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Abstract

This thesis treats the problem of source coding in situations where the en-
coded data is subject to errors. The typical scenario is a communication
system, where source data such as speech or images should be transmitted
from one point to another. A problem is that most communication systems
introduce some sort of error in the transmission. A wireless communica-
tion link is prone to introduce individual bit errors, while in a packet based
network, such as the Internet, packet losses are the main source of error.

The traditional approach to this problem is to add error correcting codes
on top of the encoded source data, or to employ some scheme for retransmis-
sion of lost or corrupted data. The source coding problem is then treated un-
der the assumption that all data that is transmitted from the source encoder
reaches the source decoder on the receiving end without any errors. This
thesis takes another approach to the problem and treats source and channel
coding jointly under the assumption that there is some knowledge about the
channel that will be used for transmission. Such joint source–channel cod-
ing schemes have potential benefits over the traditional separated approach.
More specifically, joint source–channel coding can typically achieve better
performance using shorter codes than the separated approach. This is useful
in scenarios with constraints on the delay of the system.

Two different flavors of joint source–channel coding are treated in this
thesis; multiple description coding and channel optimized vector quantiza-
tion. Channel optimized vector quantization is a technique to directly in-
corporate knowledge about the channel into the source coder. This thesis
contributes to the field by using channel optimized vector quantization in
a couple of new scenarios. Multiple description coding is the concept of
encoding a source using several different descriptions in order to provide ro-
bustness in systems with losses in the transmission. One contribution of this
thesis is an improvement to an existing multiple description coding scheme
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and another contribution is to put multiple description coding in the con-
text of channel optimized vector quantization. The thesis also presents a
simple image coder which is used to evaluate some of the results on channel
optimized vector quantization.
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Chapter 1

Introduction

Today, anywhere we go, any time of day, we are surrounded by electronic
devices of various forms and shapes that we use in our daily life. Dig-
ital cameras, cellular phones, MP3-players, digital television, IP-phones,
videostreaming, etc., are examples of applications that have become more
or less commonplace. What these applications all have in common, is that
they rely on techniques from the area of information theory, an area that
was invented by Shannon in 1948 [37]. By tradition, information theory is
divided into the areas of source coding and channel coding. However, the
trend towards using packet based data networks, such as the Internet, for
real-time applications, such as voice over IP, has fueled a great interest in
the area of joint source–channel coding.

The topic of this thesis is joint source–channel coding, and as the ti-
tle implies, the focus is on designing source coders that are robust against
transmission errors. Image coding is used as an example application, but the
teqniques described are not necessarily limited to image coding.

The first section of this chapter gives an introduction to the basic ele-
ments of information theory. The second section provides an outline of the
thesis, together with the scientific contributions of this work.

1.1 Source Coding

Source coding comes in two different flavours, lossless and lossy. In both
cases the aim is to encode a source into a compact digital representation
that can be used for storage or transmission.
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2 CHAPTER 1. INTRODUCTION

Lossless source coding applies to discrete sources, where it is important
that the encoded source can be decoded completely without errors. The
objective is usually to represent, or compress, the source, using as few bits
as possible while still being uniquely decodable into a perfect replica of the
source. Lossless coding is what is used, e.g. in zip-compression of computer
files. Lossless coding works by removing statistical dependencies from the
source. As a toy example, it is easier to say “ten ones”, instead of repeating
the word “one” ten times to encode the sequence {1, 1, 1, 1, 1, 1, 1, 1, 1, 1}. The
excess information that is removed from the source during the encoding, is
termed redundancy.

Lossy source coding applies when the need to be able to decode an exact
copy can be replaced by a fidelity criterion. Instead of an exact copy of
the source, the decoder produces an estimate and the fidelity criterion is
a measure of the maximum acceptable deviation between the estimate and
the source. The source can either be discrete or continuous-valued. Digital
encoding of continuous-valued sources is inherently lossy, since it requires
quantization of the source into a discrete representation.

This thesis only treats the case of lossy compression. The remainder of
this section presents the basic elements of lossy source coding.

1.1.1 Rate–Distortion Theory

In this sub-section we introduce the very basics of a fundamental theory for
source coding subject to a fidelity criterion [38]. This theory is often called
rate–distortion theory [5].

Suppose we want to code a sequence Xk
1 = (X1, . . . , Xk) ∈ R

k of samples
from a continuous-amplitude stationary and ergodic random process {Xn},
or a source, into a finite-resolution representation

X̂k
1 ∈ {Xk

1 (0), . . . , Xk
1 (M − 1)}.

That is, each possible value for the sequence Xk
1 is assigned a unique rep-

resentation X̂k
1 from a set of M possible sequences. Let the rate of the

representation be

R =
log M

k
(1.1)

(bits per source sample) where ’log’ is the binary logarithm. Also, define
a (per letter) distortion measure d : R

2 → R+, that to each pair X and
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X̂ assigns a non-negative number d(X, X̂), interpreted as the “distance” or
“measure of dissimilarity” between X and X̂. Furthermore, define the se-
quence distortion dk as

dk(X
k
1 , X̂k

1 ) =
1

k

k
∑

n=1

d(Xn, X̂n). (1.2)

That is, dk is the average distance or distortion, per discrete time-instant n,
between Xk

1 and X̂k
1 . Note that for a random source sequence Xk

1 , producing
a random reproduction sequence X̂k

1 , the sequence distortion dk is a random
variable. Therefore we also define the average (sequence) distortion between
Xk

1 and X̂k
1 as

d̄ = E[dk(X
k
1 , X̂k

1 )]. (1.3)

Now, a fundamentally important problem is to study the tradeoff be-
tween a low average distortion and a low rate R. This problem is important
because in practical applications the process {Xn} models the random or
unpredictable generation of information from a source, for example, samples
from a speech signal, or as studied in this thesis an image. Also, the number
R measures the number of bits per source sample that are allocated to code
a source sequence into a digital representation, for transmission or storage.
Hence, the rate R is tightly related to the bandwidth or storage space that
needs to be allocated.

Rate–distortion theory was discovered by Shannon in [37, 38], and this
theory characterizes the fundamental tradeoff between rate and distortion.
More precisely, for any stationary and ergodic source {Xn} there exists a
rate–distortion function R(D), that measures the minimum possible rate
R = R(D) that can support an average distortion D. This result can be
formalized as follows. Say that a rate R is achievable at distortion D, if it
is possible to get d̄ ≤ D at the rate R. Then, the rate distortion function is
defined as

R(D) = inf{R : R is achievable at distortion D}. (1.4)

It is a rather remarkable fact that R(D) can actually be computed, at least
in principle, for any stationary and ergodic source model. Specializing, for
simplicity, on i.i.d sources, that is, assuming the samples Xℓ and Xm are
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independent for ℓ 6= m, and equally distributed with probability density
function (pdf) f , the rate–distortion function can be computed as

R(D) = min I(X; X̂) (1.5)

where the minimum is over all conditional distributions f(x̂|x), subject to

∫ ∞

−∞

∫ ∞

−∞
d(x, x̂)f(x̂|x)f(x)dxdx̂ ≤ D. (1.6)

Also, in (1.5) the entity ’I(X; X̂)’ is the mutual information between X and
X̂ assuming the joint distribution f(x, x̂) = f(x̂|x)f(x) for X and X̂. That
is,

I(X; X̂) =

∫ ∞

−∞
f(x)

{
∫ ∞

−∞
f(x̂|x) log

f(x̂|x)

f(x̂)
dx̂

}

dx (1.7)

where

f(x̂) =

∫ ∞

−∞
f(x̂|x)f(x)dx.

Through these expressions, we see how R(D) depends on f(x) via the mini-
mization over f(x̂|x) in (1.5).

For a few marginal pdf’s f(x) there exist closed form expressions for
R(D). For example, for a zero-mean Gaussian f(x) with

∫∞
−∞ x2f(x) = σ2,

and using the squared Euclidian distance as the distortion measure, we get

R(D) =
1

2
log

σ2

D
(1.8)

for all D ∈ (0, σ2]. Note that R(σ2) = 0, since the average distortion d̄ = σ2

can be achieved by always reproducing to X̂n = 0, without transmitting
or storing any information about the source sequence. The rate distortion
function for the i.i.d Gaussian source is shown in Figure 1.1.

Finally, before closing, we remark that R(D) is always a convex function,
and can be inverted to define the distortion–rate function D(R) = R−1(D).
The function D(R) characterizes the minimum possible average distortion
at rate R.
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0.2 0.4 0.6 0.8 1

1

2

3

4

5 R

D

Figure 1.1. Rate–distortion function for an i.i.d. Gaussian source with
variance σ2 = 1.

