the big difference between the quality of
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Figure 2.3: Absolute gains (i.e., the gains compared to a single-layer, short-term
power constrained system) over a Rayleigh channel, F (γ) = 1 − exp(−γ). The
feedback resolution K = 2. Solid and dashed curves correspond to a short-term
and a long-term power constraint, respectively.

CSIT (1 bit vs. perfect) makes the comparison sensible. Consequently, the effects
of imposing a peak power constraint on the system is also most pronounced at this
region, as depicted in Fig. 2.5. As can be seen, when K = 2, a peak power that
is 3 dB higher than the average one severely affects the expected rate. Increasing
the number of quantization regions appears to reduce this effect significantly. For
any K, an optimal scheme tends to allocate power more evenly in the moderate
and high SNR region, hence the effect of a peak power constraint diminishes as the
SNR increases.

Similar behavior is also observed in some other commonly encountered channels.
The performance of various feedback schemes over the equivalent channel of some
single-input multiple-output (SIMO) systems using maximum ratio combining are
plotted in Fig. 2.6. (Clearly, the SISO framework we consider can also be applied
to such SIMO scenarios.)

Numerical results indicate that the proposed algorithms converge relatively fast.
As an example, the convergence behavior of the iterative algorithms over a Rayleigh
channel is plotted in Fig. 2.7. Note that the convergence speed of Algorithms 2 and
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Figure 2.4: Expected rate achieved over the low-SNR region. Solid and dashed
curves correspond to a short-term and a long-term power constraint, respectively.
F (γ) = 1− exp(−γ).

3 depends on the initial values {γ(0)
i0 } and {P (0)

ij }. To obtain a “good” starting
point, we choose P (0)

ij = P/L, ∀i, j and take γ(0)
i0 as the boundaries obtained after

several iterations of Algorithm 1, which converges extremely fast. As shown in
Fig. 2.7, this heuristic approach appears to be reasonably efficient. Experiments
with random seeds also suggest that, at least for the channel distributions presented
in this section, the algorithms lead to convergence to the global optimum. However
we have not been able to prove that analytically.

2.6 Conclusion

We have studied a variable-rate system employing partial CSIT to increase the
expected rate over a slowly fading channel. Our results indicate that a substantial
portion of the gain with perfect CSIT can be achieved by heavily quantized CSIT.
The improvement provided by the sophisticated multi-layer coding technique is
shown to reduce dramatically if the resolution of the feedback quantizer increases.
Moreover, in practice, multi-layer coding is also limited by other factors such as
error propagation. This suggests that from an expected-rate perspective, single-
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Figure 2.5: Effects of a peak power constraint on the expected rate over a Rayleigh
channel. Solid and dashed curves correspond to K = 2 and K = 4, respectively.

layer coding may be a suitable choice for systems with feedback, even though some
optimality is lost.

With the same number of quantization regions, optimally allocating power over
time only improves the expected rate marginally at moderate to high SNR’s. Hence,
in this region, optimizing the feedback index mapping appears to be more important
than optimizing the power allocation. On the other hand, in the low-SNR regions,
most of the gain comes from temporal power control, which is based on partial
CSIT. Therefore, the performance over the low-SNR region is highly affected if a
peak power constraint is imposed on the system.

The design of multi-layer coding for MIMO channels is considerably more chal-
lenging because channel ordering over such systems is in general not uniquely de-
fined. (A particular channel ordering based on majorization theory and a single-
dimensional approximation is shown to be inefficient in [SS03].) Nevertheless, a
SISO model still applies to a certain multiple-transmit antenna scenarios. For in-
stance, the equivalent channel of a MIMO system employing orthogonal space-time
codes is conveniently fitted into a SISO framework.



2.A. PROOF OF PROPOSITION 2.1 41

0 5 10 15 20 25 30
0

1

2

3

4

5

6

7

8

SNR (dB)

E
xp

ec
te

d
R

at
e

(n
at

s/
ch

an
ne

l
us

e)

L = 1. No CSIT.
L = 2. No CSIT.
L = 1. K = 2.
L = 2. K = 2.
Perfect CSIT.
L = 1. No CSIT
L = 2. No CSIT.
L = 1. K = 2.
L = 2. K = 2.
Perfect CSIT.

Figure 2.6: Expected rate achieved with different feedback schemes over SIMO
channels. The channel coefficients are assumed to be i.i.d. zero-mean complex
Gaussian with unit variance. Solid curves correspond to a 1 × 2 channel. Dashed
curves correspond to a 1× 4 channel. A short-term power constraint is assumed.

Appendix for Chapter 2

2.A Proof of Proposition 2.1

We first need the following lemma.

Lemma 2.1. Consider a quantization region
[
γb
i , γ

b
i+1
)

and an arbitrary set of L
reconstruction points {γij}L−1

j=0 , where γi0 = γb
i . Suppose that (2.24) is satisfied.

Then, the optimal power allocation in an expected-rate sense is P ∗i0 = P , and P ∗ij =
0, ∀j > 0.

Proof. (Lemma 2.1) Assume the contrary. Then, according to [Tse97], there exists
a γ ∈ (γb

i , γ
b
i+1) and a z > 0 such that

F (γb
i+1)− F (γb

i )
1
γb
i

+ z
=
F (γb

i+1)− F (γ)
1
γ + z

.
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Figure 2.7: Convergence behavior of the proposed algorithms. F (γ) = 1−exp(−γ).
The number of quantization regions K = 2, SNR = 20 dB. The number of code
layers for Algorithm 2 and 3 is L = 2.

However, expressing z as a function of γ leads to

z =
[
F (γb

i+1)− F (γ)
]
γ − [F (γb

i+1)− F (γb
i )
]
γb
i

F (γ)− F (γb
i )

1
γγb
i

≤ 0

due to (2.24), which is a contradiction.

Assume that (2.24) holds. We need to show that single-layer coding at γb
i

is optimal. Let S∗L = {γ∗ij}L−1
j=0 be the optimal set of reconstruction points. If

S∗L contains γb
i , the asserted result immediately follows Lemma 2.1. Assume now

that the optimal set of reconstruction points does not contain γb
i . Let R∗L be the

maximum expected rate achieved by allocating the power P over S∗L. Form a set of
L+1 reconstruction points by adding γb

i to S∗L. Obviously, the maximum expected
rate R∗L+1 achieved by allocating the same power P over the newly formed set can
only be greater than or equal to R∗L. But according to Lemma 2.1, R∗L+1 is achieved
by allocating all available power to γb

i , implying that an arbitrary point other than
γb
i can be removed from the newly formed (L + 1)-point set without affecting the

expected rate. Thus we have constructed a set of L construction points containing
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γb
i that achieve R∗L+1 ≥ R∗L. This contradicts to the assumption that the optimal
L-point set does not contain γb

i .
We complete the proof by showing that if allocating all available power to some

reconstruction point γ̃ ∈ [γb
i , γ

b
i+1) is optimal for any L, then (2.24) is satisfied.

Assume the contrary, i.e., there exists an γm > γb
i such that

γm = min{arg max
γ∈[γb

i
,γb
i+1)

[
F (γb

i+1)− F (γ)
]
γ}. (2.25)

If γ̃ �= γm, consider optimal power allocation [Tse97] over a set of two recon-
struction points {γ̃, γm}. But (2.25) implies that γm is the first layer to receive
power for any P > 0, which is a contradiction.

Now consider the case γ̃ = γm, i.e., single-layer coding at γm is optimal. Select
a γ ∈ [γb

i , γ
m) and allocate power over {γ, γm}. Let P̄ (γ) be the solution to the

following equation

F (γb
i+1)− F (γm

i )
1
γm + P̄ (γ)

=
F (γb

i+1)− F (γ)
1
γ + P̄ (γ)

.

Easily see that

P̄ (γ) =
[
F (γb

i+1)− F (γm)
]
γm − [F (γb

i+1)− F (γ)
]
γ

γγm [F (γm)− F (γ)] > 0. (2.26)

This means that the power P̄ (γ) is (optimally) allocated to γm, while all the re-
maining power P − P̄ (γ) is allocated to γ. To show a contradiction, it suffices to
prove that we can select γ in [γb

i , γ
m) so that P̄ (γ) is arbitrarily close to zero, and

thus P − P̄ (γ) can be made positive for any P > 0.
To that end, note that the first derivative of the objective function in (2.25)

must vanish at γm, i.e.,

F (γb
i+1)− F (γm)− γmf(γm) = 0. (2.27)

Using (2.27) and l’Hospital’s rule, we have

lim
γ→γm

P̄ (γ) = lim
γ→γm

− [F (γb
i+1)− F (γ)− γf(γ)]

γm [F (γm)− F (γ)− γf(γ)] = 0.

(Recall that f(γ) is assumed to be positive for all γ > 0.) This completes the
proof.
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Chapter 3

D–M Tradeoff in MIMO Channels

In Chapter 2, we have seen that the outage probability and the transmission rate
can be combined into a single performance measure over slow fading channels (i.e.,
the expected rate). In this chapter, we will take a closer look at the two-dimensional
tradeoff between the outage probability and the transmission rate. In particular,
we derive the diversity–multiplexing tradeoff over a MIMO channel with optimized
resolution-constrained channel state feedback. We will introduce the concept of
minimum guaranteed multiplexing gain in the forward link and show that this sig-
nificantly influences the optimal D–M tradeoff. It is demonstrated that power con-
trol based on the feedback is instrumental in achieving the D–M tradeoff, and that
rate adaptation is important in obtaining a high diversity gain even at high rates. A
criterion to determine finite-length codes to be tradeoff optimal is presented, lead-
ing to a useful geometric characterization of the class of extended approximately
universal codes. With codes from this class, the optimal D–M tradeoff is achievable
by the combination of a feedback-dependent power controller and a single code-
book for single-rate or two codebooks for adaptive-rate transmission. Finally, lower
bounds to the optimal D–M tradeoffs based on Gaussian coding arguments are
also studied. In contrast to the no-feedback case, these random coding bounds are
only asymptotically tight, but can quickly approach the optimal tradeoff even with
moderate codeword lengths.

3.1 Introduction

Communication over wireless MIMO channels has attracted great interest over the
last decade because, in comparison to traditional single-input single-output systems,
MIMO systems promise a better reliability through the use of many independent
propagation paths and a higher throughput through the use of parallel spatial
modes. While most works focus exclusively on one of these two gains, a new line
of thought is introduced in [ZT03], where both types of gain are shown to be
simultaneously achievable over a slow fading channel, and the fundamental tradeoff
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between these gains is elegantly characterized.
Attempts at a characterization of the D–M tradeoff over a multiple-antenna

channel, under the assumption of partial CSIT, are reported in [KS04a, KS05] where
the feedback information consists of the scalar quantized singular values of the
channel matrix. This assumption is, however, restrictive and the results in [KS04a,
KS05] only reflect the asymptotic outage behavior of a particular class of feedback
schemes. An automatic retransmission request (ARQ) scheme for MIMO systems
and its performance tradeoffs are studied in [ECD06]. Such an ARQ system can be
viewed as a simple causal feedback scheme using one bit of feedback information
per retransmission round. Combining ARQ with transmit power control [CTB99,
BCT01, KS04b], yields a superior tradeoff compared to the no-CSIT case [ECD06].

Direct partial CSIT via resolution-constrained feedback is normally more useful
than is the indirect channel knowledge provided by an ARQ flag. Furthermore,
certain applications that are more sensitive to delay may exclude the possibility of
retransmitting codewords in error. This motivates our present study of the optimal
tradeoff between the reliability and rate that can be simultaneously achieved over
a MIMO system with resolution-constrained quantized feedback. We advocate an
approach that quantizes the information needed at the transmitter, and not the
channel matrix itself.

We consider two related cases: Single-rate transmission and adaptive-rate trans-
mission. For single-rate transmission, the information rate is kept constant and
independent of the CSIT available, a good model for constant bit-rate services. For
adaptive-rate systems, inspired by the notion of minimum rate [LLYS03, JG03],
we propose the concept of minimum multiplexing gain to make “reliability” more
meaningful in the limit of high SNR’s. By performing joint power and rate control,
and building upon the elegant framework of [ZT03], we derive the optimal D–M
tradeoff in both cases in a recursive manner.

Since partial power control is a key ingredient in achieving the optimal per-
formance over slow fading channels with feedback, it is not surprising that the
characterization of the optimal D–M tradeoff presented in this chapter is similar
to that obtained for the ARQ scheme with power control in [ECD06]. The results
are, however, not equivalent. In particular, we demonstrate that introducing the
concept of minimum multiplexing gain dramatically influences the optimal D–M
tradeoff. Another difference distinguishing the current work from related works lies
in the achievability part. More precisely, our achievability proof relies on the exis-
tence of a large class of codes, referred here to as extended approximately universal
codes. This class is defined via a (nontrivial) extension of the concepts introduced
in [TV06]. We present a simple and useful interpretation of these codes, giving
some novel insight into approximate universality, as studied in [TV06]. Somewhat
surprisingly, we show that if the power constraint imposed on every codeword is
replaced by a more relaxed average power constraint over the whole codebook, then
our extended approximately universal condition does not necessarily coincide with
the well-known non-vanishing determinant criterion [YW03, BR03]. We do not at-
tempt to design explicit codes, but instead show that a large class of existing codes



3.2. SYSTEM MODEL 49

can be used to achieve the present optimal D–M tradeoff, when combined with a
carefully designed feedback link.

Our results also shed some light into the design of adaptive MIMO systems with
sufficiently long codewords at very high SNR. For single-rate systems, the optimal
D–M tradeoff can be achieved by a single codebook and a CSIT-dependent power
controller. On the other hand, an adaptive MIMO system may achieve performance
close to the optimal tradeoff with only two different codebooks, even if the resolution
of the feedback link is higher.

Finally, to get additional insight, we develop lower bounds on the optimal D–M
tradeoff based on random coding arguments. Interestingly, in contrary to the no-
CSIT case where codes drawn from Gaussian ensemble of short length can achieve
the entire optimal D–M tradeoff, we show that except for some special cases, Gaus-
sian coding arguments do not appear to be sufficient to complete the achievability
part when quantized feedback is available. This seems to hold even with carefully
expurgated codes in combination with optimized feedback schemes. Our random
coding bounds highlight that for a random code, the gap between the code rate and
optimal feedback threshold is not negligible. Designing a good feedback scheme is
therefore a critical task, even in the high SNR regime.

3.2 System Model

Consider the discrete-time complex-baseband model of a frequency-nonselective
MIMO communication system with Nt transmit antennas and Nr receive antennas.
The channel is constant during a fading block consisting of T channel uses, but
changes independently from one block to the next. During a fading block l, the
channel is represented by an Nr × Nt random matrix Hl, and the received signal
can be written in matrix form as

Yl = HlSl + Wl. (3.1)

The components of the temporally and spatially white noise matrix Wl of size
Nr × T are i.i.d. complex Gaussian with zero mean and unit variance, CN (0, 1).
The elements of the channel matrix Hl are assumed to be i.i.d. CN (0, 1). Thus we
consider a rich-scattering, Rayleigh fading environment.

It is assumed that the receiver knows the channel matrix perfectly. Given a
channel realization, the receiver sends back an index I(Hl) via a noiseless, zero-
delay feedback link to the transmitter. Herein I(Hl) is a deterministic mapping
from a channel matrix to an integer index. With a slight abuse of notation, we also
denote the random variable representing the feedback index as I, which takes values
on the set {1, . . . ,K} where K is a positive integer, i.e., a resolution-constrained
feedback link is considered. In other words, the mapping I(Hl) partitions the set
of all possible channel realizations into K regions; and priori to the transmission
the transmitter knows exactly which region the channel matrix belongs to.
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A codeword Sl is assumed to span a single fading block. Since we do not consider
coding over multiple fading blocks, the block index l will be omitted whenever this
does not cause any confusion. Conditioned on an index I = i, the codeword S is
taken from a codebook Ci = {Si(1), . . . ,Si(Mi)} of rate Ri, where all codewords
are equally likely. Herein the Si(k)’s are matrices of size Nt × T .

Define

Pi
Δ= 1
TMi

Mi∑
k=1

‖Si(k)‖2F (3.2)

where ‖S‖F denotes the Frobenius norm of matrix S. Note that Pi can be in-
terpreted as the average total transmit power conditioned on the event that the
feedback index I = i is received. Since the noise has unit variance, we conveniently
translate the average transmit power over multiple fading blocks to average signal-
to-noise ratio (SNR) and impose a long-term power constraint [CTB99, BCT01]

lim
L→∞

1
L

L∑
l=1

1
T
‖Sl‖2F a.s.= EH[PI(H)] ≤ SNR (3.3)

where the first equality holds with probability one.
Note that the index mapping I(H), and the codebooks Ci’s (thus Pi’s and Ri’s)

are all SNR-dependent. In other words, we study a sequence of feedback schemes,
one for each value of SNR (cf. [ZT03]). The dependence of the rates on the SNR is
explicitly given by

Ri = ri log SNR, i = 1, . . . ,K,

where the ri’s are some real values in (0,min(Nr, Nt)), independent of SNR. We
refer to ri’s as the individual multiplexing gains, essentially quantifying how large
the rate of each codebook is compared to the capacity of a SISO link at high SNR.

An error occurs when the transmitted codeword is incorrectly detected at the
receiver. Let Pe be the average probability of error (over the randomness of the
channel, the noise and the data). Then the system is said to have a diversity gain
of d if

Pe
.= SNR−d, (3.4)

where we adopt the following notation of [ZT03]

f
.= SNRb ⇔ lim

SNR→∞
log f

log SNR = b

where f is a function of SNR.
Throughout this work, we focus on the average rate over infinitely many fading

blocks

R
Δ= lim
L→∞

1
L

L∑
l=1

RI(Hl)
a.s.=

K∑
i=1

Pr(I = i)Ri.
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Accordingly, the system is said to have a multiplexing gain of r, also in an average
sense, if

lim
SNR→∞

R

log SNR =
K∑
i=1
ri lim

SNR→∞
Pr(I = i) = r. (3.5)

The main question we try to answer in this chapter is: Over all sequences of schemes
subject to the above constraints, which are able to provide a multiplexing gain of r,
what is the maximum diversity gain d∗K(r)? We will consider two related problems:

• Single-rate transmission: For each value of SNR, the transmission rate is
independent of the feedback index. In other words, it is constrained that

r1 = · · · = rK = r. (3.6)

This models a system designed to support constant-rate services, such as
voice or video transmission [CTB99, BCT01].

• Adaptive-rate transmission: In a more relaxed setting, the values of r1, . . . , rK
can also be optimized subject to (3.5), i.e., we consider a variable-rate MIMO
system. In addition, a constraint on the individual multiplexing gains is as-
sumed

ri ≥ rmin,∀i ∈ {1, . . . ,K}, (3.7)
where rmin is a constant in (0,min(Nr, Nt)), referred to as the minimum
multiplexing gain.

The interpretation of (3.7) is that for certain applications, an acceptable quality of
service is only achieved at a certain minimum rate. Any rate above this threshold
will enhance the quality of service, thus rate adaptation still makes sense [LLYS03].
In the limit SNR → ∞, to be meaningful, the minimum rate should be translated
into a minimum multiplexing gain. Any fixed minimum rate then becomes a limiting
case, rmin ↓ 0. Furthermore, without imposing (3.7), it is not very meaningful to
discuss outage, i.e., the event that a channel realization cannot support the rate,
because a transmitter may, upon accessing to some CSIT, switch off transmission
completely. Of course, (3.7) can also be imposed for single-rate transmission, but
the solution is only a simple truncated version of the optimal D–M tradeoff without
assuming such a constraint. This is not the case for the adaptive-rate problem,
where the value rmin heavily influences the optimal D–M tradeoff.

Before proceeding to the derivation of the optimal D–M tradeoff, let us clarify
the notations used throughout the discussion. Throughout this chapter, we define
m

Δ= max(Nr, Nt) and n Δ= min(Nr, Nt). For a matrix X, tr X denotes the trace of
X and XH denotes transpose and conjugate. For any π > 0 and ρ > 0, define

I(H, π) Δ= log det
(

INr + π
Nt

HHH
)

(3.8)

where the identity matrix of size Nr is denoted as INr , and

F (ρ, π) Δ= Pr (I(H, π) < ρ) (3.9)
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where the probability is over the randomness of the channel matrix.
The notation f .= SNR−∞ is used to indicate that the function f of SNR decays

exponentially as SNR→∞ , for example when f = exp(−SNRp) for some constant
p > 0. The “exponent inequalities” ≤̇ and ≥̇ are explicitly defined as

f ≥̇ SNRb ⇔ lim inf
SNR→∞

log f
log SNR ≥ b,

f ≤̇ SNRb ⇔ lim sup
SNR→∞

log f
log SNR ≤ b.

For two sequences f, g of SNR, f .= g ⇔ f
g

.= SNR0.

3.3 Outage Upper Bound on the Optimal D–M Tradeoff

An outage event has the interpretation that the conditional channel cannot sup-
port the rate RI , even if “Gaussian codebooks” with infinitely long codewords are
employed [OSW94]. For a given feedback scheme, the outage probability, which is
also SNR-dependent, is thus defined as

Pout, K
Δ= Pr

(
log det

(
INr + HQI(H)HH) < RI(H)

)
where the positive semi-definite matrices {Qi}Ki=1 correspond to the covariance
matrices of the input of the channel conditioned on a feedback index. Outage
probability is relevant to our discussion on the D–M tradeoff because an application
of Fano’s inequality, similar to that in [ZT03, Lemma 5], yields an upper bound on
the optimal D–M tradeoff

Pe ≥̇ Pout, K
.= SNR−dout,K(r) ≥ SNR−d

∗
out,K(r),

for any feedback schemes and any codes of finite length T . Herein −d∗out, K(r)
denotes the SNR exponent of the minimum outage probability P ∗out (over all feed-
back schemes with resolution K). To find d∗out, K(r), we will, for each given SNR,
characterize the resolution-constrained feedback schemes that minimize the outage
probability, and then study the asymptotic behavior of the solution.

Single-rate Transmission

Recall that single-rate transmission means that the constraint (3.6) is imposed.
Finding d∗out, K(r) requires a joint optimization over I(H), {Pi}Ki=1, and {Qi}Ki=1
where tr(Qi) ≤ Pi. In the limit SNR → ∞, however, it suffices to consider the
Qi’s to be scaled identity matrices, which are of course dependent on the partial
CSIT and the SNR. To see this, note that for any given I(H) and PK1 , by choosing
Q
i

= Pi
Nt

INt and Qi = PiINt , ∀i ∈ {1, . . . ,K}, we obtain the following bounds on
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the outage probability,

lim
SNR→∞

log Pr
(
log det

(
INr + PIHHH) < r log SNR

)
log SNR

≤ lim
SNR→∞

logPout, K

log SNR

≤ lim
SNR→∞

log Pr
(

log det
(

INr + PI
Nt

HHH
)
< r log SNR

)
log SNR .

(3.10)

With “regular” power allocation schemes such that Pi
.= SNRpi where 0 < pi <

∞, ∀i, it then follows from (3.10) that we can restrict our analysis to the case
Qi = Pi

Nt
INt , ∀i. Intuitively, in the high-SNR regime of interest, allocating the

transmit power evenly over all spatial directions does not affect the SNR exponent
of the outage probability 1. We can therefore focus exclusively on the asymptotic
behavior of systems utilizing partial CSIT to control only the transmit power so as
to minimize the outage probability. Such a system is completely determined by an
index mapping and a power codebook {Pi}Ki=1, characterized in the following lemma
(recall that only deterministic mappings are considered).

Lemma 3.1. For a given SNR and rate R, the outage-minimizing power codebook
{P ∗i }Ki=1 solves the following optimization problem

max PK

s.t. [F (R,PK) + 1− F (R,P1)]P1

+
K∑
i=2

[F (R,Pi−1)− F (R,Pi)]Pi ≤ SNR,

0 ≤ P1 < · · · < PK ,

(3.11)

where F (ρ, π) is defined as in (3.9). The optimal deterministic index mapping is
given by

I∗(H) =
{

1 if I(H, P ∗K) < R
min{i : i ∈ {1, . . . ,K}, I(H, P ∗i ) ≥ R} otherwise,

(3.12)

where I(H, π) is defined as in (3.8). The minimum outage probability is F (P ∗K).

Proof. Given in Appendix 3.A.

1Indeed, quantizing the direction, i.e., the right singular vectors of the channel matrix
[LHS03, MSEA03], provides an SNR gain (somewhat similar to the coding gain of a code) that
is still important in some range of SNR. However, in the current work we are only interested in
characterizing the diversity gain in the framework of the D–M tradeoff, i.e., as SNR→∞.
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Interestingly, the optimal index mapping (3.12) has a “circular” structure where
the “best” and the “worst” channel realizations share a common index. An eco-
nomic interpretation is that if a channel realization is too costly to invert, the
system should save power for better channel condition. Unlike in the perfect-CSIT
case [CTB99, BCT01], however, the optimal transmitter in the limited-feedback
case does not necessarily switch off transmission, i.e., P ∗1 is generally nonzero. An
intuitive explanation is that switching off transmission requires a zero power level
in the power codebook, which is rather costly given the finite resolution of the
feedback link. This is especially true in the high SNR regime, where switching off
transmission does not save power significantly. Also note that the region associated
with I∗(H) = 1 is also the only region where an outage event may occur.

It now remains to determine the asymptotic SNR exponent of P ∗K that solves
(3.11). Notice that at high SNR, most channel are not in outage, thus some quan-
tization regions may become so unlikely that a power level with an SNR exponent
strictly larger than one can be employed without violating (3.3). This motivates
the following lemma, which determines the SNR exponent of the outage probability
given the asymptotic SNR exponent of the transmit power.

Lemma 3.2. For r ∈ (0, n), let π be a function of SNR such that π .= SNRp where
p is a finite constant and p ≥ 1. We then have

F (r log SNR, π) .= SNR−D(r,p)

where F (r log SNR, π) is defined as in (3.9) and

D(r, p) Δ= inf
αn1∈A

n∑
i=1

(2i− 1 +m− n)αi, (3.13)

where

A Δ=
{
αn1 |α1 ≥ · · · ≥ αn ≥ 0,

n∑
i=1

(p− αi)+ < r

}
.

Proof. The asserted result is a natural extension of [ZT03, Theorem 4]. We have

F (r log SNR, π) = Pr

⎛
⎝ n∑
j=1

log
(

1 + π
Nt
λj

)
< r log SNR

⎞
⎠

where λ1 ≤ · · · ≤ λn are the n largest eigenvalues of HHH. By a change of variables
λj = SNR−αj , j = 1, . . . , n, we obtain

F (r log SNR, p) .= Pr

⎛
⎝ n∏
j=1

SNR(p−αj)+
< SNRr

⎞
⎠

= Pr

⎛
⎝ n∑
i=j

(p− αj)+ < r

⎞
⎠
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where (x)+ Δ= max(0, x). With the λj ’s following a Wishart distribution, an appli-
cation of Varadhan’s integral lemma [DZ98, ZT03] (noticing that outage is a rare
event as SNR→∞) yields the asserted result.

The region A only contains αj ≥ 0, ∀j, because outside this region, the outage
probability decays exponentially as SNR → ∞. Also note that the minimizer of
(3.13) can be found by a direct investigation:

α∗i =

⎧⎪⎨
⎪⎩
p for i = 1, . . . , n− J − 1,
(J + 1)p− r for i = n− J,
0 for i = n− J + 1, . . . , n,

(3.14)

where J Δ=
⌊
r
p

⌋
, i.e., the largest integer that does not exceed rp .

We are now ready to state the following theorem, which recursively characterizes
the SNR exponent of the minimum outage probability of a single-rate MIMO system
with quantized feedback.

Theorem 3.1. The optimal D–M tradeoff of a single-rate MIMO system with K
quantization regions in the feedback link is upper-bounded by the outage bound

d∗out, K(r) = D(r, 1 + d∗out, K−1(r)) (3.15)

where d∗out, 0(r) Δ= 0, ∀r and D(r, p) is defined as in (3.13).

The formal proof, deferred to Appendix 3.B, involves the computation of a lower
bound and an upper bound on d∗out,K(r) that asymptotically match. The lower
bound is obtained by choosing P 1 = SNR

K , P 2 = SNR
KF (R,P 1) , . . . , PK = SNR

KF (R,P
K−1) ,

implying that the following index mapping together with the power codebook
{P i}Ki=1 can be used to achieve the outage bound

Î(H) =
{
K if I(H, PK) < r log SNR,
min{i : i ∈ {1, . . . ,K}, I(H, P i) ≥ R} otherwise.

(3.16)

But (3.16) is similar to the power control scheme proposed for the MIMO ARQ
[ECD06] and for multiple-input single-output (MISO) channels [BSA02, KS04b]
in the sense that the highest power level is used even in the outage region. Our
result implies that such a non-circular power control scheme is (only) asymptotically
optimal in an outage sense. The intuition is that the amount of power saved by
using the truly optimal circular mapping (3.12) goes to zero as SNR→∞.

Some interesting results can be obtained as direct consequences of Theorem 3.1.
The first one characterizes the limiting values on the outage bound, highlighting
the fast increase in diversity gain at low rate.
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Corollary 3.1. We have

lim
r↓0
d∗K(r) =

K∑
k=1

(NtNr)k

and
lim
r↑n
d∗out, K(r) = 0, ∀K.

Proof. For r sufficiently close to zero and any p ≥ 1, (3.13) is minimized by α∗i = p,
i = 1, . . . , n − 1, and α∗n = p − r leading to limr↓0D(r, p) = NtNrp. Applying
Theorem 3.1, we obtain limr↓0 d∗out, K(r) =

∑K
k=1(NtNr)k, ∀K. It can also be

verified that limr↑nD(r, 1) = 0. Using Theorem 3.1 gives limr↑n d∗out, K(r) = 0,
∀K.

The results reveal the fact that in a SISO channel, the maximal diversity gain
only scales linearly with the number of feedback levels K. On the contrary, when
the system is equipped with multiple antennas, the maximal diversity gain grows
exponentially in the feedback resolution K.

The next result explicitly characterizes the outage bound for a channel where
at least one side of the communication link has a single antenna.

Corollary 3.2. If n = 1, the outage bound consists of a single segment between
(0,
∑K
k=1m

k) and (1, 0).

Proof. For any k ≥ 1, because d∗out, k(r) is a monotonically decreasing function
of r, we have r

1+d∗out, k(r) < 1, ∀r ∈ (0, 1). From (3.14) , we then obtain α∗1 =
1 + d∗out, k(r)− r, leading to d∗out, k+1(r) = D(r, 1 + d∗out, k(r)) = m(1 + d∗out, k(r)−
r). But d∗out, 1(r) is a single segment, thus d∗out, 2(r), . . . , d∗out, K(r) are all single
segments.

Adaptive-rate Transmission
A few technicalities need to be taken care of in the adaptive-rate case. One may
try to characterize the optimal index mapping, power and rate allocation for each
SNR as in the previous section. This is however a difficult task, even in the single-
antenna case with perfect CSIT [LLYS03], and becomes even less tractable in our
case due to the joint optimization involving the index mapping. Thus we follow
another approach and find an upper bound on the outage bound itself, which is
shown to be asymptotically tight, leading to a situation where the single-rate results
can be reused. The result, proved in Appendix 3.C, is formalized as follows.

Theorem 3.2. For a given rmin ∈ (0, n) and r ∈ [rmin, n), the optimal D–M
tradeoff of a MIMO system with K ≥ 2 quantization regions in the feedback link
and a minimum multiplexing gain rmin is upper-bounded by the outage bound

d∗out, K(r, rmin) = D(rmin, 1 + d∗out, K−1(r, rmin))
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where d∗out, 1(r, rmin) Δ= D(r, 1), ∀r ≥ rmin.

Essentially, the outage bound is obtained by considering a two-rate system. The
rate of one quantization region asymptotically dominates the average multiplexing
gain of the system, while power control is employed over the remaining K − 1
regions, where the minimum rate is used. The fact that the outage bounds in
Theorem 3.2 have a very similar form to those in Theorem 3.1 can be explained
intuitively as follows. The solution to the adaptive-rate problem is an optimal
combination of channel inversion to reduce outage and water-filling to improve
throughput [LLYS03]. At high SNR, the effect of water-filling quickly diminishes
and therefore, we essentially reduce to a channel inversion scheme having similar
structure to the single-rate case.

In an extreme case, when rmin ↓ 0, a surprisingly simple outage bound can be
obtained, which we loosely refer to as the case of zero minimum multiplexing gain.

Corollary 3.3. The optimal D–M tradeoff of a MIMO system with K ≥ 2 quanti-
zation regions in the feedback link and a zero minimum multiplexing gain is upper-
bounded by the outage bound

lim
rmin↓0

d∗out,K(r, rmin) = (NrNt)K−1D(r, 1) +
K−1∑
k=1

(NrNt)k.

For a given K, the bound in Corollary 3.3 is simply a scaled version of the no-
CSIT tradeoff D(r, 1) plus a constant, and therefore is piece-wise linear between the
points (r = j, d = (NrNt)K−1(Nr − j)(Nt − j) +

∑K−1
k=1 (NrNt)k), for j = 0, . . . , n.

Interestingly, the so-called “full diversity gain” NrNt, is already achieved with K =
2 at the “maximal” multiplexing gain, i.e., when r ↑ n. However, to obtain this
bound, the multiplexing gains over K−1 quantization regions must approach zero,
i.e., some strictly positive, but negligible compared to log SNR, rates are employed.

3.4 Achievability of the Optimal D–M Tradeoff

In this section, we show that the outage bound is achievable, conditioned on the
existence of a general class of codes with finite length. For brevity, we present
the proof only for the single-rate case and omit the almost identical derivations of
the adaptive-rate case. The analysis reveals a simple geometrical interpretation of
such a class of codes. It turns out that for single-rate transmission, the optimal
D–M tradeoff can be achieved by a single codebook and a feedback-dependent
power controller, a combination known to be optimal in different scenarios [CS99,
CTB99, BCT01, SJ03]. Connection to approximately universal codes [TV06] and
non-vanishing determinant codes, e.g., in [BR03, EKP+06] among others, will be
discussed.
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Extended Approximately Universal Condition

Consider a sequence of codes C with rate r log SNR (bits per channel use) using
equally likely codewords X(k), k = 1, . . . ,M with M Δ= �SNRrT �, which are ma-
trices of size Nt × T , where T ≥ Nt. The average energy of a component in a
codeword matrix is normalized such that

1
MTNt

M∑
k=1

‖X(k)‖2F ≤ 1. (3.17)

For an arbitrary pair of codewords, let μ1 ≤ · · · ≤ μn be the n smallest squared sin-
gular values of the codeword difference matrix, and let μj = SNR−βj .We constrain
C so that2 ⎛

⎝min
C

n∏
j=1

SNR−(βj)+

⎞
⎠ ≥̇ SNR−r (3.18)

where the minimization is over all pairs of different codewords in C. Recall that
(βj)+ = max(βj , 0). We refer to (3.18) as the extended approximately universal
criterion, because it is related, but not necessarily equivalent to the approximately
universal criterion developed in [TV06]. In the following, we show that the outage
bound is achievable by combining C with a CSIT-dependent power amplifier and a
suitable index mapping.

Let ε be an arbitrarily small positive number and consider the following index
mapping

I(H) =

⎧⎪⎨
⎪⎩

1 if I(H, PK) < (r + ε) log SNR,
min{i : i ∈ {1, . . . ,K}, I(H, P i) ≥ (r + ε) log SNR}

otherwise.

where P 1 = SNR
K , P 2 = SNR

KF ((r+ε) log SNR,P 1) , . . ., PK = SNR
KF ((r+ε) log SNR,P

K−1) . We
then construct the transmit codewords as

Si(k) =
√
P i
Nt

X(k), i = 1, . . . ,K, k = 1, . . . ,M.

where the factor
√
P
i

Nt
is used to guarantee the power constraint (3.3).

For any i ∈ {1, . . . ,K}, consider an arbitrary pair of codewords in C, say X(1)
and X(2) and denote ΔX = X(1)−X(2). Also define the ith ε-outage-free region
as

Oεi = {H : I(H) = i, I(H, P i) ≥ (r + ε) log SNR}.
2Recall that by our definition of the exponent (“dot”) inequality, the sequence on the left hand

side of (3.18) does not necessarily converge.



3.4. ACHIEVABILITY OF THE OPTIMAL D–M TRADEOFF 59

Clearly, except for i = 1 the second condition defining Oεi is always redundant.
The pairwise error probability, that Si(2) is incorrectly detected given Si(1) is
transmitted, averaged over the channel, can be upper-bounded by

Pr
(

Si(1)→ Si(2),H ∈ Oεi
)

≤
∫
Oεi

exp
(
− P i4Nt

‖HΔX‖2
)
f(H)dH

≤
∫
Oεi

exp

⎛
⎝− P i4Nt

n∑
j=1
λn−j+1μj

⎞
⎠ f(λn1 )dλn1 .

The second inequality is due to the worst-case rotation which aligns the ordered
singular values of the codeword different matrix √μj ’s with those of the channel√
λj ’s in reverse order [KW03]. Because I(H) and I(H, p) only depend on H via
λn1 , any Oεi is completely characterized by λn1 .

We now compute the asymptotic SNR exponent of the upperbound on the
pairwise error probability. By changing variables λj = SNR−αj , μj = SNR−βj
and assuming P i

.= SNRpi , we have

∫
Oεi

exp

⎛
⎝− P i4Nt

n∑
j=1
λn−j+1μj

⎞
⎠ f(λn1 )dλn1

.=
∫
Oεi

exp

⎛
⎝− n∑

j=1
SNRpi−(αn−j+1+βj)

⎞
⎠ f(αn1 )dαn1

.=
∫
Bi
f(αn1 )dαn1 + SNR−∞

where

Bi Δ= Oεi ∩ {αn1 : αn−j+1 + βj ≥ pi, j = 1, . . . , n}

⊂ {αn1 : α1 ≥ · · · ≥ αn,
n∑
j=1

(pi − αj)+ ≥ r + ε}∩

∩ {αn1 : αn−j+1 + βj ≥ pi, j = 1, . . . , n}.

Thus Bi is essentially a subset of Oεi containing the channel realizations that make
the bound on the pairwise error probability decay sub-exponentially. Note that
although Bi can be specified precisely for the Wishart distributed λn1 , we bound it
by a larger set that is independent of the distribution of αn1 and will show that this
is sufficient.
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For any αn1 ∈ Bi, we have βj ≥ pi −αn−j+1 leading to (βj)+ ≥ (pi −αn−j+1)+.
Thus

n∑
j=1

(βj)+ ≥
n∑
j=1

(pi − αj)+ ≥ r + ε.

However, the condition (3.18) implies that for any ε > 0, there exists an SNR so
that for all SNR > SNR:

n∏
j=1

SNR−(βj)+ ≥ SNR−r−
ε
2 ,

leading to
n∑
j=1

(βj)+ ≤ r + ε2 ,

meaning that the set Bi is empty for any SNR > SNR, and hence the average
pairwise error probability decays exponentially as SNR → ∞. This holds for any
pair of codewords, hence the unionbound on the average error probability gives

Pr(error,H ∈ Oεi) .= SNRTrSNR−∞ .= SNR−∞

for any i and finite codeword length T . Thus, for an extended approximately uni-
versal code, the error probability is dominated by the outage event I(H, PK) <
(r + ε) log SNR, which by construction of I(H) has asymptotic SNR exponent
−d∗out,K(r + ε), with d∗out,K(r + ε) defined as in Theorem 3.1. Therefore

Pe ≤̇ SNR−d
∗
out,K(r+ε).