1.1.2 Optimal Bit Allocation

Suppose that we have a set of k independent, continuous-valued random vari-
ables, X1, . . . , Xk, that we wish to encode separately, subject to a constraint
on the total bit budget. Assume that each Xi is associated with a rate–
distortion function Ri(Di) as discussed in the previous section. Then the
problem of optimal bit allocation is that of finding a set of rates {R1, . . . , Rk}
such that D =

∑

Di is minimized, while satisfying the constraint that
∑

Ri ≤ R, where R is the total allowed bit budget.

Using the method of Lagrange multipliers, the optimization problem can
be written as

minimize L =
∑

Di + λ
∑

Ri (1.9)

where λ is a positive Lagrange multiplier. Using the distortion–rate function
and setting the partial derivatives equal to zero gives

∂L

∂Ri
=

∂Di(Ri)

∂Ri
+ λ = 0. (1.10)

This means that the optimal solution to the bit allocation problem must
satisfy

∂Di(Ri)

∂Ri
= −λ (1.11)

for all i = 0 . . . k. Uniqueness follows from the convexity of the rate–
distortion curves. When solving (1.11), the value of λ should be selected
such that

∑

Ri ≤ R is satisfied.
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The condition (1.11) is called the equal slope condition and is a quite
intuitive result. Consider the problem of allocating rate for two random
variables. Assuming that R = R1 + R2 is fulfilled, but the slope of D1(R1)
is steeper than the slope of D2(R2). Then adding a small amount of rate to
R1 and removing the same amount of rate from R2 gives a large decrease of
distortion in D1, but a small increase in D2. Thus, the overall performance is
improved. This can be repeated until the slopes are equal, and it is intuitive
that the overall performance can not improve from that point.

1.1.3 Vector Quantization

Here we give a basic introduction to block source coding subject to a distor-
tion criterion or vector quantization (VQ). Vector quantization is a general
principle for implementing codes that can achieve close to the rate–distortion
bounds discussed in Section 1.1.1.

Let X ∈ R
k be a k-dimensional random vector,

X =
[

X1 X2 · · · Xk

]T

drawn according to a pdf fX(x). Similarly as in Section 1.1.1, we consider
the problem of representing, or quantizing, the possible values for X using
a finite set of vectors

C = {c0, . . . , cM−1}.

The set C is called the codebook and its members are called codevectors or
codwords. As illustrated in Figure 1.2, mapping a value x into a codeword
ci ∈ C can be described in two steps. Letting

x i ci

encoder decoder

Figure 1.2. Block diagram of vector quantization

IM = {0, . . . , M − 1},

the encoder, ε : R
k → IM takes a realization x for X and maps it into an

index i ∈ IM . Then the decoder δ : IM → R
k looks at i and produces the

ith codeword ci in the codebook.
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Encoding can be described by the set of encoder regions

P = {S0, . . . ,SM−1}. (1.12)

The encoder regions form a partition of R
k, that is, R

k =
⋃M−1

i=0 Si and
Si

⋂

Sj is empty for i 6= j. Based on the encoder regions, encoding is per-
formed as

X ∈ Si ⇒ I = i. (1.13)

An example of a vector quantizer is illustrated in Figure 1.3. The solid lines
represent the encoder partitioning and each cell is assigned to a unique index.
The dots correspond to the reconstruction vectors of the decoder codebook.

Designing the encoder, via its associated encoder regions, and the decoder
codebook is a special case of the more general design of channel-optimized
VQ’s discussed in Section 2.2.

−3 −2 −1 0 1 2 3
−3

−2

−1

0

1

2

3

Figure 1.3. A 6 bit 2-dimensional VQ trained for uncorrelated Gaussian
data with unit variance. Lines represent decision boundaries and dots rep-
resent decoder codewords.
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1.1.4 Transform Coding

The optimization procedure in Section 1.1.2 gives the optimal solution only
if there is no correlation between the random variables. With correlation
present, individual encoding leads to redundancy between the encoded com-
ponents. On the other hand, vector quantization, as described in the previous
section, always distributes the available rate optimally over the k dimensions,
regardless of the shape of the joint distribution of the components. However,
the complexity of vector quantization grows exponentially with the number
of dimensions k, which makes it impractical for sources with many compo-
nents. This section describes transform coding, a useful approach when there
is correlation between a large number of random variables that we wish to
encode.

Assume as in Section 1.1.3 that we have a vector X ∈ R
k consisting of

correlated input samples. The idea is then to apply a linear transformation
that takes the input vector X and returns a new vector Y , also with k com-
ponents, often referred to as transform coefficients. With a suitable choice
of the transform, the transform coefficients should be much less correlated
than the original input samples. An example is given in Figure 1.4, which
illustrates the principle for two dimensional correlated input.

The example shows a large number of realizations of two Gaussian ran-
dom variables, X1 and X2, each with unit variance, σ2

X1
= σ2

X2
= 1, and

with covariance E [X1X2] = 0.9. After the transformation we get two new
Gaussian variables, Y1 and Y2, with variances σ2

Y1
= 1.9 and σ2

Y2
= 0.1,

with zero covariance E [Y1Y2] = 0. Using equations (1.8) and (1.11), while
keeping a fixed total distortion of D = 2−5, it can be shown that the lowest
achievable rate when encoding X1 and X2 separately is R = 6 bits, while
the lowest achievable rate when encoding Y1 and Y2 separately is R ≈ 4.8
bits. The improvement corresponds to the amount of statistical redundancy
that was removed by the transform.

Note that in the two dimensional example, removing correlation corre-
sponds to a rotation of the coordinate axes, which is an operation that can be
implemented as a linear transform. In addition, the transform is orthogonal,
since the new coordinate system has orthogonal coordinates.

In general, for an arbitrary vector dimension k, an orthogonal transform
can be defined as

y = Tx (1.14)
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0
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−5 −4 −3 −2 −1 0 1 2 3 4 5
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−4

−3

−2

−1

0

1

2

3

4

5

Figure 1.4. Illustrating the principle of transform coding

where T is a real-valued k×k matrix satisfying the orthogonality constraint

T T = T−1 (1.15)

or in the complex-valued case

T ∗ = T−1 (1.16)

where T ∗ denotes the conjugate transpose of T .

Orthogonality of the transform is not an absolute requirement, but has
important consequences on the quantization of transform coefficients. The
aim of transform coding is to take a vector x, transform it into y, and then
quantize the transform coefficients to obtain ŷ. Then to reconstruct the
source, x̂ is formed by taking the inverse transform x̂ = T−1ŷ. This has
the side effect that the quantization error y − ŷ is multiplied by the inverse
transform T−1. Thus, the overall distortion is dependent on the transform
and obviously not all invertible matrices T are equally suitable for use in
transform coding.

Choosing an orthogonal transform, i.e. a transform matrix that satis-
fies (1.15), has the effect that distances are preserved by the transform. In
other words, if y1 = Tx1 and y2 = Tx2, then

‖x2 − x1‖ = ‖y2 − y1‖ . (1.17)
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To see this, let x = x2 − x1 and y = y2 − y1, so that y = Tx. Then

‖y‖2 = yT y = xT T T Tx = ‖x‖2 .

This means that any distortion measure that is based on the distance between
two points is preserved by the transform. This distance preserving property
is sometimes also referred to as the conservation of energy property. This is
a very useful property in transform coding, since the overall distortion can
be described directly from transformed data. The decorrelation property,
together with a preserved distortion criterion, makes transform coefficients
from an orthogonal transform suitable for separate encoding as described in
Section 1.1.2.

1.2 Contributions and Outline

The thesis contributes to the area of robust source coding by two new appli-
cations of channel optimized vector quantization (COVQ), an image coder
that can benefit from these methods, and by an improvement of an existing
multiple description coding scheme. The remainder of this section gives an
overview of the outline and points out the contributions of each chapter.

1.2.1 Chapter 2

Chapter 2 contains an overview of important topics in the area of robust
source coding. This chapter does not present any new contributions, but is
pivotal to the rest of the thesis. First, the concept of joint source–channel
coding is explained and motivated. Then, the technique of channel optimized
vector quantization is described in detail. Finally, the concepts of index
assignment and multiple description coding are described.

1.2.2 Chapter 3

This chapter is related to, but a bit different from the rest of the thesis. It is
based on joint work between the author of this thesis and Niklas Wernersson
[51]1.

1The author of this thesis has changed his last name from Sköllermo to Andersson, so
in the reference list, T. Sköllermo is equivalent to T. Andersson
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The contribution of this chapter consists of a new approach to perform
quantization in a techique called multiple description coding using pairwise
correlating transforms, that was originally proposed in [50]. The new tech-
nique that is explained in this chapter can be used to reduce the quantization
distortion of this multiple description coding scheme.

1.2.3 Chapter 4

The contribution of this chapter is a new image coder [44], which is used to
evaluate the robust source coding techniques in this thesis. The image coder
is deliberately kept as simple as possible in order to be able to benefit from
the robust quantization framework.