By continuity of d∗out,K(r), the system can achieve points arbitrarily close to the
outage bound as ε ↓ 0. We finally have the following.

Theorem 3.3. If there exists a sequence of codes satisfying the extended approxi-
mately universal criterion, i.e., satisfying (3.17) and (3.18), then the optimal D–M
tradeoff of the MIMO channel (3.1) with feedback resolution K and codeword length
T is given by

d∗K(r) = d∗out, K(r)

for single-rate transmission and

d∗K(r, rmin) = d∗out, K(r, rmin)

for adaptive-rate transmission with minimum multiplexing gain rmin .

The adaptive-rate case can be proved in a similar manner. Interestingly, for
adaptive transmission, the optimal tradeoff can be achieved by only two codebooks,
leading to an implication for practical applications: At sufficiently high SNR, an
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Figure 3.1: A geometrical interpretation of the condition (3.18). The channel
realizations making a pairwise error probability decay polynomially are contained
in the cuboid, and (3.18) keeps the corners of all the cuboids in the code below
the surface of the plane x1 + x2 + x3 = r. (The constraints x1 ≤ x2 ≤ x3 are not
plotted to improve readability.)

adaptive MIMO system may not need too many different code rates to achieve
performance close to the optimal tradeoff. Indeed, using two code rates is sufficient.
The higher rate asymptotically dominates the average multiplexing gain of the
system, while the lower rate guarantees the minimum level of quality service in poor
channel conditions. Notice however that the D–M tradeoff result is an asymptotic
analysis, thus for low and moderate SNR, that conclusion does not necessarily hold.

Discussion

The condition (3.18) has a simple geometrical interpretation, illustrated in Fig. 3.1.
Let xj = (pi − αj)+ ≥ 0. The set of all xn1 in the nonnegative orthant so that∑n
j=1 xj ≥ r + ε contains the ε-outage-free region. On the other hand, the set
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of all “bad” channels that make the pairwise probability decay sub-exponentially
is contained in the cuboid defined by 0 ≤ xj ≤ (βj)+, where the βj ’s correspond
to the SNR exponents of the squared singular values of an arbitrary codeword
difference matrix. By keeping the corners of any such cuboid below the surface of
the hyperplane

∑n
j=1 xj = r, the condition (3.18) guarantees that all pairwise error

probabilities decay exponentially as SNR→∞ .
Having all pairwise error probabilities decay exponentially in the limit SNR→

∞ as long as the channel is not in outage, regardless of the channel distribution,
is called the approximately universal property in [TV06]. In [TV06], the necessary
and sufficient conditions for a code to be approximately universal are established,
assuming no CSIT (Pi = SNR) and under a power constraint on every codeword (an
indispensable assumption for their results to hold). In this chapter, we relax this
assumption and approach the problem within the framework of quantized feedback,
giving some new insight. Furthermore, by tailoring the universality condition to the
problem at hand, we obtain a stronger result, that the optimal D–M tradeoff can
be achieved by a single code together with a power amplifier, which only depends
on the feedback index.

For completeness, in Appendix 3.D we show that (3.18) cannot be relaxed to
admit more codes that is approximately universal for any sequence of channel dis-
tributions, even though such a necessary condition is not the main focus of this
chapter. However, this (very) strong requirement may not be necessary to achieve
the optimal D–M for a particular channel distribution. This motivates our fur-
ther study on the achievable tradeoffs of codes drawn from random ensembles in
Section 3.5.

Relations Between Different Criteria

If replacing (3.17) with a more stringent power constraint imposed on every code-
word

1
TNt
‖X(k)‖2F ≤ 1, ∀k, (3.19)

then with any SNR we have μj = SNR−βj ≤ TNt, ∀j for any pair of codewords.
The approximately universal condition in [TV06], obtained under (3.19), can be
written as ⎛

⎝min
C

n∏
j=1

SNR−βj
⎞
⎠ ≥̇ SNR−r. (3.20)

When n = Nt ≤ Nr, (3.20) is obviously equivalent to the non-vanishing determinant
criterion (NVD) [BR03, YW03, EKP+06], which requires⎛

⎝min
C

Nt∏
j=1

SNR−βj
⎞
⎠ ≥̇ SNR−r. (3.21)
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However, for n = Nr < Nt, (3.20) and (3.21) are not equivalent. A code satisfying
the stronger NVD criterion (3.21) also satisfies (3.20), but not vice versa.

Under (3.17), the arguments in [TV06] generally do not hold because the eigen-
values of a codeword difference matrix are not bounded. Our results show that
under a less restrictive power constraint, (3.20) should be further relaxed to (3.18).
Furthermore, any code that has the property (3.20) under (3.19) also satisfies the
weaker requirement (3.18), because⎛

⎝min
C

n∏
j=1

SNR−βj
⎞
⎠ (3.19)
≤ (TNt)n−n̄

⎛
⎝min
C

n̄∏
j=1

SNR−βj
⎞
⎠

.=

⎛
⎝min
C

n∏
j=1

SNR−(βj)+

⎞
⎠

where n̄ is the integer such that βn̄ ≥ 0 and βn̄+1 < 0. Interestingly, even if n = Nt,
the product

∏n
j=1 SNR−(βj)+

is no longer equal to the determinant of a codeword
difference matrix if that codeword difference has some very large singular values.
Somewhat surprisingly, the condition (3.18) implies that having such an abnormally
large codeword difference with energy much larger than the noise variance (in an
order of magnitude sense) does not really help, as only the nonnegative parts of
βj ’s count. On the other hand, finding codes belonging to the larger class defined
by (3.18) may be an easier task. Besides, it is more helpful to use (3.18) when
working with random codes, as will be shown in Section 3.5.

A remaining and very important question is: Does such a constrained code
(3.18) exist for MIMO channels? A number of codes are known to satisfy (3.20)
as presented in [TV06], for example QAM for single transmit-antenna, Alamouti’s
scheme with QAM constellations [Ala98] for 2 × 1 channels and, tilted QAM for
two transmit antennas [YW03], Golden codes [BRV05] for 2 × 2 systems. For a
certain numbers of transmit antennas, codes presented in [RBV04, ORBV06, KR05]
satisfy (3.21). Consequently, all the aforementioned codes can achieve the optimal
D–M tradeoff presented herein. The strongest claim to date, based on an explicit
construction, states that there exist codes of length T ≥ Nt satisfying (3.21) for any
Nt [EKP+06]. Their existence completes the achievability part, i.e., the optimal
D–M tradeoffs of MIMO systems with feedback resolution K coincide with the
corresponding outage bounds for any T ≥ Nt.

Numerical Examples
The tradeoffs for single-rate and adaptive-rate (with a near zero minimum multi-
plexing gain) systems are compared in Fig. 3.2. As can be seen, even a few bits
of feedback information can increase the diversity gain of a MIMO channel dra-
matically. A large improvement in the diversity gain can be observed in all cases,
even with coarsely quantized feedback. This suggests that from a diversity gain
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Figure 3.2: D–M tradeoffs of single-rate and adaptive-rate (rmin = 0.001) transmis-
sion over a 2× 2 channel with different feedback resolution K.

perspective, increasing the feedback resolution can be more efficient than adding
antennas, provided that transmit power control is possible. The intuition behind
this “power-control diversity” is that we can isolate certain “bad” channels into re-
gions with polynomially small probability measures and employ polynomially large
powers over those regions without violating the power constraint (cf. also [ECD06]).
This gives “diversity on top of diversity.” The effect can be interpreted as time di-
versity even though we only code over a single fading block: Transmit power is
saved over a long time period to be used in a few rare peaks.

As illustrated in Fig. 3.2, the penalty of keeping the rate independent of the
feedback index is relatively large, especially at high multiplexing gain. More im-
portantly, it is possible to achieve nonzero diversity gain with rate adaptation, even
at the “maximal” average multiplexing gain. For a given resolution K, the two
curves coincide at zero multiplexing gain, where the multiplexing gain is not the
parameter of interest. Thus rate adaptation is essential to achieve a high through-
put together with a nonzero diversity gain.

The D–M tradeoff over a 4×4 channel with different minimum multiplexing gains
is plotted in Fig. 3.3. Clearly, increasing the minimum threshold on the individual
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Figure 3.3: D–M tradeoffs for adaptive-rate transmission over a 4× 4 channel with
minimum multiplexing gain rmin = 0.001, 1, 2, 3.

rates leads to a degradation in reliability. However, since rmin is dictated by higher-
layer applications, one should not conclude that a small rmin is preferable. As can
be seen, the tradeoff with very coarse feedback (K = 2) is still strictly better than
that without CSIT. For example, the “maximal” multiplexing gain r = 4 can be
achieved together with a diversity gain d = 1 even if the multiplexing gain used
over any channel realization never drops below 3.

Comparison to the MIMO ARQ Channel

The numerical results above show that the D–M tradeoffs of the current work share
some similarities with those of the MIMO ARQ schemes [ECD06], especially in the
adaptive-rate case where the tradeoff curves appear to be “pushed” upwards even
at the maximal multiplexing gain. Of course, since our assumed feedback model is
fundamentally different from the one in [ECD06], it is not entirely fair to compare
the corresponding performance. Nevertheless, it is of interest to understand the
relation between these two cases. We discuss a specific example in this section
to demonstrate that the D–M tradeoff of the ARQ scheme indeed shares common
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characteristics with both single-rate and adaptive-rate scenarios.
We will compare a power-controlled ARQ channel having an effective multiplex-

ing gain of r and no more than LR rounds of transmission (the channel matrix is
unchanged during all rounds) to an adaptive-rate system with multiplexing gain r,
feedback resolution LR and minimum multiplexing gain rmin = r

LR
. This is because

the worst channel conditions require all LR rounds, and thus the smallest “instan-
taneous” multiplexing gain of the ARQ scheme is only r

LR
. In addition, the power

codebooks of both systems are of size LR. Note that for the sake of comparison,
we constrain the adaptive-rate system to have a minimum multiplexing gain rmin
that is dependent on r.

The explicit form of the D–M tradeoff for a power-controlled MIMO ARQ system
is difficult to compute in general [ECD06]. To get some insight, we study the case
n = 1 (e.g., an m× 1 MISO channel) where closed-form expressions can be worked
out. Let the channel vector be h. Then the outage event in the MIMO ARQ
scheme [ECD06] is given by

log
(

1 + P
ARQ
1
Nt
‖h‖2F

)
+ . . .+ log

(
1 +
PARQ
LR

Nt
‖h‖2F

)

< r log SNR.
(3.22)

For the adaptive-rate system, the outage event is

log
(

1 +
P adap
LR

Nt
‖h‖2F

)
<
r

LR
log SNR. (3.23)

Note that the SNR exponents of the power levels in the two schemes are recursively
computed. While PARQ

1
.= P adap

1
.= SNR and PARQ

2
.= P adap

2
.= SNR1+m−mr, this

exponential equality does not hold for an arbitrary pair PARQ
k and P adap

k . Indeed
the adaptive-rate system has a higher power level for any k ≥ 3, as discussed in
Observation 2 below.

From (3.22), the D–M tradeoffs of the ARQ channel, denoted as dARQ
LR

(r), can
be computed. Let us find dARQ

LR
(r) explicitly for the first few values of LR. For

LR = 2 we have

dARQ
2 (r) =

{
(m+m2)(1− r) if r < m

m+1 ,
m(m+2)−m(m+1)r

2 otherwise.

For LR = 3 and m > 1 we have

dARQ
3 (r) =

{
(m+m2 +m3)(1− r) if r < m

m+1 ,

m
(

1− r + m(m+2)−m(m+1)r
2

)
otherwise.
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Figure 3.4: Comparison of an adaptive-rate system and the power-controlled MIMO
ARQ scheme [ECD06] over a 2× 1 channel.

For m = 1, i.e., a SISO channel, the result for LR = 3 is slightly different:

dARQ
3 (r) =

⎧⎪⎨
⎪⎩

3− 3r if r ∈ (0, 1
2 ],

9−6r
4 if r ∈ ( 1

2 ,
5
6 ],

11−6r
6 otherwise.

The D–M tradeoff of the adaptive-rate system in this n = 1 case is found to be
(cf. Theorem 3.2)

d∗LR

(
r,
r

LR

)
=
(
m+m2 + . . .+mLR

)
−mLRr − (m+ . . .+mLR−1) r

LR
.

In Fig. 3.4 the D–M tradeoffs of both the ARQ scheme and the adaptive-rate system
in the case m = 2 are plotted.

We summarize the discussion above in the following two observations.
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Observation 1: The first (leftmost) segment of the ARQ tradeoff coincides
exactly with the D–M curve d∗LR

(r) of the single-rate system with LR feedback levels
(cf. Theorem 3.1). The intuition behind this remarkable phenomenon is that for a
sufficiently small r, the h’s that dominate the outage exponent must be in very deep
fades such that the first LR−1 rounds of transmission are completely “wiped out” by
the channel in the sense that (1+PARQ

i ‖h‖2F) .= SNR0, i = 1, . . . , LR−1. Thus the
first LR−1 transmission rounds do not contribute anything to the SNR exponent of
the outage probability. Since only the last block of transmission (round LR) makes
an impact on the outage exponent, it is then clear from (3.22) that the D–M tradeoff
of the ARQ system is equivalent to that of the single-rate system investigated in
Section 3.3. We notice that this fact is also consistent with a numerical observation
in [ECD06] when lower bounds to the optimal D–M tradeoff are computed.3

Observation 2: The adaptive-rate system has a higher diversity gain at all
multiplexing gains. This can be explained intuitively by comparing (3.22) and
(3.23). Because the causal-feedback ARQ scheme keeps trying higher power levels
and longer codeword lengths (i.e., lower rates), in the outage event (3.22) each
part of the ARQ codeword experiences a different power level. On the other hand,
with noncausal knowledge about the channel state, the adaptive-rate scheme can
immediately switch to a small-rate codebook and a high power. Therefore in the
outage event the whole codeword experiences the largest power level as in (3.23),
leading to a higher diversity gain.

Since the power levels are computed recursively, this effect is magnified as LR
grows. That is, the performance gap between rate adaptation and ARQ widens
as the maximum number of transmission rounds increases. On a final note, for a
given LR, both ARQ and rate adaptation provide the same maximal diversity gain.
Given the discussion in Observation 1, we can say that this is simply due to the
fact that single-rate and adaptive-rate curves coincide in the limit r ↓ 0.

3.5 Lower Bounds on the Optimal D–M Tradeoff: Gaussian
Coding Bounds

There are several reasons to study the achievable D–M tradeoff with codes drawn
from a random ensemble. First, the strong codes satisfying the extended approxi-
mately universal criterion (3.18) may not be necessary to achieve the optimal D–M
for a particular channel distribution. Furthermore, in the no-CSIT case, even Gaus-
sian codes of very short lengths can achieve the optimal D–M tradeoff, inspiring
some important classes of low-complexity codes such as Lattice Space-Time codes

3This suggests that for sufficiently low multiplexing gains, a simple repetitive power-controlled
ARQ scheme, where the transmitter keeps sending the same codeword with higher and higher
power levels until success or deadline and where the receiver decodes based on the latest round
only, is D–M tradeoff optimal. Intuitively, the gain from power control at low multiplexing gains
is so large that it masks out the effects of reducing the code rate (which is already small from the
first round).
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and their variations for the ARQ channels [ECD04, ECD06]. In this section, we de-
velop two lower bounds on the optimal D–M tradeoff with Gaussian random codes.
These bounds are nontrivial generalization of their counterparts in the no-CSIT
case [ZT03], and their derivations are considerably different due to the presence
of quantized CSIT. It turns out that, except for some special cases, the bounds
are only asymptotically tight, which is quite surprising given the result of [ZT03].
Nevertheless, the derived lower bounds quickly approach the outage upper bound
even for very moderate codeword lengths. Our results give some insight into the
approximate universality of codes drawn from Gaussian ensembles, as well as into
the D–M performance of random codes in the presence of CSIT.

Back-off Bounds
The key idea of back-off bounds is to feedback when the channel is good enough
to support a strictly larger rate than the transmission rate, hence the term “back-
off.” By exploiting the gap between the code rate and the instantaneous mutual
information of the channel, we gain in terms of error exponent. Interestingly, the
feedback thresholds can be optimized for any given codeword length T and mul-
tiplexing gain r. For simplicity we first discuss the case with K = 2 and a single
rate, then generalize the results to K > 2 and adaptive rates.

Consider the following sequence of index mappings and power codebooks

I(H) =
{

1 if I(H, P2) < (r + ρ2) log SNR,
min{i : i ∈ {1, 2}, I(H, Pi) ≥ (r + ρi) log SNR} otherwise,

and
P1 = SNR

2 , P2 = SNR
2F ((r + ρ1) log SNR, P1) .

The back-off multiplexing gains ρi’s are nonnegative functions of r and T , but do not
depend on SNR. By construction P1

.= SNR ≡ SNRp1 and P2
.= SNR1+D(r+ρ1,1) ≡

SNRp2 .
Conditioned on a feedback index i, the transmit signals are constructed as

Si(k) =
√
Pi
Nt

Xi(k),

where Xi(k) are codewords of a random codebook with i.i.d. components ∼
CN (0, 1). The error probabilities, averaged over the codebook, the channel, and
the code ensembles are [ZT03, Lemma 6]

Pr(error, I(H) = 1, I(H, P1) ≥ (r + ρ1) log SNR) ≤̇ SNR−dB,1(r)

and
Pr(error, I(H) = 2) ≤̇ SNR−dB,2(r)
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where

dB,i(r) = inf
αn1∈Bi

n∑
j=1

(2j − 1 +m− n)αj + T

⎛
⎝ n∑
j=1

(pi − αj)+ − r
⎞
⎠ ,

and

Bi Δ= {αn1 : α1 ≥ · · · ≥ αn ≥ 0,
n∑
j=1

(pi − αj)+ ≥ r + ρi}.

For T ≥ Nt + Nr − 1, the optimum α∗j ’s always satisfy
∑n
j=1(pi − α∗j )+ = r + ρi

and thus we have

dB,1(r) = D(r + ρ1, p1) + Tρ1 = D(r + ρ1, 1) + Tρ1

and

dB,2(r) = D(r + ρ2, p2) + Tρ2 = D(r + ρ2, 1 +D(r + ρ1, 1)) + Tρ2.

Furthermore, by construction,

Pr(outage) .= SNRD(r+ρ2,p2) = SNRD(r+ρ2,1+D(r+ρ1,1)) = SNR−dout(r).

The error probability, which we would like to minimize, is dominated by the
error event that decays the slowest as SNR grows. Thus we can optimize the back-
off multiplexing gains, for each r, as follows

sup
ρ2

1∈[0,n−r)2
min (dB,1(r), dB,2(r), dout(r)) .

Notice that dB,1(r) does not depend on ρ2. Also,

dB,2(r) = dout(r) + Tρ2 ≥ dout(r)

and
dout(r) = D(r + ρ2, 1 +D(r + ρ1, 1)) ≤ D(r, 1 +D(r + ρ1, 1))

where both inequalities become equalities if ρ2 = 0. We conclude that ρ∗2 = 0 is
optimal4 and rewrite the optimization as

sup
ρ1∈[0,n−r)

min {D(r + ρ1, 1) + Tρ1,D(r, 1 +D(r + ρ1, 1))} . (3.24)

For T ≥ Nt +Nr−1 and any r ∈ (0, n), dB,1(r) is an increasing function of ρ1 while
dB,2(r) = dout(r) is a decreasing function of ρ1. The optimization over ρ1 can thus

4That can be seen as a generalization of the no-CSIT case, where a back-off multiplexing
gain ρ∗1 = 0 makes the outage and outage-free regions have the same SNR exponent, solving
supρ1∈[0,n−r) min(dB,1(r), dout(r)).
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be interpreted as an attempt to balance the SNR exponents of the error events over
the quantization regions. Choosing ρ1 too small leads to dB,1(r) < dout(r), and
most errors occur when I(H, P1) ≥ r + ρ1 (channel is not in outage), while setting
ρ1 > ρ

∗
1 enlarges the outage region too much.

Generalization to K > 2 is straightforward, and the final result is summarized
in the following.

Proposition 3.1. For T ≥ Nt +Nr − 1 and K ≥ 2, recursively define

dB,k(r) = D(r + ρk, 1 + dB,k−1(r)− Tρk−1) + Tρk, k = 1, . . . ,K

where dB,0(r) Δ= 0 and ρ0
Δ= 0, ρK

Δ= 0. Then, the optimal D–M tradeoff of a
single-rate MIMO system with feedback resolution K is lower-bounded by

d∗B, K(r) Δ= sup
ρK−1

1 ∈[0,n−r)K−1
min{dB,1(r), . . . , dB,K(r)}.

For adaptive-rate systems, we have

Proposition 3.2. For T ≥ Nt +Nr − 1 and K ≥ 2, recursively define

dB,k(r, rmin) = D(rmin + ρk, 1 + dB,k−1(r, rmin)− Tρk−1) + Tρk, k = 2, . . . ,K

where dB,1(r, rmin) Δ= D(r, 1) and ρ0
Δ= 0, ρK

Δ= 0. Then, the optimal D–M tradeoff
of an adaptive-rate MIMO system with feedback resolution K is lower-bounded by

d∗B, K(r, rmin) Δ= sup
ρK−1

1 ∈[0,n−r)×[0,n−rmin)K−2
min{dB,1(r, rmin), . . . , dB,K(r, rmin)}.

We plot in Fig. 3.5 the back-off bounds in a 2 × 2 single-rate system with
different codeword lengths and feedback resolution K = 2. In this simple example,
the optimal back-off multiplexing gain and the corresponding bound can be found
in closed-form. In particular, if 3 ≤ T ≤ 7, the lower bound consists of two segments

d∗B, 2(r) =
{

2− r + T−1
T+3 (10− 6r) if r ∈ (0, 1.5− 1

2T
]
,

2− r + T−1
T+1 (4− 2r) if r ∈ (1.5− 1

2T , 2
)
.

For T ≥ 8, the bound consists of three segments

d∗B, 2(r) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

4− 3r + T−3
T+9 (16− 12r) if r ∈ (0, 1− 4

T−3 ],
2− r + T−1

T+3 (10− 6r)
if r ∈ (1− 4

T−3 , 1.5− 1
2T ],

2− r + T−1
T+1 (4− 2r) if r ∈ (1.5− 1

2T , 2).

For higher resolution K, it is more convenient to compute the back-off bound
numerically.
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Figure 3.5: Back-off bounds over a 2× 2 channel with feedback resolution K = 2.

The back-off bound is asymptotically tight as T → ∞. We illustrate this fact
with the K = 2 example. Recall that in this case, the back-off bound is given
by (3.24), i.e.

d∗B,2(r) = sup
ρ1∈[0,n−r)

min {D(r + ρ1, 1) + Tρ1,D(r, 1 +D(r + ρ1, 1))} .

By choosing a particular value ρ̃1 = d∗out,2(r)−D(r,1)
T = D(r,1+D(r,1))−D(r,1)

T (with a
sufficiently large T so that ρ̃1 < n− r) we obtain

d∗B,2(r) ≥ min
{
D(r + ρ̃1, 1) + d∗out,2(r)−D(r, 1),D(r, 1 +D(r + ρ̃1, 1))

}
.

But limT→∞ ρ̃1 = 0, thus limT→∞ d∗B,2 ≥ min
{
d∗out, 2(r),D(r, 1 +D(r, 1))

}
=

d∗out, 2(r). But the lower bound d∗B,2(r) cannot exceed the outage bound d∗out, 2(r)
for any T and we conclude that

lim
T→∞

d∗B,2(r) = d∗out, 2(r), ∀r ∈ (0, n).

Even with moderate values of T , the back-off bounds are very tight at high rates
and quickly approach the outage bound. We will tighten the bound in the low-rate
region using expurgation techniques [Gal65, ZT03] in the next section.
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Expurgated Bounds
Instead of backing off and trying to balance the SNR exponents of the error
probability in each quantization region, we now pursue another approach inspired
by the extended approximately universal condition and expurgation techniques
[Gal65, ZT03]. We begin with codes drawn from a Gaussian ensemble and then
expurgate bad codewords that do not satisfy the extended approximately univer-
sal condition (3.18)5. It turns out that expurgating all bad codewords results in
lower-rate codes with high probability, thus the expurgated codes are no longer
approximately universal. However, due to the presence of quantized CSIT, a com-
bination of the expurgated codes with rate back-off yields a much improved bound,
especially at low multiplexing gains.

Consider codes drawn from a random ensemble where each codeword is a matrix
of size Nt × T , T ≥ Nt with components CN (0, 1). The number of codeword is
T r̂ log SNR thus the rate is r̂ log SNR bits per use. For a given codeword X, if
there exists at least another codeword in the codebook so that

∑n
j=1(βj)+ > r

where μj = SNR−βj are the n smallest squared singular values of the codeword
difference ΔX then X is expurgated.

Let q = Pr(
∑n
j=1(βj)+ ≥ r) where the probability is over the code ensemble.

Because ΔX is a matrix of size Nt × T with i.i.d. zero-mean complex Gaussian
elements with variance 2, we readily have

q
.= SNR− infB

∑Nt
j=1

(2j−1+T−Nt)βj

where

B = {βNt
1 : β1 ≥ · · · ≥ βNt ≥ 0,

n∑
j=1
βj ≥ r}.

This gives q .= SNR−(T−Nt+1)r with minimizers β∗1 = r, β∗2 = · · · = β∗Nt
= 0,

implying that the probability of a random code drawn from Gaussian ensemble not
being approximately universal is dominated by the event that the smallest squared
singular value of the codeword different matrix is too small.

Over the ensemble, the probability that a codeword is expurgated can be union-
bounded by

Pr(X expurgated) ≤ SNRT r̂q.
If T r̂ = (T −Nt + 1)r − ε for any arbitrarily small ε > 0, then

Pr(X expurgated) ≤̇ SNR−ε

meaning that we obtain a code with multiplexing gain arbitrarily close to r̂ =
(1− Nt−1

T )r such that
∑n
j=1(βj)+ ≤ r for all pairs of codewords.

5Because the codeword matrix size is fixed (Nt × T ) while the number of codewords grows
unbounded, codes drawn from a Gaussian ensemble will violate the power constraint imposed on
every codeword almost surely as SNR→∞. Thus one cannot discuss the approximate universality
of such a random code outside our average power constraint framework, i.e., (3.17)-(3.18)
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Some observations can be made from the result. First, for Nt = 1, there exists at
least an expurgated Gaussian code of length T ≥ 1 that is approximately universal.
Second, as T →∞, the expurgated codes become closer to universal. However, for
any finite T and Nt ≥ 2, we obtain a code with strictly smaller rate, i.e., r̂ < r,
which will not be of much use without CSIT. To combine the expurgated codes
with CSIT, consider the following feedback scheme

IE(H) =

⎧⎨
⎩

1 if I(H, PK) < r

1−Nt−1
T

log SNR

min{i : i ∈ {1, . . . ,K}, I(H, Pi) ≥ r

1−Nt−1
T

log SNR} otherwise.

Clearly, we need to constrain r

1−Nt−1
T

< n, and the intuition is that it is not possible
to have expurgated codes of very high rates. Herein

P1 = SNR
K
, P2 = SNR

KF

(
r

1−Nt−1
T

log SNR, P1

) , . . . ,
PK = SNR

KF

(
r

1−Nt−1
T

log SNR, PK−1

) .
The transmit signals are constructed as

Si(k) =
√
Pi
Nt

XE(k)

where XE(k)’s are the codewords of the expurgated code.
By construction Pr(error, I = i, I(H, Pi) ≥ r

1−Nt−1
T

log SNR) .= SNR−∞, ∀i.
Therefore

Pe ≤̇ SNR−dout(r) ≡ SNR−dE, K(r).

We can define recursively

dE, k(r) = D
(

r

1− Nt−1
T

, 1 + dE, k−1(r)
)

where dE, 0(r) = 0.
For T ≥ Nt +Nr − 1, the bound can be slightly tightened. From the discussion

of back-off bounds, we know that there exist codes of length T ≥ Nt + Nr − 1 in
the Gaussian ensemble such that Pr(error, I = K) .= SNR−dout(r), ∀r. Thus there
is no need to sacrifice rate, i.e., no need to use expurgated codes, in the region
corresponding to I = K. We summarize the derivations as follows.

Proposition 3.3. For k = 1, . . . ,K − 1, define recursively

dE, k(r) = D
(

r

1− Nt−1
T

, 1 + dE, k−1(r)
)
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Figure 3.6: Expurgated bounds over a 2×2 channel with feedback resolutionK = 2.

where dE, 0(r) = 0. For r <
(
1− Nt−1

T

)
n, the optimal D–M tradeoff of a single-rate

system with feedback resolution K is lower-bounded by

D

(
r

1− Nt−1
T

, 1 + dE, K−1(r)
)
, for T ≥ Nt

and
D (r, 1 + dE, K−1(r)) , for T ≥ Nt +Nr − 1.

We plot in Fig. 3.6 the expurgated bounds with different codeword lengths over
a 2 × 2 channel. It is not surprising that these bounds are generally much tighter
than the back-off bounds, as we optimize both the codes and the feedback link with
expurgation techniques. The advantage of the back-off bound, however, is that it
is defined over the entire (0, n), whereas the expurgated bounds only exist for suffi-
ciently small multiplexing gains. Notice that at low multiplexing gains, expurgating
a large number of bad codeword does not cause much degradation because the code
rate is already small anyway, thus the expurgated bounds are very tight even with
small T . (Not surprisingly, Gallager’s expurgation techniques [Gal65] were also
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proposed for low-rate codes.) As can be seen, for moderate codeword length T , the
lower bounds quickly approach for outage bound over the entire (0, n).

The same idea can be applied for adaptive-rate transmission. For brevity, we
omit the derivations and summarize the results as follows.

Proposition 3.4. For k = 2, . . . ,K − 1, define recursively

dE, k(r, rmin) = D
(
rmin

1− Nt−1
T

, 1 + dE, k−1(r, rmin)
)

where dE, 1(r, rmin) = D
(

r

1−Nt−1
T

, 1
)

, ∀rmin. For r ∈ [rmin,
(
1− Nt−1

T

)
n
)
, the op-

timal D–M tradeoff of an adaptive-rate system with feedback resolution K is lower-
bounded by

D

(
rmin

1− Nt−1
T

, 1 + dE, K−1(r, rmin)
)
, for T ≥ Nt

and
D (rmin, 1 + dE, K−1(r, rmin)) , for T ≥ Nt +Nr − 1.

We plot both the back-off and expurgated bounds for adaptive transmission with
Nt = Nr = 2, rmin = 0.5 in Fig. 3.7. The back-off bounds consist of three sections
connected at r = 1− 5.5

T , 2− 2.5
T if T ≥ 6, and two sections connected at r = 2− 2.5

T
for T = 3, 4, 5. The last segment of the back-off bound can be interpreted as the
range where attempts to balance the SNR exponent in the outage and outage-free
region fail. Indeed, if r ≥ 2− 2.5

T then d∗B,2(r, 0.5) = T (2− r) and most errors occur
in the outage-free region. At the multiplexing gain r = 2− 2.5

T the diversity gain is
T (2 − (2 − 2.5

T )) = 2.5, for any T ≥ 3. It is interesting to observe that the right-
most points of expurgated bounds also seem to have this diversity gain. This can
be explained as follows. At sufficiently high rate, expurgating results in a back-off
threshold close to n, thus the probability that I = 2 is in the order of SNR−ε for
some small ε > 0. The power P2 therefore is in the order of SNR1+ε and thus the
diversity of a system with expurgated Gaussian codes is D(rmin, 1 + ε) → 2.5 as
ε ↓ 0.

We may draw some conservative conclusions, keeping in mind that results de-
rived are only lower bounds. Unlike in the no-CSIT case [ZT03], Gaussian coding
arguments do not appear to be sufficient to complete the D–M tradeoff analysis. It
is likely that many other randomly drawn codes also suffer from this phenomenon
and therefore are not immediately suitable for the feedback model considered herein.
Nevertheless, such a random code with moderate codeword lengths and/or careful
expurgation may quickly approach outage bounds, when combined with a properly
designed feedback scheme.
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Figure 3.7: Gaussian coding bounds for adaptive-rate transmission over a 2 × 2
channel with feedback resolution K = 2, rmin = 0.5.

3.6 Conclusion

In this chapter, we have analyzed the asymptotic behavior of MIMO systems with
slow fading and quantized CSIT under the framework of the D–M tradeoff. While
this is clear that an error event is very unlikely in such a high-SNR scenario, we
have been able to characterize exactly the level of unlikelihood of that event. We
have shown that, unlike in the no-CSIT case, even carefully constructed feedback
schemes with Gaussian codes are not sufficient to complete the achievability part
of the optimal D–M tradeoff. Instead, the optimal D–M tradeoff is shown to be
achievable by combining a certain class of finite-length codes with a suitable feed-
back scheme. Our extended approximately universal condition gives some novel
insight into the class of codes that are D–M tradeoff optimal over any channel dis-
tribution. Altogether, the results provide a better understanding on the behavior
of adaptive MIMO systems in the asymptotically high SNR regime.
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Appendices for Chapter 3

3.A Proof of Lemma 3.1

We first show that the optimal index mapping must have the form (3.12). Notice
that for an optimal scheme, the power constraint is active, because the joint p.d.f.
of the singular values of the channel matrix are continuous and takes on positive
values over the entire positive orthant.

Let {Pi}Ki=1 be an arbitrary power codebook and I(H) be a deterministic index
mapping such that 0 ≤ P1 < . . . < PK and

∑K
i=1 Pr(I(H) = i)Pi ≤ SNR. Consider

another feedback scheme using the same power codebook and the following index
mapping

Î(H) Δ=
{

1 if I(H, PI(H)) < R,
min{i : i ∈ {1, . . . , I(H)}, I(H, Pi) ≥ R} otherwise.

This gives exactly the same outage probability as I(H) does. However, by con-
struction, the average transmit power of the newly constructed scheme is

K∑
i=1

Pr(Î(H) = i)Pi ≤
K∑
i=1

Pr(I(H) = i)Pi.

This means that we can restrict our attention to Î(H) with the following properties.
Firstly, all channel realizations that are in outage are mapped to I = 1. Secondly,
a channel realization H, if not in outage, is mapped to the smallest power in the
power codebook that can “invert” H, i.e., when this power level is applied at the
transmitter, the mutual information is greater than R.

It remains to show that no set of channel realizations with strictly positive
probability measure that can be inverted by some Pi, i ≥ 2, is mapped to I = 1.
Assume the contrary, i.e., there exists a set S and an index j ≥ 2 such that
Pr(H ∈ S) = πS > 0 and I(H, Pj) ≥ R, I(H) = 1, ∀H ∈ S. Then there ex-
ists a P̂j ∈ (Pj−1, Pj) such that Pr

(
Pm(H;Rj) ∈ (P̂j , Pj)

)
= πS where Pm(H;R)

satisfies I (H, Pm(H;R)) = R, i.e., the minimum power required to invert the
channel matrix H. Since all choices of S subject to Pr(H ∈ S) = πS are equiv-
alent in terms of both average power and outage probability, we can consider
S =

{
H : Pm(H;R) ∈ (P̂j , Pj)

}
.

Now consider another feedback scheme using the index mapping Î(H) and the
power codebook {P1, . . . , Pj−1, P̂j , Pj+1, . . . , PK}. By construction, this gives the
same outage probability as that obtained by the codebook {Pi}Ki=1 together with
Î(H). However the newly constructed scheme uses less average power, because
P̂j < Pj , i.e. the power constraint is inactive. Thus, the optimal index mapping
must have the form (3.12), which yields an outage probability of F (R,P ∗K).
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Finally, because P ∗1 < · · · < P ∗K , the event I(P ∗i−1,H) > R also implies
I(P ∗i ,H) > R. Thus

Pr
(
I(P ∗i ,H) > R, I(P ∗i−1,H) < R

)
= Pr

(
I(P ∗i−1,H) < R

)− Pr (I(P ∗i ,H) < R)
= F

(
R,P ∗i−1

)− F (R,P ∗i ) .

Therefore the average power of the system is given by

[F (R,P ∗K) + 1− F (R,P ∗1 )]P ∗1 +
K∑
i=2

[F (R,P ∗i−1)− F (R,P ∗i )]P ∗i .

Since F (R,PK) is a monotonically decreasing function of PK for any given R > 0,
the optimal power codebook is the solution to (3.11).

3.B Proof of Theorem 3.1

First we derive an upper bound on the SNR exponent of the largest power level in
the optimal power codebook, i.e., P ∗K . Let {P i} be the solution to the following
optimization problem, which is a relaxed version of (3.11),

max PK

s.t. [F (R,PK) + 1− F (R,P1)]P1 ≤ SNR,
[F (R,Pi−1)− F (R,Pi)]Pi ≤ SNR, i ≥ 2,
0 ≤ P1 < · · · < PK .

(3.25)

Clearly PK ≥ P ∗K due to relaxation. Note that the constraints of (3.25) imply∑K
i=1

SNR
P i
≥ 1. We must have P 1 ≤ KSNR otherwise

∑K
i=1

SNR
P i
< K 1

K = 1.
Because K is a finite constant, we have P 1 ≤̇ SNR. An application of Lemma 3.2
leads to F (R,P 1) ≥̇ SNR−D(r,1) = SNR−d

∗
out, 1(r).

The constraints of (3.25) also require SNR
P 2

+ F (R,P 2) ≥ F (R,P 1), leading to

SNR
P 2

+ F (P 2) ≥̇ SNR−d
∗
out, 1(r). (3.26)

For any ε > 0, if P 2
.= SNR1+d∗out, 1(r)+ε then

SNR
P 2

+ F (P 2) .= SNR−d
∗
out, 1(r)−ε + SNR−D(r,1+d∗out, 1(r)+ε),

which contradicts to (3.26) because D(r, 1 + d∗out, 1(r) + ε) > D(r, 1) = d∗out, 1(r).
Therefore we must have P 2 ≤̇ SNR1+d∗out, 1(r), and thus

F (R,P 2) ≥̇ SNR−D(r,1+d∗out, 1(r)) = SNR−d
∗
out, 2(r).
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By induction, we eventually obtain PK ≤̇ SNR1+d∗out, K−1(r) and

F (R,P ∗K) ≥ F (R,PK) ≥̇ SNR−D(r,1+d∗out, K−1(r)) = SNR−d
∗
out, K(r).

Finally, a lower bound on P ∗K is obtained by choosing P 1 = SNR
K , P 2 = SNR

KF (P 1) ,
. . ., PK = SNR

KF (PK−1) . Since these P i’s satisfy the constraints of (3.11), we have
P ∗K ≥ PK . Because K is a finite constant and by construction, P 1

.= SNR, P 2
.=

SNR1+d∗out, 1(r), . . ., PK
.= SNR1+d∗out, K−1(r). Thus

F (R,P ∗K) ≤ F (R,PK) .= SNR−d
∗
out, K(r).

This concludes the proof.

3.C Proof of Theorem 3.2

Similarly to the single-rate case, Qi = Pi
Nt

INt , ∀i ∈ {1, . . . ,K}, can be assumed
without loss of generality.