First the structure of the image coder is presented. It consists of a
subband transform and a vector quantizer for each subband. Section 4.1
describes how the subband transform is constructed from filter banks, and
how vectors are selected from each subband.

Next, a model for the probability density functions of the subband vectors
is presented. The model relies on assumptions about self similarity of the
transform, and is implemented as Gaussian mixture densities.

Finally, the pieces of the image coder are put together and some image
examples are given.

1.2.4 Chapter 5

In this chapter we treat situations where both bit errors and erasures are in-
troduced by the channel. Such situations may occur in packet data networks,
where part of the transmission is wireless. The contributions consist of con-
structing a channel model for this type of situation and designing COVQs
to operate over these channels [44].

First, the channel model is motivated and presented. Next, it is de-
scribed how to implement COVQ for this channel. Then the scheme is im-
plemented using the image coder of Chapter 4. Finally, the proposed scheme
is compared with using standard VQ, designed without channel knowledge,
combined with forward error correction by use of BCH codes.

1.2.5 Chapter 6

Previous chapters of the thesis have discussed channel optimized vector quan-
tization and multiple description coding as two separate approaches to joint
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source–channel coding. This chapter contributes by joining the two fields by
using the COVQ framework to construct multiple description codes [2].

The chapter starts by defining a channel model to describe the multiple
description coding problem. Next, COVQ and index assignment for the
multiple description channel model is discussed. Finally, experimental results
are presented, which include a comparison between the proposed method and
the use of Reed-Solomon codes, and includes some image examples.

1.2.6 Chapter 7

This chapter summarizes the thesis and presents some suggestions of future
research.



Chapter 2

Joint Source�Channel Coding

Traditional communication systems separates the two problems of source
coding (quantization and/or compression) and channel coding (error protec-
tion). The separated approach often simplifies system design and is backed
up by Shannon’s famous source–channel separation theorem that states that
there is no loss in treating the two problems separately. In this chapter we
investigate another approach, namely to perform compression and error pro-
tection jointly as a single operation. The ideas and methods described in
this chapter are by no means novel, and should not be considered as con-
tributions of the thesis. Still, the topic is so central for the thesis that it is
worthy a chapter of its own.

First, the source–channel separation theorem is stated more precisely,
together with some arguments about its applicability. Then the fundamen-
tals of channel optimized vector quantization are presented in detail. Next,
follows a discussion on the problem of index assignment. And finally the
idea of multiple description coding is presented.

2.1 Source–Channel Separation Theorem

Here we discuss the fundamental rationale for splitting the problem of digital
transmission of analog source data into separate source coding and channel
coding, and we discuss under what assumptions such separation can be as-
sumed to be without loss. We focus on discrete-time continuous-amplitude
stationary and ergodic sources {Xn}, like those discussed in Section 1.1.1.
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Let the source {Xn} have distortion–rate function D(R). Consider en-
coding k-dimensional sequences from the source at rate R using vector quan-
tization, that is,

X = X
(n+1)k
nk+1 , n = 0, 1, . . . (2.1)

is encoded into

i = ε(X) ∈ IM (2.2)

by the encoder of a k-dimensional VQ. Assume that M = 2kR is an integer
(kR is an integer), then the index i can be described using kR bits. Assume
that the kR bits describing i are transmitted over a noisy binary channel,
by using the channel ρkR times (where ρ ≥ 1 is chosen such that ρkR is
an integer). Since the channel is noisy, received bits need not be equal to
transmitted bits. Let i′ ∈ IM ′ , where M ′ = 2ρkR, correspond to the bits
that are transmitted to represent the information-carrying index i. Since
M ′ ≥ M , i′ is a redundant description of i, and the mapping from i to i′ is a
channel code. That is, for each possible index in IM there is a corresponding
channel codeword/index in IM ′ , and some of the indices in the larger set IM ′

are never transmitted. Let α : IM → IM ′ describe the channel code, that is,
i′ = α(i).

For a certain value of i, mapped into i′, let J ′ ∈ IM ′ be the received
ρkR-bit (random) index. Since the channel is noisy Pr(J ′ 6= I ′) > 0. At
the receiver side, the channel decoder β maps a realization j′ of the received
index J ′ into the most likely information carrying index in IM . Letting the
chosen estimate for the most likely i be denoted j, that is, j = β(j′), the
VQ decoder produces the source vector estimate X̂ = cj , the j′th codeword
in the VQ codebook.

Let

Pe = Pr(J 6= I) =
M−1
∑

i=0

Pr(J 6= i|I = i)P (i) (2.3)

be the average error probability in the channel encoding, transmission and
channel decoding. Now, Shannon’s channel coding theorem [9] states that,
as long as 1/ρ < C ≤ 1, where C denotes the channel capacity of the
binary channel [9], there exists a channel encoder α and a channel decoder
β such that Pe is arbitrarily small. More precisely, for a fixed source coding
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rate R and ρ, subject to 1/ρ < C, the error probability Pe can be forced
below any ǫ > 0 by choosing a sufficiently large encoding dimension k, and
hence also a large resolution M since R is fixed. Furthermore, a (very large)
channel code (α, β) that can achieve Pe < ǫ can be designed without using
any knowledge about the source {Xn}, by assuming that the possible I’s
are equally likely. The channel capacity C depends only on the random
properties of the transmission, and it sets an upper bound on the number
of source bits per transmitted channel bit, 1/ρ, for reliable communication.
To set a relative time-reference between the source producing samples and
transmitting bits on the channel, assume that the binary channel can be used
R̄ times per source sample. Since at most a fraction C of the bits transmitted
on the channel can be information bits from the VQ encoder, the highest
possible source coding rate, in bits per source sample, at which it is still
possible to transmit without channel errors, is R = R̄C. Consequently the
lowest possible distortion is D(R̄C).

It can be proved that the bound D(R̄C) is universal: No matter how
the source samples are processed before transmission, it is not possible to
achieve a lower distortion, and the bound is determined by R̄ and C, which
are in turn set by nature. The most important point to make here, is that
the optimal distortion D(R̄C) can be achieved by separate design and im-
plementation of the source code (mapping X to i) and the channel code
(mapping i to i′). However, this separation is in general without loss only in
the limit of k → ∞. Under delay constraints that prevent the use of a very
large dimension k, the separation into source and channel coding can not be
assumed to be without loss. In fact, letting the VQ encoder operate on X to
produce the higher-resolution description i′ directly is in general better than
first encoding into i and then using channel encoding to produce i′. This
will be discussed further in the following section, and is a central motivation
behind the work in this thesis.

A traditional model based on separate source and channel coding is il-
lustrated in Figure 2.1. Here, a vector X is first mapped by a VQ into an
index, and this index is then encoded by the encoder, α, of a channel code.
In contrast, a system based on joint source–channel coding is illustrated in
Figure 2.2. In this system, the vector X is mapped directly into an index
for transmission over the channel, by the joint source–channel encoder ε.
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X X̂
ε α channel β δ

Figure 2.1. Traditional model of a communication system.

X X̂
ε channel δ

Figure 2.2. Joint source–channel coding model.

2.2 Channel Optimized Vector Quantization

Channel optimized vector quantization (COVQ) is a technique for designing
error robust quantizers and originates from work done in the 1980–90’s. Gen-
eral results for COVQ are well known [12,27,53], and the basics are repeated
in this section.

The principle of channel optimized quantization was first explicitly sug-
gested for scalar quantization in [28]. Another, earlier, reference present-
ing a strongly related framework is [15]. Farvardin and Vaishampayan ex-
tended [28] in several directions, among other things to include the index
assignment problem in the design. The first work reported on vector quan-
tizer design for noisy channels is [27]. Another early reference is [53]. The
papers that are most often cited for introducing COVQ are however [12,14].
The COVQ concept was generalized in different ways by Farvardin and his
students in, for example, [32, 33, 47]. Channel optimized quantization has
been applied to image coding, for example in [7,26,40,46]. The papers [7,46]
used channel optimized scalar quantization, while [40] used COVQ and [26]
trellis coded quantization.

2.2.1 COVQ Basics

Recall from Section 1.1.3 that a vector quantizer is defined by two ba-
sic operations, the encoder and decoder. The encoder, ε(·), transforms
a source vector, X ∈ R

k, into a quantization index, I = ε(X), I ∈
{0, 1, . . . , M − 1}. The encoder operation is defined by a partitioning, P =
{S0,S1, . . . ,SM−1}, of R

k such that ε(x) = i, iff x ∈ Si. The decoder,
δ(·), is a mapping from a finite set of integers to an associated set of vec-
tors, Y = δ(J), J ∈ {0, 1, . . . , N − 1}. The set of reconstruction vectors,
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C = {y0, y1, . . . ,yN−1}, yj ∈ R
k, is called the decoder codebook. Note that

the only difference so far from the ordinary VQ described in Section 1.1.3 is
that the size N of the decoder alphabet now is allowed to be different from
the size M of the encoder alphabet.

Suppose that the index I = ε(X) is sent over a noisy channel, and
that J is observed at the receiver. Assume also that there is a distortion
measure d(x, y) ≥ 0 associated with mapping an input vector, x, into an
output vector, y. Then the objective is to minimize the expected distortion
D(P, C) = E [d(X, Y )] , where the expectation is to be taken over both the
source and the channel distributions. Unfortunately, no closed form solution
to this optimization problem exists. Just as in the case of ordinary VQ, we
have to treat encoding and decoding separately.

Let P (j|i) = Pr(J = j|I = i) denote the transition probabilities of the
channel. Then the distortion can be written

D(P, C) =

∫

x∈Rk

fX(x)
N−1
∑

j=0

P (j|ε(x))d(x, yj)dx. (2.4)

If the decoder codebook {yj}
N−1
j=0 is fixed, then it is clear from (2.4), that

D(P) is minimized if
∑N−1

j=0 P (j|ε(x))d(x, yj) is minimized for each x ∈ R
k,

since fX(x) and all terms in the sum are positive. In other words the optimal
encoder can be written

ε(x) = arg min
i

N−1
∑

j=0

P (j|i)d(x, yj) (2.5)

and the encoder partitioning P = {S0,S1, . . . ,SM−1} is given by

Si =







x :
N−1
∑

j=0

P (j|i)d(x, yj)≤
N−1
∑

j=0

P (j|i′)d(x, yj), ∀i′ 6= i







. (2.6)

In a similar way, an optimal solution for the decoder can be found. By
fixing the encoder the probability Pr(J = j) of observing a certain channel
output is fixed, and the expected distortion with respect to the decoder
codebook can be written

D(C) = E [d(X, Y )] =

N−1
∑

i=0

Pr(J = j)E [d(X, δ(j))|J = j] . (2.7)
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It is clear that D(P) can be minimized by minimizing E [d(X, δ(j))|J = j]
separately for each j, i.e.

δ(j) = arg min
yj

E [d(X, yj)|J = j] . (2.8)

In the special case that the distortion measure is the squared Euclidean
distance, d(x, y) = ‖x − y‖2, the solution to (2.8) follows from elementary
estimation theory and is given by

yj = E [X|J = j] . (2.9)

The expressions for the encoder and decoder given in (2.5) and (2.8)
are necessary but not sufficient for an optimal encoder–decoder pair. This
means that the optimal solution must satisfy (2.5) and (2.8), but fulfilling
them does not guarantee the globally optimal solution.

2.2.2 Implementing the Encoder

It might seem that the complexity of channel optimized vector quantization
is much higher than for ordinary vector quantization. This is true when
speaking of the initial design and training of COVQ, but design and training
is usually performed off line. As we shall see, using predesigned COVQ’s in
a real system requires no more complexity than a normal VQ, assuming that
the distortion measure is the squared norm of the error.

Consider the case of the encoder. The expression in (2.5) can be written
as follows:

arg min
i

N−1
∑

j=0

P (j|i)
∥

∥x − yj

∥

∥

2
= arg min

i
E
[

∥

∥x − yj

∥

∥

2
|I = i

]

. (2.10)

Expanding this expression gives

E
[

∥

∥x − yj

∥

∥

2
|I = i

]

= E
[

xT x − 2xT yj + yT
j yj |I = i

]

= xT x − 2xT E
[

yj |I = i
]

+ E
[

yT
j yj |I = i

]

.
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Now introduce vi = E
[

yj |I = i
]

and si = E
[

yT
j yj |I = i

]

. These values

can be calculated off line and stored in tables at the encoder side. Together,
they play the role of an “encoder codebook” and (2.5) simplifies to

ε(x) = arg min
i

(si − 2xT vi). (2.11)

The computational complexity of (2.11) is equal to the computational com-
plexity of a normal VQ.

An interesting observation can be made if the input vector x is augmented

with a zero and vi is augmented with s̃i =
√

si − vT
i vi, i.e.

x̃ =

[

x

0

]

, ṽi =

[

vi

s̃i

]

.

This means that (2.5) can be written

ε(x) = arg min
i

‖x̃ − ṽi‖
2 (2.12)

and that the sets of the encoder partitioning are on the form

Si =
{

x : ‖x̃ − ṽi‖
2 ≤ ‖x̃ − ṽi‖

2 , ∀i′ 6= i
}

. (2.13)

The consequence of (2.13) is that the quantization regions Si have the
shape of Voronoi regions in a space with dimension k + 1, where the input
space is constrained to a hyper-plane in k dimensions. This means that
all fast search methods designed for standard VQ that are based on this
structure can also be used for COVQ. (2.13) also allows some insight into
the way that redundancy is added in a COVQ system. The term s̃i is a
measure of the expected distortion associated with coding an input vector
into the index i. If the value of s̃i is large, then the center of Si will be
pushed away from the input space, making the intersection between Si and
the input space smaller. The result is that the probability of an input vector
being encoded as i becomes smaller. That this effect introduces statistical
redundancy to the system is most obvious in the case that s̃i is large enough
to push Si completely away from the input space, meaning that no input
vectors will be encoded as i.
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2.2.3 Implementing the Decoder

In a real system, the decoder is simply implemented as a look up table and
all that needs to be done is to store the values {yj}

N−1
j=0 . During the training

procedure, the values of yj have to be calculated using (2.9). With a slight
abuse of notation, let P (i) = Pr(I = i), P (i|j) = Pr(I = i|J = j), etc.
Then,

E [X|J = j] =

∫

x∈Rk

xfX|J(x|j)dx

=

M−1
∑

i=0

∫

x∈Si

xfX|J(x|j)dx

using Bayes’ rule to replace fX|J(x|j) = fX (x)P (j|x)
P (j) gives

E [X|J = j] =
M−1
∑

i=0

∫

x∈Si

x
fX(x)P (j|x)

P (j)
dx

but P (j|x) = P (j|i) for all x ∈ Si

E [X|J = j] =
M−1
∑

i=0

∫

x∈Si

x
fX(x)P (j|i)

P (j)
dx

and fX(x) = P (i)fX|I(x|i)

E [X|J = j] =
M−1
∑

i=0

P (i)P (j|i)

P (j)

∫

x∈Si

xfX|I(x|i)dx.

Finally we can write the expression of the decoder

yj = E [X|J = j] =

∑M−1
i=0 P (i)P (j|i)ci
∑M−1

i=0 P (i)P (j|i)
, (2.14)

where ci =
∫

x∈Si
xfX|I(x|i)dx = E [X|I = i] , defines the encoder centroids.
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2.2.4 Training

Generally [12, 27, 53], COVQ design is based on iterating between (2.10)
and (2.14) until convergence to a (local) optimum in terms of a stationary
point of D(P, C).

The main problem in the training procedure is to calculate the values
of {P (i)}M−1

i=0 and {ci}
M−1
i=0 . The exact distribution of X ∈ R

k might not
be known, and even if it were, the integration would become very tedious
when the number of VQ dimensions k is larger than one. The solution
normally taken, is to perform stochastic integration based on a training set,
{xl}

L−1
l=0 , consisting of a large number of samples of X. By applying (2.10)

to all samples in the training set, P (i) can be estimated from the number
of samples that are encoded as i and ci is taken to be the sample mean of
those samples.

The training starts by selecting an initial codebook. This can be for
instance the decoder codebook of a VQ trained for the same source and rate.
Then all training vectors are quantized using (2.10). This gives the estimates
for P (i) and ci, which can then be used to update the decoder codebook
{yj}

N−1
j=0 by using (2.14). This procedure is iterated until a certain stopping

criterion is met, e.g. the improvement in distortion between two iterations
is below some given threshold. The procedure is summarized in Table 2.1.

Table 2.1. Design steps in COVQ generation

1. Select training set and initial codebook

2. Quantize training set using (2.10)

3. Estimate P (i) and ci from result of quantization

4. Update the decoder codebook yj using (2.14)

5. Has the training converged? If not goto step 2
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2.3 Index Assignment

Here we describe the index assignment (IA) problem in connection to VQ
over noisy channels. The IA problem is sometimes considered as an integral
part of quantizer design for noisy channels, like in [13], however most often it
is studied as a separate problem. One of the first studies of the IA problem
for (scalar) quantization over a discrete noisy channel was presented in [45].
Other important contributions are included in [12,24,54].

To describe the IA problem, consider a VQ (designed assuming noise-
less transmission) described by the encoder regions {Si}

M−1
i=0 and codewords

{ci}
M−1
i=0 . Assume that after encoding a random vector X to an index i,

X ∈ Si =⇒ I = i, (2.15)

the integer i is transmitted in binary format over a binary channel that
introduces bit-errors. At the receiver side, the received bits are mapped into
an index j, and the decoder outputs cj as an estimate for X. Since there may
be bit-errors in the transmission, the event j 6= i has a non-zero probability.
Assuming, for simplicity, that the binary channel is memoryless, the event
that there is one bit-error in j is more likely than the event that there are
more than one error. Hence, if there is a transmission error, received indices,
j, that differ in only one bit are the most likely to be received.