Consider an arbitrary sequence of deterministic feedback schemes F that pro-
vides a multiplexing gain of r. Let the outage probability Pout,F

.= SNR−dout,F (r).
We now derive an upper bound on dout,F (r). To that end, let pi, i = 1, . . . ,K, be
positive real numbers such that Pi

.= SNRpi . From (3.3), we have

K∑
i=1

Pr(I = i)SNRpi ≤̇ SNR. (3.27)

Without loss of generality, assume that 0 < p1 ≤ · · · ≤ pK . Let K̄ be the integer
in {1, . . . ,K} such that pK̄ ≤ 1 and pK̄+1 > 1. Herein we use the convention
pK+1 = ∞. Such a K̄ must exist, otherwise (3.27) cannot be satisfied. Note that
(3.27) implies Pr(I = i)SNRpi ≤̇ SNR, ∀i. Thus Pr(I = i) ≤̇ SNR1−pi , and

lim
SNR→∞

Pr(I = i)Ri
log SNR = ri lim

SNR→∞
Pr(I = i) = 0,∀i ≥ K̄ + 1,

meaning that all regions using a power whose SNR exponent is strictly larger than
1, if any, contribute nothing to the multiplexing gain (3.5). In our context, K̄ can
be interpreted as the number of regions that contribute considerably to the overall
throughput, while K − K̄ can be seen as the number of regions that are added to
improve the overall reliability.

Consider the first K̄ regions of F , with power levels having dominant SNR
exponent less than or equal to 1, and let rmax = max(r1, . . . , rK̄). By defini-
tion (3.5), r ≤ rmax. Let us consider another sequence of feedback schemes F̂
using r̂1 = r < rmax, r̂i = rmin ≤ ri, ∀i ≥ 2 and having P̂1

.= SNR. Let
Pout,F̂

.= SNR−dF̂ (r). Outage probability is an increasing function of rate and de-
creasing function of power, thus maximizing dF̂ (r) yields an upper bound to dF (r).
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If a multiplexing gain of r is achievable even with an outage-minimizing F̂ , then
the lower bound is tight.

We claim that to minimize the SNR exponent of outage, it suffices to consider
F̂ such that

p̂i > 1, ∀i ≥ 2 (3.28)
where P̂i

.= SNRp̂i . Assume the contrary, then at least P̂2
.= SNR. Then dF̂ (r) can

be upper-bounded by d∗K−1(rmin), i.e., the outage exponent of a single-rate system
with rate rmin log SNR and a coarser resolution of K − 1. It is easy to show that
such an upper bound is strictly below the achievable dF̂ (r) when assuming (3.28),
derived below.

Assume (3.28) holds, i.e., K̄ = 1. For sufficiently high SNR, (3.28) implies
P̂1 < P̂i, ∀i > 2. We can characterize the optimal index mapping and power
codebook with the following lemma, which is a straightforward generalization of
Lemma 3.2.

Lemma 3.3. Consider a system employing some given rates R1 > R2 = · · · = RK .
It is constrained that 0 ≤ P1 < · · · < PK . The outage-minimizing power codebook
{P ∗i }Ki=1 solves

max PK

s.t. [F (RK , PK) + 1− F (R1, P1)]P1 +
K∑
i=2

[F (Ri−1, Pi−1)− F (Ri, Pi)]Pi ≤ SNR.

(3.29)

The optimal index mapping is given by

I∗(H) =
{

1 if I(H, P ∗K) < RK ,
min{i : i ∈ {1, . . . ,K}, I(H, P ∗i ) ≥ Ri} otherwise.

(3.30)

The minimum outage probability is

P ∗out = F (RK , P ∗K).

The proof is almost identical to that of Lemma 3.2 and therefore omitted for
brevity. Similarly to Appendix 3.B, computing the SNR exponent of P ∗K that
solves (3.29) gives the optimal d∗F̂ (r) = d∗out,K(r, rmin).

Recall that d∗F̂ (r) is only an upper bound on dF (r) because the multiplexing
gain of F̂ may actually be smaller than r due to construction. To show the tightness
of the bound, consider the following power levels for F̂

P 1 = SNR
K
,P 2 = SNR

KF (R1, P 1) , . . . , PK = SNR
KF (RK−1, PK−1) ,

which satisfy (3.28), and also achieve d∗F̂ (r). It is not difficult to verify that

lim
SNR→∞

Pr(I = 1) = lim
SNR→∞

[F (RK , PK) + 1− F (R1, P 1)] = 1,



82 CHAPTER 3. D–M TRADEOFF IN MIMO CHANNELS

and limSNR→∞ Pr(I = i) = 0, ∀i > 1. By definition (3.5), the multiplexing gain of
such a scheme is exactly r.

3.D Towards the Necessity of (3.18)

In this section, we will show that, if a sequence of codes C satisfies

lim inf
SNR→∞

(
minC

∏n
j=1 SNR−(βj)+

)
log SNR = −r̂ (3.31)

for some r̂ > r, then for a certain sequence of channel distributions, there exist
channels in the ε-outage-free region that make the maximum pairwise error prob-
ability bounded away from zero even as SNR → ∞. Furthermore, the probability
measure of such bad channels set decays only polynomially with SNR.

To that end, consider
Oε = {H : I(H,SNR) ≥ (r + ε) log SNR}.

If the condition (3.31) holds, then for arbitrarily small δ > 0, we can find SNR so
that for any SNR > SNR, there exists a codeword differences ΔXB with squared
singular values μj = SNR−βj such that

∑n
j=1(βj)+ ≥ r̂ − δ. For sufficiently small

δ, then r̂ − δ > r > 0, thus at least β1 > 0.
Choose a sequence of distributions that always align the singular values λj

of the channel matrix to those of ΔXB in the worst order, i.e., ‖HΔXB‖2F =∑n
j=1 λjμn+j−1, ∀H. For convenience, also choose λn1 to be Wishart distributed

(which can be made independent of the choice of the worst-case rotation). Then

max
C

Pr(pairwise error,H ∈ Oε)
≥ Pr(pairwise error,ΔXB,H ∈ Oε)

=
∫
Oε
Q

⎛
⎝
√√√√SNR

2Nt

n∑
j=1
λjμn−j+1

⎞
⎠ f(λn1 )dλn1

≥ 1
2
√
π

∫
Oε

exp
(
−SNR

4Nt

∑n
j=1 λjμn−j+1

)
1 +
√

SNR
2Nt

∑n
j=1 λjμn−j+1

f(λn1 )dλn1

.=
∫
Oε

1

1 +
√∑n

j=1 SNR1−αj−βn−j+1
exp

⎛
⎝− n∑

j=1
SNR1−αj−βn−j+1

⎞
⎠ f(λn1 )dλn1

.=
∫
B
f(αn1 )dαn1 + SNR−∞

where the second inequality is due to the fact that

Q(x) ≥ 1
2
√
π

exp(−x2/2)
1 + x , ∀x ≥ 0.
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The bad channels set B where the pairwise error probability is in the order of SNR0

is given as

B = {αn1 : α1 ≥ · · · ≥ αn ≥ 0} ∩ {αn1 : 1− αj < βn−j+1}

∩
⎧⎨
⎩αn1 :

n∑
j=1

(1− αj)+ ≥ r + ε

⎫⎬
⎭ .

Let r̄ = min (1, r̂ − δ). Since β1 > 0 ∀SNR > SNR, the function
∑n
j=1(1− αj)+ is

continuous and assumes all values on [0, r̄) for the αn1 ’s in the intersection of the
first two sets defining B. Thus for any r ∈ (0, r̄), B can be made nonempty by
choosing, e.g.,

ε = r̄ − r2 .

With that choice of r and ε, over B, the function
∑n
j=1(2j−1+m−n)αj is continuous

and bounded below, and Varadhan’s integral lemma [DZ98] can be applied to show
that the probability that H ∈ B is dominated by the term

SNR− infB
∑n

j=1
(2j−1+m−n)αj

as SNR→∞. Thus there exists a set of “bad” channels in the ε-outage-free region
that make the largest pairwise error probability in the order of SNR0 (bounded
below by a positive constant). Furthermore the probability measure of that set
does not decay exponentially. This makes the largest pairwise error probability
averaged over Oε decay sub-exponentially.





Chapter 4

D–M Tradeoff in
Decode–and–Forward Relay
Channels

This chapter studies the problem of resource allocation to maximize the outage ex-
ponent over a decode-and-forward fading relay channel with quantized channel state
feedback (CSF). Three different scenarios are considered: relay-source, destination-
relay, and destination-source CSF. It is found that using just one bit of CSF from
the relay to control the source transmit power is sufficient to achieve the multi-
antenna upper bound in a range of multiplexing gains, with fixed-length codes, i.e.,
with coding schemes significantly simpler than dynamic DF. Systems with CSF
from destination to control relay transmit power slightly outperform DDF at high
multiplexing gains, even with one bit of feedback. Finally, with CSF from destina-
tion, if the source-relay channel gain is unknown to the feedback quantizer at the
destination, the diversity gain only grows linearly in the number of feedback levels
K, in sharp contrast to an exponential growth for multiantenna channels. In this
last scenario, a simple scheme is shown to perform close to the corresponding upper
bound.

4.1 Introduction

Motivated by the potential of having simple single-antenna communication nodes
cooperate and approach the promising performance of multiantenna systems, there
has been a renewed interest in the classical relay channels [van71, CE79], for ex-
ample in the recent work [SEA03a, SEA03b, LW03, LTW04, NBK04, KGG05].
Resource allocation for relay channels is known to enhance the performance sig-
nificantly in many different scenarios [HA04, MY04, LC05, GE07a, HZ05, LV05,
LVP07]. Most previous work on resource allocation, however, assumed perfect net-
work state information at both the source and the relay. In [AKSA06], power
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control for AF relaying with quantized feedback from the destination is considered,
but a diversity analysis is not pursued.

For the relay channel, the D–M tradeoff curves of some baseline schemes are
obtained in [LTW04, PV04]. A sophisticated scheme named dynamic decode-and-
forward is proposed in [AES05] and shown to achieve the multi-antenna upper
bound at all multiplexing gains less than one-half. The D–M tradeoff over AF
relay channels is extensively treated in [AES05, YB07a, YB07b]. From a diversity-
multiplexing tradeoff viewpoint, CF relaying is shown to be optimal [YE07], un-
der the critical assumption that the relay knows the full CSI. In the recent work
[EVAK06], optimizing the dimension allocation for DF using only the statistical
knowledge of the channel is considered.

This chapter considers a three-node half-duplex cooperative communication
channel subject to very slowly-varying, but random, channel gains (quasi-static
fading), under different forms of heavily quantized CSF. The partial CSF is used
to allocate the number of channel uses in the two phases of the DF protocol, i.e.,
dimension allocation, and also to control the transmit power across fading states.
Both orthogonal (source and relay do not transmit simultaneously) and nonorthog-
onal (source and relay can transmit at the same time) schemes are considered.

Three different feedback scenarios are considered: relay-to-source CSF, destination-
to-source-and-relay CSF, and destination-to-relay CSF. The last case is motivated
by the fact that in certain scenarios, the feedback link from the destination to the
source is of significantly lower quality than that from the destination to the relay
(which inspires the relaying model in the first place). The possibilities that we do
not study are the destination-to-source CSF case and the scenario of joint feedback
from both the relay and the destination. The former case is omitted because of the
relative distances between the nodes in practice. It is unrealistic that the feedback
from the destination is reliably received by the source but not by the relay, due to
the broadcast nature of wireless communications. As for the latter case, we chose
to study only separate feedback from either the relay or the destination to simplify
the analysis and also to get insight into the actual value of each individual feedback
type.

As in Chapter 3, we study the asymptotically high SNR regime in terms of
the D–M tradeoff. A summary of our findings in this chapter is given in the fol-
lowing. Over a statistically symmetric Gaussian decode-and-forward relay channel
(the channel is described more precisely later) with

Relay-to-source CSF:

• With dimension allocation only, performance gains over no-CSF schemes can
be achieved even with heavily quantized CSF from the relay to the source.
Nonorthogonal schemes provide additional, but not very significant gains
over an orthogonal system.

• With dimension allocation and power control at the source, even one bit of
CSF is sufficient to achieve the fully cooperative upper bound over a wide
range of multiplexing gains.
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• Relay-to-source CSF systems quickly approach the performance of DDF
[AES05] as the quality of CSF increases. Our results suggest the use of
an orthogonal DF scheme with as few as one bit of CSF from the relay, in
combination with power control at the source.

Destination-to-relay CSF: Our proposed nonorthogonal scheme with power
control at the relay slightly outperforms DDF for large values of multiplexing gain.
Furthermore, the performance of one bit CSF and perfect CSF is virtually indistin-
guishable. The results first imply that with perfect CSF, this DF and power control
scheme is much less efficient than a compress-and-forward approach [YE07]. Sec-
ond, with limited CSF, our results suggest the use of just one bit to control relay
transmit power for high-rate DF systems.

Destination-to-source-and-relay CSF:
• By developing a novel upper bound to the diversity gain for channels with

restricted CSF (see Section 4.6), we show that under the relatively realis-
tic assumption that the source-relay channel gain is unknown to the feed-
back quantizer at the destination, the diversity gain only grows linearly in
the number of feedback levels (also referred to as feedback resolution). In
contrast, the diversity gain of a MISO channel grows exponentially in the
feedback resolution K.

• A proposed scheme is shown to perform relatively close to the new upper
bound.

The results above are obtained in the limit of infinitely large block lengths. We
then discuss the achievable tradeoffs with finite-length codes, arguing that in the
orthogonal case, “good” codes designed for parallel channels are also suitable for
the DF relay scenario. Inspired by the concept of approximate universality [TV06]
we next present sufficient conditions for finite-length codes to achieve the optimal
exponent. By expurgating codes drawn from Gaussian ensemble to match the
new sufficient conditions, we show the existence of codes that approach the outage
exponent for all multiplexing gains even at moderate block lengths. In this scenario,
the loss in performance of finite block length schemes comes from the discreteness
of the possible dimension allocation ratios, rather than from the length of the codes.

4.2 System Model

Consider the complex baseband model of a frequency-nonselective fading relay chan-
nel in Fig. 4.1. The channel is assumed to be slowly fading, i.e., the channel gains
are constant during a fading block consisting of T channel uses, but changes in-
dependently from one block to the next. We exclusively consider the case when a
transmission codeword spans a single fading block to identify the gain of spatial
cooperation. The channel is assumed to be statistically symmetric. In particular,
the channel gains between source-destination, source-relay and relay-destination h,
h1, and h2 are i.i.d. complex Gaussian random variables with zero mean and unit
variance. Let g = |h|2, γ1 = |h1|2 and γ2 = |h2|2. Assume perfect channel state
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Figure 4.1: System model.

information at the receiver of each communication link. We also assume perfect
synchronization.

We consider a half-duplex channel, where the relay cannot transmit and receive
simultaneously. Communication between source and destination takes place in two
phases. In the learning phase, the source transmits, the relay and the destination
listen. In the relaying phase the relay transmits based on what it has learned
and the source may transmit more symbols but no new message (in nonorthogonal
schemes), or remain silent (in orthogonal schemes). The destination attempts to
decode based on the entire signals received during both phases.

The received signals at time instant n during the learning phase are given by

y1(n) = hs1(n) + w1(n)
yR(n) = h1s1(n) + wR(n).

(4.1)

In the relaying phase, the received signal at the destination is

y2(n) = hs2(n) + h2sR(n) + w2(n) (4.2)

where for an orthogonal scheme s2 = 0 (this will be discussed in more detail later
on). The noises w1, w2, wR are mutually independent temporally white complex
Gaussian with zero mean and unit variance.

Assume individual power constraints at the source and the relay. We consider
both short-term and long-term power constraints [CTB99], which are specified in
more detail later. We will also refer to systems under a short-term (respectively
long-term) power constraint as ones without power control (respectively, with power
control).

At each value of SNR, the system is designed to serve a fixed rate of r log SNR
bits per channel use (which is independent of the CSI at the transmitter), where
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r ∈ (0, 1) is the multiplexing gain. That is, no rate control is possible. Assume that
all three links in the model have the same SNR. This is not too restrictive because,
as long as the SNR’s of the three links scale in the same order, the diversity–
multiplexing tradeoff does not change. Recall from Chapter 3 that the system has
a diversity gain of d if the probability of error at the destination satisfies

Pr(ε) .= SNR−d.

We are interested in characterizing d as a function of r for different feedback schemes
over the channel. In Sections 4.3-4.6, we focus on the SNR exponent of the outage
probability Pout(r log SNR), also referred to as the outage exponent. Herein outage
is defined as the event that the relevant instantaneous mutual information (given
a particular scheme) is smaller than the data rate r log SNR. One should exercise
some extra care when interpreting the meaning of the outage exponents in the cur-
rent work. The outage exponents discussed herein do not serve as a universal upper
bound to the diversity-multiplexing tradeoff as in the multi-antenna case, as finding
the capacity of the general relay channel is a long-standing open problem.1 Rather,
they represent the achievable tradeoffs of specific schemes. We can achieve these
tradeoffs by using standard Gaussian coding arguments, first letting the codeword
length T → ∞ for each SNR and then considering a sequence of schemes with in-
creasing SNR. Achievability results with finite-length codes will be presented and
discussed later in Section 4.7.

4.3 Decode-and-Forward without CSF

When the source and relay have no information about their corresponding instan-
taneous forward channel gains, the system can still optimize the SNR exponent of
the outage probability using the knowledge about the statistics of the channel.

This optimization for DF with multiple relays has been solved in [EVAK06]. We
summarize the results herein along with a sketch of the proof in order to introduce
some important concepts and help facilitate the presentation of more sophisticated
CSF schemes. In addition, we will later present novel results on finite-length codes
in Section 4.7, and show that this practical constraint changes the picture consid-
erably.

In this simple setting, the learning phase uses T1 = βT channel uses and the
relaying phase uses T2 = (1 − β)T channel uses where 0 < β < 1 is the fraction
of dimension allocated that we want to optimize over. The source encodes an
equally likely message m ∈ {1, . . . , 2rT log SNR} to a sequence {s1(1), . . . , s1(T1),
s2(1), . . . , s2(T2)} belonging to a codebook C1 where s2(1) = · · · = s2(T2) = 0 for

1With an exception for the cooperative bounds, which are universal upper bounds for any
possible relaying scheme.
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an orthogonal scheme. The power constraint over the codebook at the source reads

1
|C1|T

∑
C1

(
T1∑
n=1
|s1(n)|2 +

T2∑
n=1
|s2(n)|2

)
≤ SNR.

If the source-relay link is not in outage, the relay attempts to decode m in full2,
producingmR ∈ {1, . . . , 2rT log SNR} and then re-encodesmR to {sR(1), . . . , sR(T2)}
belonging to a codebook CR, under the constraint

1
|CR|T

∑
CR

T2∑
n=1
|sR(n)|2 ≤ SNR.

Note that |C1| = |CR| = 2rT log SNR. The destination decodes to obtain m̂ ∈
{1, . . . , 2rT log SNR} based on {y1(1), . . . , y1(T1), y2(1), . . . , y2(T2)}. If the source-
relay link is in outage, the relay outputs nothing and the destination decodes based
on {y1(1), . . . , y1(T1). Note that in the nonorthogonal case, no new message is
communicated from the source in the relaying phase. We assume that the destina-
tion knows if the relay transmits or not in the relaying phase. (This is implicitly
assumed in most previous work on DF protocols and can be done, for example, by
using an all-zero training sequence to mimic the event h2 = 0.)

Proposition 4.1. [EVAK06] With dimension allocation, the optimal outage expo-
nent of an orthogonal DF system with no CSF is

DNF
O (r) =

{
2− 3r if r < 1

3 ,
2−2r
1+r otherwise.

(4.3)

With dimension allocation, the optimal outage exponent of a nonorthogonal DF
system with no CSF is

DNF
NO(r) =

{
2− 3+

√
5

2 r if r < 3−√5
2 ,

(1− r)(2− r) otherwise.
(4.4)

We now present a sketch of the proof. The following convenient lemma will be
used throughout this chapter. The proof is straightforward and thus omitted.

Lemma 4.1. For 0 < r, β < 1 and p ≥ 1, q ≥ 1 satisfying βp ≥ r, let

A =
{

(α1, α2) ∈ R
2
+ : β(p− α1)+ + (1− β)(q − α2)+ < r

}
.

Then

inf
A

(α1 + α2) =

⎧⎪⎪⎨
⎪⎪⎩
p+ q − rβ if β < 1

2 ,

p+ q − r
1−β if 1

2 ≤ β < 1− rq ,
p− q + q−r

β if β ≥ max
(

1
2 , 1− rq

)
.

(4.5)

2That excludes, for example, the use of symbol-by-symbol decoding or multi-layer coding.
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We now briefly present the proof for the orthogonal part of Proposition 4.1 (the
nonorthogonal case can be proved similarly). The event that the relay is in outage
and the source-destination link is in outage is given by

O1 = {(β log(1 + SNRγ1) < r log SNR) ∩ (β log(1 + SNRg) < r log SNR)} .

The event that the relay is not in outage, but the effective channel from source to
destination is still in outage is given by

O2 = {(β log(1 + SNRγ1) ≥ r log SNR)
∩ (β log(1 + SNRg) + (1− β) log(1 + SNRγ2) < r log SNR)} .

The overall outage probability is thus

Pout = Pr(O1 ∪ O2) = Pr(O1) + Pr(O2)

since O1 and O2 are mutually exclusive. The outage exponent is

Pout(r log SNR) .= SNR−D1 + SNR−D2 (4.6)

where D1 and D2 are the SNR exponents of O1 and O2 respectively.
Let us perform the standard change of variables αi = − log γi/ log SNR and

a = − log g/ log SNR [ZT03, AES05]. Then, the set of channel realizations corre-
sponding to O1 is

A1 =
{

(α1, α2, a) ∈ R
3
+ : (1− α1)+ <

r

β
, (1− a)+ <

r

β

}

and

D1 = inf
A1

(α1 + α2 + a) =
(

2− 2r
β

)+

.

For an optimal system, the condition r ≤ β must be satisfied otherwise D1 = 0,
i.e., the outage probability will not decay to zero as the SNR increases. Thus from
now on, we constrain β ≥ r.

Consider the second SNR exponent D2 = infA2(α1 + α2 + a) where

A2 = {(α1, α2, a) ∈ R
3
+ : β(1− α1)+ ≥ r, β(1− a)+ + (1− β)(1− α2)+ < r}.

The event β(1−α1)+ ≥ r has a probability in the order of SNR0 and is independent
of the event β(1 − a)+ + (1 − β)(1 − α2)+ < r. Thus by invoking Lemma 4.1, we
obtain

D2 =

⎧⎪⎨
⎪⎩

2− rβ if r < β < 1
2 ,

1−r
β if r ∈ (1− β, β), β ≥ 1

2 ,

2− r
1−β if r < 1− β, β ≥ 1

2 .

(4.7)
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The slowest decayed term on the right hand side of (4.6) is the dominating
one as SNR → ∞, thus we have Dout(r) = min(D1,D2). The outage exponent
corresponding to an optimal dimension allocation is given by

DNF
O (r) = sup

β∈[r,1)
min(D1,D2).

Due to the symmetry of D2, for a given r ≤ 1/2 and any β ∈ (r, 1/2] there exists
a β̂ = (1 − β) ∈ [1/2, 1 − r) that results in D̂2 = D2. But β̂ ≥ β thus D1 ≤ D̂1
and min(D1,D2) ≤ min(D̂1, D̂2). This means there is no loss of optimality by
considering β ≥ 1/2 and

DNF
O (r) = sup

β∈[max(r,1/2),1)
min(D1,D2).

The results then follow a straightforward investigation.
Both the fixed DF schemes with no CSF in Proposition 4.1 are unsurprisingly

outperformed by the DDF scheme [AES05] for any r ∈ (0, 1). Recall that in the
DDF scheme, the source keeps transmitting until the accumulated mutual infor-
mation at the relay is sufficient for decoding (the relay informs the source about
such an event by an acknowledgement bit). Therefore DDF requires rateless codes,
which are more complicated than codes with fixed lengths needed for the fixed DF
approaches. We will further improve the simple fixed DF schemes with the help of
quantized channel state information in the next sections.

4.4 Relay-to-Source CSF

In this section, we assume that given the channel h1, the relay sends an index
I(h1) ∈ {1, . . . ,K} back to the source via an error-free zero-delay feedback link.
The positive integer K is referred to as the resolution of the feedback link. The
source allocates dimension (under a short-term power constraint) and both dimen-
sion and power (under a long-term power constraint). Since the two channel gains
to the destination are unknown at the source and relay, the outage exponent of this
scheme can be upper-bounded by that of a MISO 2× 1 channel with no-CSIT (i.e.,
the fully cooperative transmitters bound), DMISO(r) = 2− 2r.

Short-term Power Constraint
First consider a short-term power constraint case, i.e., no power control at the
source. Let βk be the fraction of dimension allocated for the learning phase given
feedback index k, β1 < β2 < · · · < βK . Recall that the information rate r log SNR
is independent of the feedback index. Consider the index mapping

I(γ1) =
{
K if βK log(1 + γ1SNR) < r log SNR,
min {k ∈ {1, . . . ,K} : βk log(1 + γ1SNR) ≥ r log SNR} otherwise.
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That is, from a finite set of {βk} the source allocates the minimum dimension so that
the rate can be supported by the source-relay link. If the rate is not supportable
even with the largest dimension βK , then the index I = K is fed back so that the
direct link can benefit the most in the orthogonal case (in the nonorthogonal case,
whatever index sent back when the relay fails does not matter because the direct
transmission always uses all the available dimension).

We quantify the outage exponent of the scheme described above in the following
proposition. The proof is deferred to Appendix 4.A.

Proposition 4.2. An orthogonal scheme without power control and with relay-to-
source CSF resolution K can achieve an outage exponent of

DRF−K
O-NPC(r) = sup

max(r,0.5)≤β1<···<βK<1
min
(
D1, . . . , DK , 2

(
1− r
βK

))
(4.8)

where

Dk =
{

3− r
1−βk − r

βk−1
if βk < 1− r,

1−r
βk

+ 1− r
βk−1

otherwise,
(4.9)

with the convention β0 = r.
A nonorthogonal scheme without power control and relay-to-source CSF resolu-

tion K can achieve an outage exponent of

DRF−K
NO-NPC(r) = sup

max(r,0.5)≤β1<···<βK<1
min
(
D1, . . . , DK , 2− r − r

βK

)
(4.10)

where Dk is defined as in (4.9).

Notice that for r ≥ 1/2, then Dk = 1−r
βk

+ 1 − r
βk−1

, ∀k, due to the constraint
βk ≥ max(r, 0.5). But in general, the Dk’s in (4.9) are neither concave or convex,
making the evaluation of the maximin difficult. We next present tight upper bounds
and lower bounds to the optimized outage exponent in Proposition 4.2, which are
simpler to compute. The proof is in Appendix 4.B.

Proposition 4.3. The outage exponent DRF−K
O-NPC(r) is lower-bounded by

DRF−K
LB-O-NPC(r) =

⎧⎨
⎩

2(1−r)−2(1−r)( r
1−r )K

1−2r( r
1−r )K

if r �= 1/2
2K

1+2K if r = 1/2.
(4.11)

For r ≥ 1/2, we have DRF−K
O-NPC(r) = DRF−K

LB-O-NPC(r).
For r < 1/2, DRF−K

O-NPC(r) is upper-bounded by

DRF−K
UB-O-NPC(r) = sup

1/2≤β1<···<βK<1
min
(
D̄1, . . . , D̄K , 2

(
1− r
βK

))
(4.12)
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where

D̄k =
{

3− r
1−βk − r

βk−1
if βk < 1− r,

3− r − βk − r
βk−1

otherwise,
(4.13)

with the convention β0 = r;
The outage exponent DRF−K

NO-NPC(r) is lower-bounded by

DRF−K
LB-NO-NPC(r) =

⎧⎨
⎩

2(1−r)2−(1−r)( r
1−r )K

1−r−r( r
1−r )K

if r �= 1/2
1+2K
2+2K if r = 1/2.

(4.14)

For r ≥ 1/2, we have DRF−K
NO-NPC(r) = DRF−K

LB-NO-NPC(r).
For r < 1/2, DRF−K

NO-NPC(r) is upper-bounded by

DRF−K
UB-NO-NPC(r) = sup

1/2≤β1<···<βK<1
min
(
D̄1, . . . , D̄K , 2− r − r

bK

)
(4.15)

where D̄k is defined in (4.13).

The lower bounds, which coincide with the actual outage exponents for r ≥ 1/2,
are explicitly given. As for the upper bounds, which are only necessary when
r < 1/2, we consider all possible cases

βK1 ∈ [1/2, 1− r)× · · · × [1/2, 1− r)︸ ︷︷ ︸
l times

× [1− r, 1)× · · · × [1− r, 1)︸ ︷︷ ︸
K−l times

,

for l = 0, . . . ,K where A × B denotes the Cartesian product. Due to the con-
straint β1 < · · · < βK , we only need to consider K + 1 such regions (and not
2K). Over each of the K + 1 regions we can efficiently solve for the optimum
using convex optimization methods. The problem is convex because over either
{βk−1, βk} ∈ [1/2, 1)× [1/2, 1− r) or {βk−1, βk} ∈ [1/2, 1)× [1− r, 1), the function
D̄k in (4.13) is concave; and the point-wise minimum of a family of concave function
is concave [BV04]. Finally, the maximum of the K + 1 solutions gives the desired
upper bound.

We plot in Fig. 4.2 the upper and lower bounds in Proposition 4.3 for orthogonal
schemes. A relatively large improvement over the no-CSF case can be achieved, but
this gain diminishes as K increases from 2 to 3. As can be seen, the proposed CSF
scheme is outperformed by DDF, but gradually approaches the performance of DDF
as the CSF quality improves. We formalize this observation in the following.

Corollary 4.1. We have

lim
K→∞

DRF−K
O-NPC(r) = lim

K→∞
DRF−K

NO-NPC(r) =
{

2− 2r if r < 1
2

1−r
r if r ≥ 1

2 .
(4.16)
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Figure 4.2: Outage exponents with relay CSF, no power control: Orthogonal
schemes with different feedback resolution K.

Proof. Taking the limit of the lower bounds in Proposition 4.3 as K → ∞ and
combining with the cooperative upper bound DRF−K

O-NPC(r) ≤ DRF−K
NO-NPC(r) ≤ 2 − 2r

give the stated result. Note that for r ≥ 1/2, the lower bounds of Proposition 4.3
coincide with the exact outage exponent.

The result essentially says that nonorthogonality is not necessary to achieve
the DDF bounds when perfect CSIT is available and the systems fully adapts the
available dimension to the channel condition. This is practically the case for low-
rate CSIT feedback as well, as illustrated in Fig. 4.4. For K as low as 2 (i.e.,
1 bit of CSF) there is insignificant gain by using nonorthogonal schemes. Our
result suggests the use of an orthogonal, low-rate relay CSF scheme to achieve a
substantial portion of the cooperative gain.

Long-term Power Constraint
We now relax the power constraint at the source, so that temporal power control
is possible. Let r < β1 < . . . < βK < 1 be the set of dimension fractions, and
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Figure 4.3: Outage exponents with relay CSF, no power control: Orthogonal vs.
nonorthogonal schemes, K = 2.

P1 < P2 < · · · < PK be the set of power levels used at the source. We consider the
following index mapping

I(γ1) =
{
K if βK log(1 + γ1PK) < r log SNR,
min {k ∈ {1, . . . ,K} : βk log(1 + γ1Pk) ≥ r log SNR} otherwise.

That is, the system not only increases the dimension but also allocates more power
in poor source-relay channel conditions. A long-term power constraint is imposed
so that

lim
L→∞

1
L

L∑
l=1

PI(γ1(l))
a.s.= Eγ1 PI(γ1) ≤ SNR

where γ1(l) denotes the source-relay channel power gain during fading block l.
Even in this power control scenario, the outage exponent is still upper-bounded by
the cooperative bound DMISO(r) = 2 − 2r since neither the source nor the relay
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knows the channel to the destination. We state the optimal outage exponent of the
proposed scheme in the following.

Proposition 4.4. The proposed orthogonal scheme with relay-to-source feedback
resolution K and source power control can achieve an outage exponent of

DRF−K
O-PC (r) = sup

max(r,1/2)≤β1<...<βK<1
min
(
D1, . . . , DK , 2

(
K −

K∑
k=1

r

βk

))
(4.17)

where

Dk =
{
k + 1− r

1−βk −
∑k−1
i=1

r
βi

if βk < 1− r,
k − 1 + 1−r

βk
−∑k−1

i=1
r
βi

otherwise.
(4.18)

The proposed nonorthogonal scheme with relay-to-source feedback resolution K
and source power control can achieve an outage exponent of

DRF−K
NO-PC(r) = sup

max(r,1/2)≤β1,...,βK<1
min
(
D1, . . . , DK , 2

(
K −

K−1∑
k=1

r

βk

)
− r − r

βK

)
(4.19)

where Dk is defined as in (4.18).

Proof. See Appendix 4.C.

As in the no power control case, it is difficult to compute the entire outage
exponent curves of the proposed schemes due to the nonconvexity of the optimiza-
tion problem. We summarize computable bounds to DRF−K

O-PC (r) and DRF−K
NO-PC(r) as

follows. The proof is deferred to Appendix 4.D.

Proposition 4.5. The outage exponent DRF−K
O-PC (r) is lower-bounded by

DRF−K
LB-O-PC(r) =

⎧⎨
⎩

2− 2r if (1− r)K+1 < 1− 2r,
(1−r)(1−(1−r)K)
r(1− 1

2 (1−r)K) otherwise.
(4.20)

For {r : (1 − r)K+1 < 1 − 2r} and for r ≥ 1/2, we have DRF−K
O-PC (r) =

DRF−K
LB-O-PC(r).

For {r : (1− r)K+1 ≥ 1− 2r, r < 1/2}, DRF−K
O-PC (r) is upper-bounded by

DRF−K
UB-O-PC(r) = sup

1/2≤β1<···<βK<1
min
(
D̄1, . . . , D̄K , 2

(
K −

K∑
k=1

r

βk

))
(4.21)

where

D̄k =
{
k + 1− r

1−βk −
∑k−1
i=1

r
βi

if βk < 1− r,
k + 1− r − βk −

∑k−1
i=1

r
βi

otherwise.
(4.22)



98
CHAPTER 4. D–M TRADEOFF IN DECODE–AND–FORWARD RELAY

CHANNELS

The outage exponent DRF−K
NO-PC(r) is lower-bounded by

DRF−K
LB-NO-PC(r) =

{
2− 2r if (2− 3r)(1− r)K < (2− r)(1− 2r),
(1−r)(2−r)(1−(1−r)K)
r(2−r−(1−r)K) otherwise.

(4.23)
For {r : (2−3r)(1−r)K < (2−r)(1−2r)} and for r ≥ 1/2, we have DRF−K

NO-PC(r) =
DRF−K

LB-NO-PC(r).
For {r : r : (2 − 3r)(1 − r)K ≥ (2 − r)(1 − 2r), r < 1/2}, DRF−K

NO-PC(r) is upper-
bounded by

DRF−K
UB-NO-PC(r) = sup

1/2≤β1<···<βK<1
min
(
D̄1, . . . , D̄K , 2

(
K −

K−1∑
k=1

r

βk

)
− r − r

βK

)
(4.24)

where D̄k is defined as in (4.22).

We plot in Fig. 4.4 the bounds of Proposition 4.5 for an orthogonal scheme.
Allowing nonorthogonality only provides some insignificant additional gains (not
plotted here). A very pleasing fact is that the proposed source power control scheme
is strictly optimal in an outage exponent sense for any finite feedback resolution
K ≥ 2 over a wide range of multiplexing gain, as it achieves the MISO cooperative
upper bound DMISO(r) = 2− 2r. For example, when K = 2 an orthogonal scheme
is optimal for any r < 3−√5

2 ≈ 0.38.
As can be seen, even with a modest K = 4, the difference between the proposed

scheme and DDF is marginal. It is not difficult to see that as K increases, using
source power control also approaches the DDF performance for all r. We state this
fact in the following.

Corollary 4.2. We have

lim
K→∞

DRF−K
O-PC (r) = lim

K→∞
DRF−K

NO-PC(r) =
{

2− 2r if r < 1
2 ,

1−r
r otherwise.

(4.25)

While this result says that with high-rate CSF, power control at the source does
not really help over dimension allocation only, we can see in Fig. 4.4 that power
control is quite beneficial in the very low rate CSF regime.

That perfect power control at the source cannot achieve the MISO bound over
the entire range of multiplexing gains may come as a surprise. A closer look suggests
that this is due to the nature of the decode-and-forward approach. Consider the
following heuristic arguments. Even with perfect power control, most of the time
(i.e., with probability in the order of SNR0), a power in the order of SNR1 is applied
at the source. Fully conveying the message from the source to the destination
therefore typically requires a fraction β ≥ r of the dimension. For r < 1/2 let us
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Figure 4.4: Outage exponent of an orthogonal scheme with relay CSF and power
control. The upper bound to the outage exponent of an orthogonal scheme with no
power control and relay feedback resolution K = 2 is also plotted.

choose β = 1/2 > r and for r ≥ 1/2, choose β = r. Assume that after the learning
phase the message is known perfectly at the relay so that we actually have a MISO
at the relaying phase. Then an application of Lemma 4.1 gives the outage exponent
of such an idealized system, which is exactly what is dictated by Corollary 4.2. In
other words, for r > 1/2, once the virtual antenna array has been successfully
formed, we no longer have sufficient dimension for fully-cooperative diversity.

4.5 Destination-to-Relay CSF

In this section, we study the outage exponent over a channel with destination-relay
limited CSF. Since only the relay knows partially about its forward channel gain,
dimension allocation is not possible. We can only adapt the power, assuming a long-
term power constraint at the relay. Note that the outage exponent of such a scheme
is upper-bounded by that of a 1×2 SIMO channel with no CSIT: DSIMO(r) = 2−2r
(i.e., the fully cooperative receivers bound, which follows from the cut-set bound)
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because the source does not know its two forward channel gains.
Let β ∈ (max(r, 1/2), 1) be the fraction of dimension allocated for the learning

phase, and K be the resolution of the destination-relay CSF link. At the destina-
tion, given g, γ2, an index mapping I(g, γ2) produces an index that is sent back to
the relay. Note that the destination does not know the source-relay channel gain.
The relay employs an index-to-power mapping

P : {1, . . . ,K} → {P1, . . . , PK}

where P1 < · · · < PK . We consider the following index mapping.

I(g, γ2) =

⎧⎪⎨
⎪⎩

1 if β log(1 + gSNR) + (1− β) log(1 + γ2PK) < r log SNR,
min k ∈ {1, . . . ,K}
s.t. β log(1 + gSNR) + (1− β) log(1 + γ2Pk) ≥ r log SNR otherwise.

That is, the destination informs the relay to use the smallest power level possible to
help the transmission, assuming pessimistically that the source-relay link is not in
outage. If the channel is too costly (in a too deep fade) to compensate for, then the
smallest index is sent back to save power. If the source-relay link is in outage then
the relay, which knows about this event since it has perfect receiver CSI, simply
ignores the feedback index I(g, γ2).

The outage exponent of the proposed scheme is given in the following. The
proof is presented in Appendix 4.E.

Proposition 4.6. The optimal outage exponent of the proposed orthogonal scheme
with destination-to-relay resolution feedback K is

DDRF-K
O-PC (r) = sup min

β∈[max(1/2,r),1)

(
2
(

1− r
β

)
,DK

)
(4.26)

where

Dk =

⎧⎨
⎩2 +Dk−1 − r

1−β if 1
2 ≤ β < 1− r

1+Dk−1
1−β
β Dk−1 + 1−r

β if β ≥ max
(

1
2 , 1− r

1+Dk−1

) (4.27)

with the convention D0 = 0.
The optimal outage exponent of the proposed nonorthogonal scheme is

DDRF-K
NO-PC (r) = sup min

β∈[max(1/2,r),1)

(
2− r − r

β
,DK

)
(4.28)

with Dk defined as in (4.27).