Figure 2.3 illustrates a k = 2 dimensional size M = 23 = 8 VQ. The
black dots are the codewords, and the boundaries of the encoder regions are
marked by solid lines. As can clearly be seen in the figure, one bit-error
can lead to quite different quantization-and-channel-noise distortion. More
precisely, assume integers are mapped to binary words using the natural
binary code (0 → 000, 1 → 001, etc.), and assume the correct index is i = 0.
If there is a transmission error, j = 1 is one of the three most likely received
indices. As illustrated, the error i = 0 → j = 1 gives a “small” distortion,
in this example. However, assuming instead the correct index is i = 7, then
j = 6 is one of the most likely received indices, if there is an error. As can
be seen, the error i = 7 → j = 6 gives a larger distortion than the error
i = 0 → j = 1!

In general, the problem of mapping codewords in a VQ to indices in
order to minimize the average distortion with respect to quantization noise
and transmission errors is NP complete [24]. The fundamental problem in
IA design is that assigning an index to a codeword constrains the assignment
of indices to all the other codewords, since the same index cannot be used
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Figure 2.3. Illustrating the IA problem.

again. As indices are assigned, the constraint hardens, and it is therefore
very hard to come up with an assignment that is “uniformly good” for all
codevectors.

Since the IA problem is NP complete in general, there have been many
suggestions for sub-optimal but useful algorithms in the literature. For vector
quantization, one of the first studies appears in [54], where a simple algorithm
based on flipping bits was presented. Another early, and often cited, study is
the one in [12]. The IA algorithm in [12] was based on simulated annealing.
Another interesting approach was suggested in [24], utilizing the Hadamard
transform as a tool to analyze the impact of bit-errors in the transmission.
This method was generalized in [41].

As mentioned, the IA problem is often treated separately from the COVQ
design problem. In principle, however, COVQ design includes the IA prob-
lem, since the necessary conditions presented in Section 2.2.1 depend on the
assignment of indices to encoder regions and codevectors. Therefore, an opti-
mal COVQ design also gives an optimal IA, for the assumed channel model.
This fact has been utilized by some authors to implement a good IA, see
for example [16], by training a COVQ assuming a high bit-error probability,
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enforcing a good IA, and then relaxing the assumed error probability to pro-
duce a COVQ with better source coding performance and an inherent good
IA.

2.4 Multiple Description Coding

The basic principle of multiple description coding (MDC) is to encode the
source into several different descriptions. The different descriptions are then
transmitted over different channels. The idea is that the decoder should be
able to form an estimate of the source even if only a subset of the descriptions
is received. A typical feature of multiple description coding is that each
description by itself should present the decoder with enough information
to decode an estimate of the source. In addition, descriptions should add
constructively, in the sense that receiving more descriptions should increase
the performance of the estimate.

The most studied multiple description coding scenario is the two channel
case depicted in Figure 2.4. We will use this figure to illustrate the basic
principle of MDC. Later, in Chapters 3 and 6, we will return to this problem
and discuss it in more detail.

X X̂0

X̂1

X̂2

I1

I2

J1

J2

Encoder Central
Decoder

Side
Decoder 1

Side
Decoder 2

Ch1

Ch2

I

Figure 2.4. Two channel multiple description coding scheme.

Figure 2.4 illustrates the MDC problem for scalar quantization and two
descriptions. A source sample X is encoded and transmitted via two different
channels, to produce the three different estimates X̂i, i = 0, 1, 2, at the
receiver. In the classical MDC problem [17, 48], the channels either work
perfectly or any of them, or both, are completely defect. Whether a channel
works or is defect is known at the receiver side. The principle of MDC
can be said to be the production of diversity against the event that one or
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several channels break down. In modern applications of MDC, a “channel” is
often associated with a “packet” in packet-based transmission, and the event
“defective channel” is then the same as “packet loss.”

Consider Figure 2.4, and let M = M1M2. The encoder of the MDC sys-
tem maps X into an index I ∈ IM . This index is then split into two different
descriptions, I1 ∈ IM1 and I2 ∈ IM2 , for example (but not necessarily) via
the relation

I = I1 + I2M1. (2.16)

The index I1 is transmitted over channel 1, and I2 is transmitted over chan-
nel 2. Channel 1 either works perfectly, J1 = I1, or does not work (no J1

received). The same holds for Channel 2. Hence the possible received infor-
mation is ’nothing,’ (I1,’nothing’), (’nothing’, I2) or (I1, I2). As illustrated,
these four possibilities are mapped to E[X], X̂1, X̂2, and X̂0, respectively.
Loosely stated, a good MDC should work such that X̂i, i = 0, 1, 2, are all
useful. This is in contrast to, for example, a multi-resolution code, where
one of the descriptions adds constructively to the other but is not useful on
its own.

A MDC can be designed in different ways. In this thesis, we will in-
vestigate two fundamentally different approaches to the design problem. In
Chapter 3, we use linear correlating transforms and in Chapter 6 we extend
the COVQ framework to hold for the case of multiple descriptions. A generic
MDC design problem can be stated as follows (see, e.g., [48]): Given M1 and
M2 (the rates that can be used on the two channels), minimize

E[d0(X, X̂0)] (2.17)

subject to

E[d1(X, X̂1)] ≤ D1, E[d2(X, X̂2)] ≤ D2. (2.18)

Here, di, i = 0, 1, 2, are distortion measures. That is, the problem is to
minimize the average central distortion E[d0(X, X̂0)] subject to constraints
on the average side distortions. This constraint is needed, since simultane-
ous minimization of the central distortion and side distortions are obviously
conflicting goals.





Chapter 3

Improved Quantization in Multiple

Description Coding by Correlating

Transforms

3.1 Introduction

Packet networks have gained in importance in recent years, for instance by
the wide-spread use of the Internet. By using these networks large amounts
of data can be transmitted. When transmitting for instance an image a cur-
rent network system typically uses the TCP protocol to control the trans-
mission as well as the retransmission of lost packages. Unfortunately, packet
losses can in general not be neglected and this problem therefore has to be
considered when constructing a communication system. The compression
algorithms in conventional systems quite often put quite a lot of faith into
the delivery system which gives rise to some unwanted effects.

Suppose that N packets are used to transmit, for example, a compressed
image and the receiver reconstructs the image as the packets arrive. A
problem would arise if the receiver is dependent on receiving all the previous
packets in order to reconstruct the data. For instance if packets {1, 3, 4...N}
are received it would be an undesirable property if only the information in
packet 1 could be used until packet 2 eventually arrives. This would produce
delays in the system and great dependency on the retransmission process. In
the case of a real time system the use of the received packets may have been in
vain because of a lost packet. As described in Chapter 2, Section 2.4, one way

27
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CODING BY CORRELATING TRANSFORMS

to deal with this is to use multiple description coding, where each received
packet will increase the quality of the image no matter which other packets
that have been received. We discussed the basics of MDC in Chapter 2, and
some relevant references are [10, 19,20,25,34,48–50].

In this chapter a new approach to MDC using pairwise correlating trans-
forms is presented. In previous work, e.g. [50], the data is first quantized
and then transformed. We suggest to reverse the order of these operations,
leading to performance gains. The optimal cell shape of the transformed
data relates to the optimal cell shape of the original data through some ba-
sic equations which makes it possible to perform quantization and designing
the codewords after the data is transformed. Only the case with two descrip-
tors will be considered but the theory can easily be extended to handle more
descriptors. It is assumed that only one descriptor can be lost at a time
(not both) and that the receiver knows when a descriptor is lost. The two
channels are also assumed to have equal failure probability, perror, and MSE
is used as a distortion measure. The source signal is modeled as uncorrelated
Gaussian distributed.

This chapter is organized as follows. In Section 3.2 some preliminary
theory of MDC using pairwise correlating transforms is discussed. In Sec-
tion 3.3 the new approach for MDC using pairwise correlating transforms
is presented. In Sections 3.4 and 3.5 some results and conclusions will be
presented.

3.2 Preliminaries

Generally the objective with transform coding is to remove redundancy in
the data in order to decrease the entropy. The goal of MDC is the opposite,
namely to introduce redundancy in the data but in a controlled fashion. A
quite natural approach for this is to first remove possible redundancy in the
data by for instance using the Karhunen-Loeve transform. After this MDC
is used in order to introduce redundancy again, but this time in selected
amounts. In this chapter it is assumed that the original data is uncorrelated
Gaussian distributed so the problem of removing initial redundancy will not
be considered.

In Figure 3.1 the basic structure of the MDC described in [50] is shown.
The data variables A and B are to be transmitted and are quantized into A
and B. These values are then transformed using the transform
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Figure 3.1. The basic structure of MDC using pairwise correlating trans-
forms as presented in [50].

[

C

D

]

= T

[

A

B

]

, (3.1)

where T is a 2 × 2 matrix. This transform is invertible so that
[

A

B

]

= T
−1

[

C

D

]

. (3.2)

Once the data have been transformed C and D are transmitted over two
different channels. If both the descriptors are received the inverse transform
from (3.2) is used in order to produce Â and B̂. However, if one of the
descriptors is lost, Â and B̂ can be estimated from the other descriptor.
This comes from the fact the the transform matrix T is nonorthogonal and
introduces redundancy in the transmitted data. For instance, if the receiver
receives only the descriptor C, (Â, B̂) is estimated to E[(A, B)|C].

For the two descriptors case the transform matrix T, optimized according
to [50], can be written as

T =

[

cos θ/ sin 2θ sin θ/ sin 2θ
− cos θ/ sin 2θ sin θ/ sin 2θ

]

=

[

a b
c d

]

. (3.3)
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where θ will control the amount of introduced redundancy.
The values C and D that are to be transmitted should be integers which

is not necessarily the case in (3.1). Therefore the transform is implemented
as follows (a, b, c and d are the values from (3.3) and [·] denotes rounding).

A =

[

A

Amax
qA + 0.5

]

, B =

[

B

Bmax
qB + 0.5

]

, (3.4)

W = B +

[

1 + c

d
A

]

, (3.5)

D = [dW ] − A, (3.6)

C = W −

[

1 − b

d
D

]

. (3.7)

It is assumed that A ∈ [0, Amax] and B ∈ [0, Bmax]. qA and qB are in-
tegers deciding how many quantization levels there are for A and B respec-

tively. It is also assumed, for the extremes, that
[

0
Amax

qA + 0.5
]

is rounded

to 1 and
[

Amax

Amax
qA + 0.5

]

is rounded to qA.

Assuming that both descriptors are received in the decoder the corre-
sponding inverse transform is performed as

W = C +

[

1 − b

d
D

]

, (3.8)

A = [dW ] − D, (3.9)

B = W −

[

1 + c

d
A

]

, (3.10)

Â =
(A − 0.5)Amax

qA
, B̂ =

(B − 0.5)Bmax

qB
. (3.11)

As mentioned before, if one of the descriptors is lost Â and B̂ are, de-
pending on which descriptor that was lost, estimated to E[(A, B)|C] or
E[(A, B)|D].

Note here that the number of quantization levels for A and B, qA and
qB, will in general not equal the ones for C and D, qC and qD. (qA, qB) are
however mapped to (qC , qD) by a function ϕ according to

ϕ : N2 −→ N
2,

ϕ(qA, qB) = (qC , qD).
(3.12)
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Figure 3.2. In the left plot the original set of data is shown. These values
are first transformed and then quantized as shown in the middle plot. In
the receiver the inverse transform is used as shown in the right plot. In this
plot also the corresponding quantization cells are illustrated.

Hence, if we want to transmit C and D using, e.g., 3 bits each we need to
find qA and qB so that ϕ(qA, qB) = (23, 23).

From (3.4) it is seen that the described MDC system in (3.4)–(3.11) uses
uniform quantization. The system could easily be improved by introducing
two nonuniform scalar quantizers, one for the A-values and one for the B-
values. This improved system is what will be used and considered further on
in this chapter. This leads to modifications of (3.4) and hence also (3.11).
Using the MSE as a distortion measure a codebook could be designed by
using for instance the generalized Lloyd algorithm briefly explained in Sec-
tion 3.3.

3.3 Improving the Quantization

In brief the algorithm in Section 3.2 can be summarized as

1. Train encoder/decoder and quantize data. The encoder uses two scalar
quantizers in order to decrease the entropy of the data. This means
that the data values are mapped onto a set of codevectors.

2. Transform the quantized data. Redundancy is introduced into the data
by using (3.5)–(3.7).
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3. Transmit data. The data is transmitted and packet or bit losses may
occur, which means that some descriptors may be lost.

4. Estimate lost data and do the inverse transform. This is done using
(3.8)–(3.10).

In this chapter we suggest to do this algorithm in a different order. Changing
the order of Steps 1 and 2 would mean that the transformation is done
directly and training and quantization is done on the transformed values.
Naturally, also the order in the receiver has to be reversed appropriately.

Using MSE as the distortion measure a point in the data is quantized to
the K:th codevector according to

K = arg min
k

([

A
B

]

−

[

Ãk

B̃k

])T ([
A
B

]

−

[

Ãk

B̃k

])

= arg min
k

(

[

∆Ak

∆Bk

]T [
∆Ak

∆Bk

]

)

, (3.13)

where Ãk and B̃k are the coordinates of the different codewords. Using (3.2)
this can also be written

K = arg min
k

(

T
−1

([

C
D

]

−

[

C̃k

D̃k

]))T

·

(

T
−1

([

C
D

]

−

[

C̃k

D̃k

]))

= arg min
k

(

T
−1

[

∆Ck

∆Dk

])T (

T
−1

[

∆Ck

∆Dk

])

= arg min
k

(

[

∆Ck

∆Dk

]T

T
−1T

T
−1

[

∆Ck

∆Dk

]

)

. (3.14)

According to the discussion in Section 3.2 there should be qC quantization
levels for C and qD quantization levels for D. Introducing this restriction in
(3.14) and using (3.3) gives

(I, J) = arg min
i,j

(∆C2
i + 2 cos(2θ)∆Ci∆Dj + ∆D2

j ), (3.15)

where i ∈ {1, 2, . . . , qC} and j ∈ {1, 2, . . . , qD}. This equation will allow
us to design a codebook for the transformed values instead of the original
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data. The generalized Lloyd algorithm can be used for this purpose. This
algorithm is briefly summarized below.
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Figure 3.3. The dotted line shows the performance of the original system
[50] and the dashed line shows that of the new system, in terms of signal-
to-distortion ratio versus packet loss rate, perror. C and D are transmitted
using 3 bits each and θ = π

5
.

1. Define initial codebook.

2. Quantize each data point to that codeword that minimizes the contri-
bution to the distortion.

3. For each codeword (if it is possible), find a new optimal codeword for
all the values that have been quantized to this particular codeword and
update the codebook.

4. Until the algorithm converges go to Step 2.

For Step 2, (3.15) is used to quantize the data. In Step 3 we want to find an
optimal codeword for those values that have been quantized to a particular
codeword. Calculating the partial derivative of the total distortion as

∂

∂C̃I

∑

(C,D)

(∆C2
i + 2 cos(2θ)∆Ci∆Dj + ∆D2

j ) (3.16)
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Figure 3.4. The dotted line shows the performance of the original system
[50] and the dashed line shows that of the new system, in terms of signal-
to-distortion ratio versus packet loss rate, perror. C and D are transmitted
using 4 bits each and θ = π
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Figure 3.5. The dotted line shows the performance of the original system
[50] and the dashed line shows that of the new system, in terms of signal-
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and minimizing by setting (3.16) equal to zero will give an equation for
updating the codevectors, namely

C̃I =
1

NI

∑

∀(C,D):Q(C,D)=(C̃I ,D̃j)

(C + cos(2θ)∆Dj). (3.17)

The sum is taken over all those points (C, D) which will be quantized to
(C̃I , D̃j) for a given I and an arbitrary j. NI is the number of points within
this set. In a similar manner we get

D̃J =
1

NJ

∑

∀(C,D):Q(C,D)=(C̃i,D̃J )

(D + cos(2θ)∆Ci) (3.18)

and this is done for I = 1, 2, . . . , qC and J = 1, 2, . . . , qD. Once the codebook
has been generated the encoder and decoder are ready to use. The data to be
transmitted is then transformed by the matrix T, quantized and transmitted.
In the decoder the reverse procedure is done. This is illustrated in Figure 3.2.

3.4 Simulation Results

In order to compare the system explained in Section 3.2 and [50] with the
new system introduced in Section 3.3 these were implemented and simulated.
Uncorrelated zero mean Gaussian data was generated and used to train the
encoders/decoders and then to simulate the systems. In the simulations
presented here the source data A and B have equal variances. Similar results
have however been obtained also for the case of non-equal variances. As
mentioned in Section 3.1 it is assumed that only one descriptor can be lost
at a time and that the receiver knows when a descriptor is lost. The angle
for the transform matrix T used in the simulations was θ = π

5 . The result
is presented in Figures 3.3–3.5. perror show the probability that one of the
descriptors is lost and the y-axis shows the signal–to–distortion ratio, defined

as 10 log E[x2]
E[(x−x̂)2]

, where x is the data signal and x̂ is the reconstructed signal.