A major difficulty in finding a closed-form expression for the outage exponent in
this case is the dependency on k and β of the point 1− r

1+Dk−1
where the function

Dk changes its behavior, in contrast to the fixed value 1− r when only the source
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controls its transmit power (cf. Proposition 4.4). Nevertheless, for small values of
K, it is possible to find explicit expressions for the outage exponent. For example,
in the case K = 2 we have

DDRF-2
O-PC (r) =

{
2− 2r(1+2r)

1+r if r <
√

17−1
8 ,

2− 2r(√r2−2r+2−r)
1−r otherwise.

As we will see even for K as small as 2, performance very close to perfect CSF can
be achieved. Furthermore, the outage exponent for the full-CSI feedback case can
be found explicitly as follows.

Proposition 4.7. We have

lim
K→∞

DDRF-K
O-PC (r) =

⎧⎨
⎩2
(

1− 2r
2−r
)

if r ≤ 2
5 ,

2
(

1− 8r
3r+3+

√
9r2−14r+9

)
otherwise,

(4.29)

and

lim
K→∞

DDRF-K
NO-PC (r) =

{
2− r − 2r

2−r if r ≤ 5−√17
2 ,

2− r − 4r(2−r)
3+
√

8r2−16r+9 otherwise.
(4.30)

We herein present a proof using an indirect approach based on the observation
that K →∞ indeed means the relay knows both h and h2 perfectly. An alternative
proof is presented in Appendix 4.E where we directly apply Proposition 4.6 and
then take the limit K →∞.

Proof. For the sake of brevity, we present only the orthogonal case. Note that K →
∞ is equivalent to a direct mapping from channel gains to the power allocated at
the relay P (g, γ2) .= SNRπ(g,γ2). A change of variables gives a = − log g/ log SNR,
α2 = − log γ2/ log SNR. Asymptotically the long-term power constraint at the relay
reads

sup
a≥0,α2≥0

(π(a, α2)− a− α2) ≤ 1.

Since outage probability is a nonincreasing function of π∗(a, α2), we conclude that
the optimal power exponent π∗(a, α2) = 1 + a+ α2.

The outage event is

Pout(r log SNR) = Pr(O1) + Pr(O2)

where O1 is the event that the relay fails to decode the message and the destination
cannot decode the direct transmission.

Pr(O1) = Pr (β log(1 + γ1SNR) < r log SNR, β log(1 + gSNR) < r log SNR)
.= SNR−2(1− rβ ).



102
CHAPTER 4. D–M TRADEOFF IN DECODE–AND–FORWARD RELAY

CHANNELS

The event O2 happens when the relay succeeds to decode but the combined direct
and relayed signals cannot be decoded by the destination.

Pr(O2) = Pr (β log(1 + γ1SNR) ≥ r log SNR,

β log(1 + gSNR) + (1− β) log(1 + γ2SNRπ
∗(g,γ2)) < r log SNR

)
= SNR−D∞ .

Then

D∞ = inf
a,α2≥0

{a+ α2} s.t. β(1− a)+ + (1− β)(1 + a+ α2 − α2)+ < r

= inf
a≥0
{a} s.t. β(1− a)+ + (1− β)(1 + a) < r

(4.31)

Since mina≥0 β(1−a)++(1−β)(1+a) = 2(1−β) (the minimum is attained at a = 1),
the optimization problem finding D∞ is infeasible if r < 2(1−β)⇔ β < 2−r

2 . Thus
Pr(O2) decays exponentially3 in SNR if β < 2−r

2 because the set of “bad” channels
making Pr(O2) decay polynomially in SNR is empty. We now compute the outage
exponent for the two cases β < 2−r

2 and β ≥ 2−r
2 separately and then take the

maximum one to be DDRF−∞
O-PC (r).

Case 1: β < 2−r
2 . Due to the constraint β ≥ max(r, 1/2), this case never

happens if r > 2
3 . For r ≤ 2

3 , since Pr(O2) .= SNR−∞ (the notation means expo-
nentially decayed in SNR) we have

D1 = sup
β∈[r, 2−r2 )

min
(

2− 2r
β
,∞
)

= sup
β∈[r, 2−r2 )

2− 2r
β

= 2− 4r
2− r .

Case 2: β ≥ 2−r
2 . Solving (4.31), we obtain the explicit outage exponent for

Pr(O2)

D∞ = 1− r
2β − 1 .

Noting that 2−r
2 >

1
2 , ∀r ∈ (0, 1), we next solve

D2 = sup
β∈[max(r, 2−r2 ),1)

min
(

2− 2r
β
,

1− r
2β − 1

)
.

For r < 2
5 , we have max

( 1
2 , r,

2−r
2
)

= 2−r
2 , then 2 − 2 rβ >

1−r
2β−1 , ∀β ∈ [ 2−r

2 , 1
)
.

This gives

D2 = 1− r
2 2−r

2 − 1
= 1.

3Our notion of exponential decay is extended to also include the case of zero probability
Pr(O2) = 0.
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Figure 4.5: Outage exponent of a nonorthogonal scheme with destination-relay
CSF.

For r ≥ 2
5 , the maximin is always the intersection of the two component functions

that lies inside
[
max

( 2−r
2 , r
)
, 1
)
, which turns out to be the largest root of f(β) =

4β2 − 3(1 + r)β + 2r. This gives

D2 = 2− 16r
3 + 3r +

√
9r2 − 14r + 9

.

Finally, combining Case 1 and Case 2 we have

lim
K→∞

DDRF-K
O-PC (r) =

{
max(D1,D2) if r < 2

3 ,

D2 otherwise

=
{

2− 4r
2−r if r < 2

5 ,

2− 16r
3+3r+

√
9r2−14r+9 otherwise.

In Fig. 4.5, the outage exponents of the proposed nonorthogonal schemes are
plotted. Indeed the performance in the three cases K = 2, K = 3 and K → ∞ is
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SS DD

RR

hh

h1h2

I(h; h2) I(h; h2) ´ I(h)

Figure 4.6: The two cooperative upper bounds in the destination-to-source-and-
relay CSF scenario. Since the feedback quantizer at destination does not know h1,
the feedback index I only depends on h and h2.

practically indistinguishable. This suggests the use of a single bit of feedback (K =
2) for power control in the proposed DF scheme to achieve a near optimal diversity-
multiplexing tradeoff with very low complexity. A more important and interesting
observation is that the performance is strictly better than DDF for sufficiently large
r. While the gain is marginal, it is worth noting that this is realizable even with
K = 2. With K = 2, over the range r > 0.65 (rounded up value) the proposed
nonorthogonal CSF scheme dominates DDF. Thus for low-rate-CSF, high-data-rate
systems, destination-relay feedback is more beneficial than relay-source feedback in
a diversity-multiplexing tradeoff sense.

With perfect CSF, however, Proposition 4.7 also shows that the DF with power
control at the relay cannot achieve the multiantenna upper bound. In this perfect-
CSF scenario, it is better to use compress-and-forward to achieve the optimal
diversity-multiplexing tradeoff of the relay channel [YE07]. It is not yet clear how
the performance of the CF scheme will be affected by the assumption of heavily
quantized CSF considered herein. This remains an interesting topic for future work.

4.6 Destination-to-Source-and-Relay CSF

We now consider the final scenario where the destination broadcasts a feedback
index to the source and the relay so that both nodes can control their individual
powers. We assume that , the index mapper at the destination depends on the
channel gains h, h2 but not on the source-relay gain h1. Assume a long-term power
constraint at both the source and the relay.

Before proceeding to the derivation of the achievable outage exponent of any
particular scheme, it is useful to find an upper bound on the performance of such
a CSF setting. One can naturally think of a fully cooperative MISO channel with
feedback resolution K. Unfortunately, such an upper bound, which is given by
DKMISO(r) =

(
2 + · · ·+ 2K

)
(1− r) = 2

(
2K − 1

)
(1− r) turns out to be quite loose.

In fact, taking the worst-case of the two cut-set cooperative bounds, we notice that
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since the CSF index depends only on g and γ2, the SIMO case where the source
transmits and the relay acts as a perfectly cooperating additional receiver is the
most restrictive from a diversity exponent viewpoint, as illustrated in Fig. 4.6. We
present a tighter upper bound in the following, obtained by considering a SIMO
channel with K feedback levels where a restricted feedback quantizer knows only
one of the two scalar channel gains.

Lemma 4.2. Assume destination-to-source-and-relay CSF and power control at
both the source and the relay. If the feedback quantizer at the destination does not
depend on the source–relay gain, then the outage exponent with K feedback levels is
upper-bounded by

DDSRF-K
UB-SPC-RPC(r) = 2K(1− r). (4.32)

Proof. To get an upper bound, we let the relay and the destination fully cooperate
and compute the outage exponent DDSF-K

UB-SPC-RPC(r) of the resulting equivalent chan-
nel. The equivalent 1× 2 SIMO channel (see Fig. 4.6) has the following properties:

• Squared magnitudes of channel gains λ1 = SNR−a1 and λ2 = SNR−a2 are
independent exponentially distributed random variables with unit variance.

• Perfect CSI at the receiver.
• An index mapping I(λ1) produces a feedback index depending on λ1 but

independent of λ2. The feedback link is noiseless, and has zero delay.
• A long-term power constraint at the transmitter.
Let the K possible transmit power levels be Pk = SNRpk with 1 = p1 < p2 <

· · · < pK < pK+1 = ∞. Let Rk be the kth quantization region, i.e., the set of of
all channel realizations that are mapped to index k. Because the power levels used
at the transmitter depend on λ1 and not on λ2, the long-term power constraint
(asymptotically) becomes

sup
{a1≥0}∩Rk

(pk − a1) ≤ 1.

Since outage probability is a nonincreasing function of power, the quantization
region Rk is given by the set of all a1 where SNRpk can be applied but not SNRpk+1 .
That is,

Rk = {a1 : pk − 1 ≤ a1 < pk+1 − 1}. (4.33)
The constraint a1 ≥ 0 always satisfies since pk ≥ 1, ∀k. Let Pr(outage, I = k) .=
SNR−Dk , then the overall outage exponent is given by the slowest decaying term
min(D1, . . . , DK). We then have

Pr(outage, I = k) .= Pr(log(1 + SNRpkλ1 + SNRpkλ2) < r log SNR, I = k).

This leads to

Dk = inf
a1∈Rk,a2≥0

(a1 + a2) s.t. max
(
(pk − a1)+, (pk − a2)+) < r. (4.34)
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We distinguish two cases. First, if pk+1−1 < pk−r then (4.34) is infeasible because
of (4.33). In other words, the set of “bad” channels making Pr(outage, I = k) decay
polynomially in SNR is empty, and by convention Dk =∞. Second, if pk+1 − 1 ≥
pk − r then Dk = 2pk − 2r. Since p1 < · · · < pK , the second case does not happen
for any k ∈ {1, . . . ,K − 1}, otherwise the regions Rk+1, . . . ,RK are completely
redundant and increasing K does not increase diversity gain. Therefore we must
have D1 = ∞, . . . , DK−1 = ∞ and DK = 2pK − 2r. Then min(D1, . . . , DK) =
2pK−2r is maximized when pK is maximized. This happens when pk+1 = 1+pk−
r − εk, k = 1, . . . ,K − 1 where εk > 0 is arbitrarily small. Recalling that p1 = 1,
we let εk ↓ 0 and recursively obtain pk = k − (k − 1)r, k = 2, . . . ,K. Finally

DDSF-K
UB-SPC(r) = 2pK − 2r = 2K − 2(K − 1)r − 2r = 2K(1− r).

A key observation from Lemma 4.2 is that the diversity gain of a relay channel
with destination-to-source-and-relay CSF increases no faster than linearly in K,
which is similar to the behavior of a SISO channel, DKSISO(r) = K(1 − r). On the
contrary, the diversity gain of a MISO or SIMO channel increases exponentially
in the feedback resolution K, DKSIMO(r) = 2

(
2K − 1

)
(1 − r). Thus not knowing

the source-relay gain at the destination, which is a relatively realistic assumption,
severely affects the diversity performance of the relay channel with CSF.

We now show that the bound DDSRF-K
UB-SPC-RPC(r) can be approached by studying

a particular strategy. Going back to the original relay channel, we consider the
following index mapping

I(g, γ2) ≡ I(g) =
{
K if log (1 + gPK−1) < r log SNR,
min{k ∈ {1, . . . ,K − 1} : log (1 + gPk) ≥ r log SNR} otherwise.

That is, the source uses the smallest power in {P1, . . . , PK} so that the direct
transmission succeeds (using full dimension βk = 1, k = 1, . . . ,K − 1, i.e. no
relaying is necessary). If direct transmission would fail even with the largest power
PK , then relaying is used. In this rare event, a fraction of dimension βK = β is
assigned to the learning phase.

Optimizing over β leads to the following result.

Proposition 4.8. Assuming both power control at the source and at the relay, the
proposed orthogonal scheme with destination-to-source-and-relay feedback resolution
K has an outage exponent of

DDSRF-K
O-SPC-RPC(r) =

{
2K − (2K + 1)r if r < K

K+2 ,
2K(1−r)[K−(K−1)r]

K−(K−2)r otherwise.
(4.35)

The nonorthogonal scheme has an outage exponent of

DDSRF-K
NO-SPC-RPC(r) =

{
2K −

(
2K +

√
5−1
2

)
r if r < (3−√5)K

(3−√5)K+(
√

5−1) ,
K(1−r)[2K−(2K−1)r)]

K−(K−1)r otherwise.
(4.36)
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Figure 4.7: Achievable outage exponents of the proposed scheme with destination-
to-source-and-relay CSF, where the feedback quantizer at the destination does not
know the source–relay gain..

The proof is deferred to Appendix 4.F.
Note that in the special case K = 1, the outage exponents in Proposition 4.8

reduce to the corresponding ones in Proposition 4.1. This is because the pro-
posed destination-to-source-and-relay CSF scheme essentially mimics the nonfeed-
back case. However the feedback scheme can use a much higher power level at both
the source and the relay in order to combat outage. It is possible because at high
SNR’s, the relay is only rarely used by this scheme.

In Fig. 4.7, we plot the diversity gains of the scheme with different destination-
to-source-and-relay feedback resolutions K. With any K, the achievable outage
exponents are relatively close to the upper bound 2K(1−r) of Lemma 4.2. Clearly,
this form of CSF allows for a large performance gain, as in the MIMO channels
considered in Chapter 3. However, the assumption that there is a reliable direct
feedback link between the destination and the source is a matter of debate, as it
is exactly the lack of such a good direct link that motivates the study of the relay
channel.
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4.7 On Finite-length Codes

A major obstacle in finding codes and schemes with finite length that can achieve
an error probability that decays in SNR as fast as the outage probability does is
that with a given finite T , the dimension cannot be divided arbitrarily. In fact
for a fixed T , we can only allocate the fraction of dimension from a finite, discrete
set of rational numbers. In the following, we present some results towards the
achievability of the outage exponents in this work with finite-length codes.

For simplicity of presentation, we first consider the orthogonal DF scheme with
no CSF. The techniques used in the proof are readily extendable to the CSF cases
(see Chapter 3), which we omit as they do not offer any additional insight into the
problem.

Proposition 4.9. With no CSF, there exist orthogonal codes using T ≥ 2 channel
uses that achieve the following diversity gain

max
β∈B

min
(

2
(

1− r
β

)
,D2

)

where

D2 =

⎧⎪⎨
⎪⎩

2− rβ if β < 1
2

1−r
β if r > 1− β, β ≥ 1

2 ,

2− r
1−β if r < 1− β, β ≥ 1

2

and

B =
{
T1

T
: T1 ∈ {max(	Tr
, �T/2�),max(	Tr
, �T/2�) + 1, . . . , T − 1}

}
.

Proof. Step 1 - Preliminaries: Let T2 = T − T1 and β = T1
T . For convenience

we repeat the communication protocol herein. An encoder is a mapping from a
message to a codeword in codebook C, m → (

√
SNRx1,

√
SNRxR) where x1 =

[x1(1) · · · x1(T1)] and xR = [xR(1) · · · xR(T2)] are the normalized code-
words. Note that C is simply the combination of C1, CR in Section 4.3, normalized
by
√

SNR. The individual power constraints read

1
|C|T

∑
C

T1∑
n=1
|x1(n)|2 ≤ 1,

1
|C|T

∑
C

T2∑
n=1
|xR(n)|2 ≤ 1.

Recall that the destination knows whether the source-relay link is in outage or
not, i.e., if β log(1 + γ1SNR) ≥ r log SNR. If β log(1 + γ1SNR) ≥ r log SNR then
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the entire received signals (a sequence of length T ) are used for decoding at the
destination, otherwise only the received signals in the learning phase (length T1)
are used for decoding.

Let us define three events A = {β log(1 + SNRg) < r log SNR}, A1 = {β log(1 +
SNRγ1) < r log SNR}, and A2 = {β log(1 + SNRg) + (1 − β) log(1 + SNRγ2) <
r log SNR}. The probability of error, over the randomness of the channel gains, the
noise, and the (uniformly distributed) messages can be written as

Pr(ε) = Pr(ε,A1) + Pr(ε, Ā1)
= Pr(ε,A1,A) + Pr(ε,A1, Ā) + Pr(ε, Ā1,A2) + Pr(ε, Ā1, Ā2)
≤ Pr(A1,A) + Pr(ε,A1, Ā) + Pr(Ā1,A2) + Pr(ε, Ā1, Ā2, ε̄R)

+ Pr(ε, Ā1, Ā2, εR)
≤ Pr(A1,A) + Pr(ε, Ā|ΔD) Pr(A1) + Pr(Ā1,A2)

+ Pr(ε, Ā2|ΔC, ε̄R) Pr(Ā1, ε̄R) + Pr(Ā1, εR)

where ε denotes the error event at the destination m̂ �= m, ΔD denotes the event
that the destination uses only the directly transmitted sequence to decode, ΔC is
the event that the combined received sequences are used for detection. Note that
ε = {ε,ΔD} ∪ {ε,ΔC}. Finally εR is the event that the relay makes an incorrect
decision mR �= m. In the last inequality we use Pr(ε, Ā|A1) = Pr(ε, Ā|ΔD) and
Pr(ε, Ā2|Ā1, ε̄R) = Pr(ε, Ā2|ΔC, ε̄R), which follow the protocol of the scheme.

Inspired by the concept of approximately universal codes [TV06], we will next
find sufficient conditions on the (sequence of) codes C so that Pr(ε, Ā|ΔD) .=
SNR−∞, Pr(εR, Ā1) .= SNR−∞, and Pr(ε, Ā2|ΔC, ε̄R) .= SNR−∞. Recall that
f(SNR) .= SNR−∞ denotes an exponentially decaying function of SNR. If such a
sequence of codes exists, then

Pr(ε) ≤̇ Pr(A1,A) + Pr(Ā1,A2)

and by a similar argument as in the outage analysis we readily obtain the results
in Proposition 4.9, which essentially formulate the maximization of the dominant
SNR exponents of Pr(A1,A) + Pr(Ā1,A2).

At this point, we notice that a simple “shortcut” argument may conclude the
proof. The two-phase orthogonal transmission resembles T parallel scalar Gaussian
channels with one channel use. The first T1 scalar channels have a common channel
gain h while the remaining T2 channels have a common channel gain h2. But there
exist approximately universal codes CP of length 1 for parallel scalar Gaussian
channels [TV06], thus by definition Pr(ε, Ā2|ΔC, ε̄R) .= SNR−∞ for those codes.
Furthermore, Pr(εR, Ā1) .= SNR−∞ also holds for the class of codes CP, which can
be seen by considering the special case h2 = 0 (and Pr(ε, Ā|ΔD) .= SNR−∞ holds
with CP due to symmetry).

In practical terms, one way of achieving the tradeoff in Proposition 4.9 is to use
a code of length 1 that is approximately universal for T parallel SISO channels.
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In the learning phase, the source sends the first T1 symbols (which now span in
time rather than in different parallel channels). In the relaying phase, the relay
transmits the remaining T2 symbols (if the source-relay link is not in outage). An
interesting feature of this approach is that the relay and destination can employ
identical decoders. This is especially useful in scenarios where any single node can
alternatively act either as relay or destination.

Note however that the above arguments do not directly extend to the nonorthog-
onal case, where the two-phase transmission resembles a mixture of SISO and MISO
parallel channels. Furthermore, using existing codes for parallel channels is not
necessarily the only way to achieve the tradeoffs in Proposition 4.9. Thus in the
following, we present a more general approach to Proposition 4.9 using standard
Gaussian arguments.

Step 2 - Universal conditions: Let (Δx1,ΔxR) be a nonzero codeword difference
vector and perform a change of variable so that ‖Δx1‖2 = SNR−δ1 and ‖ΔxR‖2 =
SNR−δR with the convention δ1 =∞ if Δx1 = 0 and δR =∞ if ΔxR = 0.

We claim that if the following two conditions are satisfied(
min
C

SNR−β(δ1)+
)
≥̇ SNR−r (4.37)

(
min
C

SNR−β(δ1)+
SNR−(1−β)(δR)+

)
≥̇ SNR−r (4.38)

then Pr(ε, Ā|ΔD) .= SNR−∞, Pr(εR, Ā1) .= SNR−∞, and Pr(ε, Ā2|ΔC, ε̄R) .=
SNR−∞. Recall that by convention 0 .= SNR−∞, thus we must have T1 ≥ 1, T −
T1 ≥ 1 otherwise (4.38) cannot be satisfied.

We now prove the above claim. Consider maximum likelihood decoding at both
relay and the destination, and the following conditional pairwise error probability

Pr(pairwiserelay|h1) = Pr(x1 → x̂1|h1) ≤ exp
(
−SNR

2 |h1|2‖Δx1‖2
)

= exp
(
−SNR

2 SNR−α1SNR−δ1
)

= exp
(
−1

2SNR(1−α1)−δ1
)
.

Averaging over α1 ∈ Ā1 gives

Pr(pairwiserelay, Ā1) =
∫
α1∈Ā1

Pr(pairwiserelay|α1)f(α1)dα1

where f(α1) is the p.d.f. of α1. The subset of channel realizations in Ā1 making
Pr(pairwiserelay, Ā1) decay polynomially in SNR is

H1 = {α1 ≥ 0 : (1−α1) ≤ δ1}∩ Ā1 = {α1 ≥ 0 : (1−α1) ≤ δ1, β(1−α1)+ ≥ r+ ε}.
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But due to condition (4.37), there exists a ¯SNR > 0 so that ∀SNR > ¯SNR we have

SNR−β(δ1)+ ≥ SNR−r−
ε
2

and thus β(δ1)+ ≤ r + ε
2 < β(1 − α1)+. This however cannot be satisfied because

∀α1 ∈ H1, (1−α1) ≤ δ1 leading to (1−α1)+ ≤ (δ1)+. We conclude thatH1 is empty,
and thus every pairwise error probability, averaged over Ā1, decays exponentially
in SNR. Since the number of codewords SNRrT grow only polynomially in SNR,
applying the union bound still leads to an exponentially vanishing average error
probability, Pr(εR, Ā1) .= SNR−∞. Due to the statistical symmetry of the channel,
(4.37) also guarantees that Pr(ε, Ā|ΔD) .= SNR−∞.

Similarly, by considering the pairwise error probability at the destination

Pr(pairwisedst|ΔC, ε̄R, γ, γ2) ≤ exp
(
−SNR

2
(|h|2‖Δx1‖2 + |h2|2‖ΔxR‖2

))

= exp
(
−1

2SNR(1−α)−δ1
)

exp
(
−1

2SNR(1−α2)−δR
)

and averaging over the nonoutage region Ā2 = {α, α2 : (1−β)(1−α)++β(1−α2)+ ≥
r + ε}, we find that the subset of bad channel realizations in Ā2 is

H2 = {α ≥ 0, α2 ≥ 0 : (1−α1) ≤ δ1, (1−α2) ≤ δR, (1−β)(1−α)++β(1−α2)+ ≥ r+ε}.

The condition (4.38) means that ∀SNR > ˜SNR for a certain finite ˜SNR, we have
β(δ1)+ + (1 − β)(δR)+ ≤ r + ε

2 . This leads to a contradiction of the equa-
tions defining H2 and thus the subset H2 making the average error probability
Pr(pairwisedestination, Ā2|ΔC) decay only polynomially in SNR is empty. This leads
to Pr(ε, Ā2|ΔC, ε̄R) .= SNR−∞.

This concludes the proof of our claim regarding the sufficient conditions (4.37)
and (4.38).

Step 3 - Expurgation: We now draw the normalized codewords (x1,xR) from
an i.i.d. zero-mean unit-variance complex Gaussian ensemble. The codebook size
is |C| = SNR(r−ε)T with an arbitrarily small ε > 0. Then we expurgate all bad
codewords that lead to the violation of at least one of the approximately universal
conditions [Gal65, ZT03].

In particular, we fix the first codeword x0 and compute all codeword differences
x − x0 = (Δx1,ΔxR) = (SNR−δ1 ,SNR−δR). We expurgate x0 if there exists
another codeword so that (δ1, δR) ∈ B1 ∪ B2 where

B1 =
{
δ1, δR : SNR−β(δ1)+ ≤ SNR−r

}
,

B2 = {δ1, δR : SNR−β(δ1)+−(1−β)(δR)+ ≤ SNR−r}.
We then repeat the process for x1, . . . ,x|C|−1.
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Over the ensemble, the codeword difference Δx1, ΔxR are i.i.d. zero-mean
variance-2 complex Gaussian random vectors of length T1 and T2 respectively. We
then have Pr ((δ1, δR) ∈ B1 ∪ B2) .= SNR−De where

De = inf
(δ1≥0,δR≥0)∈{B1∪B2}

T1δ1 + T2δR = inf
(δ1≥0,δR≥0)∈{B1∪B2}

T (βδ1 + (1− β)δR)

However for SNR > 1, we have

B1 = {δ1, δR : β(δ1)+ ≥ r},
B2 = {δ1, δR : β(δ1)+ + (1− β)(δR)+ ≥ r}.

Clearly B1 ∪ B2 = B2, leading to De = Tr. The probability that we expurgate x0

is then union-bounded by

Pr(x0 expurgated) ≤̇ SNR(r−ε)TSNR−De = SNR−Tε.

Let the indicator function be 1(·). Then the average (over the ensemble) number
of codewords after expurgation is

E

⎡
⎣|C|−1∑
i=0

(
1− 1(xi expurgated)

)⎤⎦ = |C| −
|C|−1∑
i=0

E
[
1(xi expurgated)

]

= |C| −
|C|−1∑
i=0

Pr
(
xi expurgated

)
≥ |C| − |C|Pr

(
x0 expurgated

)
.= |C|

(
1− SNR−Tε

)
.= |C|

where the inequality is due to the fact that the first codeword x0 is more likely to
be expurgated than any other codeword.

The derivations above show that the expurgation progress does not lead to a
loss of multiplexing gain (rate) of at least one code in the ensemble. Because ε can
be made arbitrarily close to zero, we conclude that in codes drawn from Gaussian
ensemble there exists at least a code of rate r log SNR that satisfies both sufficient
conditions, provided that T1 ≥ 1 and T2 = T − T1 ≥ 1.

Since the two-phase transmission resembles Gaussian channels in parallel, we
can readily extend the above expurgation process to the case of an arbitrary num-
ber of parallel channels and even multiple receive antennas. We then obtain an
interesting by-product:

Corollary 4.3. For parallel SIMO Gaussian channels, there exists at least a se-
quence of approximately universal codes with length 1. The codes can be obtained
by expurgating codes drawn from an i.i.d. Gaussian ensemble.
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Figure 4.8: Achievable diversity-multiplexing tradeoff of the orthogonal scheme
with no CSF and different finite codeword lengths T . The dotted curve is the
outage exponent DNF

O (r) of Proposition 4.1.

Note that the fact that approximately universal codes of length 1 exist has been
established in [TV06] by a QAM permutation argument.

In Fig. 4.8, we plot the achievable diversity-multiplexing tradeoff curves with
different codeword length T . Some useful conclusions can be drawn from the results.
First, there exist codes achieving the linear segment 2 − 3r of the optimal outage
exponent DNF

O (r), given that T = 3N , ∀N ∈ {1, 2, . . .}. And even with a moderate
length T = 18, very close to outage performance at all r can be achieved. Note that
due to the discreteness of the set B, increasing the length T does not necessarily
lead to a better performance at all multiplexing gains. Finally, since the relay is
required to decode the messagem completely, we cannot achieve a nonzero diversity
gain for any r ≥ T−1

T .
It is possible to apply the above expurgation process to the nonorthogonal DF

case. However, it turns out that expurgating “bad” codewords from a Gaussian
ensemble leads to a loss of rate, i.e. the number of remaining codewords is not
large enough to carry out the information rate r log SNR of the original codebook.
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This is due to the fact that the relaying phase resembles a multiple transmit antenna
system, where the expurgation process is known to incur loss of rate. Thus at any
multiplexing gain, the Gaussian coding bound in this case is only asymptotically
tight as T → ∞. We state the result in the following, and present a sketch of the
proof in Appendix 4.G.

Proposition 4.10. With no CSF, there exist nonorthogonal codes using T ≥ 3
channel uses that achieve the following diversity gain

max
β∈B

min
(

2− r̄ − r̄
β
,D2

)

where

D2 =

⎧⎪⎨
⎪⎩

2− 2r̄ if β < 1
2

1−r̄
β if r̄ > 1− β, β ≥ 1

2
2− r̄

1−β if r̄ < 1− β, β ≥ 1
2

with r̄ = r
1− 1

(1−β)T
and

B =
{
T1

T
: T1 ∈ {max(	T r̄
, �T/2�),max(	T r̄
, �T/2�), . . . ,

min
(
T − 2,

⌊
T − 1

1− r
⌋)}}

.

Unlike in the orthogonal case, an achievable curve with a finite T never “touches”
the outage upper bound DNF

NO(r) because of the loss of rate in expurgation. In this
case, it is potential to get close to the outage upper bound and better than the
orthogonal upper bound DNF

O (r)) with relatively large codeword lengths (T ≈ 100).
For short codes the achievable bound is loose, and it is likely that using more
structured codes will give a much better performance than relying on the Gaussian
coding arguments herein, as evident in the MIMO case [TV06, EKP+06].

4.8 Conclusion

We provide a comprehensive study of decode-and-forward relay channels with dif-
ferent forms of quantized channel state feedback. Our results suggest that with the
help of severely limited channel state feedback, the performance of a three-node
cooperative communication system can be considerably improved even with rela-
tively simple decode-and-forward schemes. The construction of explicit codes that
achieve or approach the performance of the outage bounds presented in this work,
especially in the nonorthogonal case, remains a topic for future study.
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Appendices for Chapter 4

4.A Proof of Proposition 4.2

For simplicity of presentation, let us consider K = 2. Generalizing to K > 2 is
straightforward. Furthermore, we consider only an orthogonal scheme, as the proof
for a nonorthogonal scheme is completely similar.

The outage probability is

Pout(r log SNR) = Pr(O1) + Pr(O2) + Pr(O2)

where

Pr(O1) = Pr(I = 1, β1 log(1 + gSNR) + (1− β1) log(1 + γ2SNR) < r log SNR)
.= Pr(β1(1− α1)+ ≥ r, β1(1− a)+ + (1− β1)(1− α2)+ < r)
.= SNR−D1 .

Invoking Lemma 4.1 yields

D1 =

⎧⎪⎨
⎪⎩

2− r
β1

if r < β1 <
1
2 ,

1−r
β1

if r ∈ (1− β1, β1), β1 ≥ 1
2 ,

2− r
1−β1

if r < 1− β1, β1 ≥ 1
2 .

(4.39)

Also,

Pr(O2) = Pr(I = 2, β2 log(1 + γ1SNR) ≥ r log SNR,
β2 log(1 + gSNR) + (1− β2) log(1 + γ2SNR) < r log SNR)

.= Pr(β1(1− α1)+ < r, β2(1− α1)+ ≥ r,
β2(1− a)+ + (1− β2)(1− α2)+ < r),

leading to

D2 =

⎧⎪⎨
⎪⎩

2− r
β2

+ 1− r
β1

if r < β2 <
1
2 ,

1−r
β2

+ 1− r
β1

if r ∈ (1− β2, β2), β2 ≥ 1
2 ,

2− r
1−β2

+ 1− r
β1

if r < 1− β2, β2 ≥ 1
2 .

(4.40)

Finally

Pr(O3) = Pr(I = 2, β2 log(1 + γ1SNR) < r log SNR, β2 log(1 + gSNR) < r log SNR)
.= Pr(β1(1− α1)+ < r, β2(1− α1)+ < r, β2(1− α)+ < r).

This leads to
D3(r) = 2

(
1− r
β2

)
. (4.41)
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Figure 4.9: Bounding techniques in Proposition 4.2.

We again only need to consider βk > 1/2 (cf. Section 4.3). The outage exponent
corresponding to an optimal dimension allocation is therefore given by

D∗out(r) = sup
max(r,1/2)≤β1<β2<1

min(D1,D2,D3).

4.B Proof of Proposition 4.3

The upper bound is obtained by showing that

2− r − β ≥ 1− r
β

for all β ∈ [1 − r, 1). To that end, noticing that 1−r
β is convex. Thus over β ∈

[1− r, 1), 1−r
β is upper-bounded by the linear segment between the two end points

(1− r, 1) and (1, 1− r). This linear segment is given by 2− r − β (cf. Fig. 4.9).
As for the lower bound, we begin with the following lemma.
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Lemma 4.3. The outage exponent DRF−K
O-NPC(r) is lower-bounded by

DRF−K
LB-O-NPC(r) = sup

min(1/r,2)>x1>···>xK≥1
min {(1− r)x1 + 1− rx0, . . . ,

(1− r)xK + 1− rxK−1, 2(1− rxK)}
with the convention rx0 = 1. For r ≥ 1/2, this lower bound is tight.

The outage exponent DRF−K
NO-NPC(r) is lower-bounded by

DRF−K
LB-NO-NPC(r) = sup

min(1/r,2)>x1>···>xK≥1
min {(1− r)x1 + 1− rx0, . . . ,

(1− r)xK + 1− rxK−1, 2− r − rxK)}
with the convention rx0 = 1. For r ≥ 1/2 this lower bound is tight.

Proof. Consider the orthogonal case. We lower-bound the piecewise function

f(β) =
{

2− r
1−βk− if β < 1− r,

1−r
β otherwise,

by extending the function 1−r
β over the entire support [max(r, 0.5), 1), as illustrated

in Fig. 4.9. By construction, the bound is tight when r ≥ 1/2. As for r < 1/2, we
need to show that

f1(β) ≡ 2− r

1− β ≥
1− r
β
≡ f2(β),∀β ∈ (1/2, 1− r).

To that end, note that both f1(β) and f2(β) pass through the points (1/2, 2− 2r)
and (1− r, 1). But f1(β) is concave and f2(β) is convex over [1/2, 1− r), we readily
have f1(β) ≥ f2(β). Finally a change of variable xk = 1/bk gives the claimed
bound.

The bounds to DRF−K
NO-NPC(r) are obtained in a similar manner.

We now compute the explicit solution to the optimization problems posed in
Lemma 4.3. Consider the orthogonal case. The problem can in fact be recast as
a linear program. The global optimum of the maximin is given by the intersection
of all K + 1 affine functions, provided that the intersection satisfies the linear
constraints min(1/r, 2) > x1 > · · · > xK ≥ 1. Let us find this balancing point.
Introduce a variable Δ so that

(1− r)x1 = Δ
(1− r)x2 + 1− rx1 = Δ

· · ·
(1− r)xK + 1− rxK−1 = Δ

2(1− rxK) = Δ.
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From the last equation we have

xK = 2−Δ
2r . (4.42)

From the first K equations, we have

x2 = Δ− 1
1− r + r

1− rx1 = Δ− 1
1− r + r

(1− r)2 Δ = Δ− 1
1− r

(
1 + r

1− r
)

+ r

(1− r)2

x3 = Δ− 1
1− r

(
1 + r

1− r +
(
r

1− r
)2
)

+ r2

(1− r)3

· · ·

xK = Δ− 1
1− r

K−1∑
k=0

(
r

1− r
)k

+ rK−1

(1− r)K .

Combining with (4.42) leads to

Δ =
1
r + 1

1−r
∑K−1
k=0

(
r

1−r
)k
− rK−1

(1−r)K

1
2r + 1

1−r
∑K−1
k=0

(
r

1−r
)k

=

⎧⎨
⎩

2(1−r)−2(1−r)( r
1−r )K

1−2r( r
1−r )K

if r �= 1/2
2K

1+2K if r = 1/2.

It can be verified that with this value of Δ, all the linear constraints are satisfied.
Thus DRF−K

LB-O-NPC(r) = Δ.
Using a similar technique, we can show that

DRF−K
LB-NO-NPC(r) =

2−r
r + 1

1−r
∑K−1
k=0

(
r

1−r
)k
− rK−1

(1−r)K

1
2r + 1

1−r
∑K−1
k=0

(
r

1−r
)k

=

⎧⎨
⎩

2(1−r)2−(1−r)( r
1−r )K

1−r−r( r
1−r )K

if r �= 1/2
1+2K
2+2K if r = 1/2.

4.C Proof of Proposition 4.4

We essentially follow the same line of arguments as in the short-term case. The key
difference is the fact that under a long-term power constraint, a power level in the
order of

SNR
Pr(I(γ1) = k)
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can be applied given that the index I(γ1) = k is received at the source [ECD06].
Again we only present the case K = 2 to improve readability. Consider an

orthogonal scheme. Let pk be the SNR exponent of power level Pk, i.e. Pk
.= SNRpk ,

with 1 = p1 < p2 < ∞. We have Pout(r log SNR) = Pr(O1) + Pr(O2) + Pr(O3).
Herein

Pr(O1) = Pr(I = 1, β1 log(1+gP1)+(1−β1) log(1+γ2SNR) < r log SNR) .= SNR−d1

where

D1 =
{

1−r
β1

if r ∈ (1− β1, β1), β1 ≥ 1
2 ,

2− r
1−β1

if r < 1− β1, β1 ≥ 1
2 .

Notice that P1
.= SNR1 and that we do not consider β1 < 1/2 for the same reason

as presented in Section 4.3.
We now have

Pr(I = 2) = Pr(β1 log(1 + γ1SNR) < r log SNR, β2 log(1 + γ1P2) ≥ r log SNR)
.= SNR−

(
1− r

β1

)
where the exponent equality is due to p2 − r

β2
> 1 − r

β1
, making the probability

of the event {β2 log(1 + γ1P2) < r log SNR} decays to zero faster than that of
{β1 log(1 + γ1SNR) < r log SNR}. Then, we have

P2
.= SNR

Pr(I = 2) = SNR2− r
β1 .

Let us next compute the SNR exponent D2 of

Pr(O2) = Pr(I = 2, β2 log(1 + γ1P2) ≥ r log SNR,
β2 log(1 + gP2) + (1− β2) log(1 + γ2SNR) < r log SNR)

.= Pr
(
β1(1− α1)+ < r, β2

(
2− r
β1
− a
)+

+ (1− β2)(1− α2)+ < r

)

Using Lemma 4.1, we obtain

D2 =
{

1− r
β1

+ 1−r
β2

if r ∈ (1− β2, β2),
3− r

β1
− r

1−β2
if r < 1− β2.

Finally

Pr(O3) = Pr(β2 log(1 + γ1P2) < r log SNR, β2 log(1 + gP2) < r log SNR)
.= SNR−2

(
p2− r

β2

)
.= SNR−2

(
2− r

β1
− r
β2

)
.
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4.D Proof of Proposition 4.5

We present only the orthogonal case as the nonorthogonal case follows exactly the
same line of arguments. The proof of lower bounds are similar to that in the
short-term power constraint case and thus omitted.