In Figure 3.3 both C and D were transmitted using 3 bits each which gives
qC = qD = 23. In order to accomplish this (qA, qB) had to be identified so
that ϕ(qA, qB) = (23, 23). This was found to be true for qA = 5 and qB = 7.
Similar results are shown in Figures 3.4 and 3.5 when using 4 and 8 bits.

As can be observed in Figures 3.3–3.5 the new system outperforms the
original system for all investigated values of perror. In the case of 3 bits
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per description, as shown in Figure 3.3, the advantage of the new scheme
is more noticeable at low packet loss rates. In particular we see that as
perror → 0 the new system outperforms the original scheme by about 2
dB. When using 4 bits per description, as in Figure 3.4, we notice that the
gain of the new approach is more-or-less constant over the range of different
packet loss rates. Finally, studying Figure 3.5, we can observe that in the
case of 8 bits per description the situation has changed and the gain is
now more prominent at high packet error rates. In summary we see that
in all cases considered there is a constant gain at medium to high packet
loss rates and this gain increases with the transmission rate of the system,
while at low packet loss rates there is an additional gain at low rates (as
in Figure 3.3) and hardly no gain at high rates (as in Figure 3.5). One
possible explanation for this behavior is that the new approach in particular
improves the performance at low transmission and packet loss rates due to
the improved optimization of the individual quantizers. At high loss rates
this gain is less pronounced, since when packet losses occur the redundancy
introduced by the linear transform has an equal or higher influence on the
total performance than has the performance of the individual quantizers.

3.5 Conclusions

A new MDC method has been introduced. The method is developed from
an extended version of the MDC using pairwise correlating transforms de-
scribed in [50]. Using the original method the data is quantized and then
transformed by a matrix operator in order to increase the redundancy be-
tween descriptors. In the new suggested method the data is first transformed
and then quantized. In Section 3.3 it is shown that this transform leads to
a modification of the distortion measure. Using the generalized Lloyd algo-
rithm when designing the quantization codebook also leads to a new way
to update the codevectors. In section 3.4 simulations were done that shows
that the new method performs better than the original one when smaller
amounts of redundancy are introduced into the transmitted data. For the
simulations conducted in Section 3.4, using θ = π

5 , the new method gave 2
dB gain compared to the original system when no descriptors were lost. The
gain decreased to about 0.5-1 dB when the probability of lost descriptors
was increased.



Chapter 4

Image Coder

This chapter presents a simple, yet effective, image coder that is used later
in this thesis for evaluating the proposed joint source and channel coding
methods in a more realistic system. It should be stressed that the inten-
tion is not to create a top of the notch, best ever image coder, in terms of
compression. That would require schemes that are overly complex for our
purpose. Instead, the structure of the image coder is intentionally kept as
simple as possible. The most important reason is that it should be able to
handle severe channel conditions without breaking down completely. As an
example, the image coder does not use entropy coding. A choice that surely
degrades the performance in terms of pure compression. The reason is sim-
ple; any error introduced in an entropy-coded bit-stream is likely to destroy
all the following data due to error propagation.

The remainder of this chapter is organized as follows. First the basic
structure of the image coder is described. The two main components of
the image coder, subband coding and vector quantization, are discussed in
detail. Next follows a discussion on how to model the statistics of vectors
from the image subbands. This discussion includes a description of Gaussian
mixture models, and the expectation maximization algorithm. Finally, some
examples of images are included that have been encoded using our newly
devised image coder.

37
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4.1 Image Coder Structure

The image coder consists of two main parts—an image transform, followed
by vector quantization. The image transform serves to remove statistical re-
dundancy, or correlation, from the image. Image transforms come in several
different flavors, and for this particular image coder, a subband transform is
used.

Transform VQ

Figure 4.1. Basic structure of the image coder

After the image transform, the transform coefficients have to be quantized
to get a discrete representation of the image that can be encoded into a
stream of bits. For this purpose, the image coder uses vector quantization.
The choice of vector quantization instead of scalar quantization, is partly to
compensate for some of the performance loss we get by not using entropy
coding, and partly to allow the image coder to use the robust quantization
framework discussed in Section 2.2.

4.1.1 Subband Image Transform

The transform used in the image coder is a 2-dimensional subband trans-
form. A subband transform is obtained by splitting the source into different
representations, subbands, corresponding to different spectral content of the
source. Such splitting into different representations can be implemented by
using filter banks, as is explained in the remainder of this section.

The basic building block of the subband transform is a 2-channel filter
bank, depicted in Figure 4.2. Two different filter banks are needed, one for
analysis and one for synthesis. The analysis filter bank acts as our forward
transform, and performs the actual splitting of the input into two different
parts. Figure 4.3 shows a schematic picture of the frequency response of
the analysis filters. Since each filter cuts the bandwidth of the input signal
in half, each subband can be decimated by a factor 2 without any loss of
information. We refer to the output as transform coefficients. Since the
output from the filters is subsampled, the number of transform coefficients
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is equal to the number of samples in the input signal. In the literature such
filter banks are often called critically sampled filter banks.

The synthesis filter bank performs the reverse operation and acts as our
inverse transform. Obviously we want the output from the inverse transform
to be as close to identical to the input of the forward transform as possible.
Without going into the details, it turns out that it is indeed possible to
construct filters H0, H1, G0 and G1 such that the output is exactly equal
to the input. Such filter banks are said to have the perfect reconstruction
property. There are two conditions that have to be satisfied in order to
achieve perfect reconstruction:

G0(z)H0(−z) + G1(z)H1(−z) = 0 (4.1)

and

G0(z)H0(z) + G1(z)H1(z) = 2. (4.2)

There exists a variety of filters in the literature that satisfy the two
above constraints. Ideally, one would like to have finite length, linear phase
filters that give an orthogonal transform. Unfortunately, there are no fil-
ters that satisfy all three wishes, except for the trivial case of Haar filters.
Orthogonal transforms are attractive because they offer a simple way to
analyze and predict performance directly in the transform domain, as de-
scribed in Section 1.1.4. More specifically, if the coefficients of an orthogonal
transform are approximated by yk ≈ ŷk, then because of the energy con-
serving property of orthogonal transforms (1.17) the total error in a mean
squared sense is equal in the transform domain and the image domain, i.e.
∑

n |xn − x̂n|
2 =

∑

k |yk − ŷk|
2. This makes it easy to analyze the effects of

e.g. quantization of transform coefficients.

H0

H1

G0

G12

2

2

2

analysis synthesis

x x̂

y0

y1

Figure 4.2. 2-channel filter bank
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Figure 4.3. Splitting of spectrum into two bands

So far the discussion has mainly been about one-dimensional transforms.
But images are two-dimensional by nature, so we need to extend the results to
obtain two-dimensional transforms. For this, a separable approach is taken;
the one-dimensional transform is applied first to each row of image data,
and then to each column of the horizontally transformed data as shown in
Figure 4.4. The actual ordering does not matter, only that the transform is
applied once along each dimension. This is equivalent to using a separable 2-
dimensional filter together with 2-dimensional separable subsampling. Non-
separable filtering is also possible, and offers more flexibility, but is also more
complex to analyze and implement.

The result of the transform in Figure 4.4 is four different subbands. The
subbands are named LL, HL, LH, and HH to indicate which filtering opera-
tions have been performed. Thus, the HL-band for has been highpass filtered
in the horizontal direction and lowpass filtered in the vertical direction. The
naming convention is analogous for the other subbands.

Since the number of transform coefficients is the same as the number of
input samples in the image, it is possible to illustrate all four subbands at
the same time by putting them next to each other as in Figure 4.5. The
high pass subbands all have a mean value of 0, which is represented by gray
in Figure 4.5. Bright and dark pixels correspond to positive and negative
transform coefficients respectively. The figure shows clearly that most co-
efficients in the highest subbands are close to zero. This is a motivating
factor in using a subband transform for compression purposes, since these
coefficients can be efficiently quantized using a low number of bits. One
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Figure 4.4. Implementing separable subband transform. Only analysis
filter bank shown

observation that should be made is that the lowest subband is nothing but
a smaller version of the original image. It is intuitive that we can increase
the compression performance by applying the subband transform again on
the LL subband. Figure 4.6 shows a block diagram of this approach, and
the resulting transform coefficients are displayed as an image in Figure 4.7.

The transform used in the image coder uses four recursive splits, giving
a total of 13 subbands. The resulting transform is shown in Figure 4.8 with
a numbering of the image subbands for future reference.

4.1.2 Vector Quantizer

Vector quantization of image subband coefficients can be done in several
different ways. A good overview can be found in the tutorial paper [8].