For the lower bound, we first lower-bound the exponent Dk ≥ k − 1 + 1−r
βk
−∑k−1

i=1
r
βi

and change variable xk = (βk)−1 (cf. Appendix 4.B). This leads to

DRF−K
O-PC (r) ≥ sup min ((1− r)x1, 1 + (1− r)x2 − rx1, . . . ,

K − 1 + (1− r)xK − r
K−1∑
k=1

xk, 2
(
K − r

K∑
k=1

xk

))

where the supremum is over min(1/r, 2) ≥ x1 > x2 > · · · > xK > 1. We will
balance the K + 1 terms and verify if the solution satisfies the linear constraints.
To that end, let

(1− r)x1 = 1 + (1− r)x2 − rx1 = · · ·

= K − 1 + (1− r)xK − r
K−1∑
k=1

xk

= 2
(
K − r

K∑
k=1

xk

)

= Δ.

Balancing the first K terms leads to

x1 = 1 + (1− r)x2,

x2 = 1 + (1− r)x3,

· · ·
xK = 1 + (1− r)xK−1

and thus

x1 = Δ
1− r ,

x2 = 1
1− r

(
Δ

1− r − 1
)
,

x3 = 1
1− r

(
Δ

(1− r)2 − 1− 1
1− r

)
,

· · ·

xK = 1
1− r

(
Δ

(1− r)K−1 −
K−2∑
k=0

1
(1− r)k

)
.

(4.43)
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Inserting these values into 2
(
K − r∑Kk=1 xk

)
= Δ and simplifying give

Δ =
(1− r) (1− (1− r)K)
r
(
1− 1

2 (1− r)K) .
With this Δ, we can readily verify that x1 > · · · > xK > 1. However the constraint
min(1/r, 2) ≥ x1 does not always satisfy. In particular,

x1 = Δ
1− r =

(
1− (1− r)K)
r
(
1− 1

2 (1− r)K) ≤ min(1/r, 2) = 1
r
,∀r ≥ 1/2

but when r < 1/2,

x1 = Δ
1− r =

(
1− (1− r)K)
r
(
1− 1

2 (1− r)K) ≤ min(1/r, 2) = 2 iff (1− r)K+1 ≥ 1− 2r.

That is, over {r : (1 − r)K+1 < 1 − 2r} the intersection is not the solution of
the maximin. Since DRF−K

LB-O-PC(r) ≤ 2− 2r, it suffices to shows that DRF−K
LB-O-PC(r) =

2 − 2r over this range of r. Let K̂ ∈ {2, . . . ,K} so that (1 − r)K̂ ≥ 1 − 2r and
(1 − r)K̂+1 < 1 − 2r. Such a K̂ always exists because (1 − r)2 ≥ 1 − 2r,∀r and
(1− r)K+1 < 1− 2r by assumption.

Inserting Δ = 2− 2r into (4.43) we obtain

x̂1 = 2,

x̂2 = 1
1− r ,

· · ·

x̂K = 1
1− r

(
2

(1− r)K−2 −
K−2∑
k=0

1
(1− r)k

)
.

Note that 2 ≥ x̂1 > x̂2 > · · · > x̂K . Furthermore, with the given K̂, we can easily
check that

x̂K̂ = 1
1− r

⎛
⎝ 2

(1− r)K̂−2
−
K̂−2∑
k=0

1
(1− r)k

⎞
⎠ ≥ 1

and
x̂K̂+1 < 1.

We now show that min
(
D1, . . . , DK , 2

(
K − r∑Kk=1 xk

))
= 2 − 2r with the

choice
x1 = x̂1, x2 = x̂2, . . . , xK̂ = x̂K̂ , xK̂+1 = · · · = xK = 1.

Note that this choice of {xk} satisfies all the linear constraints.



122
CHAPTER 4. D–M TRADEOFF IN DECODE–AND–FORWARD RELAY

CHANNELS

By construction we have D1 = · · · = DK̂ = 2− 2r. Furthermore,

DK̂+1 −DK̂ = (1− r)xK̂+1 + 1− x̂K̂ > (1− r)x̂K̂+1 + 1− x̂K̂ = 0

thus we have DK̂+1 > DK̂ = 2− 2r. For l > K̂ + 1 we have

Dl −Dl−1 = (1− r) + 1− 1 = 1− r > 0

thus Dl > Dl−1 > 2− 2r.
It remains to show that 2

(
K − r∑Kk=1 xk

)
≥ 2− 2r ⇔ K− r∑Kk=1 xk ≥ 1− r.

But

K − r
K∑
k=1

xk = K̂ − r
K̂∑
k=1

x̂k + (K − K̂)(1− r) ≥ K̂ − r
K̂∑
k=1

x̂k.

With the given {x̂k}, after some straightforward manipulation we have

K̂ − r
K̂∑
k=1

x̂k ≥ 1− r ⇔ (1− 2r) > (1− r)K̂+1.

But this always holds given our choice of K̂.
We conclude that over {r : (1− r)K+1 < 1− 2r},

sup
2≥x1>···>xK>1

min
(
D1, . . . , DK , 2

(
K − r

K∑
k=1

xk

))
= 2− 2r.

4.E Destination-Relay CSF

Proof of Proposition 4.6
For any K, the outage event is dominated by two terms

Pout(r log SNR) .= Pr(O1) + Pr(O2)

where O1 is the event that the relay fails to decode the message and the destination
cannot decode the direct transmission either.

Pr(O1) = Pr (β log(1 + γ1SNR) < r log SNR, β log(1 + gSNR) < r log SNR)
.= SNR−2(1− rβ ).

The event O2 happens when the relay succeeds to decode but the combined direct
and relayed signals cannot be decoded by the destination. Due to the construction
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of I(g, γ2), this only happens when I = K, i.e. when largest power level PK is
applied at the relay.

Pr(O2) = Pr (I = K,β log(1 + γ1SNR) ≥ r log SNR,
log(1 + gSNR) + (1− β) log(1 + γ2PK) < r log SNR) .

To apply Lemma 4.1 to find the SNR exponent of Pr(O2), we first recursively
compute the exponent of PK .

We have P1
.= SNR, and Pr(I = 2) .= SNR−D1 where D1 is given by Lemma 4.1

D1 =
{

2− r
1−β if 1

2 ≤ β < 1− r
1−r
β if β ≥ max(1/2, 1− r).

Then we have P2
.= SNR1+D1 . Invoking Lemma 4.1 again gives Pr(I = 3) .=

SNR−D2 where

D2 =
{

2 +D1 − r
1−β if 1

2 ≤ β < 1− r
1+D1

−D1 + 1+D1−r
β if β ≥ max

(
1
2 , 1− r

1+D1

)
.

Continuing this line of arguments leads to the claimed result.

Alternative Proof of Proposition 4.7
We have

Pout(r log SNR) .= SNR−2(1− rβ ) + SNR−D∞

where D∞ = limk→∞DK with DK defined as in (4.27), i.e.

Dk =

⎧⎨
⎩2 +Dk−1 − r

1−β if 1
2 ≤ β < 1− r

1+Dk−1
1−β
β Dk−1 + 1−r

β if β ≥ max
(

1
2 , 1− r

1+Dk−1

)
.

Notice that for any given r, β the sequence (indexed by k) 1 − r
1+Dk is increasing

because the sequence Dk is increasing. We consider two cases.
Case 1: Assume β > 1 − r

1+D∞ , implying that β > 1 − r
1+Dk , ∀k. Then by

definition

D1 = 1− r
β
,

D2 = 1− r
β

+
(

1
β
− 1
)

1− r
β
,

D3 = 1− r
β

+
(

1
β
− 1
)(

1− r
β

+
(

1
β
− 1
)

1− r
β

)
,

· · ·

DK = 1− r
β

(
1 + 1− β

β
+ · · ·+

(
1− β
β

)K−1
)
.



124
CHAPTER 4. D–M TRADEOFF IN DECODE–AND–FORWARD RELAY

CHANNELS

We can exclude the point β = 1/2 because of the following. With β = 1/2 we have
DK = 2K(1− r)→∞ as K →∞. But we require β = 1

2 > 1− r
1+D∞ = 1− 0 = 1,

which is a contradiction. Thus we only consider β > 1/2 meaning that 1−β
β < 1.

Then

DK =
(1− r)

(
1−
(

1−β
β

)K)
2β − 1

and
D∞ = lim

K→∞
DK = 1− r

2β − 1 .

To satisfy β > 1− r
1+D∞ we must have

β > 1− r

1 + 1−r
2β−1

⇔ β > 2− r
2 .

The above condition always holds when r > 2/3, given the constraint β ≥ max(1/2, r).
From the indirect proof (cf. Section 4.5), we know that

D2 = sup min
β∈[max(r, 2−r2 ),1)

(
2
(

1− r
β

)
,

1− r
2β − 1

)

=
{

1 if r < 2
5 ,

2− 16r
3+3r+

√
9r2−14r+9 otherwise.

Case 2: β < 1 − r
1+D∞ ⇔ β < 2−r

2 , which only happens when r < 2
3 . There

exists an integer K̄ ∈ [0,∞) so that

1− r

1 +DK̄
> β ≥ 1− r

1 +DK̄−1

with the convention 1− r
1+D−1

= max(r, 1/2). Then DK̄ > 0 and by definition, we
have

DK̄+1 = 2 +DK̄ −
r

1− β ,

DK̄+2 = 2 +DK̄+1 −
r

1− β = DK̄ + 2
(

2− r

1− β
)
,

· · ·

DK̄+L = DK̄ + L
(

2− r

1− β
)

Since β < 2−r
2 , we have 2− r

1−β > 0 thus

D∞ = lim
L→∞

DK̄+L =∞.
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This leads to

D1 = sup
β∈[max( 1

2 ,r),
2−r

2 )
min
(

2− 2r
β
,D∞

)
= sup
β∈[max( 1

2 ,r)
2−r

2 )

(
2− 2r
β

)
= 2− 4r

2− r .

Combining D1 and D2 leads to the desired result.

4.F Proof of Proposition 4.8

We present only the proof for an orthogonal scheme. Recall that we use the following
index mapping

I(g, γ2) ≡ I(g) =
{
K if log (1 + gPK−1) < r log SNR,
min{k ∈ {1, . . . ,K − 1} : log (1 + gPk) ≥ r log SNR} otherwise

and that β is the fraction of dimension assigned to the learning phase (only) when
I = K.

We now show that

DDSF-K
O-SPC (r) = sup

β∈
[

max
(

r
K−(K−1)r ,

1
2

)
,1
)min

(
2K − 2(K − 1)r − 2r

β
,DK

)
(4.44)

where

DK =

⎧⎨
⎩2K − 2(K − 1)r − r

1−β if max
(

r
K−(K−1)r ,

1
2

)
≤ β < 1− r

K−(K−1)r
K(1−r)
β if β ≥ max

(
r

K−(K−1)r ,
1
2 , 1− r

K−(K−1)r

)
.

To that end, let pk be the SNR exponent of the power level used at the source
(and also the relay when I = K) given that I = k. We readily see that p1 = 1,
p2 = 1+p1−r = 2−r, . . . , pK = 1+pK−1−r = K−(K−1)r. Due to construction,
outage can only happen when I = K thus

Pout(r log SNR) .= Pr(O1) + Pr(O2)

where

Pr(O1) = Pr (I = K,β log(1 + γ1PK) ≥ r log SNR,
β log(1 + gPK) + (1− β) log(1 + γ2PK) < r log SNR)

.= SNR−DK .

If βpK < r then the event β log(1+γ1PK) < r log SNR happens with probability in
the order of SNR0, meaning that the relay is completely redundant in the proposed
scheme. Therefore we constrain β ≥ r

pK
= r
K−(K−1)r . Note that the event β log(1+



126
CHAPTER 4. D–M TRADEOFF IN DECODE–AND–FORWARD RELAY

CHANNELS

gPK) + (1− β) log(1 +PKSNR) < r log SNR implies β log(1 + gPK−1) < r log SNR
or I = K. Invoking Lemma 4.1 yields

DK =

⎧⎨
⎩2K − 2(K − 1)r − r

1−β if max
(

r
K−(K−1)r ,

1
2

)
≤ β < 1− r

K−(K−1)r
K(1−r)
β if β ≥ max

(
r

K−(K−1)r ,
1
2 , 1− r

K−(K−1)r

)
.

Similarly

O2 = {I = K,β log(1 + γ1PK) < r log SNR, β log(1 + gPK) < r log SNR} ,

which gives
Pr(O2) .= SNR−2(pK− rβ ) = SNR−2(K−(K−1)r− rβ ).

Inserting into (4.44) and solving for the optimal β∗ yield β∗ = 2/3 for r < K
K+2

and β∗ = K−(K−2)r
2K−2(K−1)r for r ≥ K

K+2 . This leads to the claimed results.

4.G Proof of Proposition 4.10

Since the proof follows closely that of Proposition 4.9, we briefly summarize the
main steps herein.

Step 1 - Preliminaries. Let β = T1/T ≥ 1, T2 = (1 − β)T ≥ 2. An encoder is
a mapping m→ √SNR(x1,X2) where X2 is a T2 × 2 matrix with the first row x21
being the sequence sent from the relay and the second row x22 being the sequence
sent from the source during the relaying phase. The power constraints are

1
|C|T

∑
C

(‖x1‖2 + ‖x22‖2) ≤ 1,

1
|C|T

∑
C
‖x21‖2 ≤ 1.

Step 2 - Universal conditions. Consider a codeword difference (Δx1,ΔX2).
Let ‖Δx1‖2 = SNR−δ1 and let λ2 = SNR−δ2 be the smallest squared singular value
of ΔX2. Applying again the Chernoff bound and using the worst-case rotation
argument [TV06], we end up with the conditions(

min
C

SNR−β(δ1)+
)
≥̇ SNR−r, (4.45)

(
min
C

SNR−β(δ1)+
SNR−(1−β)(δ2)+

)
≥̇ SNR−r. (4.46)

Step 3 - Expurgation. Draw (x1,X2) from an i.i.d. zero-mean unit-variance
complex Gaussian ensemble. The probability that a codeword difference is too
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small leading to the expurgation of a codeword, Pr((Δx1,ΔX2) ∈ B), has an SNR
exponent of (recall that ΔX2 in this case is a T2 × 2 matrix)

inf
δ1≥0,δ2≥0

T1δ1 + (T2 − 1)δ2

s.t. T1δ1 + T2δ2 ≥ Tr,

which is optimized at δ∗1 = 0, δ∗2 = T
T2
r, leading to

Pr((Δx1,ΔX2) ∈ B) .= SNR−
T2−1
T2
Tr.

To make the average number of expurgated codewords insignificant compared to
the number of codewords before expurgation, we require the original codebook size
to be SNRr̂T , where

r̂ = T2 − 1
T2
r − ε =

(
1− 1

(1− β)T
)
r − ε

for an arbitrarily small ε > 0. The expurgated code itself is therefore not ap-
proximately universal because its multiplexing gain strictly is less than r (even if
ε = 0). However we can conclude that when this expurgated code of rate r̂ log SNR
is used, an SNR exponent of the error probability min(2−r−r/β,D2) is achievable,
where r̂ < r (strict inequality). In other words, as long as the mutual information is
greater than r log SNR > r̂ log SNR, then the expurgated code has Pr(ε) .= SNR−∞.
This leads to the claimed result.

On a final note, the constraint T1 ≤ min
(
T − 2,

⌊
T − 1

1−r
⌋)

in the maximin of
Proposition 4.10 is due to the fact that we constrain T2 ≥ 2 and that we require
the multiplexing gain r

1− 1
(1−β)T

< 1. Clearly, as in Chapter 3, this expurgation
procedure is only applicable for sufficiently small r.





Chapter 5

D–M Tradeoff in
Compress–and–Forward Relay
Channels

We continue the D–M tradeoff analysis with another relaying protocol in this chap-
ter. It is shown in [YE07] that the compress-and-forward strategy achieves the
full cooperative D–M tradeoff bound of a three-node wireless relay network. This
is obtained under the possibly unrealistic assumption that the relay has perfect
knowledge of all three channel coefficients (source-destination, source-relay and
relay-destination), and that the destination has perfect knowledge of the source-
relay channel coefficient. Also, in the optimal CF strategy the relay makes use
of Wyner-Ziv source coding with side information. This chapter investigates the
achievable D-M tradeoff of the same network, under the same assumptions of perfect
channel state information, when the relay is constrained to make use of standard
(non-WZ) source coding. It is shown that under a short-term power constraint at
the relay, using source coding without side information results in a significant loss
in terms of the D–M tradeoff. For multiplexing gains r ≤ 2

3 , this loss can be fully
compensated for by relaxing the power constraint to a long-term one, and by using
power control at the relay. On the contrary, for large multiplexing gain r ∈ ( 2

3 , 1
)

the loss with respect to WZ coding remains strict.

5.1 Introduction

In [YE07], it is shown that the multiple-antenna relay network achieves the co-
operative upper bound (fully cooperative transmit antennas) by using a compress
and forward strategy, where the relay sends to the destination a source-encoded
(lossy) version of its received signal, which is then treated by the destination as an
additional observation and used to decode the source information message. The
optimal CF strategy makes use of Wyner-Ziv source coding with side information

129
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at the relay, and its optimality is shown under the critical assumption that the relay
knows both the channel matrix from relay to destination and that from source to
destination. It is also necessary that the destination knows the channel matrix from
source to relay.

The practical implementation of WZ source coding with side information is
generally much more complex than standard source coding. Since WZ coding re-
quires a channel decoding operation at the decoder, approaching the rate-distortion
limit in this case requires large block length and significant encoding and decoding
complexity (see for example [WO01, MB02, CPR03, YCXZ03, CX05]).

At this point, it is legitimate to ask the following question: “How much of the
optimality of the CF strategy in [YE07] comes from WZ coding, and how much
comes from CSI at the relay?.”

In this chapter, we quantify the D-M tradeoff loss incurred by not using WZ
coding at the relay. We thus indirectly show that source coding with side infor-
mation as in [HZ05, YE07] is instrumental in achieving a superior performance
over quasi-static fading relay channels. However, the picture is not as bleak as
it may appear. By relaxing the power constraint at the relay from peak (short-
term) to average (long-term) and allowing power control, we show that the non-
WZ CF strategy achieves the optimal cooperative D–M tradeoff for all multiplex-
ing gain r ≤ 2

3 and generally outperforms the best known AF and DF strategies
[AES05, LTW04, KCS07b].

Our results indicate that simple CF strategies based on scalar quantization and
power control at the relay, coupled with clever protocols that distribute the required
channel state information to the relay and to the destination, can indeed achieve
very good practical throughput and reliability performance with low complexity.

5.2 System Model

Consider a three-node slowly fading wireless relay channel. All terminals have a
single antenna, and are constrained to operate in half-duplex mode [LTW04]. The
source-destination, source-relay, and relay-destination channel gains are denoted
by h, h1, and h2 respectively. The channel is statistically symmetric, with h, h1,
and h2 being mutually independent complex Gaussian random variables with zero
mean and unit variance. The channel is constant during a fading block of T chan-
nel uses, and changes independently from one block to the next. Again, we are
interested in the high-SNR performance of this channel when the allowed decoding
delay is equal to T . Since the fading is constant over blocks of T symbols, the er-
ror probability performance is dominated by the outage probability. Furthermore,
we consider the case of large block length T , for which the information theoretic
limits of channel coding and rate-distortion source coding are achievable by stan-
dard random Gaussian coding. Since we look at both large SNR and large T , the
limit ordering becomes important. Conceptually, we may think of an increasing
sequence of operating SNRs, and for each SNR we look at the system performance
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when T → ∞. All three channels are affected by additive white noises, mutually
independent and identically distributed, with with complex circularly symmetric
Gaussian components ∼ CN (0, 1). It is well-known that in the quasi-static large
T regime each receiver can estimate with vanishing loss its own channel coefficient
[BPS98]. Therefore, with no loss of generality, we assume perfect CSI at all receivers
(relay and destination).

We study a CF scheme under the assumptions made in [YE07], that the relay
knows h and h2 perfectly, and that the destination has perfect knowledge of the
source-relay gain h1. First, we consider the case of a peak (or short-term) power
constraint, where the relay codewords are constrained to satisfy

1
T |C|

∑
sR∈C
‖sR‖2 ≤ SNR

in each fading block. Then, we relax this to an average (or long-term) power
constraint, given by

1
T |C|

∑
sR∈C

E
[‖sR‖2

] ≤ SNR

where the expectation is with respect to the fading statistics. This relaxed con-
straint allows for the use of power control at the relay, where in certain fading
blocks a power much larger than average can be used, provided that the average
constraint is satisfied.

The information rate of the source is r log SNR bit per channel use, which is
fixed for a given SNR. Recall that an outage event occurs when the mutual informa-
tion between source and destination is smaller than r log SNR. The corresponding
probability of outage is denoted as Pout(r log SNR). We recall that the system
achieves an outage exponent of d when

Pout(r log SNR) .= SNR−d.

Due to the half-duplex constraint, the transmission is divided into two phase.
Phase 1 uses a fraction β ∈ (0, 1) of the available degrees of freedom (i.e., it uses
βT channel uses), in which the source encodes an equally likely message m ∈
{1, . . . , 2rT log SNR} to a codeword sm and then transmits the first βT symbols of
sm. The received signals at the destination and at the relay are

y1 = hs1 + w1

yR = h1s1 + wR (5.1)

respectively, where we omit the time index for brevity.
In Phase 2, the source transmits the remaining (1− β)T symbols s2. The relay

vector-quantizes the signal vector received during Phase 1, denoted as yR, and
encodes the resulting quantization index into a codeword sR of length (1 − β)T ,
transmitted over the relay-destination channel. Notice that the source–channel
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coding used by the relay is a purely digital “tandem” encoding [MP02] approach.
The channel code rate is (smaller than but arbitrarily close to)

R0 = log
(

1 + |h2|2SNR
1 + |h|2SNR

)
,

The channel bandwidth to source bandwidth ratio for this tandem source-channel
coding scheme is 1−β

β .
The destination in Phase 2 observes the signal

y2 = hs2 + h2sR + w2

The decoder at the destination first decodes the quantization index sent by the
relay by decoding sR from y2, treating the source codeword as additive Gaussian
noise. Then, assuming that the relay codeword is correctly decoded, it decodes the
source information message m based on the joint observation (y1,y′2, ŷR) where
y′2 = y2−h2sR and ŷR is the reconstructed (quantized) version of the relay received
signal during Phase 1.

Since this relaying scheme does not use Wyner–Ziv source coding with side
information [WZ76, Wyn78] as in [HZ05, YE07] we refer to it as the non-WZ CF
scheme.

The vector quantization codebook at the relay is randomly generated, according
to the probability distribution of

ŷR = yR − wQ = yR − (cyR + u)

where c = 2−
1−β
β R0 and u is a zero-mean complex Gaussian, independent of yR,

with variance σ2
u = (1 + |h1|2SNR) (1− c) c. With this choice, the test (backward)

channel [CT91] is realized and the rate-distortion bound can be achieved. The
quantization error

wQ = yR − ŷR
is then i.i.d. complex Gaussian with zero mean and variance

σ2
Q = c2 E[|yR|2] + σ2

u

= 2−
1−β
β R0 E[|yR|2]

= (1 + |h1|2SNR)
(

1 + |h2|2SNR
1 + |h|2SNR

)− 1−β
β

.

Note that wQ is uncorrelated with ŷR.
Rewriting

ŷR = (1− c)yR − u = (1− c)h1s1 + (1− c)w1 − u,
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we then determine the achievable mutual information of the strategy as

I(s; y1, y2, ŷR)

= β log

⎛
⎝1 + |h|2SNR + |h1|2SNR

1 + σ2
u

(1−c)2

⎞
⎠+ (1− β) log(1 + |h|2SNR)

= β log
(

1 + |h|2SNR + |h1|2SNR
1 + (1+|h1|2SNR)c

1−c

)
+ (1− β) log(1 + |h|2SNR)

= β log
(

1 + |h|2SNR + |h1|2SNR(1− c)
1 + c|h1|2SNR

)
+ (1− β) log(1 + |h|2SNR).

(5.2)

Recall that

c = 2−
1−β
β R0 =

(
1 + |h2|2SNR

1 + |h|2SNR

)− 1−β
β

. (5.3)

Note that in order to achieve this rate, the destination needs to know full CSI,
i.e., h, h1, and h2. Computing the outage exponent of the scheme then gives the
following result, the detailed proof of which is presented in Appendix 5.3.

Proposition 5.1. Assume the relay knows h2 and h. Then under a short-term
power control at the relay, the non-WZ CF scheme achieves the outage exponent

DCF–∞
NPC (r) =

{
2− 3+

√
5

2 r if r < 3−√5
2 ,

(1− r)(2− r) otherwise.

It is remarkable that the tradeoff of the CF system coincides exactly with the
outage exponent of a nonorthogonal decode-and-forward relaying scheme with no
CSIT. Compared to the D–M tradeoff of the CF scheme using Wyner-Ziv source
coding, which is shown to be 2 − 2r in [YE07], this simple CF with no side infor-
mation exhibits a large degradation at all multiplexing gains. It is now clear that
WZ coding is the key ingredient in achieving the superior performance of the CF
schemes in [HZ05, YE07].

Where does this superior gain come from? Recall from [HZ05] that the achiev-
able mutual information of CF using WZ coding is

β

(
1 + |h|2SNR + |h1|2SNR

1 + σ2
WZ

)
+ (1− β) log(1 + |h|2SNR) (5.4)

where the compression noise

σ2
WZ = (1 + |h1|2SNR + |h|2SNR)c

(1 + |h|2SNR)(1− c)

=

(
1 + |h1|2SNR

1+|h|2SNR

)
c

1− c
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with c given by (5.3). Comparing the two achievable rates (5.2) and (5.4), we see
that the only subtle difference lies in their compression noise variances (given the
same value of β). Recall that the compression noise without WZ coding in (5.2) is

σ2
NWZ = (1 + |h1|2SNR)c

1− c .

In terms of the SNR exponent, most of the time, i.e. when |h1|2 .= SNR0 and
|h|2 .= SNR0, the ratio between the quantization noise variances is σ

2
NWZ
σ2

WZ

.= SNR1.
This relatively large difference in turn influences the optimization of β, leading to
the performance loss of the non-WZ CF scheme.

We now relax the short-term power constraint at the relay, allowing the relay
to control its transmit power over time based on (perfect) CSIT. In this case, the
channel coding rate from relay to destination becomes

RPC
0 = log

(
1 + |h2|2SNRπ

∗(h,h2)

1 + |h|2SNR

)

where SNRπ
∗(h,h2) is the optimal power allocated to the tuple of channel states

(h, h2) fed back from the destination to the relay. Thus the achievable rate is
similar to the no power control case, with a new parameter cPC = 2−

1−β
β R

PC
0 . That

is, in this case the noise variance due to quantization decays to zero faster as SNR
grows. We characterize the achievable diversity-multiplexing tradeoff of this scheme
by the following result, proved in Appendix 5.4.

Proposition 5.2. Assume the relay knows h2 and h. Then under a long-term
power control at the relay, the non-WZ CF scheme achieves the outage exponent

DCF–∞
PC (r) =

{
2− 2r if r < 2

3 ,
(1−r)(2−r)

r otherwise.

With power control, the simple non-WZ CF approach is optimal for all multi-
plexing gains r ≤ 2

3 . What is the intuition behind this phenomenon? The analysis
in Appendix 5.4 reveals that for β larger than an r-dependent threshold, the quan-
tization noise becomes too large, rendering useless the quantized signal sent from
the relay. In such cases, no cooperative gain can be achieved (cf. (5.2)). For r > 2

3 ,
this threshold on β is strictly less than 1

2 , implying that the relay can contributes
with its own (quantized) received signal observation for less than 1/2 of the avail-
able degrees of freedom (as evident from (5.2)), and fully cooperative diversity gain
cannot be achieved. The proof in Appendix 5.4 also shows that the probability
of outage is dominated by the event that the source–destination link alone is in a
deep fade. Thus in the high-multiplexing gain regime the bottleneck of non-WZ
CF relaying with power control is the source–destination link (unfortunately, in
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Figure 5.1: Outage exponents of simple CF schemes with perfect CSIT available
to the relay under different power constraints. The dashed curve is the outage
exponent of the dynamic decode-and-forward [AES05] scheme.

practice, it is likely that the quality of the direct link is indeed worse than that of
the links connecting to the relay.)

An interesting implication of the analysis in the appendices is that no loss
is incurred by restricting to β ≤ 1

2 . Because the channel bandwidth to source
bandwidth for the source–channel tandem encoder at the relay is 1−β

β , this implies
that it is not necessary to consider bandwidth compression [MP02] at the relay.1
This can be seen as a converse property to that of DF with quantized CSIT, where
it is shown in Chapter 4 that considering β ≥ 1

2 is sufficient.
We plot the tradeoff curves of both CF schemes in Fig. 5.1. For comparison, we

also plot the performance of the DDF scheme [AES05], which is uniformly better
than non-WZ CF without power control but is inferior to non-WZ CF with power
control for all r > 1

2 . Note however that the assumptions on CSIT of DDF and
the CF analyzed here as well as the WZ CF scheme in [YE07] are fundamentally

1Therefore the traditional term “compress-and-forward” used herein is not entirely correct,
because an optimal system either does bandwidth expansion or keeps the channel bandwidth
equal to the source bandwidth.
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different.
As in [YE07], this work assumes perfect CSIT at the relay, which is a too

optimistic assumption in most practical scenarios. Evaluating the performance of
more realistic CF relaying schemes with limited feedback remains an interesting
topic for further study.

Appendices for Chapter 5

5.3 Proof of Proposition 5.1

We first state the following convenient lemma without proof.

Lemma 5.1. For β ∈ (0, 1), the linear programming problem

D∗ = inf
α,α1≥0

{α+ α1} s.t. β(1− α, 1− α1)+ + (1− β)(1− α)+ < r

where (x1, . . . , xn)+ Δ= max(x1, . . . , xn, 0), has solution

D∗ =

⎧⎪⎨
⎪⎩

2− 2r if β ≥ 1
2 ,

1−r
1−β if β < min

( 1
2 , r
)
,

2− rβ if r ≤ β < 1
2 .

with the corresponding optimizers

(α∗, α∗1) =

⎧⎪⎨
⎪⎩

(1− r, 1− r) if β ≥ 1
2 ,

( 1−r
1−β , 0) if β < min

( 1
2 , r
)
,

(1, 1− rβ ) if r ≤ β < 1
2 .

We now prove Proposition 5.1. Perform the standard change of variable a =
− log |h|2/ log SNR, α1 = − log |h1|2/ log SNR, α2 = − log |h2|2/ log SNR (cf. [ZT03,
AES05]). Since

Pout = Pr
(
β log

(
1 + |h|2SNR

+ |h1|2SNR(1− c)
1 + c|h1|2SNR

)
+ (1− β) log(1 + |h|2SNR) < r log SNR

)
,

to compute the outage exponent as SNR→∞ we can focus on the set [ZT03]

O =
{
a, α1, α2 ∈ R

3
+ :

β

(
1− a, 1− α1 −

(
1− α1 − 1− β

β

(
1− α2 − (1− a)+

)+
)+
)+

+(1− β)(1− a)+ < r
}
.
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Herein

c =
(

1 + |h2|2SNR
1 + |h|2SNR

)− 1−β
β .= SNR−

1−β
β (1−α2−(1−a)+)+

.

The outage exponent is then given by

DCF–∞
NPC (r) = min

a,α1,α2∈O
(a+ α1 + α2). (5.5)

We partition O into two disjoint regions and solve (5.5) over each region, and
then take the minimum of the two solutions.

Case 1: a ≥ 1. The equation defining O reduces to

β

(
1− α1 −

(
1− α1 − 1− β

β
(1− α2)+

)+
)+

< r.

Let D1 be the minimum of the objective function in (5.5) over this region. We
further divide Case 1 into two cases.

Case 1.1: 1−α1 <
1−β
β (1−α2)+. The optimizers of (5.5) over this subset are

readily found to be (a∗, α∗1, α∗2) =
(

1,
(

1− rβ , 1− 1−β
β

)+
, 0
)
, where we can extend

α∗1 =

⎧⎪⎨
⎪⎩

0 if 0 < β < min(r, 1/2),
1− 1−β

β if max(1/2, 1− r) < β < 1,
1− rβ otherwise.

.

Case 1.2: 1− α1 ≥ 1−β
β (1− α2)+. Similarly we have

(a∗, α∗1, α∗2) =
(

1, 0,
(

1− r
β
, 1− 1− β

β

)+
)

and

α∗2 =

⎧⎪⎨
⎪⎩

0 if max(1− r, 1/2) < β < 1,
1− β

1−β if 0 < β < min(r, 1/2),
1− r

1−β otherwise.
.

Combining Case 1.1 and Case 1.2 leads to

D1 =
{

1 + min
(

1− rβ , 1− r
1−β
)

if r < β < 1− r,
1 otherwise.

Notice that D1 = 1, ∀r ≥ 1
2 .

Case 2: a < 1. We now consider

βmax
(

1− a, 1− α1 −
(

1− α1 − 1− β
β

(a− α2)+
)+
)

+(1−β)(1−a) < r. (5.6)



138
CHAPTER 5. D–M TRADEOFF IN COMPRESS–AND–FORWARD RELAY

CHANNELS

This case is divided into two sub-cases.
Case 2.1: 1− α1 <

1−β
β (a− α2)+. Then (5.6) becomes

βmax(1− a, 1− α1) + (1− β)(1− a) < r (5.7)

which does not depend on α2. We easily see that the optimizer α∗2 = 0 and the
condition defining Case 2.1 reduces to 1−α1 <

1−β
β a. The solution to (5.5) under

only the constraint (5.7) is then given by Lemma 5.1 (note that the condition of
Case 2, a < 1, is always satisfied by the solution in Lemma 5.1). It turns out that
the optimizers in Lemma 5.1 satisfy 1− α∗1 < 1−β

β a
∗ iff r + β ≤ 1.

In case r + β > 1, a simple modified version of Lemma 5.1 leads to

(a∗, α∗1) =

⎧⎨
⎩
(

1− r, 1− 1−β
β (1− r)

)
if β ≥ 1/2,(

β
1−β , 0

)
if β < min(r, 1/2).

In summary, in Case 2.1, the minimum of the objective function in (5.5) is

D
(1)
2 =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

2− 2r if 1
2 ≤ β ≤ 1− r,

1−r
1−β if β < min(1/2, r, 1− r),
2− rβ if r < β < 1/2,
1 + 2β−1

β (1− r) if β ≥ max(1/2, 1− r),
β

1−β 1− r < β < min(r, 1/2).

Case 2.2: 1− α1 ≥ 1−β
β (a− α2)+. In this case, (5.6) becomes

βmax
(

1− a, 1− β
β

(a− α2)+
)

+ (1− β)(1− a) < r. (5.8)

Again we note that α∗1 = 0. Now consider the sub-case 1−β
β (a−α2) > 1−a⇔ 1

βa−
1−β
β α2 > 1, when (5.8) reduces to (1−β)(1−α2) < r. This leads to the optimizers

of (5.5) (a∗, α∗2) =
(

1− r,
(

1− r
1−β
)+
)

. In the sub-case 1
βa − 1−β

β α2 ≤ 1, (5.8)

becomes (1− a) < r and we also obtain (a∗, α∗2) =
(

1− r,
(

1− r
1−β
)+
)

. Thus we

have

D
(2)
2 = 1− r +

(
1− r

1− β
)+

.

Then D2 = min
(
D

(1)
2 ,D

(2)
2

)
. After some tedious but straightforward manipu-

lation, we have

D2 =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

1−r
1−β if β < min

(
r, 1−r

2−r
)
,

2− rβ if r < β < 3−√5
2 ,

1− r if β ≥ 1− r,
2− r − r

1−β otherwise.
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D
2

β

1−r
1−β 2 − r − r

1−β

(
1−r
2−r , (1 − r)(2 − r)

)

(1 − r, 1 − r)

Figure 5.2: The computation of the optimal β in the no-power-control case, r ≥
3−√5

2 .

Notice from the result that to realize any cooperative gains, we need to use β < 1−r.
Finally combining Case 1 and Case 2 we have the solution to (5.5) D =

min(D1,D2). Recall that D depends on the dimension fraction β, which can be
optimized over, i.e.

DCF–∞
NPC (r) = sup

β∈(0,1)
min(D1,D2).

If r ≥ 1/2, we have

DCF–∞
NPC (r) = sup

β∈(0,1−r)
min(1,D2)

= sup
β∈(0,1−r)

D2

= sup
β∈(0,1−r)

min
(

1− r
1− β , 2− r −

r

1− β
)
.

Solving this gives the optimizer β∗ = 1−r
2−r <

1
2 (illustrated in Fig. 5.2), resulting in

DCF–∞
NPC (r) = (1 − r)(2 − r). With this optimal dimesion allocation the minimum
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β

(1 − r, 1 − r)

(1 − r, 1)
(r, 1)

D1

D2

(
3−

√
5

2 , 2 − 3+
√

5
2 r

)

Figure 5.3: The computation of the optimal β in the no-power-control case, r <
3−√5

2 .

of (5.5) is attained at either (a∗, α∗1, α∗2) =
(

1−r
1−β∗ , 0, 0

)
= ((1− r)(2− r), 0, 0) or

(a∗, α∗1, α∗2) =
(

1− r, 0, 1− r
1−β∗

)
= (1− r, 0, 1− r(2− r)).

If r ∈
[

3−√5
2 ,

1
2

)
, we haveD2 ≤ (1−r)(2−r) < 1 ≤ D1 thus supβ min(D1,D2) =

supβ D2, which also results in DCF–∞
NPC (r) = (1− r)(2− r).

If r < 3−√5
2 , it again turns out that supβ min(D1,D2) = supβ D2, as illus-

trated in Fig. 5.3. This results in β∗ = 3−√5
2 and DCF–∞

NPC (r) = 2 − 3+
√

5
2 r. The

minimum in (5.5) is attained at (a∗, α∗1, α∗2) =
(

1, 1− r
β∗ , 0
)

or (a∗, α∗1, α∗2) =(
1− r, 0, 1− r

1−β∗
)

.

5.4 Proof of Proposition 5.2

The proof is quite similar to the no power control case; and the key steps are
summarized as follows. The power constraint at the relay asymptotically reads

sup {π(a, α2)− a− α2} ≤ 1
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which leads to the optimal SNR exponent of the relay transmit power

π∗(a, α2) = 1 + a+ α2.

Recall

cPC =
(

1 + |h2|2SNRπ
∗(a,α2)

1 + |h|2SNR

)− 1−β
β

.= SNR−
1−β
β (π∗(a,α2)−α2−(1−a)+)+

.

We now have DCF–∞
PC (r) = infa,α1,α2∈O {a+ α1 + α2} where

O =
{
a, α1, α2 ∈ R

3
+ :

β

(
1− a, 1− α1 −

(
1− α1 − 1− β

β

(
1 + a− (1− a)+)+)+

)+

+(1− β) (1− a)+
< r
}
.

Case 1: a ≥ 1. Then we need to consider the subset defined by

β

(
1− α1 −

(
1− α1 − 1− β

β
(1 + a)

)+
)+

< r. (5.9)

Case 1.1: 1 − α1 − 1−β
β (1 + a) < 0 or 2β − 1 < (1 − β)a + βα1. Then

α∗1 =
(

1− rβ
)+

, α∗2 = 0, a∗ = max
(

1, 2β−1−(1− rβ )+

1−β

)
, and

D
(1)
1 = max

(
1,

2β − 1− (1− rβ )+

1− β

)
+
(

1− r
β

)+

=

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

2− rβ if r < min
(
β, 3β−4β2

1−β
)
,

1 if β < min
(
r, 2−r

2
)
,

2β−1
1−β if (3β−4β2)+

1−β < r < β,
r+β−1

1−β if 2−r
2 < β < r.

Case 1.2: 2β − 1 ≥ (1− β)a+ βα1 then from (5.9), 1 + a < r
1−β . Since a ≥ 1,

this happens only if β ≥ max
( 2−r

2 ,
2
3
)
, resulting in D(2)

1 = 1. If β < max
( 2−r

2 ,
2
3
)

then the problem is infeasible, and we write D(2)
1 =∞.

Thus

D1 = min
(
D

(1)
1 ,D

(2)
1

)
=

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

2− rβ if r ≤ β ≤ 2
3 or β > 2/3, r < 3β−4β2

1−β ,
2β−1
β if β > 2

3 ,
(3β−4β2)+

1−β < r < 2− 2β,
r+β−1

1−β if 2−r
2 < β <

2
3 ,

1 otherwise.
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Case 2: 0 ≤ a < 1. We need to consider the constraint

β

(
1− a, 1− α1 −

(
1− α1 − 1− β

β
2a
)+
)+

+ (1− β) (1− a) < r. (5.10)

Case 2.1: 1 − α1 − 1−β
β 2a ≥ 0 or β ≥ 2(1 − β)a + βα1 then (5.10) becomes

max(β(1− a), (1− β)2a) + (1− β)(1− a) < r. In this case

D
(1)
2 =

{
1− r if β ≥ 2−2r

2−r ,
∞ otherwise.

We constrain β < 2−2r
2−r from now on, in order to realize any cooperative diversity

gains.
Case 2.2: β < 2(1− β)a+ βα1. Then (5.10) reduces to βmax(1− a, 1−α1) +

(1−β)(1− a) < r. Applying Lemma 5.1 yields (recall that we constrain β < 2−2r
2−r )

D
(2)
2 =

⎧⎪⎪⎨
⎪⎪⎩

2− 2r if 1/2 ≤ β < 2−2r
2−r ,

1−r
1−β if β < min

(
r, 1

2 ,
2−2r
2−r
)
,

2− rβ r < β ≤ min
(

1
2 ,

2−2r
2−r
)
.

.

Within the range of β < 2−2r
2−r , D2 = min

(
D

(1)
2 ,D

(2)
2

)
= D(2)

2 .
Finally we optimize the dominant exponent of the outage probability:

DCF–∞
PC (r) = sup

β∈(0, 2−2r
2−r )

min (D1,D2) .

For r < 2
3 , we readily have DCF–∞

PC (r) = 2 − 2r with the optimizers β∗ = 1
2 . The

minimum of a+α1 +α2 is attained at (1−r, 1−r, 0) and at (1, 1− 2r) when r < 1
2 .

When r ∈ [ 1
2 ,

2
3
)
, the minimum is attained at (1− r, 1− r, 0) and at (2− 2r, 0, 0).

For r ≥ 2
3 , some manipulation leads to

DCF–∞
PC (r) = sup

β∈(0, 2−2r
2−r )

1− r
1− β ,

which has the optimizer β∗ = 2−2r
2−r ≤ 1

2 . With this β∗, the optimal (a∗, α∗1, α∗2) =(
(1−r)(2−r)

r , 0, 0
)

.
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Chapter 6

Distortion Exponent over MIMO
Channels

In this chapter, the problem of source-channel coding over a multiple-antenna chan-
nel with quantized CSIT is considered. As in Chapters 3-5, we focus on the asymp-
totically high SNR regime. Upper bounds on the SNR exponent of the end-to-end
distortion achieved with partial CSIT under a long-term power constraint are devel-
oped. It is shown that the distortion exponent with perfect CSIT grows unbounded
as the ratio between the channel and source bandwidth increases, while the expo-
nent achieved with any feedback link of fixed, finite resolution is bounded above by
a polynomial of the product between the number of transmit and number of receive
antennas. The resolution of the feedback link should grow with the bandwidth
ratio to make the distortion exponent scale as fast as that in the perfect-CSIT
case. We show that in order to achieve the optimal scaling the CSIT feedback res-
olution must grow logarithmically with the bandwidth ratio for MIMO channels,
and faster than linear for the single-input single-output channel. The achievable
distortion exponent of some hybrid schemes with heavily quantized feedback is also
derived. The results demonstrate that dramatic performance improvement over the
case of no CSIT can be achieved by combining simple schemes with a very coarse
CSIT feedback.

6.1 Introduction

Consider the problem of source-channel coding over a multiple-antenna fading chan-
nel. We focus on the high SNR regime, and adopt the distortion exponent [LMWA05]
as the performance measure. Studying the distortion exponent is useful in under-
standing the relation between the average end-to-end distortion and the spectral
efficiency of the system at high SNR. The analysis is generally carried out under the
elegant large-deviation framework of [ZT03], which is originally used to characterize
the diversity-multiplexing tradeoff over multiantenna channels.
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The distortion exponent problem has attracted a great deal of interest recently.
A simple hybrid digital-analog scheme is proposed and shown to be optimal for
high-compression systems in [CN05, CN07]. Such HDA joint source-channel coding
schemes are first proposed for the broadcast scenario in [MP02]. The advantages
predicted by the theoretical results in [MP02] are later realized by some practical
schemes in e.g., [SPA02, SPA06]. Extensive studies of different layered source-
channel coding schemes can be found in [GE05, GE08, BNC06]. Interestingly,
layering with superposition coding is shown to be asymptotically optimal in the
limit of infinite superimposed digital layers over a wide range of the ratio between
the channel and source bandwidth [GE05, GE08, BNC06]. In practice, however,
the complexity and other phenomena inherent to successive decoding such as error
propagation will likely limit the potentials of such a superposition approach. The
optimal source-channel rate allocation is also considered in [HG05].

Most previous work assumed only CSIR. While perfect channel knowledge at
the transmitter is generally difficult to obtain, partial CSIT e.g., in the form of a few
feedback bits, is often available. This motivates the present work where we consider
a MIMO channel with quantized CSIT, under either a short- or a long-term power
constraint.

A remarkable feature of the distortion SNR exponent setting is that the presence
of CSIT yields an improvement even in the case of short-term power constraint.
This is generally not the case for outage. This is because the outage problem,
by its original formulation [OSW94], does not allow rate adaptation1, while the
distortion problem allows instantaneous adaptation of the rate and still results in
some improved distortion exponent compared to a no-CSIT system.

In this chapter, we develop upper bounds on the achievable distortion over
channels with partial CSIT. Interestingly, it turns out that with perfect CSIT,
under a long-term power constraint, the distortion exponent grows linearly as a
function of the bandwidth ratio. This is in contrast with the short-term power
constraint case, where the distortion exponent is “saturated” if the bandwidth ratio
is sufficiently large. However, our results also show that with any feedback link of
fixed, finite number of quantization regions (referred to as the feedback “resolution”
hereafter), the distortion exponent is bounded above by a polynomial of the product
between the number of transmit and number receive antennas. It is necessary to let
the feedback resolution grow with the bandwidth ratio to overcome this issue. We
determine the rate at which the feedback resolution must grow with the bandwidth
ratio in order to achieve the same distortion exponent scaling of the perfect CSIT
bound. In particular, for MIMO systems we show that the resolution must grow
logarithmically with the bandwidth ratio, i.e., the number of feedback bits grows
only doubly-logarithmically.

We also study the performance of certain suboptimal hybrid digital-analog
source-channel coding schemes when combined with heavily quantized CSIT. It

1Rate adaptation under the constraint of a minimum rate or a minimum multiplexing gain
still results in a modified outage problem, as presented in Chapter 3.
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turns out that over a wide range of practical bandwidth ratios, achieving a signif-
icant portion of the perfect-CSIT scheme is possible by combining simple schemes
with a few bits of feedback information. While these schemes are generally sub-
optimal, we emphasize that very high distortion exponents are achievable with
significantly lower complexity than many other no-CSIT techniques. Our results
also highlight that even heavily quantized CSIT yields excellent performance when
temporal power control is available.

At this point it is useful to provide a brief summary of our results, classified in
terms of the bandwidth ratio b (see definition in Section 6.2). In a system with Nt
transmit, Nr receive antennas, and feedback resolution K, let m = max(Nt, Nr),
n = min(Nt, Nr). Then:

1. For 0 < b ≤ m−n+1
n : Proposition 6.1 shows that with perfect CSIT the

distortion exponents with and without power control coincide dPC−∞(b) =
dNPC−∞(b). Thus in terms of distortion exponent, even the combination
of perfect CSIT and power control does not help in this very high spectral
efficiency regime. Furthermore, this distortion exponent is achievable even
without CSIT by a simple HDA scheme in the range b < 1

n [CN05], and by
layering and superposition coding in the range b < m−n+1

n [BNC06]. Thus
the distortion exponent in this regime is completely characterized and we
have the noteworthy result that that CSIT feedback does not increase the
distortion exponent in this range of b.

2. For m−n+1
n ≤ b < m− n+ 1: We show that the two exponents with perfect

CSIT still coincide, i.e., dPC−∞(b) = dNPC−∞(b), meaning that in terms
of distortion exponent, only rate control is necessary in this regime if full
CSIT is available. Achievable exponents of simple HDA schemes with quan-
tized (finite resolution) feedback are derived in Propositions 6.4–6.6. These
schemes generally do not achieve the upper bounds.

3. For m−n+ 1 ≤ b < mn: We have dPC−∞(b) > dUB−PC−K(b) > dNPC−∞(b)
where dUB−PC−K(b) is an upper bound on the distortion exponent of any
power-controlled system with feedback resolution K. This implies that no
fixed-resolution feedback schemes can achieve dPC−∞(b). The HDA schemes
considered in this work generally fall short of achieving dUB−PC−K(b), but
yield large improvement compared to no-CSIT schemes, even for coarsely
quantized feedback.

4. For b ≥ mn: We have dPC−∞(b) > dUB−PC−K(b) > dNPC−∞(b). It is known
that layering and superposition coding achieves dNPC−∞(b), even without
CSIT [GE08]. The achievable distortion exponents under a short-term power
constraint in Propositions 6.4–6.6 are therefore somewhat redundant. The
achievability of the scheme in [GE08] however comes at the price of high
complexity in the form of infinitely many superimposed digital layers. On
the other hand, we show that the use of quantized CSIT feedback allows for
low-complexity schemes that can achieve exponents close to dNPC−∞(b). The
achievable exponents in Propositions 6.4–6.6 under a long-term power con-
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straint are novel. They improve upon dNPC−∞(b) and are close to dPC−∞(b)
over a wide range of b, even with very coarse feedback resolution.

6.2 System Model

Consider the transmission of an i.i.d. complex Gaussian source with zero mean and
unit variance over a wireless flat-fading channel. The communication system uses
Nt transmit and Nr receive antennas.

A complex source vector sl of size Ns is generated every T channel uses. Herein,
b = T/Ns is the channel bandwidth to source bandwidth ratio, and l is the block
index. The source vector is mapped to a joint source-channel codeword Xl of size
Nt × T . We consider the case where source blocks are mapped onto codewords
spanning a single fading block, and coding across the fading blocks is forbidden
(e.g., because of some strict decoding delay requirement). However, the transmit
power may or may not be averaged over a long sequence of fading blocks (see later).

The complex-baseband received signal during fading block l can be written as

Yl = HlXl + Nl. (6.1)

The components of the Nr × Nt channel matrix Hl are i.i.d. complex Gaussian
with zero mean and unit variance. The channel matrix is constant during a block
of T channel uses, but changes independently from one block to another. The
components of the temporally and spatially white Gaussian noise matrix Nl have
zero mean and unit variance. For brevity, we omit the block fading index l whenever
there is no ambiguity.

Assume perfect knowledge of H at the receiver. Given H, the receiver employs
a deterministic index mapping I(H) ∈ {1, . . . ,K} from channel matrix to feedback
index, where the number of quantization regions K defines the feedback resolution.
The feedback index is sent back to the transmitter via a noiseless, zero-delay dedi-
cated feedback link, so that at the beginning of each fading block the corresponding
index I(H) is known by the transmitter.

At the transmitter, the power allocation function

P : {1, . . . ,K} → {P1, . . . , PK} (6.2)

maps the feedback index onto the corresponding power level P(I(H)), taking on
values in a discrete set of possible power levels {P1, . . . , PK}. This means that the
transmitted codeword satisfies

1
T

E
[‖X‖2F|H] ≤ P(I(H)),

where the expectation is over the source sequence and where ‖ · ‖F denotes the
Frobenius norm. As usual, we consider two types of power constraint: a long-term
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power constraint (as in Chapter 3) requires that

lim
L→∞

1
L

L∑
l=1

P(I(Hl)) a.s.= EH P(I(H)) ≤ SNR. (6.3)

A short-term power constraint requires that

P(I(H)) ≤ SNR, with probability 1. (6.4)

The long-term power constraint models the case where power control is possible,
and power saved in good fading conditions can be used over bad fading conditions.
The short-term power constraint models the case where power control is impossible.
Hence, we also refer to a system subject to (6.4) as one without power control.

Let ŝ be the reconstructed vector at the receiver corresponding to an input
source vector s. The mean squared error is adopted as the distortion measure,

Δ̄ = 1
Ns

E ‖s− ŝ‖2F,

where the expectation is over randomness of the channel, the noise, and the source.
For later use, we indicate the mutual information corresponding to i.i.d. Gaus-

sian inputs and a fixed channel matrix H by

C(H) = log det
(

INr + SNR
Nt

HHH
)
.

As in Chapter 3, we are interested in the asymptotic behavior of the system
in the high-SNR regime. To that end, consider a sequence of joint source-channel
codes and feedback schemes for fixed b and operating at increasing levels of SNR.
Each code provides a mean squared error Δ̄(SNR). The system is then said to
achieve a distortion exponent of d(b) if

Δ̄(SNR) .= SNR−d(b).

Clearly, the above definition of the distortion exponent bears a similarity to the
definition of the diversity gain in Chapter 3.

6.3 Upper Bounds on Partial-CSIT Distortion Exponent

We first study the distortion exponent in the perfect-CSIT case under a long-term
power constraint, characterized in the following proposition. The result gives an
absolute upper bound on the distortion exponent of any system with perfect CSIR
and any form of CSIT.

Proposition 6.1 (Perfect-CSIT distortion exponent). With perfect CSIT and a
long-term power constraint, the optimal distortion exponent is given by

dPC−∞(b) = bn.
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Proof. Let λn ≥ · · · ≥ λ1 be the n largest eigenvalues of HHH and perform the
change of variables αi = − log λi/ log SNR [ZT03]. Let P (H) be the total transmit
power allocated given a channel H, and let π(H) be the SNR exponent of P (H),
i.e.

P (H) .= SNRπ(H).

With this power allocation we have

C(H) = log det
(

INr + SNRπ(H)

Nt
HHH

)
=
n∑
i=1

log
(

1 + SNRπ(H)−αi

Nt

)
,

which only depends on H through the αi’s. We thus write π(αn1 ) ≡ π(H). Since
we are only interested in the asymptotic behavior as SNR → ∞, restricting our
attention to the class of power allocations satisfying∫

αn1

SNRπ(αn1 )f(αn1 )dαn1 ≤̇ SNR

involves no loss of generality.2 Herein f(αn1 ) denotes the joint p.d.f. of αn1 . Following
in the footsteps of the large-deviation analysis of [ZT03, DZ98], the long term power
constraint yields the condition

sup
αn1≥0

{
π(αn1 )−

n∑
i=1

(2i− 1 +m− n)αi
}
≤ 1,

where we neglect the set of channel matrices with exponentially small probability
measure by restricting αi ≥ 0 [ZT03]. We use the notation αn1 ≥ 0 to denote the
set {αn1 : α1 ≥ · · · ≥ αn ≥ 0}. Since the instantaneous mutual information, and
therefore the average distortion are non-decreasing functions of the allocated power,
we conclude that the optimal P (H) has exponent π∗(αn1 ) = 1 +

∑n
i=1(2i− 1 +m−

n)αi.
With perfect CSIT the transmitter can adapt both its transmit power and the

coding rate according to the resulting instantaneous mutual information. Assuming
large block length Ns, such that the rate-distortion limit can be approached, the
resulting instantaneous mean square error is given by [MP02, CN05]

Δ̄(SNR,H) = exp (−bC(H)) = det
(

INr + SNRπ(H)

Nt
HHH

)−b

2Consider all power allocations such that E[P (H)] .= SNR1−2ε for arbitrarily small ε > 0.
By definition, limSNR→∞

log E[P (H)]
log SNR = 1 − 2ε thus there exists an ¯SNR < ∞ so that for all

SNR > ¯SNR, 1− 3ε ≤ log E[P (H)]
log SNR ≤ 1− ε, leading to E[P (H)] ≤ SNR1−ε < SNR. This means the

long-term power constraint is satisfied for all SNR > ¯SNR.
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Using the optimal power allocation determined (asymptotically) above and averag-
ing with respect to H we obtain the optimal mean square error as

Δ̄∗(SNR) .=
∫
αn1

SNR−b
∑n

i=1
(π∗(αn1 )−αi)+

f(αn1 )dαn1

and the corresponding optimal distortion exponent is given by

dPC−∞(b) = inf
αn1≥0

{
b

n∑
i=1

(π∗(αn1 )− αi)+ +
n∑
i=1

(2i− 1 +m− n)αi
}
.

The optimal values α∗i = 0, ∀i, and it follows that dPC−∞(b) = bn.

Recall from [CN05] that under a short-term power constraint, the distortion
exponent with perfect CSIT (which also serves as the best known upper bound for
the no-CSIT case) is given by

dNPC−∞(b) =
n∑
i=1

min(2i− 1 +m− n, b), (6.5)

which “saturates” at dNPC−∞(b) = mn for b ≥ m+n−1. In contrast, the distortion
exponent in a power-controlled system dPC−∞(b) grows unbounded as b → ∞.
An intuitive explanation is that the distortion exponent is outage-limited in the
high bandwidth expansion region. This limitation is overcome by using power
control at the transmitter. Interestingly, the two bounds coincide iff b ≤ m− n+ 1
meaning that, in terms of distortion exponent, power control is not useful unless
the bandwidth ratio b is sufficiently large.

Next we develop the upper bound on the achievable distortion exponent given
a finite feedback resolution K. For 0 < b ≤ m− n+ 1, the bound is trivially given
by bn, ∀K. Hence, we restrict to the case b ≥ m− n + 1. Interestingly, our result
shows that the achievable distortion with any finite-resolution feedback system is
bounded above, for all b. However, the exponent upper bound increases with the
feedback resolution K. This implies that increasing the resolution of the feedback
link always yields advantages, provided that the bandwidth ratio is sufficient large.

Before proceeding to the derivation of the bounds, let us first define the two-
variable function Dmn(r, p), which is the diversity gain corresponding to a multi-
plexing gain r and power in the order of SNRp, p ≥ 1. This is given by

Dmn(r, p) = inf
αn1≥0

n∑
i=1

(2i− 1 +m− n)αi s.t.
n∑
i=1

(p− αi)+ < r.

Notice thatDmn(r, p) = pDmn(r/p, 1), whereDmn(r, 1) is the classical multiplexing-
diversity tradeoff exponent of MIMO channels given explicitly in [ZT03]. For sim-
plicity of notation, we will omit the superscript mn whenever this does not cause
any confusion, i.e., D(r, p) ≡ Dmn(r, p).
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For convenience, we also recursively define

Dk
Δ= D(rk, 1 +Dk−1)

where D0
Δ= 0. Note that Dk, k ≥ 1, is a function of k variables r1, . . . , rk. We will

use the notation Dk(r) in the special case where

r1 = · · · = rk ≡ r.
Indeed, Dk(r) is the diversity gain corresponding to a multiplexing gain r of a
rate-nonadaptive MIMO system with feedback resolution k.

The following bound is obtained by restricting the transmitter power allocation
in the form (6.2), but allowing for perfect rate adaptation. This yields clearly an
upper bound on the performance of a system based on feedback with resolution K.

Proposition 6.2 (K-power-level upper bound). For b ≥ m− n+ 1, let

J
Δ= max j ∈ {1, 2, . . . , n} s.t. b ≥ 2j − 1 +m− n.

Then the achievable distortion exponent of a MIMO channel with feedback resolution
K under a long-term power constraint is upper-bounded by

dUB−PC−K(b) = sup
n−J<r1,...,rK−1<n

min {(1 +DK−1) dNPC−∞(b), br1 +D1, . . . ,

brK−1 +DK−1} .
Proof. See Appendix 6.A.

As discussed in Appendix 6.A, even though the system employs K power levels
and perfect rate control, we can characterize the distortion exponent in terms of
only K − 1 parameters r1, . . . , rK−1. Interestingly, these rk’s can be interpreted as
the multiplexing gains at the boundaries of the quantization regions in the feedback
link. Also in Appendix 6.A, we provide a discussion on the computation of the
dUB−PC−K(b), which involves a nonconvex optimization.

As a sanity check, with the conventionD0 = 0 we have dUB−PC−1(b) = dNPC−∞(b),
since dNPC−∞(b) is also obtained by assuming ideal rate adaptation and a single
power level, K = 1.

We plot in Fig. 6.1 the upper bounds of Proposition 6.2 over a 2×2 channel. The
bounds are relatively close to each other in the low-bandwidth-ratio regime, but
quickly separate as b increases. That is, feedback resolution is a critical parameter
in the low-spectral-efficiency regime.

Furthermore, as the bandwidth ratio grows, the K-level upper bound will con-
verge to a finite limit. This is given by the following

Corollary 6.1. For all b, dUB−PC−K(b) ≤ ∑Kk=1(mn)k. Furthermore, this value
is attained asymptotically for b→∞.
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Figure 6.1: Upper bounds on the distortion exponents over a 2× 2 channel.

Proof. For b > m+ n− 1 we have J = n and dNPC−∞ = mn, thus

dUB−PC−K(b) ≤ sup
0<r1,...,rK−1<n

(1 +DK−1)mn =
K∑
k=1

(mn)k (6.6)

where the supremum is attained at r1 = · · · = rK−1 = 0. Because dUB−PC−K(b) is
a nondecreasing function of b, this implies

dUB−PC−K(b) ≤
K∑
k=1

(mn)K , ∀b.

In addition, by choosing r1 = . . . = rK−1 = min
(∑K

k=1
(mn)k

b , n− ε
)

where

ε > 0 is arbitrarily small, then br1 + D1 < br2 + D2 < · · · < brK−1 + DK−1 and
limb→∞ r1 = 0. For sufficiently large b we have

dUB−PC−K(b) ≥ min
(
K∑
k=1

(mn)k +D(r1, 1), (1 +DK−1(r1))mn
)
.
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Because
K∑
k=1

(mn)k + lim
r1↓0
D(r1, 1) =

K∑
k=1

(mn)k +mn >
K∑
k=1

(mn)k = lim
r1↓0

(1 +DK−1(r1))mn,

we conclude that

lim
b→∞
dUB−PC−K(b) ≥ (mn) + (mn)2 + · · ·+ (mn)K .

This together with the upper bound (6.6) give

lim
b→∞
dUB−PC−K(b) = (mn) + (mn)2 + · · ·+ (mn)K . (6.7)

The limit in (6.7) is equal to the “maximum” diversity gain achieved with K
feedback levels. Intuitively, with any finite-resolution feedback link, outage will
eventually become the dominant factor in the low spectral efficiency regime.

One may expect that if we let the feedback resolution grow with the bandwidth
ratio, K ≡ K(b), the distortion exponent will also grow unbounded. It is then
natural to investigate the rate of increase of the feedback resolution K(b) with b
such that the same behavior of the upper bound of Proposition 6.1 is achieved. In
particular, we define

η = lim
b→∞
dUB−PC−K(b)(b)

b
. (6.8)

This can be interpreted as an upper bound to the asymptotic efficiency of a feedback
scheme with resolution K(b). Since dUB−PC−K(b)(b) is only an upper bound, (6.8)
is a necessary condition for the distortion of a scheme with resolution K(b) to
behave like SNR−bη for large b. Recall that with ideal CSIT and power control the
distortion is in the order of SNR−bn. Hence, dUB−PC−K(b)(b) has the same behavior
of the perfect CSIT upper bound for large b if η = n. In this case we say that the
finite resolution scheme is asymptotically efficient.

Let us first take a look at the special case of a single-input single-output (SISO),
where exponents can be derived in closed form. With m = n = 1, a direct investi-
gation given in Appendix 6.B shows that, for b > 1,

dUB−PC−K(b)(b) = b− b
(

1− 1
b

)K(b)

(6.9)

thus

η = lim
b→∞

1−
(

1− 1
b

)K(b)

.

For example, by letting the resolution grow as K(b) = 	b
 where 	x
 is the smallest
integer that is not smaller than x, we have

η = 1− 1
e
< 1.
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Thus using log2	b
 bits of feedback is not sufficient to achieve the “full” potential
of perfect CSIT.

Indeed, the condition

lim
b→∞

(
1− 1
b

)K(b)

= 0 (6.10)

also guarantees the existence of a scheme with distortion behaving similarly to
SNR−bn. To see this sufficiency, consider a simple separate source-channel coding
system with optimized rate allocation using a feedback resolution of K(b) where the
transmitter, given i, allocates a fixed rate ri log SNR for all H ∈ Ri. Herein ri is
the maximum multiplexing gain that all channel realizations in Ri can support. It
is shown in Appendix 6.B that the achievable distortion exponent of this approach,
referred to as the single-layer coding scheme, is

dSL–PC–K(b)(b) = b− b
(

1− 1
b+ 1

)K(b)

. (6.11)

Given that the condition (6.10) holds, we have

lim
b→∞
dSL–PC–K(b)(b)

b
= 1− lim

b→∞

(
1− 1
b+ 1

)K(b)

= 1,

meaning that an actual system is asymptotically efficient. An example of such
asymptotically efficient feedback resolution functions is K(b) = 	b log b
.

In Fig. 6.2, we plot the upper bounds dUB−PC−K(b)(b) for two different functions
K(b). Interestingly, even though the analysis is asymptotical in b, it reflects quite
accurately the behavior of the system even with moderate b.

The generalization of the results obtained in the SISO case to a MIMO channel
is a non-trivial problem, and the closed-form expression of η does not appear to be
tractable in general. Nevertheless, we were able to find bounds and obtain simple
conditions for necessity and sufficiency of the rate of increase of K(b) such that the
optimal η = n can be achieved.

Proposition 6.3. If m = max(Nt, Nr) > 1, a sufficient condition on the feedback
resolution K(b) such that the system is asymptotically efficient is given by

lim
b→∞

b

[(m− n+ 1)n]K(b) = 0,

and a necessary condition is given by

lim
b→∞

b

(mn)K(b) ≤
m

mn− 1 .

Proof. See Appendix 6.C.
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Figure 6.2: Upper bounds on the distortion exponents over a SISO channel where
the feedback resolution is bandwidth ratio dependent.

Proposition 6.3 essentially provides upper and lower bounds on the minimum
growth rate of the feedback resolution to make the distortion exponent behave
similarly to the perfect-CSIT case. Clearly the bounds are not tight in a strict
sense. However, in terms of order of growth, we can conclude that with m > 1,
having a resolution K(b) = Θ(log b) as b → ∞ is necessary and sufficient for the
system to behave like an ideal-CSIT.3

Furthermore, Proposition 6.3 implies that the more antennas we have, the slower
K(b) needs to be scaled. This can be attributed to the “channel hardening” ef-
fect [HMT04], i.e., the instantaneous mutual information becomes more and more
deterministic as the number of antennas increases. Given a fixed n, while the
perfect-CSIT distortion exponent only depends on n, it is required less feedback to
achieve that upper bound with a larger m. We also see that the SISO channel is the
worst case channel in the sense that, to behave like a perfect-CSIT system, a SISO

3Notice the pleasing fact that, in the MIMO case, the number of bits per feedback message
must grow only doubly-logarithmically in b in order to have the same behavior of the optimal
distortion exponent.
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system requires a faster than linearly scaled K(b), in contrast to a logarithmically
scaled K(b) when m > 1.

Note that the above result is asymptotic in the bandwidth ratio b. However, the
bandwidth ratio b is small in practice. Furthermore, for most practical systems, the
number of feedback bits are typically fixed and small. Therefore, in the following
sections we will study the performance of certain hybrid schemes when combined
with a fixed, low-resolution feedback link. We consider the case where the block
length T can be made arbitrarily large. More precisely, we first let T and Ns
grow unbounded (with a fix ratio T/Ns = b) for a fixed SNR, and then consider a
sequence of such schemes operating at increasing values of SNR.

6.4 Achievable Distortion Exponents: HDA with
Dimension Splitting

In this section, we present the distortion exponent achieved by a hybrid digital-
analog scheme with dimension (bandwidth or time) splitting. The HDA approach
[MP02, CN05] together with the corresponding proposed feedback schemes are de-
scribed as follows.

First consider the case Nr ≥ Nt = n. Conditioned on a feedback index i,
the transmitter uses a digital part (tandem encoder [MP02]) with channel rate
ri log SNR and power in the order SNRpi , which occupies a fraction 1 − 1

bn of the
channel bandwidth. The output of the source encoder is subtracted from the source
vector s, suitably scaled so that its power is SNRpi , and then transmitted directly
from the antennas (Nt symbols at each time instant). The analog part therefore
occupies 	Ns/n
 channel uses, or a fraction 1

bn of the channel bandwidth.
The receiver decodes the digital part and reconstructs ŝ = 0 if the decoding

fails.4 If the decoding is successful, a linear minimum mean square error (MMSE)
filter is applied to estimate the analog part, and the output of the filter is added to
the digital part.

The index mapping is explicitly described as follows

I(H) =
{
K if C(H) < rK log SNR
max{i ∈ {1, . . . ,K} : C(H) ≥ ri log SNR} otherwise,

where r1 > · · · > rK . That is, the receiver feeds back the maximum rate from a
finite set that the channel can support. If the channel cannot support the smallest
rate rK log SNR, an arbitrary index can be sent back, which in this case is set to
be K.

4When the digital part fails, then even if the analog part sA (quantization error) is known
exactly at the receiver so that ŝ = sA, we still have E ‖s − sA‖2 = E ‖sD‖2 .= SNR0. The
exponent equality is due to the fact that E ‖s‖2 = E ‖sD‖2 + E ‖sA‖2 (from the Gaussianity and
orthogonality of sD and sA) and that E ‖sA‖2 ≤̇ SNR0.

Setting ŝ = 0 therefore has no effect on the distortion exponent.
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Proposition 6.4. For Nr ≥ Nt ≡ n and b ≥ 1
n , an HDA scheme with dimension

splitting, and feedback resolution K ≥ 2 can achieve a distortion exponent of

dHDA−DIM−NPC−K(b) = sup
0<rK<...<r1<n

min {D(rK , 1),(
b− 1
n

)
r1 + 1,(

b− 1
n

)
r2 +D(r1, 1) + (r1 + 1− n)+, . . . ,(

b− 1
n

)
rK +D(rK−1, 1) + (rK−1 + 1− n)+

}

under a short-term power constraint, and

dHDA−DIM−PC−K(b) = sup
0<rK<...<r1<n

min {DK ,(
b− 1
n

)
r1 + 1,(

b− 1
n

)
r2 + 2D1 −D0 + (r1 + (1− n)(1 +D0))+, . . . ,(

b− 1
n

)
rK + 2DK−1 −DK−2 + (rK−1 + (1− n)(1 +DK−2))+

}

under a long-term power constraint. Herein Dk
Δ= D(rk, 1 +Dk−1) with D0

Δ= 0.

An interesting feature of this dimension-splitting approach is that its distortion
exponent is achievable even with a finite block length T , as shown in the no-CSIT
case in [CN07]. In particular, by employing approximately universal codes for the
digital part [TV06, EKP+06] and applying results in high-rate vector quantiza-
tion [NN95], we can show that having T ≥ Nt +

⌈
Ns
n

⌉
is sufficient to achieve the

distortion in Proposition 6.4.
The proof of Proposition 6.4, presented in Appendix 6.D, is outlined as follows.

For clarity, we consider K = 2 under a short-term power constraint. The distortion
consists of three terms: the distortion in quantization region 1, that in region 2 when
the digital part is successfully decoded and the outage probability (i.e., when the
digital part fails leading to a distortion of order SNR0). The inner minimization is to
find the dominating (slowest decayed) term among these three terms as SNR→∞
and the outer maximization is to find the best possible rate allocation for each
quantization region. The intuition behind the presence of the term (r1 + 1−n)+ is
that, when the multiplexing gain r1 is sufficiently large, the most likely channels to
cause an outage event are still “good enough” to contribute to an “extra exponent”
when the MMSE filter is applied.
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The long-term power constraint case can be proved similarly. In this case, a
power in the order of SNR1+D(r1,1) can be applied to the second quantization region
R2 without violating the power constraint, leading to a recursive characterization
as in the second part of Proposition 6.4.

The achievable distortion exponent in Proposition 6.4 can be numerically evalu-
ated by equating the K+1 terms, then expressing r2, . . . , rK as functions of r1, and
solving for r1. Interestingly, in the SISO case, i.e., m = n = 1, explicit expressions
of the achievable distortion exponent are found to be DHDA−DIM−NPC−K(b) = 1,
∀b ≥ 1,∀K ≥ 1 and

DHDA−DIM−PC−K(b) = b− (b− 1)K

bK−1 , b ≥ 1

which coincides with the upper bound DUB−PC−K(b) in (6.9). Thus in the SISO
case, the HDA with dimension splitting scheme is optimal for any feedback resolu-
tion K. This however does not hold for an arbitrary MIMO channel.

For the caseNt > Nr, the scheme described at the beginning of this section is not
directly applicable since the MMSE filter will not produce an MSE that decays with
SNR (we have more unknowns than equations at the receiver). We thus consider
using a fixed subset Nr out of Nt possible transmit antennas. Unfortunately, in such
an approach, the event that H is not in outage does not exclude the event that the
Nr × Nr sub-matrix Ĥ is in outage. Therefore, in this case we have only been
able to derive lower bounds on the achievable distortion exponents. The results are
summarized in the following proposition and proofs are outlined in Appendix 6.E.

Proposition 6.5. For Nt > Nr ≡ n, and b ≥ 1
n , an HDA scheme with dimension

splitting, and feedback resolution K ≥ 2 can achieve a distortion exponent not
smaller than

dHDA−DIM−NPC−K(b) = sup
0<rK<···<r1<n

min {Dmn(rK , 1),(
b− 1
n

)
r1 + 1,(

b− 1
n

)
r2 +Dnn(r1, 1) + (r1 + 1− n)+, · · · ,(

b− 1
n

)
rK +Dnn(rK−1, 1) + (rK−1 + 1− n)+

}



160 CHAPTER 6. DISTORTION EXPONENT OVER MIMO CHANNELS

under a short-term power constraint, and

dHDA−DIM−PC−K(b) =
sup

0<rK<...<r1<n
min {DK ,(

b− 1
n

)
r1 + 1,(

b− 1
n

)
r2 +D1 −D0 +Dnn(r1, 1 +D0) + (r1 + (1− n)(1 +D0))+, . . . ,(

b− 1
n

)
rK +DK−1 −DK−2 +Dnn(rK−1, 1 +DK−2)

+(rK−1 + (1− n)(1 +DK−2))+}
under a long-term power constraint. Herein Dk

Δ= Dmn(rk, 1 +Dk−1) with D0
Δ= 0.

6.5 Achievable Distortion Exponents: HDA with Power
Splitting

In this section, we study another HDA scheme when combined with quantized
feedback. Again first consider Nr ≥ Nt. Conditioned on an index i, the transmitter
encodes s with a tandem encoder using a channel code with rate ri log SNR. The
digital part is assigned power in the order of SNRpDi (as usual, we assume that
the digital part equally allocates power over the antennas). The output of the the
source coder is subtracted from s. The outcome is then properly scaled so that its
power is in the order of SNRpAi where SNRpAi ≤ SNRpDi , mapped directly to the
antennas, and finally superimposed onto the digital codewords. The analog part
utilizes only 	Ns

n 
 channel uses. Thus the digital codewords are interference-free
for a fraction 1− 1

bn of the time. Therefore, we say that the codewords are partially
superimposed. The receiver decodes the digital part treating the analog interference
as Gaussian noise. If the decoding is successful, an MMSE filter estimates the analog
part and adds the outcome to the digital part. The corresponding outage exponent
is characterized in the following lemma. Herein the outage event is the event that
the mutual information, with the analog part treated as noise, is below the rate of
the digital layer.

Lemma 6.1 (Outage exponent of partially superimposed codewords). The outage
exponent of a digital layer with rate r log SNR and power SNRpD , with partially
superimposed analog layer (interference) with analog power SNRpA , is denoted by
DSP(r, pD, pA) and it is given by the piecewise linear function joining the points(

j
(
pD − pA

bn

)
, pD(m− j)(n− j)

)
,
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and (
j
(
pD − pA

bn

)
+ pD − pA,

pD(m− j − 1)(n− j − 1) + (m+ n− 2j − 1)pA) ,

and the points (
j
(
pD − pA

bn

)
+ pD − pA,

pD(m− j − 1)(n− j − 1) + (m+ n− 2j − 1)pA) ,

and (
(j + 1)

(
pD − pA

bn

)
, pD(m− j − 1)(n− j − 1)

)
for j = 0, . . . , n− 1.

Proof. In the following we only consider the case pD ≥ pA because in the case
pA > pD, the outage event has the same exponent as the event(

1− 1
bn

) n∑
i=1

(pD − αi)+ < r,

i.e., the portion of the digital part superimposed with the analog part is completely
useless. Such a scheme coincides with a dimension-splitting scheme where we allo-
cate a fraction 1 − 1

bn of the dimensions to the digital part and encode at a rate
r

1− 1
bn

. Therefore, only the case pD ≥ pA matters.
Noticing that SNRpD +SNRpA .= SNRpD for any pA ≤ pD, the outage probability

can be written as

Pr
(

1
bn

log det
(

INr +
(
INr + SNRpAHHH)−1 SNRpDHHH

)
+
(

1− 1
bn

)
log det

(
INr + SNRpDHHH) < r log SNR

)
.= Pr

(
n∑
i=1

log SNR(pD−αi)+ − 1
bn

n∑
i=1

log SNR(pA−αi)+
< log SNRr

)

.= Pr
(
n∑
i=1

(
(pD − αi)+ − 1

bn
(pA − αi)+

)
< r

)
.

Then the outage exponent is given by

DSP(r, pD, pA) = inf
αn1≥0

n∑
i=1

(2i− 1 +m− n)αi

s.t.
n∑
i=1

(
(pD − αi)+ − 1

bn
(pA − αi)+

)
< r
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Figure 6.3: The outage exponents in Lemma 6.1 for a 2× 2 channel.

The asserted result is the explicit solution of the above linear programming problem.

We notice that the outage exponentDSP(r, pD, pA), illustrated in Fig. 6.3, gener-
ally consists of more segments than in the case of no interference, i.e., when pD = 1
and pA = 0 [ZT03]. Furthermore, DSP(r, pD, pA) is generally neither convex nor
concave.

Using the Lemma 6.1, we obtain the following result characterizing the achiev-
able distortion of an HDA scheme with power splitting and quantized feedback.

Proposition 6.6. For Nr ≥ Nt ≡ n, an HDA scheme with power splitting and
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feedback resolution K ≥ 2 can achieve a distortion exponent of

dHDA−POW−NPC−K(b) = sup
0<r1,...,rK<n,0<p1,...,pK<1

min {

DSP(rK , 1, pK),
br1 + p1,

br2 +DSP(r1, 1, p1) + max
(
p2 −

n− p1
b − r1

1− 1
bn

, p2 − 1 + r1 − (n− 1)
(

1− p1
bn

)
, 0
)
,

. . .

brK +DSP(rK−1, 1, pK−1)

+ max
(
pK −

n− pK−1
b − rK−1

1− 1
bn

, pK − 1 + rK−1 − (n− 1)
(

1− pK−1

bn

)
, 0
)}

under a short-term power constraint, and

dHDA−POW−PC−K(b) = sup
0<r1,...,rK<n,{pk<1+Dk−1}

min {

DK , br1 + p1,

br2 + max
(

0, p2 − pD1, p2 −
npD1 − p1

b − r1
1− 1

bn

, p2 − pD1 + r1 − (n− 1)
(
pD1 − p1

bn

))
+D1,

. . .

brK + max
(

0, pK − pDK−1, pK −
npDK−1 − pK−1

b − rK−1

1− 1
bn

pK − pDK−1

+rK−1 − (n− 1)
(
pDK−1 − pK−1

bn

))
+DK−1

}

under a long-term power constraint. Herein Dk
Δ= DSP(rk, 1 + Dk−1, pk), pDk

Δ=
1 +Dk−1 with D0

Δ= 0.

The pi’s herein refer to the SNR exponent of the power allocated to the analog
layer. In the short-term power constraint case, the digital layer has pD = 1 for
all feedback indices. In the long-term constraint case, the power exponent of the
digital layer is denoted by pDk.

The proof of Proposition 6.6, deferred to Appendix 6.F, essentially follows that
of Proposition 6.4. The presence of more terms inside the max(·) is due to the fact
that g(x) = (pD − x)+ − 1

bn (pA − x)+ is piece-wise linear in 0 < x < pD. We omit
a lower bound on the achievable distortion in the case Nt > Nr, which is similar to
Proposition 6.5.

Unlike the dimension splitting case, even numerically evaluating the distor-
tion exponent in Proposition 6.6 is difficult due to the presence of the parameters
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Figure 6.4: Distortion exponent of different schemes over a 2× 2 channel. A short-
term power constraint is assumed.

p1, . . . , pK . In the numerical section, we resorted to a grid search on the (p1, . . . , pK)
space. This is of course prohibitive even for a moderate K.

The achievability of power-splitting schemes is much more difficult to analyze
for finite-length source and channel codes. The quantization error for a finite source
vector length Ns is generally not Gaussian, making the analysis complicated. Even
if it were possible to replace the quantization error with i.i.d. Gaussian noise,
then we still need to show the existence of channel codes with finite-length having
the approximately universal property, taking the partially overlapping behavior of
the system into account. This is a very difficult task even for a traditional no-
interference model [TV06, EKP+06]. Finite-length coding analysis of the proposed
scheme remains an interesting topic for future work.

6.6 Numerical Examples

We plot in Fig. 6.4 the achievable distortion of different schemes under a short-term
power constraint. As can be seen, even one bit of feedback information improves
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Figure 6.5: Achievable distortion exponents of different schemes over a 4× 4 chan-
nel. A long-term power constraint is assumed. The K-power-level upper bounds,
marked by circles, are also plotted.

the performance significantly. For comparison, we also plot the performance of the
optimal joint source-channel rate allocation, see e.g., [HG05], (i.e., the single-layer
coding scheme). For the sake of clarity, we recall here that a “single-layer” coding
scheme is a scheme that for each feedback index I(H) = i allocates a power level Pi
and a channel coding rate Ri, and makes use of an all digital “tandem” code with
source coding rate bRi and channel coding rate Ri. This differs from the proposed
HDA schemes that make use of hybrid digital-analog strategies for each value of
the feedback index, and also from the upper bounds, for which we have assumed a
finite and discrete set of power levels P1, . . . , PK but a continuum of tandem coding
schemes such that the source coding rate can be made equal to the instantaneous
channel mutual information. Notice also that single-layer schemes can be obtained
as special cases of the proposed power-splitting HDA scheme by allocating no power
to the analog layer.

It is demonstrated in Fig. 6.5, where the distortion exponents over a 4 × 4
channel are plotted, that temporal power control is instrumental in achieving a
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large distortion exponent in the high bandwidth ratio regime. For example, a
partial power controlled system with a single bit of feedback outperforms a no
power control system with perfect CSIT by a wide margin for all b ≥ 5. In the
scenarios considered, one can achieve performance very close to perfect-CSIT with
a very coarse feedback resolution K. Recall however from Proposition 6.2 that the
performance gap between the finite-feedback case and the perfect-CSIT case grows
as b increases, unless the feedback resolution also grows (logarithmically) with b.

In Fig. 6.5 the upper- and lower bounds corresponding to the same value of K
will eventually coincide as the bandwidth ratio becomes large. This is because even
the simple single-layer coding scheme can achieve the upper bound DUB–PC–K(b)
as b→∞:

lim
b→∞
dSL–PC–K(b) = lim

b→∞
sup
r1,...,rK

min (br1, br2 +D1, . . . , brK +DK−1,DK)

≥ lim
b→∞

min
(
K∑
k=1

(mn)k,DK

(∑K
k=1(mn)k

b

))

=
K∑
k=1

(mn)k

where the inequality is obtained by choosing r1 = · · · = rK =
∑K

k=1
(mn)k

b and the
last equality is due to limε↓0DK(ε) =

∑K
k=1(mn)k.

6.7 Conclusion

We have studied the end-to-end distortion exponent of single-user fading MIMO
channels with limited feedback. One remarkable conclusion is that the optimized
single-layer approach achieves performance very close to that of the HDA schemes
even for a moderate feedback resolution. Our single-layer results also suggest that
in a practical scenario, the schemes with a library of source and channel codes that
adapt rate and power based on partial feedback is a practically sound approach,
provided that power and rate control are jointly optimized. This highlights the
importance of a careful cross-layer design in multimedia transmission over wireless
fading channels. Finding joint-source channel coding schemes with properly de-
signed feedback links that achieve the upper bound dUB−PC−K(b) for any feedback
resolution K (similar to the HDA scheme with dimension splitting over a SISO
channel) remains an open problem.
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Appendices for Chapter 6

6.A Partial-CSIT Upper Bound

Proof of Proposition 6.2
The upper bound is obtained by assuming that perfect CSIT is available, but the
system is only allowed to use K power levels.

The set of all channel realizations that use the same power level is referred to
as a quantization region. Let Rk, pk ≥ 1 be the kth quantization region and the
corresponding SNR exponent of the power level. Without loss of generality, assume
1 = p1 < · · · < pK < pK+1 =∞. The long-term power constraint leads to

sup
αn1∈Rk

pk −
n∑
i=1

(2i− 1 +m− n)αi ≤ 1,

or equivalently

inf
αn1∈Rk

n∑
i=1

(2i− 1 +m− n)αi ≥ pk − 1.

Achievable rates and therefore distortion exponents are non-decreasing functions
of power. Thus the optimal kth quantization region simply consists of all channel
realizations where the highest power level can be applied without violating the
power constraint:

Rk =
{
αn1 ≥ 0 : pk − 1 ≤

n∑
i=1

(2i− 1 +m− n)αi < pk+1 − 1
}
. (6.12)

Let dk be the distortion exponent over the region Rk. Then dUB−PC−K(b) =
sup min(d1, . . . , dK) where the supremum is over all parameters used to characterize
the Rk’s. First consider

dK = inf
αn1∈RK

n∑
i=1

(
b(pK − αi)+ + (2i− 1 +m− n)αi

)
. (6.13)

A relaxed version of (6.13) has a simple solution:

inf
αn1≥0

n∑
i=1

[
b(pK − αi)+ + (2i− 1 +m− n)αi

]
= pKdNPC−∞(b). (6.14)

Recall that dNPC−∞(b) is the distortion exponent for the ideal-CSIT case without
power control. With b > m− n+ 1, the optimizers α∗i of (6.14) satisfy

n∑
i=1

(2i− 1 +m− n)α∗i ≥ (m− n+ 1)pK > pK − 1
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meaning that they belong to RK . Thus solutions of (6.13) and (6.14) coincide, and

dK = pKdNPC−∞(b).

Now consider the region R1, with

d1 = inf
αn1≥0

n∑
i=1

[
b(1− αi)+ + (2i− 1 +m− n)αi

]

s.t.
n∑
i=1

(2i− 1 +m− n)αi < p2 − 1.
(6.15)

Consider a relaxed version of (6.15)

inf
αn1≥0

n∑
i=1

[
b(1− αi)+ + (2i− 1 +m− n)αi

]
, (6.16)

with solution αrlx
1 = · · · = αrlx

J = 1, αrlx
J+1 = · · · = αrlx

n = 0 where

J
Δ= max j ∈ {1, . . . , n} s.t. b ≥ 2j − 1 +m− n.

Note that
∑n
i=1(2i − 1 +m − n)αrlx

i = D(n − J, 1), i.e., the diversity gain corre-
sponding to multiplexing gain n − J . Recall that we only consider b ≥ m − n + 1
so that J is well defined.

If the minimum of (6.15) coincides with that of (6.16) then d1 = dNPC−∞(b) <
dK . Thus dUB−PC−K(b) ≤ dNPC−∞(b), leading to a contradiction, as dNPC−∞(b)
can be seen as dUB−PC−K(b) with one power level K = 1. The optimizers of (6.15)
therefore must have the form α∗1 = · · · = α∗I−1 = 1, 0 ≤ α∗I < 1, α∗I+1 = · · · = α∗n =
0 for some I ∈ {1, 2, . . . , J} so that the constraint in (6.15) is active, i.e.,

n∑
i=1

(2i− 1 +m− n)α∗i = p2 − 1

Let r1 =
∑n
i=1(1−α∗i )+ = n− I + 1−α∗I ∈ (n− J, n) then d1 = br1 +D(r1, 1) and

p2 = D(r1, 1) + 1.
Repeating this argument over R2, . . . ,RK−1 and optimizing over r1, . . . , rK−1

lead to the asserted result.

Some Interpretations
Even though the bounding technique of Proposition 6.2 considers a system that
uses K power levels and a continuum of multiplexing gains (rates), we are able
to characterize the upper bound using only K − 1 variables r1, . . . , rK−1. The
variables rk’s can be interpreted as the multiplexing gains on the boundaries of the
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quantization regions in the feedback link. To see that, note that by definition of
rk, the power exponents pk can be recursively characterized via rk via the relation:

pk = 1 +D(rk−1, pk−1) (6.17)

with the convention r0 = 0, p0 = 0. Inserting these into the definition of the
quantization region k (6.12), we have

Rk =
{
αn1 ≥ 0 : D(rk−1, pk−1) <

n∑
i=1

(2i− 1 +m− n)αi < D(rk, pk)
}
.

Now consider the dual problem of the diversity gain problem

inf
αn1≥0

n∑
i=1

(pk − αi)+ s.t.
n∑
i=1

(2i− 1 +m− n)αi < D(rk, pk),

which has minimum rk. We conclude that

inf
αn1∈Rk

n∑
i=1

(pk − αi)+ = rk.

That is, when applying a power in the order of SNRpk to any channel realization
in Rk, a multiplexing gain of at least rk can be achieved.

Similarly, by considering

sup
αn1≥0

n∑
i=1

(pk−1 − αi)+ s.t.
n∑
i=1

(2i− 1 +m− n)αi > D(rk−1, pk−1)

we have

sup
αn1∈Rk

n∑
i=1

(pk−1 − αi)+ = rk−1.

That is, all channel realizations in Rk, when excited by a power of order SNRpk−1 ,
cannot support the multiplexing gain rk−1 (resulting in an outage event with respect
to power SNRpk−1 and rate rk−1 log SNR). This is consistent with (6.17) because
the probability that the channel realization belongs to Rk is given by the outage
probability

Pr(αn1 ∈ Rk) .= SNR−D(rk−1,pk−1),

and thus the power exponent

pk = 1 +D(rk−1, pk−1)

can be applied over Rk without violating the long-term power constraint.
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resolution K = 2. Case 1: J = 1.

Computation of dUB-PC−K(b)

Since dUB-PC−K(b) is an upper bound, finding the global optimum of the maximin
in Proposition 6.2 is a critical task. In this section, we discuss some difficulties
when computing this bound and give a conjecture on the optimal solution.

We first illustrate the K-level upper bound by studying a specific example.
Consider a MIMO 2× 2 channel with feedback resolution K = 2. By definition we
have

dUB-PC−2 = sup
r1∈[n−J,n)

min {(1 +D(r1, 1))dNPC−∞(b), br1 +D(r1, 1))} (6.18)

for b ≥ m− n+ 1 = 1, where

D(r1, 1) =
{

4− 3r1 if r1 ∈ (0, 1),
2− r1 if r1 ∈ [1, 2).
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resolution K = 2. Case 2: J = 2.

and the upper bound without power control is given by [CN05]

dNPC−∞(b) =

⎧⎪⎨
⎪⎩

2b if b ∈ [0, 1),
b+ 1 if b ∈ [1, 3),
4 otherwise.

We plot in Figs. 6.6 and 6.7 the two component functions in (6.18) and their point-
wise minimum. The problem is clearly a nonconvex optimization. The parameter
J is b-dependent, in particular J = 1 for b < 3 and J = 2 for b ≥ 3.

For J = 1, due to the constraint r1 > n − J = 1, the optimum is given by
the intersection between the two linear segments (the intersection always exists),
leading to dUB-PC−K(b) = (3b−1)(b+1)

2b . The constraint r1 > n − J = 1 essentially
removes all the segments of the piecewise linear function br1 +D(r1, 1) that have a
negative slope.

For J = 2 or b ≥ 3, br + D(r1, 1) is nondecreasing in b, and the optimum is
again given by the intersection of two piecewise linear functions. Because of the
piecewise linearity, we need to distinguish between the case when the optimizer r∗1
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is in (0, 1] and when it is in (1, 2). We eventually obtain

dUB-PC−K(b) =

⎧⎪⎨
⎪⎩

(3b−1)(b+1)
2b if b ∈ [1, 3),

12b−4
b+3 if b ∈ [3, 7),

20b−12
b+9 if b ∈ [7,∞).

Unfortunately, computing dUB-PC−K(b) for a higher feedback resolution K is
much more complicated. The component functions in the maximin are generally
not concave, thus their point-wise minimum is not a concave function. Interestingly,
in all the cases that we observed, equating all K components always gives a unique
solution in (n−J, n)K , and this intersection yields the largest value of the point-wise
minimum (as confirmed by a grid search). This suggests that the global optimum
may indeed be achieved by the intersection of all K component functions. However
we have not been able to prove this conjecture analytically.

The computation of other achievable bounds in this chapter also gives rise to
similar difficulties. However, finding the global one for an achievable bound of
the maximin form is less critical because any local optimum still serves as a lower
bound.

6.B Derivation of K-level Upper Bound and Achievable
Distortion Exponent for SISO Channels

Partial-CSIT Upper Bound
We need to prove the equality (6.9). For m = n = 1, we have dNPC−∞(b) = 1,
∀b ≥ 1. Furthermore, from the diversity-multiplexing results in Chapter 3 we have

D1 = D(r1) = 1− r1,
D2 = D(r2, 1 +D1) = 2− r1 − r2,
· · ·

DK−1 = K − 1− r1 − . . .− rK−1.

Applying these results to Proposition 6.2 gives

dUB−PC−K(b) = sup
0<r1,...,rK−1<1

min (1 +K − 1− r1 − . . .− rK−1,

br1 + 1− r1,
br2 + 2− r1 − r2,
· · ·
brK−1 +K − 1− r1 − . . .− rK−1) .

The point-wise minimum of a family of affine functions is concave [BV04]. The
global optimum of the maximin in this particular case is obtained when all the
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exponents are equal, provided that the solution of such a system of equations exists
and is strictly inside (0, 1)K−1. Balancing the K terms inside the brackets yields

rK−1 = 1
b
,

rK−2 = 1
b

+ b− 1
b
rK−1 = 1

b
+ b− 1
b2
,

· · ·

r1 = 1
b

+ b− 1
b2

+ . . .+ (b− 1)K−2

bK−1 = 1−
(
b− 1
b

)K−1

.

We indeed have rk ∈ (0, 1),∀k. Finally, for a SISO channel with b ≥ 1 we have

dUB−PC−K(b) = 1 + (b− 1)
[

1−
(
b− 1
b

)K−1
]

= b− b
(

1− 1
b

)K
.

Achievable Distortion Exponent
In this section, we show that the exponent (6.11) is achievable for the SISO case.
Consider a simple source-channel coding system with optimized rate allocation
where the transmitter allocates a fixed rate ri log SNR for all α1 ∈ Ri where ri the
maximum multiplexing gain that all channel realizations in Ri can support, i.e.

ri+1 log SNR > log
(
1 + SNRpi−α1

) ≥ ri log SNR,∀α1 ∈ Ri.
For such a system, we can achieve a distortion exponent of

min(d1, d2, . . . , dK , dout)

where di is the distortion exponent over Ri and dout is the outage exponent. Herein
outage is the event

log(1 + SNRpK−α1) < rK log SNR.

We then have p1 = 1, Pr(α1 ∈ R1) .= SNR0, and Pr(α1 /∈ R1) .= SNR−D(r1,1) =
SNR−(1−r1). The average exponent over R1 has the same exponent as

SNR−br1 Pr(α1 ∈ R1) .= SNR−br1 .

Hence d1 = br1. Then the power level in R2 is in the order of

SNRp2 .= SNR
Pr(α1 ∈ R2)

.= SNR2−r1

and the average exponent over R2 has the same exponent as

SNR−br2 Pr(α1 ∈ R2) .= SNR−br2−D(r1,1) = SNR−br2−(1−r1).
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This gives d2 = br2 + 1− r1. Repeating the arguments yields

d3 = br3 + (1 + 1− r1)− r2 = br3 + 2− r1 − r2,
· · ·

dK = brK +K − 1− r1 − · · · − rK−1.

Finally the outage exponent is given by

dout = D(rK , pK) = K − r1 − · · · − rK .
Imposing d1 = · · · = dK = dout gives

rK = 1
b+ 1

rK−1 = 1
b+ 1 + b

b+ 1rK = 1
b+ 1 + b

(b+ 1)2

· · ·

r1 = 1
b+ 1 + b

(b+ 1)2 + · · ·+ bK−1

(b+ 1)K = 1−
(
b

b+ 1

)K
.

Finally,

dSL–PC–K = b− bK+1

(b+ 1)K ,

which is (6.11) that we want to prove.

6.C Proof of Proposition 6.3

We need the following lemma.

Lemma 6.2 (Linear lower bounds on the D-M curves). Define Dk(r)
Δ= D(r, 1 +

Dk−1(r)) where D0(r) Δ= 0,∀r, then

DK(r) ≥
[

(m− n+ 1)
K−1∑
k=0

[(m− n+ 1)n]k
]

(n− r).

Proof. The lower bound is obtained by extending the last (rightmost) segment of
the D-M curve Dk(r) to the entire (0, n). We claim that the last segment of Dk(r)
is given by

(m− n+ 1)
L−1∑
k=0

[(m− n+ 1)n]k(n− r)

and show that by induction.
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For k = 1 the claim holds. Assume the claim holds for k = l ≥ 1, we will show
that it also holds for l+ 1. For simplicity, first denote κ = (m−n+ 1)n. Note that
for r ∈ [(n−1)p, np) we have D(r, p) = (m−n+1)(np− r). Thus, the last segment
of Dl+1(r) is given by

(m− n+ 1)(n(1 +Dl(r))− r) = κ+ κ(m− n+ 1)
l−1∑
k=0

κk(n− r)− (m− n+ 1)r

= κ
l∑
k=0

κk −
l∑
k=0

κk(m− n+ 1)r

=
[

(m− n+ 1)
l∑
k=0

κk

]
(n− r).

It now remains to show that Dk(r) (which is piecewise linear) is convex so that
the extension of the last segment serves as a lower bound. To that end, we will
show that the negative slope of Dk(r) is non-increasing in r.

To see that, recall from [ZT03] an important property of D(r, p): If we let
I = � rp� then the negative slope ofD(r, p) at r is (m−I)(n−I)−(m−I−1)(n−I−1),
independent of p. Note that (m−I)(n−I)− (m−I−1)(n−I−1) = m+n−1−2I
is a decreasing function of I.

Now for any k, let I(x) = x
1+Dk−1(x) . If x < y then Dk−1(x) > Dk−1(y), thus

I(x) = x

1 +Dk−1(x) < I(y) = y

1 +Dk−1(y) .

This means the negative slope of D(x, 1 + Dk−1(x)) is decreasing in x, and thus
the piece-wise linear function Dk(x) = D(x, 1 +Dk−1(x)) is convex, ∀k.

We now prove Proposition 6.3. Recall that we assume m > 1 throughout.

Proof of Sufficiency
Assume

lim
b→∞

b

[(m− n+ 1)n]K(b) = 0. (6.19)

Again consider an optimized single-layer coding system. Note that the distortion
exponent of such a system with K(b) levels of feedback is given by

dSL–PC–K(b)(b) = sup
0<r1,...,rK(b)<n

min
(
br1, br2 +D1, . . . , brK(b) +DK(b)−1,DK(b)

)
.

Choosing r1 = r2 = · · · = rK(b) = n − Cb
[(m−n+1)n]K(b) where C is a finite positive

constant specified later, we obtain
dSL–PC–K(b)

b
≥ min

(
n− Cb

[(m− n+ 1)n]K(b) ,
DK(b)(r1)
b

)
.
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Using the lower bound in Lemma 6.2, we have

DK(b)(r1)
b

≥ m− n+ 1
b

[(m− n+ 1)n]K(b) − 1
(m− n+ 1)n− 1

Cb

[(m− n+ 1)n]K(b) .

Note that (m− n+ 1)n > 1 since m > 1. Choosing

C = n (m− n+ 1)n− 1
(m− n+ 1)

and taking the limit b→∞, we then obtain

lim
b→∞
dSL–PC–K(b)

b
≥ min

(
n, n lim

b→∞
[(m− n+ 1)n]K(b) − 1

(m− n+ 1)n]K(b)

)
= n,

given that (6.19) holds.

Proof of Necessity
Assume there exists at least one scheme that is asymptotically efficient, then we
must have η = n. From the definition of dUB−PC−K(b), for b > m+ n− 1 we have

dUB−PC−K(b) ≤ sup
0<r1,...,rK(b)<n

mn(1 +DK(b)−1)

= mn
(

1 +mn+ . . .+ (mn)K(b)−1
)

= mn

mn− 1

(
(mn)K(b) − 1

)
.

Note that mn > 1 because m > 1. Thus

n = lim
b→∞
dUB−PC−K(b)

b

≤ mn

mn− 1 lim
b→∞

(mn)K(b)

b
,

leading to
lim
b→∞

b

(mn)K(b) ≤
m

mn− 1 ,

which is the asserted condition.
Note that in the m = n = 1 case, we can use exactly the same arguments but

the results slightly change because
∑K(b)
k=1 (mn)k = K(b). In particular we obtain a

sufficient condition
lim
b→∞

b

K(b) = 0

and a necessary condition
lim
b→∞

b

K(b) ≤ 1.
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This is redundant because it is known from a direct investigation in Section 6.3
that the exact necessary and sufficient condition is (6.10), i.e.,

lim
b→∞

(
1− 1
b

)K(b)

= 0.

6.D Proof of Proposition 6.4

Short-term Power Constraint
Before proceeding to the main proof, we note that when transmitting an i.i.d. zero-
mean unit-variance Gaussian vector of length Nt ≤ Nr, the MMSE averaged over
a subset A of channel matrices is given by∫

A
MMSE(H)f(H)dH .=

∫
A

tr
(
INr + SNRHHH)−1

f(H)dH

=
∫
A

n∑
i=1

1
1 + SNR1−αi f(α

n
1 )dαn1 .

The dominating terms then have a negative SNR exponent of

inf
{αn1≥0}∩A

[
(1− α1)+ +

n∑
i=1

(2i− 1 +m− n)αi
]
. (6.20)

This fact will be used later in the proof.
Let n > r1 > · · · > rK > 0 be the multiplexing gains of the digital part and

let d1, . . . , dK be the distortion exponents over the K corresponding quantization
regions. Then the scheme can achieve a distortion exponent of

min(dout, d1, . . . , dK),

where dout is the outage exponent.
By definition, we have

dout = D(rK , 1).

We now compute d1. Let σ2
e1
.= SNR−de1 be the variance of the quantization error

(i.e., the difference between the source vector s and the output of the tandem
encoder)

SNR−d1 .= SNR−de1SNR−mmse1 = SNR−(de1+mmse1).

Since the analog part occupies only a fraction of the block, the effective bandwidth
ratio is

T − Ns
n

Ns
= b− 1

n



178 CHAPTER 6. DISTORTION EXPONENT OVER MIMO CHANNELS

The resulting distortion exponent is obtained from the rate-distortion limit as
follows. We have σ2

e1 = exp(−Rs), with the source coding rate Rs satisfying
RsNs = (T − Ns/n)r1 log SNR. It follows that the variance of the error has an
SNR exponent given by

de1 =
(
b− 1
n

)
r1.

Furthermore, solving (6.20) with the non-outage region

A = R1 =
{
αn1 :

n∑
i=1

(1− αi)+ ≥ r1
}
,

we readily obtain the optimizers α∗1 = · · · = α∗n = 0 and thus

mmse1 = 1.

This leads to
d1 = de1 + mmse1 =

(
b− 1
n

)
r1 + 1.

We next compute d2 = de2 + mmse2. Again we have

de2 =
(
b− 1
n

)
r2.

To compute mmse2, we solve the optimization (6.20) with

A = R2 =
{
αn1 : r2 ≤

n∑
i=1

(1− αi)+ < r1

}
.

With this A, the optimizers α∗i of (6.20) always coincide with those of the problem:

inf
{αn1≥0}∩A

n∑
i=1

(2i− 1 +m− n)αi.

But the above minimum is exactly the diversity gain D(r1, 1). This means that∑n
i=1(1−α∗i )+ = r1, and α∗1 = 1 if r1 ≤ n−1 and α∗1 = n−r1 if r1 ≥ n−1, leading

to
mmse2 = (r1 + 1− n)+ +D(r1, 1).

Finally

d2 =
(
b− 1
n

)
r2 +D(r1, 1) + (r1 + 1− n)+.

Repeating the above steps for d3, . . . , dK and optimizing over the rate r1, . . . , rK
gives the claimed result.
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Long-term Power Constraint
The proof follows exactly the same arguments as those of the short-term power
constraint case. The main difference comes from the fact that with a long-term
power constraint, a power in the order Pk

.= SNR
Pr(H∈Rk) can be applied to the region

Rk.
Let d1, . . . , dK be the distortion exponents corresponding to R1, . . . ,RK . We

still have
d1 = de1 + mmse1 =

(
b− 1
n

)
r1 + 1.

As for

R2 =
{
αn1 :

n∑
i=1

(1− αi)+ < r1,

n∑
i=1

(p2 − αi)+ ≥ r2
}
,

we have de2 =
(
b− 1

n

)
r2. The power level applied to this region P2

.= SNR1+D(r1,1) =
SNR1+D1 ≡ SNRp2 and thus

mmse2 = inf
{αn1≥0}∩R2

[
(1 +D1 − α1)+ +

n∑
i=1

(2i− 1 +m− n)αi
]

= D1 + (r1 + 1− n)+ +D1,

which eventually leads to

d2 =
(
b− 1
n

)
r2 + 2D1 + (r1 + 1− n)+.

At the (possibly locally) optimal rate allocation, impose d1 = d2 or(
b− 1
n

)
r1 + 1 =

(
b− 1
n

)
r2 + 2D1 + (r1 + 1− n)+. (6.21)

The function 2D1 + (r1 + 1−n)+ is monotonically non-increasing in r1 thus 2D1 +
(r1 + 1− n)+ > 1 for 0 < r1 < n. If r2 ≥ r1 then (6.21) cannot be satisfied. Thus
r2 < r1, and therefore D2 = D(r2, 1 +D1) > D(r1, 1 +D1) > D(r1, 1) = D1.

Now consider

R3 =
{
αn1 :

n∑
i=1

(1 +D1 − αi)+ < r2,
n∑
i=1

(1 +D2 − αi)+ ≥ r3
}
,

where we have

mmse3 = inf
{αn1≥0}∩R3

[
(1 +D2 − α1)+ +

n∑
i=1

(2i− 1 +m− n)αi
]

= (1 +D2 − (1 +D1) + (r2 − (n− 1)(1 +D1))+)+ +D2

= 2D2 −D1 + (r2 + (1− n)(1 +D1))+,
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where the second equality is due to the fact that the optimizer α∗1 = n(1 +D1)− r2
if r2 > (n− 1)(1 +D1) and α∗1 = 1 +D1 otherwise, and the last equality is due to
D1 < D2. This leads to

d3 =
(
b− 1
n

)
r3 + 2D2 −D1 + (r2 + (1− n)(1 +D1))+.

Repeating the arguments leads to the asserted result.

6.E Proof of Proposition 6.5

The proof follows the same pattern of the proof of Proposition 6.4. To avoid
repetition, we only present the computation of a bound to the MMSE exponent,
which is the key difference from Proposition 6.4.

To further simplify the presentation, consider the short-term power constraint,
and a feedback resolution K = 2. Let Ĥ be the n × n sub-matrix channel used
for the transmission of the analog part. Let μi = SNR−βi be the corresponding
eigenvalues. In the first region R1, MMSE(H ∈ R1) .= SNR−mmse1 where

mmse1 = inf
βn1≥0∩R1

(1− β1)+ +
n∑
i=1

(2i− 1)βi

≥ inf
βn1≥0

(1− β1)+ +
n∑
i=1

(2i− 1)βi

= 1.

This leads to
d1 =

(
b− 1
n

)
r1 + 1.

Consider R2 = {αn1 : r2 ≤
∑n
i=1(1− αi)+ < r1}. The event that log det(INr +

SNRHHH) < R implies that log det(INr +SNRĤĤH) < R due to the monotonicity
of log det(·) on the semi-definite cone. Equivalently, the event αn1 ∈ R2 also implies∑n
i=1(1− βi)+ < r1. Let

R̂2 =
{
βn1 :

n∑
i=1

(1− βi)+ < r1

}
⊃ R2,

then MMSE(H ∈ R2) .= SNR−mmse2 where

mmse2 = inf
βn1≥0∩R2

(1− β1)+ +
n∑
i=1

(2i− 1)βi

≥ inf
βn1≥0∩R̂2

(1− β1)+ +
n∑
i=1

(2i− 1)βi

= (1 + r1 − n)+ +Dnn(r1, 1).
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This leads to
d2 =

(
b− 1
n

)
r2 +Dnn(r1, 1) + (1 + r1 − n)+.

6.F Proof of Proposition 6.6

Consider a short-term power constraint and the following index mapping, which is
characterized indirectly via αn1 ≥ 0,

I (αn1 ) =

⎧⎪⎨
⎪⎩
K if

∑n
i=1 (1− αi)+ − 1

bn (pK − αi)+ < rK ,

k : rk−1 +
∑n
i=1

1
bn (pk−1 − αi)+ >

∑n
i=1 (1− αi)+

≥ rk +
∑n
i=1

1
bn (pk − αi)+ otherwise.

We first compute the distortion exponent over the quantization region R1 cor-
responding to I = 1

d1 = br1 + mmse1.

Notice that there is no loss in bandwidth since the analog part is superimposed
onto the digital codeword, resulting in the quantization error (at the output of the
tandem encoder) of order SNR−br1 . The analog part however can only use a power
in the order of SNRp1 , thus (similarly to (6.20))

mmse1 = inf
(αn1≥0)∩R1

{
(p1 − α1)+ +

n∑
i=1

(2i− 1 +m− n)αi
}

where

R1 =
{
αn1 :

n∑
i=1

[
(1− αi)+ − 1

bn
(p1 − αi)+

]
≥ r1
}
.

This optimization gives mmse1 = p1, ∀r1 ∈
(
0, n− p1

b

)
and thus d1 = br1 + p1.

Now consider

R2 =
{
αn1 :

n∑
i=1

[
(1− αi)+ − 1

bn
(p1 − αi)+

]
< r1,

n∑
i=1

[
(1− αi)+ − 1

bn
(p2 − αi)+

]
≥ r2
}

and

mmse2 = inf
(αn1≥0)∩R2

{
(p2 − α1)+ +

n∑
i=1

(2i− 1 +m− n)αi
}
.
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Since the term (p2 − α1)+ can only reduce the weight corresponding to α1, the
optimizers α∗i ’s of the above optimization coincide with these of

inf
(αn1≥0)∩R2

n∑
i=1

(2i− 1 +m− n)αi,

meaning that

α∗1 =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

1 if r1 < (n− 1)
(
1− p1

bn

)
1− r1 + (n− 1)

(
1− p1

bn

)
if (n− 1)

(
1− p1

bn

) ≤ r1
< (n− 1)

(
1− p1

bn

)
+ 1− p1,

n− p1
b −r1

1− 1
bn

if (n− 1)
(
1− p1

bn

)
+ 1− p1 ≤ r1 < n

(
1− p1

bn

)
and that

∑n
i=1(2i− 1 +m− n)α∗i = DSP(r1, 1, p1). This eventually leads to

mmse2 = max
(

0, p2 − 1 + r1 − (n− 1)
(

1− 1
bn

)
, p2 −

n− p1
b − r1

1− 1
bn

)
+DSP(r1, 1, p1)

and d2 = br2 + mmse2.
Continuing this line of arguments, we obtain the achievable distortion exponent

of Proposition 6.6 under a short-term power constraint. The exponent for the long-
term power constraint case can be derived in a completely similar manner.



Chapter 7

Distortion Exponent over Relay
Channels

This chapter continues on the distortion exponent problem, with a new focus on
the relay channels with limited feedback. Building upon results from Chapters 4
and 6, we show that under a short-term power constraint, combining a simple
feedback scheme with separate source and channel coding outperforms the best
known no-feedback strategies even with only a few bits of feedback information.
Partial power control is shown to be instrumental in achieving a very fast decaying
average distortion, especially in the regime of high bandwidth ratios. Performance
limitation due to the lack of full CSI at the destination feedback quantizer is also
investigated, where the degradation in terms of the distortion exponent is shown to
be significant. However, even in such restrictive scenarios, using partial feedback
still yields distortion exponents superior to any no-feedback schemes.

7.1 Introduction

Despite the large amount of work in the literature addressing various performance
measures in cooperative systems, many challenging problems remain open. One
particular scenario is the transmission of a source over a slow fading channel. In
this problem the separation theorem [CT91] does not hold when the channel state
information is not fully known at the transmitter. Indeed, even if the transmitter
in a relay channel knows the full CSI, the optimal strategy for source transmission
is still unknown, as the capacity of a completely general relay channel is a long
standing open problem.

In the context of source–channel coding over relay channels, various protocols
are proposed and their achievable distortion exponents are analyzed in [GE07b]
under the assumption that the source and the relay do not have any knowledge of
their corresponding forward channel gains. However, for many practical scenarios,
limited channel state feedback is present at the transmitter side, allowing for partial

183
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S D

R

h

h1
h2

I

I

Figure 7.1: System model. Note that in the feedback model of Section 7.3, we have
I = I(h, h1, h2). On the other hand, the feedback index in Section 7.4 does not
depend on h1, i.e., I = I(h, h2)

.

rate and/or power adaptation.
This chapter studies the asymptotic performance of the average end-to-end dis-

tortion over a three-node single-antenna relay channel in the presence of partial
CSIT. We derive upper bounds on the optimal distortion exponent of any possible
relaying and feedback strategy, given the number of feedback levels. For the achiev-
ability part, we exclusively focus on the decode-and-forward strategy [LTW04]. We
show that even with the separation of source and channel coding, partial rate con-
trol allows for an improved performance over the best layering schemes in [GE07b].
Thus the separation of source–channel coding provides an effective yet simple so-
lution in practical systems, even if some optimality may be lost. Temporal power
control with limited CSIT provides additional gains which cannot be obtained by
any no-feedback system. Finally, upper bounds and achievable bounds for the case
of channel states partially known at the destination are derived. Even in such a re-
strictive scenario, using partial rate and power control still provides superior gains,
especially in the low spectral efficiency regime.
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7.2 System Model

Consider the complex baseband model of a frequency-nonselective half-duplex fad-
ing relay channel, depicted in Fig. 7.1. The three single-antenna nodes in the
systems are the source, the relay, and the destination. The channel is assumed to
be slowly fading, i.e., the channel gains are constant during a fading block con-
sisting of T channel uses, but changes independently from one block to the next.
We exclusively consider the case when a transmission codeword spans a single fad-
ing block to study the gain from spatial cooperation. The channel is assumed to
be statistically symmetric. In particular, h, h1, and h2 are i.i.d. complex Gaus-
sian random variables with zero mean and unit variance. That is, we consider a
quasi-static Rayleigh fading scenario. Assume perfect CSI at the receiver of each
communication link in the system, and perfect synchronization.

We consider individual power constraints at the source and at the relay. Since we
deal with partial-CSIT systems, both short-term and long-term power constraints
are considered, as in Chapter 4.

At the source, an i.i.d. memoryless Gaussian source produces Ns complex sym-
bols s every T time instant. The source symbols are assumed to have zero mean
and unit variance. Let b = Ns

T be the channel bandwidth to source bandwidth ratio
(bandwidth ratio).

At each SNR, let the mean squared error between the source vector and the
reconstructed vector be

Δ̄ = 1
Ns

E
[‖s− ŝ‖22

]
where the expectation is over the randomness of the source symbols, the noise and
the channel gains. We consider a sequence of schemes at increasingly high SNR,
and obtain a sequence of Δ̄ indexed by SNR. Completely similarly to Chapter 6,
the system is then said to achieve a distortion exponent of d if

Δ̄ .= SNR−d.

We are interested in characterizing the distortion exponent d as a function of the
bandwidth ratio b. This provides a coarse (in the limit of asymptotically high SNR)
tradeoff between spectral efficiency (via b) and distortion (represented by d), giving
useful insight into the performance of different source transmission schemes.

7.3 Distortion Exponents with Channel State Feedback

In this section we consider the scenario where the channel states h, h1 and h2 are
fully known at the destination. The destination then maps the tuple of channel
states into an integer index I(h, h1, h2) ∈ {1, . . . ,K} and broadcasts this index to
both the source and the relay via a noiseless zero-delay dedicated feedback link (cf.
Fig. 7.1).
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Upper Bounds to the Distortion Exponent

We begin by deriving relevant upper bounds to the distortion exponent that can be
achieved by any source–channel coding scheme over the relay channel of interest.

First we have the cooperative transmitters upper bound, obtained by letting
the source and the relay fully cooperate resulting in a MISO 2× 1 channel:

dUB
MISO–NPC(b) = min(b, 2)

under a short-term power constraint; and

dUB
MISO–PC(b) = b

under a long-term power constraint. Recall that the proof for the no power control
case can be found in [GE08, CN07], and the power control case is presented in
Chapter 6. Both bounds assume perfect CSIT. Note that for b < 1, even using a
simple HDA scheme in [CN07] over a SISO channel can achieve the MISO upper
bound. The regime of b < 1 is therefore not of our interest.

For the power control case, in Chapter 6 an upper bound for the MISO channel
with K power levels is given. For b < 2, the upper bound for a MISO channel
with K levels of feedback trivially coincides with that of the perfect-CSIT case, i.e.
dUB–K

MISO–PC(b) = b, ∀K. Otherwise, we have:

Proposition 7.1. For b ≥ 2, the distortion exponent of a 2×1 MISO channel with
K levels of feedback is upper-bounded by

dUB–K
MISO–PC(b) =

4b− 2(b− 2)
(
b−2
2b
)K−1

4 + (b− 2)
(
b−2
2b
)K−1 .

Note that the upper bound dUB–K
MISO–PC(b) is given in the form of a general maximin

problem in Chapter 6. To obtain the explicit form in Proposition 7.1, the proof
in Appendix 7.A deviates from that in Chapter 6, expressing the upper bound in
the form of an optimization problem with respect to the power levels instead of the
multiplexing gains.

Rewriting

dUB–K
MISO–PC(b) = 2K+1bK − 2(b− 2)K

2K+1bK−1 + (b− 2)K

we readily obtain

Corollary 7.1.

lim
b→∞
dUB–K

MISO–PC(b) = 2K+1 − 2 =
K∑
k=1

2k.
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This is consistent with the limiting results in multiple-antenna channels, ob-
tained by an indirect approach in Chapter 6. In short, dUB–K

MISO–PC(b) equals to the
maximal diversity gain of the 2 × 1 channel with K feedback levels, because at
low spectral efficiency, even if the multiplexing gain can be made close to zero, the
average distortion of the system is still outage-limited.

Achievable Distortion Exponents without Power Control
In this section, we derive certain achievable bounds to the optimal distortion ex-
ponent over relay channels with feedback. We exclusively study decode–forward
relaying [LTW04] as this strategy naturally fits into our quantized feedback frame-
work.

In short, the DF protocol that we consider consists of two communication
phases. Phase 1 uses βT channel uses with β ∈ (0, 1). The source in Phase 1
encodes a message m to a codeword of length βT and transmits. The relay at-
tempts to decode m based on its received signal in Phase 1. In Phase 2, if the
source–relay link is not in outage the relay re-encodes m and transmits. Otherwise
the relay outputs nothing. The source may transmit (1 − β)T additional symbols
in Phase 2, in which case we have a non-orthogonal scheme; or it may remain silent
(in orthogonal schemes). The destination decodes based on the received signals in
both phases.

Notice that for a given multiplexing gain, the numbers of channel uses allocated
to Phase 1 and Phase 2 in DF relaying can be optimized over (which we often refer
to as dimension allocation) so as to maximize the diversity gain. The diversity
gain of DF relaying with optimized dimension allocation is given in the following
lemma. This is a natural extension of Proposition 4.1, which deals with the no-
power control case (i.e., when the transmit power is SNR1, to the power control
case). The proof is relatively similar to that of Proposition 4.1, and thus omitted.

Lemma 7.1. Let the transmit power at both the source and the relay be SNRp
where p ≥ 1, then the outage exponent of DF relaying with optimized dimension
allocation is

DDF
O (r, p) =

{
2p− 3r if r < p3 ,
2p(p−r)
p+r otherwise.

for orthogonal schemes, and

DDF
NO(r, p) =

{
2p− 3+

√
5

2 r if r < 3−√5
2 p,

(2p−r)(p−r)
p otherwise

for non-orthogonal schemes. The optimal allocation of the available channel uses
is

β∗(r, p) =
{

2
3 if r < p3 ,
p+r
2p otherwise
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in the orthogonal case, and

β∗(r, p) =
{√

5−1
2 if r < 3−√5

2 p,
p

2p−r otherwise

in the non-orthogonal case.

For convenience, we denote the diversity gain in the no power control case as
DDF

O (r) Δ= DDF
O (r, 1) and DDF

NO(r) Δ= DDF
NO(r, 1). Similarly β∗(r) Δ= β∗(r, 1).

The proposed feedback scheme works as follows. For brevity we only describe
the orthogonal case, as the non-orthogonal scheme is based on a similar idea.

The system is equipped with a library of K tandem encoders [MP02], i.e. K
pairs of source encoder and channel encoder, with channel code rates {ri log SNR}
bits per channel use, where 1 > r1 > · · · > rK > 0. Herein K is the number of
feedback levels, also known as the feedback resolution. Upon receiving the index
I(h, h1, h2) = i fed back from the destination, the source node encodes the source
symbols with the tandem code whose channel code rate is ri log SNR. Given I = i,
orthogonal DF relaying with optimal allocation β∗(ri) will be used.

Let μO(h, h1, h2; r) be the mutual information of the orthogonal scheme given
the channel states h, h1, h2 and a certain multiplexing gain r, i.e.

μO(h, h1, h2; r) Δ=

⎧⎪⎨
⎪⎩
β∗(r) log

(
1 + |h|2SNR

)
if log

(
1 + |h1|2SNR

)
< r log SNR

β∗(r) ,

β∗(r) log
(
1 + |h|2SNR

)
+ (1− β∗(r)) log

(
1 + |h2|2SNR

)
,

otherwise.

The destination employs the index mapping

I(h, h1, h2) =
{
K if μO(h, h1, h2; rK) < rK log SNR,
max i ∈ {1, . . . ,K} s.t. μO(h, h1, h2; ri) ≥ ri log SNR otherwise.

(7.1)
That is, the destination informs the source node to use the largest channel code rate
possible in the library of codes so that the transmission will not be in outage. This is
equivalent to using the quantizer with the highest resolution possible to encode the
source. In case the channel is in a too bad condition and no reliable communication
is possible with any rate in the library, we can send back an arbitrary index (which
is set to K in (7.1)) without changing the results.

We are now ready to state the following achievable distortion exponents. The
proof is deferred to Appendix 7.B.

Proposition 7.2. Under a short-term power constraint at both the source and the
relay, the proposed orthogonal scheme can achieve the distortion exponent

dKO–NPC(b) = sup
1>r1>···>rK>0

min
(
DDF

O (rK), br1, . . . , brK +DDF
O (rK−1)

)
.
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The non-orthogonal scheme can achieve

dKNO–NPC(b) = sup
1>r1>···>rK>0

min
(
DDF

NO(rK), br1, . . . , brK +DDF
NO(rK−1)

)
.

Unfortunately, the optimization problems in Proposition 7.2 are not convex,
because DDF

O (r) and DDF
NO(r) are not concave functions. However, for sufficiently

high b, these maximin problems can be reduced to convex ones. In such cases, we
can find the closed-form expression of the distortion exponents in Proposition 7.2.

Corollary 7.2. For b ≥ 6

dKO–NPC(b) = 2
(
b
3
)K+1 − b3(
b
3
)K+1 − 1

.

For b ≥ 3 +
√

5

dKNO–NPC(b) = 2

(
3−√5

2 b
)K+1

− 3−√5
2 b(

3−√5
2 b
)K+1

− 1
.

Proof. We need the following lemma. The proof is straightforward and thus omit-
ted.

Lemma 7.2. Let (x∗1, . . . , x∗K) be the solutions to the system of linear equations

bx1 = bx2 + γ − θx1 = · · · = bxK + γ − θxK−1 = γ − θxK
where γ > 0, θ > 0 are real parameters then

Δ Δ= bx∗1 = γ
(
b
θ

)K+1 − bθ(
b
θ

)K+1 − 1

and

x∗k = Δ− γ
b

1− ( θb )K
1− θb

+
(
θ

b

)K−1
γ

b
.

We now prove Corollary 7.2. Consider only the orthogonal case. Since dKO–NPC(b)
≤ 2, it suffices to consider r1 such that br1 ≤ 2 or r1 ≤ 2

b . But 2
b <

1
3 , ∀b > 6, thus

rK < · · · < r1 < 1
3 and DDF

O (rk) = 2− 3rk, ∀k. In this case, the maximin problem
finding dKO–NPC(b) is of the form

sup
2
b>r1>···>rK>0

min {2− 3rK , br1, br2 + 2− 3r1, . . . , brK + 2− 3rK−1} .
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Figure 7.2: Achievable distortion exponents with different feedback resolution K.
A short-term power constraint is assumed.

This is a convex optimization, since the pointwise minimum of linear functions
is concave. Equating all the terms and applying Lemma 7.2 yields the claimed
dKO–NPC(b). It can then be verified that with this dKO–NPC(b), the linear constraints
2
b > r1 > · · · > rK > 0 are fulfilled.

For b outside the range specified in Corollary 7.2, we obtain achievable bounds
by equating all the terms inside the mininum of Proposition 7.2 and solving these
systems of equations numerically.

We plot in Fig. 7.2 the achievable distortion exponents of both orthogonal and
non-orthogonal schemes without power control. Clearly, a few bits of feedback
information provides an excellent performance, even with the very simple single-
layer coding scheme that we consider. Indeed, over a certain range of b, the proposed
feedback schemes with K as low as 4 (2 bits) outperform even the best known no-
feedback strategies in [GE07b], which require a very high complexity in terms of
infinitely many code layers (cf. Fig. 7.3). We also observe that in this low feedback
rate regime, the effect of adding one bit of CSIT is much more pronounced than
switching from orthogonal to non-orthogonal schemes. Thus from a practical point
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of view, coupling a few bits of channel state feedback with a simple orthogonal
scheme seems to be an appealing approach.

At a first glance, one may tend to conjecture that as the feedback resolution K
grows, the distortion exponents of the schemes will converge to the MISO upper
bound dUB

MISO–NPC(b) = min(b, 2). This is far from obvious though, as the capacity
of the relay channel is unknown in general. The optimality of the proposed schemes
is therefore not guaranteed. Indeed, the following results state that even with a
continuum of multiplexing gains (rates) at the source (i.e., when the feedback levels
K → ∞), the MISO upper bound dUB

MISO–NPC(b) cannot be fully realized by the
proposed strategy.

Corollary 7.3. With a continuum of multiplexing gains we have

d∞O–NPC(b) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩
b if b ≤ 1,
4
√
b− b− 2 if 1 < b ≤ 9

4 ,

1 + b
3 if 9

4 < b ≤ 3,
2 if 3 < b.

For non-orthogonal schemes

d∞NO–NPC(b) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩
b if b ≤ 1,
−b2+6b−1

4 if 1 < b ≤ √5,
1 + 3−√5

2 b if
√

5 < b ≤ 3+
√

5
2 ,

2 if 3 < b.

Proof. We only present the orthogonal case. With a continuum of multiplexing
gains at the source, we index the feedback quantization regions in terms of r instead
of feedback index i. The SNR distortion exponent associated with feedback region
r is given by br +DDF

O (r). The minimum distortion exponent is the dominant one

d∞O–NPC(b) = inf
r∈(0,1)

{
br +DDF

O (r)
}

= min
(

inf
r∈(0,1/3)

{br + 2− 3r}, inf
r∈(1/3,1)

{
br + 2− 2r

1 + r

})
.

Combining

inf
r∈(0,1/3)

{br + 2− 3r} =
{

2 if b ≥ 3,
1 + b

3 if b < 3
and

inf
r∈(1/3,1)

{
br + 2− 2r

1 + r

}
=

⎧⎪⎨
⎪⎩
b if b ≤ 1,
4
√
b− b− 2 if 1 < b < 9

4 ,

1 + b
3 if b ≥ 9

4

gives the claimed results.
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Figure 7.3: Achievable distortion exponents of the proposed schemes with a con-
tinuum of multiplexing gains (no power control). The distortion exponent of the
broadcast strategy (BS) with mixed DF and direct transmission [GE07b], and that
of the HDA scheme with dynamic DF [GE07b], are also plotted, both in the limit
of infinitely many layers.

In Fig. 7.3, the distortion exponents achieved by using a continuum of rates
at the source are plotted. Clearly both studied schemes cannot achieve the MISO
upper bound over an intermediate range of the bandwidth ratio b. We also see
that even in the high feedback resolution regime, the non-orthogonal scheme still
displays some advantage over the orthogonal one for certain values of b. On a final
note, the best known source–channel coding schemes without CSIT in [GE07b],
namely the HDA scheme coupled with dynamic DF and the broadcast strategy
with mixed DF and direct transmission, do not approach d∞O–NPC(b) even when
equipped with infinitely many code layers, as illustrated in Fig. 7.3.

Achievable Distortion Exponents with Power Control
We now relax the power constraint, allowing the source and the relay to control
their transmit power based on channel state feedback from the destination. The
scheme that we study is described as follows. Again, we only describe the orthogonal
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scheme.
The system is equipped with a library of K tandem codes with channel code

rates {ri log SNR} where 1 > r1 > · · · > rK > 0 and a power codebook consisting
of K predetermined power levels {P1 < · · · < PK}. The destination broadcasts
a common feedback index I(h, h1, h2) to both the source and the relay. Upon
receiving I = i, the source and the relay properly scale their transmit codewords so
that each individual transmit power is Pi. Given I = i, DF relaying with optimal
dimension allocation is used.

The following index mapping is used by the destination

I(h, h1, h2) =
{

1 if μO(h, h1, h2;PK , rK) < rK log SNR,
max i ∈ {1, . . . ,K} s.t. μO(h, h1, h2;Pi, ri) ≥ ri log SNR otherwise.

Similarly to the no power control case, μO(h, h1, h2;Pk, rk) is the mutual informa-
tion (given that power Pk is used). In essence, the scheme first tries the highest
code rate possible. If that fails, lower code rates in conjunction with higher power
will be attempted.

Proposition 7.3. With power control at both source and relay, the proposed or-
thogonal scheme can achieve

dKO–PC(b) = sup
1>r1>...>rK>0

min
(
DKO , br1, br2 +D1

O, . . . , brK +DK−1
O
)

where DkO
Δ= DDF

O (rk, 1 +Dk−1
O ), with D0

O = 0.
The non-orthogonal scheme can achieve

dKNO–PC(b) = sup
1>r1>...>rK>0

min
(
DKNO, br1, br2 +D1

NO, . . . , brK +DK−1
NO
)

where DkNO
Δ= DDF

NO(rk, 1 +Dk−1
NO ), with D0

NO = 0.

The proof closely follows that of Proposition 7.2 and is thus omitted. The
presence of the terms DkO and DkNO is due to the recursive nature of the DMT with
quantized CSIT.

We demonstrate the potential of power control with limited feedback in Fig. 7.4.
As can be seen, the gain of using (even partial) power control is significant. The
effect is particularly pronounced in the high bandwidth ratio regime. For example,
an orthogonal scheme using only two levels of power control provides a better
performance than any no power control strategy as long as b ≥ 3.7. Note that the
achievable bounds however fall short of getting close to the corresponding K-level
upper bounds, leaving room for future improvement.

In the limit of large bandwidth ratios, the distortion exponents of both orthog-
onal and no-orthogonal schemes converge to the upper bound dUB–K

MISO–PC(b) for any
given K:
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Figure 7.4: Achievable distortion exponents with power control and different K.
The corresponding K-level upper bounds are also plotted.

Corollary 7.4.

lim
b→∞
dKO–PC(b) = lim

b→∞
dUB–K

NO–PC(b) =
K∑
k=1

2k.

Proof. It suffices to consider the orthogonal case. By choosing r1 = · · · = rK =

r̂
Δ= min

(∑K

k=1
2k

b , 1
)

we obtain

lim
b→∞
dKO–PC(b) ≥ lim

b→∞
min
(
DKO , br̂, br̂ +D1

O, . . . , br̂ +DK−1
O
)

= lim
b→∞

min
(
DKO , br̂

)
=
K∑
k=1

2k.

The last equality is due to limb→∞ r̂ = 0, and the fact that DKO →
∑K
k=1 2k when

the multiplexing gain tends to zero.
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7.4 Distortion Exponents with a Restricted Feedback
Quantizer

In practice, while the destination can learn h and h2 via training, acquiring accurate
knowledge about the source–relay channel gain h1 at the destination is a difficult
task. This motivates the studies presented in this section where we consider the
scenario that h1 is unknown to the feedback quantizer at the destination. To
derive a tighter upper bound than DUB–K

MISO (b), we let the relay and the destination
fully cooperate, resulting in a 1 × 2 channel with K levels of feedback. However
the feedback quantizer depends only on a single scalar gain, since the destination
quantizer does not know h1 by assumption. Computing an upper bound to the
distortion exponent over such a channel with restricted feedback quantizer gives the
following. The proof is deferred to Appendix 7.C.

Proposition 7.4. Assume that the index mapping at the destination does not know
the source-relay gain h1. With power control at both the source and the relay, and
K feedback levels from the destination, the distortion exponent is upper-bounded by

d̃UB–K
PC (b) = b− (b− 2)K

bK−1 .

In the limit of large bandwidth ratios b, i.e. at very low spectral efficiency, we
have

Corollary 7.5. For any K ≥ 2

lim
b→∞
d̃UB–K

PC (b) = 2K.

Comparing the above limit with that of dUB–K
MISO–PC(b), we can see that not know-

ing h1 incurs a large degradation in the distortion exponent. In such scenarios, the
rate at which the end-to-end distortion decays to zero will increase much slower
(as a function of the feedback resolution K) than in the case of full-CSI at the
destination. This is due to the degradation of the diversity gain in this scenario,
cf. Chapter 4.

We now describe a particular scheme operating under such a constraint on the
CSI at the destination and study its achievable distortion exponents.

The proposed index mapping is

I(h, h2) =
{
K if log(1 + |h|2PK−1) < rK−1 log SNR,
max i ∈ {1, . . . ,K − 1} s.t. log(1 + |h|2Pi) ≥ ri log SNR otherwise.

The source uses direct transmission for =1, . . . ,K − 1, i.e. β1 = · · ·βK−1 = 1 and
uses (either orthogonal or non-orthogonal) DF with rate rK log SNR and optimized
fraction β∗K(rK) when I = K. That is, the proposed scheme rarely makes use of
the relay.
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Proposition 7.5. If b ∈ {b :
(
b2 − 3

) ( 1+b
b

)K−1
> b2 − b} then the proposed

orthogonal scheme can achieve

d̃KO–PC(b) =
(2b+ 3)

( 1+b
b

)K−1 − 2b− 1(
2 + 3

b

) ( 1+b
b

)K−1 − 1
.

If b ∈ {b :
(
b2 − 3

) ( 1+b
b

)K−1 ≤ b2 − b} then d̃KO–PC(b) = −B−√B2−4AC
2A where

A = 2(1 + b)2K−1 − 3bK−1(1 + b)K + b2K−1,

B = b
(
3bK − 4(1 + b)K

) (
(1 + b)K−1 − bK−1)− (b+ 2)bK−1(1 + b)K−1,

and
C = 2b2

(
(1 + b)K − bK) (bK−2 + (1 + b)K−1 − bK−1) .

For non-orthogonal schemes, if

b ∈
{
b :
(
b2 − (3−

√
5)b− 5 +

√
5

2

)(
1 + b
b

)K−1

> b2 − 5−√5
2 b

}

then

d̃KNO–PC(b) =

(
2b+ 3+

√
5

2

) ( 1+b
b

)K−1 − 2b−
√

5−1
2(

2 + 3+
√

5
2b

) ( 1+b
b

)K−1 − 1

If b ∈
{
b :
(
b2 − (3−√5)b− 5+

√
5

2

) ( 1+b
b

)K−1 ≤ b2 − 5−√5
2 b
}

then d̃KNO–PC(b) =
−B−√B2−4AC

2A where

A = b2K − 3bK(1 + b)K + (2b+ 1)(1 + b)2K−1,

B = −3b2K+1 − 2b(2b+ 1)(1 + b)2K−1 + (7b2 + 5b− 1)bK(1 + b)K−1,

and
C = b2

(
(1 + b)K − bK) ((2b+ 1)(1 + b)K−1 − (2b− 1)bK−1) .

In Fig. 7.5, we plot the achievable distortion exponents with restrictive feedback
quantizers. Even these restricted feedback schemes yield significant gains over a no-
CSIT system, but they stay short of getting close to the upper bound except at the
high spectral efficiency regime (very small b) and the very low spectral efficiency
regime (very high b - not plotted herein). We can also conclude that the high-SNR
gain of non-orthogonal schemes is negligible.

Finally, for completeness, we state the asymptotic optimality of both schemes
in the high-b regime. The proof is similar to that of Corollary 7.4.
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Figure 7.5: Achievable distortion exponents with restricted feedback quantizers and
different K.

Corollary 7.6. For any given K ≥ 2

lim
b→∞
d̃KO–PC(b) = lim

b→∞
d̃KNO–PC(b) = 2K.

As a final remark, note that the achievable distortion exponents in Proposi-
tions 7.2, 7.3, and 7.5 are obtained under the assumption of infinitely large block
length T , so that the rate–distortion bound and the outage bound are both asymp-
totically achievable. How does the performance change with a fixed, finite block
length T? Since all the proposed schemes in the current work rely on the separation
of source and channel coding, it suffices that each individual component (source and
channel) code has performance that decays with the appropriate SNR exponent. It
is known that scalar quantizers applied to a Gaussian source yield the same expo-
nent as that of the optimal rate–distortion function. Hence, in terms of the source
code, scalar quantization is good enough for our purposes. On the other hand, for a
finite T , there exist only a restricted number of discrete dimension splitting values β
(i.e., the fraction of channel uses assigned for Phase 1 of the DF relaying protocol),
instead of a continuum (i.e., when β can take on any values in (0, 1)). This entails
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a certain loss in the achievable error exponent of the channel code compared to the
outage exponent. Consequently, for any finite T the achievable distortion exponents
are generally less than those obtained for infinite T presented in this work, due to
the channel coding part. This loss however asymptotically (and rather quickly, as
studied in Chapter 4) vanishes as T increases.

7.5 Conclusion

We have investigated the problem of rate and power allocation using partial CSIT
to maximize the decay rate of the end-to-end expected distortion in a single-antenna
relay channel. Even a few levels of rate control allows a simple separate source and
channel coding scheme to outperform the best known complex no-feedback strate-
gies. The performance can be further improved with an appropriate partial power
control policy. Our results suggest that combining simple relaying schemes with
low-rate channel state feedback can be an effective approach for the transmission
of analog sources over cooperative channels.

Appendices for Chapter 7

7.A Proof of Proposition 7.1

Consider a 1 × 2 slow fading channel with i.i.d. zero-mean unit-variance complex
Gaussian channel gains a1, a2. Let α = − log(|a1|2+|a2|2)

log SNR . To obtain an upper
bound to the distortion exponent, we assume perfect CSIT so that the transmitter
can perform perfect rate adaptation. However the transmitter is constrained to use
only K power levels.

Let Pk
.= SNRpk be the K power levels at the transmitter, with 1 = p1 < · · · <

pK < pK+1 =∞. We refer to the set of all α’s that are mapped to a certain power
level Pk as the kth quantization region Rk. We only consider α ≥ 0 as the region
a < 0 has a probability measure that exponentially decays in SNR and thus does
not affect the SNR exponent of interest [ZT03]. The long-term power constraint
leads to ∫

Rk
SNRpkf(α)dα ≤̇ SNR

where f(α) is the p.d.f. of α. Some standard large-deviation arguments [ZT03]
then lead to

sup
α∈Rk

{pk − 2α} ≤ 1

Since the end-to-end distortion is a decreasing function of transmit power, we con-
clude that

Rk =
{
α ≥ 0 : pk − 1

2 ≤ α < pk+1 − 1
2

}
.
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Because the transmitter can do perfect rate adaptation, the multiplexing gain
of the transmit rate corresponding to a channel state α is the same as that of
log(1 + SNRpk−α). Assume codes achieving the rate-distortion function, the aver-
age distortion over Rk is then

Δ̄k
.=
∫
Rk

2−b log(1+SNRpk−α)f(α)dα

Thus for a fixed set of power levels, the distortion exponent over Rk is given by

dk = inf
α∈Rk

{
b(pk − α)+ + 2α

}
.

Since pK+1 = ∞, over RK the optimization readily gives dK = 2pK with the
optimizer α∗ = pK . For any k < K,

dk =
{

2pk if pk < pk+1−1
2 ,

bpk − (b−2)(pk+1−1)
2 if pk ≥ pk+1−1

2 .

However, since d = min(d1, . . . , dK), the case dk = 2pk is not of interest, otherwise
2pk < dK = 2pK meaning that adding the quantization region RK is redundant.
Thus we only consider pk ≥ pk+1−1

2 , and optimize the power levels to obtain

DUB–K
MISO–PC(b) = sup

p2,...,pK

min
(

2pK , bp1 − b− 2
2 p2 + b− 2

2 , . . . ,

bpK−1 − b− 2
2 pK + b− 2

2

)
s.t. 2p1 ≥ p2 − 1, . . . , 2pK−1 ≥ pK − 1, pK > · · · > p1.

Recall that p1 = 1. Since the functions inside the point-wise minimum are linear
in pk’s, the solution to this maximin is the intersection of all the hyperplanes,
i.e. at d1 = · · · = dK

Δ= d∗, provided that the intersection satisfies all the linear
constraints. We now have

pK = d
∗

2 ,

pK−1 = d
∗

b

(
1 + b− 2

4

)
− b− 2

2b ,

· · ·

pK−k = d
∗

b

(
1 + b− 2

2b + · · ·+
(
b− 2

2b

)k−1

+ (b− 2)k

2k+1bk−1

)
−
k∑
i=1

(
b− 2

2b

)i
,

· · ·

p1 = d
∗

b

(
1− ( b−2

2b
)K−1

b+2
2b

+ (b− 2)K−1

2KbK−2

)
− b− 2

2b
1− ( b−2

2b
)K−1

b+2
2b

.
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Then, using the fact that p1 = 1, we have

d∗ =
1 + b−2

b+2

(
1− ( b−2

2b
)K−1)

1−( b−2
2b )K−1

b+2
2

+ 1
2
(
b−2
2b
)K−1

=
4b− 2(b− 2)

(
b−2
2b
)K−1

4 + (b− 2)
(
b−2
2b
)K−1 .

We can readily verify that with this d∗, the constraints 2pk ≥ pk+1 are all fulfilled.
Thus dUB–K

MISO–PC(b) = d∗.

7.B Proof of Proposition 7.2

For brevity, we only present the orthogonal case. Let a = − log |h|2/ log SNR,
α1 = − log |h1|2/ log SNR, α2 = − log |h2|2/ log SNR and thus we can write the
mutual information μO(a, α1, α2; r) = μO(h, h1, h2; r). The set of all channel state
tuples that are mapped to an index I = k is referred to as quantization region Rk.
Let the distortion exponent over Rk be dk. Define

Ok Δ= {a, α1, α2 ∈ R
3
+ : β∗(rk)(1− α1)+ < rk, β

∗(rk)(1− a)+ < rk}
∪ {a, α1, α2 ∈ R

3
+ : β∗(rk)(1− α1)+ ≥ rk,

β∗(rk)(1− a)+ + (1− β∗(rk))(1− α2)+ < rk}

which is essentially the asymptotic outage set conditioned on I = k.
We readily have Pr(I = 1) .= SNR0 (intuitively, most channel uses do not result

in outage at high SNR), thus∫
R1

2−b1r1 log SNRdadα1dα2
.= SNR−br1 = SNR−d1 .

The exponent equality is due to an application of Bennett’s integral for high-rate
vector quantization [NN95]. We next have

Pr(I = 2) = Pr(Ō2 ∩ O1) ≤̇ Pr(O1). (7.2)

Let Pr(I = 2) .= SNR−D2 then from (7.2): D2 ≥ DDF
O (r1) = 2 − 2r1

β∗1 (r1) . However
by choosing a particular tuple â = 1 − r1

β∗1 (r1) + ε, α̂1 = â, α̂2 = 0 where ε > 0 is
arbitrarily small, we then have

D2 = inf
Ō2∩O1

{â+ α̂1 + α2} ≤ 2− 2r1
β∗1(r) + 2ε. (7.3)

For (7.3) to hold we have to show that (â, α̂1, α̂2) ∈ {Ō2 ∩ O1
}

. To that end, notice
that β∗1(r1)(1 − â)+ = β∗1(r1)(1 − α̂1)+ = r1 − β∗1(r1)ε < r1 thus (â, α̂1, α̂2) ∈ O1
(since both source–relay and source–destination links are in outage). In addition,
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β∗2(r2)(1 − â)+ = β∗2(r2)(1 − α̂1)+ = β∗2(r2) r1
β∗1 (r1) − β∗2(r2)ε > r2 for sufficiently

small ε. This is because

r

β∗(r) =
{

3r
2 if r < 1

3 ,
2r

1+r otherwise.

is a monotonically increasing function of r, and thus for any r1 > r2 we have r1
β∗1 (r1) >

r2
β∗2 (r2) with strict inequality. Thus (â, α̂1, α̂2) ∈ Ō2 and (7.3) holds. Finally, letting

ε ↓ 0 we conclude that Pr(I = 2) .= SNR−D
DF
O (r1) and consequently d2 = b2r2 +

DDF
O (r1). Continuing this line of arguments leads to the claimed results.

7.C Proof of Proposition 7.4

Let the relay and destination fully cooperate, resulting in a 1× 2 multiple-receive
antenna channel. Let a1, a2 be the two channel gains. Let α1 = − log |a1|2/ log SNR
and α2 = − log |a2|2/ log SNR. The feedback index (thus the transmit power) only
depends on a1 and not on a2. Thus we have supα1∈Rk {pk − α} ≤ 1 where Rk is
the kth quantization region. Then similarly to Appendix 7.A

Rk = {α1 : pk − 1 ≤ α1 < pk+1 − 1}.

The code rate associated with the channel state α1, α2 has the same multiplexing
gain as log

(
1 + SNRpk−α1 + SNRpk−α2

)
. Thus the distortion exponent over Rk is

dk = inf
α1∈Rk,α2≥0

bmax ((pk − α1), (pk − α2), 0) + α1 + α2.

We begin with RK where it is readily found that dK = 2pK . For k < K, it can be
shown that

dk =
{

2pk if pk < pk+1 − 1,
b(pk − pk+1 + 1) + 2(pk+1 − 1) if pk ≥ pk+1 − 1.

Again the case dk = 2pk < 2pK is not of interest. Thus we end up with the maximin
problem

d̃UB–K
PC (b) = sup

p2,...,pK

min (2pK , bp1 − (b− 2)p2 + b− 2, . . . ,

bpK−1 − (b− 2)pK + b− 2)
s.t. p1 > p2 − 1, . . . , pK−1 > pK − 1, pK > . . . > p2 > p1 = 1.

This is again a convex optimization problem. We will find the intersection of all
the hyperplanes and verify that it satisfies all the linear constraints.
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Let d1 = · · · = dK Δ= d∗. We have

pK = d
∗

2 ,

pK−1 = d
∗

b

(
1 + b− 2

2

)
− b− 2
b
,

· · ·

pK−k = d
∗

b

(
1 + b− 2

b
+ · · ·+

(
b− 2
b

)k−1

+ (b− 2)k

2bk−1

)
−
k∑
i=1

(
b− 2
b

)i
,

· · ·

p1 = d
∗

b

(
1− ( b−2

b

)K−1

2
b

+ (b− 2)K−1

2bK−2

)
− b− 2
b

1− ( b−2
b

)K−1

2
b

But p1 = 1 thus we obtain

d∗ =
1 +

(b−2)
(

1−( b−2
b )K−1)

2
1−( b−2

b )K−1

2 + (b−2)K−1

2bK−1

= 2 + (b− 2)
(

1−
(
b− 2
b

)K−1
)

= b− (b− 2)K

bK−1 .

Again all the linear constraints are fulfilled with this d∗ and thus d̃UB–K
PC (b) = d∗.

7.D Proof of Proposition 7.5

We only present the orthogonal case. Let pk be the SNR exponent of the power
levels, i.e. Pk

.= SNRpk . Denote dk as the distortion exponent over the quantization
Rk (the set of all channel state tuples that are mapped to I = k).

We have Pr(I = 1) .= SNR0 and thus d1 = br1. Then

Pr(I = 2) .= SNR−DSISO(r1,1).

Herein DSISO(r, p) = p − r is the diversity gain of a SISO channel corresponding
to a multiplexing gain r and a transmit power SNRp. We then obtain d2 = br2 +
DSISO(r1, 1) = br2 + 1− r1. The power applied to R2 thus have the SNR exponent
p2 = 1+DSISO(r1, 1) = 1+1−r1 = 2−r1. Then Pr(I = 3) .= SNR−DSISO(r2,2−r1) =
SNR−(2−r1−r2). We next have d3 = br3 + 2− r1 − r2.

Repeating the above arguments finally leads to dk = brk+k−1−r1−· · ·−rk−1,
k = 1, . . . ,K − 1. Notice that due to construction, an outage event (the event that
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the channel does not support the code rate) can only occur when I = K. Over the
region RK we have

dK = min(brK +K − 1− r1 − · · · − rK−1,D
DF
O (rK , pK)).

The optimization finding d̃KO–PC(b) can thus be written as

sup
1>r1>...>rK>0

min (br1, br2 + 1− r1, br3 + 2− r1 − r2, . . . ,

brK +K − 1− r1 − · · · − rK−1,D
DF
O (rK ,K − r1 − . . .− rK−1)

)
Note that this maximin is not a convex problem. However, since we are only

interested in an achievable distortion exponent, we can choose r1, . . . , rK to be the
solutions to

d∗ Δ= DDF
O (rK ,K − r1 − . . .− rK−1) = br1 = br2 + 1− r1 = · · ·

= brK +K − 1− r1 − · · · − rK−1.

That is we find the point where all the terms are equal (and verify that such a point
exists). From brk−1 + k − 2 − r1 − · · · − rk−2 = brk + k − 1 − r1 − · · · − rk−1 we
obtain

(1 + b)rk−1 = 1 + brk.
This leads to the recursive relation

rk = 1 + b
b
rk−1 − 1

b

with the initial value r1 = d∗
b . This recursion then gives

rk = 1−
(

1 + b
b

)k−1
b− d∗
b
. (7.4)

We now consider the case when rK < pK3 = K−r1−...−rK−1
3 . From Lemma 7.1,

in this case we have DDF
O (rk,K − r1− . . .− rK−1) = 2(K − r1− . . .− rK−1)− 3rK .

From (7.4) we have

K−1∑
i=1
ri = K − 1−

( 1+b
b

)K−1 − 1
1
b

b− d∗
b

= K − 1−
[(

1 + b
b

)K−1

− 1
]

(b− d∗).

This leads to
d∗ = 2(K − r1 − . . .− rK−1)− 3rK

= 2
(

1 +
[(

1 + b
b

)K−1

− 1
]

(b− d∗)
)
− 3
(

1−
(

1 + b
b

)K−1
b− d∗
b

)

= −1 + (b− d∗)
[

2
(

1 + b
b

)K−1

− 2 + 3
b

(
1 + b
b

)K−1
]
.
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Finally we obtain

d∗ =
(2b+ 3)

( 1+b
b

)K−1 − 2b− 1(
2 + 3

b

) ( 1+b
b

)K−1 − 1
.

Recall that this happens iff rK < pK3 = K−r1−...−rK−1
3 , or

3− 3
(

1 + b
b

)K−1
b− d∗
b
< 1 +

[(
1 + b
b

)K−1

− 1
]

(b− d∗)

⇔ 2 < (b− d∗)
[(

1 + b
b

)K−1

− 1 + 3
b

(
1 + b
b

)K−1
]

⇔ 2 <
(
b− (2b+ 3)

( 1+b
b

)K−1 − 2b− 1(
2 + 3

b

) ( 1+b
b

)K−1 − 1

)[(
1 + 3
b

)(
1 + b
b

)K−1

− 1
]

⇔ (b2 − 3
)(1 + b

b

)K−1

> b2 − b.

We now consider the remaining case rK ≥ pK3 , when Lemma 7.1 yields

d∗ = DDF
O (rK , pK) = 2pK(pK − rK)

pK + rK
.

Inserting (7.4) into the above expression gives

d∗
(

2 +
[
b− 1
b

(
1 + b
b

)K−1

− 1
]

(b− d∗)
)

= 2
(

1 +
[(

1 + b
b

)K−1

− 1
]

(b− d∗)
)[(

1 + b
b

)K
− 1
]

(b− d∗).
(7.5)

This results in a quadratic equation of the form f(d∗) = 0 where f(d∗) Δ= Ad∗2 +
Bd∗ + C with the coefficients A > 0, B, and C are given by Proposition 7.5. Us-
ing (7.5), we can readily verify that f(b) < 0 and f(0) > 0, ∀b,K so that the
equation f(d∗) = 0 has two real roots d∗1, d∗2 satisfying 0 < d∗1 < b < d∗2. This gives
the claimed result.



Chapter 8

Conclusion

8.1 Concluding Remarks

In this thesis, we have investigated the roles of partial CSIT in slow fading channels,
including multiple-antenna and relaying systems. We considered many different
performance metrics, leading to the introduction of radically different transmis-
sion schemes. These schemes may utilize partial CSIT to adapt their transmission
power, rate and even the time spent on each transmission phase. Analytical perfor-
mance bounds are derived in each case, suggesting that very promising performance
improvement may be achieved even if the CSIT is heavily quantized.

One important remark is that the impact of partial CSIT on fast and slow
fading channels can be strikingly different, even if the performance criteria are
quite similar. For instance, as we have seen from the study of expected rate,
a couple of feedback bits can improve the expected rate over a scalar slow fading
channel significantly. In contrast, the influence of quantized feedback on the ergodic
capacity of scalar fast fading channels is typically very small, especially at moderate
and high SNR’s.

Another conclusion is the significant influence of rate and power adaptation over
slow fading channels, even with coarsely quantized CSIT. In particular, with intel-
ligent adaptation based on partial CSIT, the frame error probability of multiple-
antenna and relaying systems can be made to decay extremely fast at high SNR.
Remarkably, this improvement in reliability does not require any sacrifice in the
asymptotic throughput. In relaying systems, we can additionally control the frac-
tion of channel uses allocated to different transmission phases, which also leads to
significant performance gains. This conclusion holds even when we transmit an ana-
log source over slow fading channels and take the decaying rate of the end–to–end
expected distortion as performance measure.
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8.2 Future Work

Of course, many interesting questions still need answering, especially in relaying
systems. A particularly intriguing problem is to find relaying schemes that are D–
M tradeoff optimal when the source and the relay have absolutely no CSIT. Recall
that with full CSIT, it is known that compress–and–forward relaying is optimal
in the D–M tradeoff sense. Generalizing the results in the thesis to multiple-relay
systems with multiple-antenna nodes is also an important extension.

Designing and analyzing more sophisticated joint source–channel coding schemes
that can achieve the partial-CSIT upper bounds derived in the thesis is an interest-
ing open problem. A better understanding of the effects of finite-length codes on
the end–to–end distortion exponent also requires more work. We may also think
of an investigation on the distortion outage, i.e., the event that the end–to–end
distortion drops below an acceptable threshold.

A critical problem for practical wireless communication systems that adapt their
resources based on CSIT is the processing delay and the presence of noise in the
feedback link. Within the scope of this thesis, we have not paid enough attention to
these effects. Further work is needed before we can fully understand the detrimental
effects that delayed and noisy feedback may cause to the D–M tradeoff and the
distortion exponent–bandwidth ratio tradeoff presented in the thesis. Designing
intelligent schemes that are robust to noisy and delayed feedback would also be of
practical relevance.

Apart from the expected rate maximization problem, we have mostly focused
on the asymptotically high SNR regime. While this asymptotic analysis provides a
“clean” and compact characterization, thus giving useful insight into complicated
problems, it does not necessarily give a complete picture about the system perfor-
mance. In particular, the D–M tradeoff (as well as the distortion exponent analysis)
totally ignores any constant gains in SNR, which are definitely important for any
practical communication systems. Therefore, a finer characterization of the system
performance in a more practical range of the SNR would be a worthwhile and useful
direction for future work.
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