Ideally, the image transform would remove all of the statistical redun-
dancy in the image, resulting in transform coefficients that are completely
uncorrelated. This is not the case for most natural images. Coefficients in
the subband corresponding to the lowest frequencies are obviously still cor-
related, as seen in Figures 4.5, 4.7, but there is also residual redundancy
between the coefficients of other subbands as well. Take the HL subband
for example. It has been highpass filtered in the horizontal direction and
lowpass filtered in the vertical direction. In this subband, vertical edges in
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LL HL

LH HH

Figure 4.5. Illustration of the effects of a subband transform on the Bar-
bara image. Subbands are placed next to each other to keep the original
dimensions with lowest frequency to the top left.

the image show up as vertical lines. This is because the highpass filtering in
the horizontal direction leaves the finest details in the horizontal direction,
e.g. the sharp transition of a vertical edge, while the vertical direction is of
lowpass character. This suggests that there is more correlation left in the
vertical direction in the HL subband. By similar reasoning, the LH subband
contains more correlation in the horizontal direction. Since a vector quan-
tizer can take advantage of correlation between components, it seems like a
good idea to select vectors such that neighboring coefficients with correlation
end up in the same vector.

Figure 4.10 illustrates how vectors are selected in the image coder. Each
subband uses its own vector quantizer, i.e. vectors are formed from coeffi-
cients within the subband only. Coefficients are selected in the direction that
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Figure 4.6. Recursive splitting of the low frequency subband. The dashed
line indicates the split taking place in each step of the transform.

is most probable to contain residual redundancy. The highest frequency sub-
bands require less rate in the encoding and therefore use 4-dimensional VQ’s.
Lower frequency subbands that require more rate use 2-dimensional VQ’s in
order to keep the computational complexity and storage requirements down.
The vector size selected for each subband is given in Table 4.1.

4.2 Probability Distribution of Transform

Coefficients

Before we are ready to design the vector quantizers, we need to know the
probability distribution of the transform coefficients. The standard way to
proceed, is to simply take a large number of representative images and use
the transformed data as samples of the source, and use them directly as
training data. This approach is simple, but has a number of drawbacks. The
most important drawback is that the number of coefficients in the lowest
subbands is small. At the same time, those subbands have coefficients with
larger variance, and require more rate in the encoding. Since a higher rate
means a larger codebook to train, we would actually want a large number
of samples in the lowest frequency subbands. This means that a very large
number of images would have to be used, and even then, the accuracy of the
training might leave more to wish.
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Figure 4.7. Illustration of wavelet transform

This section describes an alternative approach, that is based on modeling
the probability distribution of the transform coefficients. Having a good
model means that training data can be synthesized to the extent that is
needed in order to achieve good VQ training. This approach also has the
extra advantage that over-fitting a vector quantizer to a small set of training
data can be avoided to some extent, a fact that has been observed by others
and was reported in [22].
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Figure 4.8. Image subbands in the transform used in the image coder
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Figure 4.9. Schematic figure of the image coder illustrating that each
subband uses a separate VQ.
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Figure 4.10. Illustration of how vectors are selected from different sub-
bands in order to utilize residual redundancy. The small dots correspond
to transform coefficients and vectors are indicated by dotted boxes around
the coefficients. One vector in each subband has been marked gray to better
indicate the shape of the vector.

Subband number 1 2 3 4 5 6 7 8 9 10 11 12 13
Vector size 1 2 2 2 4 4 4 4 4 4 4 4 4

Table 4.1. Vector sizes used for each subband in the image coder
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4.2.1 Utilizing Self-Similarity of the Transform

Since the transform is recursive, there is a certain amount of similarity be-
tween the subbands. In Section 4.1.1, the recursive division of the low fre-
quency subbands was motivated by the fact that the LL-band in each stage
of the transform is essentially a decimated version of the image. Therefore,
it is reasonable to assume that the probability distributions of subbands at
different stages of the recursion are similar. For instance, the probability
distribution of the horizontal detail subbands 2, 5, 8 and 11 in Figure 4.8
should be similar in some way.

To elaborate further on this similarity, consider the case when orthogonal,
or close to orthogonal filters are used in the filter bank. Then the transform
has the conservation-of-energy property. In the first stage of the transform,
the image is split in four parts. Since the energy in the detail subbands is
close to zero, and the transform conserves energy, almost all energy will be
found in the LL subband. This means that since the number of coefficients in
the LL-band is four times smaller than the number of pixels in the image, the
average energy of each coefficient must be approximately four times larger
than the average energy of the image pixels. In other words, the amplitude
of the LL-band coefficients is about twice the amplitude of the image pixels.

From the above argument, we make the assumption that the probability
distribution of similar subbands, e.g. all horizontal detail subbands, have
the same shape, but is scaled by a factor two in each step of the transform.

In other words we assume that if f
(11)
y (y) denotes the pdf of a vector in the

subband 11, then f
(8)
y (y) = 1

2f
(11)
y (y

2 ) is the pdf of a vector of the same size
in the subband 8, using the subband numbering of Figure 4.8.

It seems that based on the assumptions made above, it would be sufficient
to have four models of subband coefficients, one for the lowpass band, and
one each for the vertical, horizontal and diagonal detail bands. It turns out
that extending the reasoning a bit further allows us to use only three models.
Consider what happens if an image is rotated 90 degrees clockwise and then
flipped in the horizontal direction, i.e. the same as representing the image as
a matrix and taking the transpose. The result is the same as if shooting a
mirror image with a camera held in portrait mode. In other words, this is an
equally valid natural image. The point of performing this operation is that
the role of the horizontal detail subbands and the vertical detail subbands
are swapped, i.e. the result is the same as if the subbands are arranged as an
image like in Figure 4.7 and then transposed. This means that it is fair to
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assume that vectors from horizontal and vertical detail subbands have the
same pdfs, given that vectors are selected as in Figure 4.10.

To summarize, three different models are needed, one for the lowpass
subband, one for horizontal/vertical detail subbands, and one for diagonal
detail subbands.

4.2.2 Gaussian Mixture Models

Gaussian mixture (GM) models are models of probability density functions
with a well known ability to model arbitrary pdfs. They are well suited for
use as underlying models of probability density functions in the design of
vector quantizers, a topic that was investigated in [22].

As the name implies, a GM density consists of a mixture of Gaussian
density functions, where the word mixture should be read as weighted sum.
Assume that we want to model the pdf fX(x) of a random variable X with
a Gaussian mixture model. Then

fX(x) ≈ fM (x;Θ) =

M
∑

i=1

ρifi(x; θ), (4.3)

where fi(x; θ) is a multivariate Gaussian density

fi(x; θ) =
1

(2π)
d
2 |Ci|

1
2

e−
1
2
(x−µi)

T C−1
i (x−µi)

with mean vector µi and covariance matrix Ci. The component weights,
ρi > 0, i ∈ {1 . . .M}, sum up to unity,

∑M
i=1 ρi = 1, in order to make

fM (x;Θ) a true pdf, in the sense that it should integrate to unity. Note
that the GM density is completely specified by its parameters, defined by
the set Θ = {ρ1, . . . , ρM , θ1, . . . ,θM}, where θi = {µi, Ci}.

4.2.3 Expectation Maximization Algorithm

In order to fit a GM model to a set of training vectors, the parameter set
Θ has to be estimated. Several different methods exist, and the one used
most often is known as the expectation maximization (EM) algorithm. The
EM algorithm is an iterative method that is widely used for maximum like-
lihood (ML) estimation in situations where closed form analytical solutions
are hard to find. In the case of GM modeling, assume that there is a set of
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Nx vectors, {xn}
Nx

n=1, from the density that should be modeled. Then the
log-likelihood criterion to maximize is defined by

L(Θ) = log

Nx
∏

n=1

fM (xn;Θ) =

Nx
∑

n=1

log fM (xn;Θ). (4.4)

Since L(Θ) contains a sum of logarithms, it is difficult to find an analytical
solution to the maximization problem. Instead, the EM-algorithm solves the
problem iteratively, by approximating the solution based on the result of the
previous iteration.

The general EM algorithm is based on expanding the data set in a way
such that

x = g(y1, y2, . . . ,yM ) = g(y).

In other words, g is a many-to-one transformation that maps the complete
data y into the incomplete data x. y contains all the information about
x, but not vice versa. Maximizing log f(x;Θ) is difficult, so log f(y;Θ)
is maximized instead. Since y is unavailable, the log-likelihood function is
replaced by its conditional expectation

E [log f(y;Θ)|x] =

∫

f(y|x;Θ) log f(y;Θ)dy.

Since Θ has to be known in order to determine f(y|x;Θ), the estimate
from the previous iteration is used. Let Θ

(k) denote the estimate after k
iterations, then the EM-algorithm consists of the following iterative steps:

Expectation: Determine the average log-likelihood function

U(Θ,Θ(k)) =

∫

f(y|x;Θ(k)) log f(y;Θ)dy. (4.5)

Maximization: Find

Θ
(k+1) = arg max

Θ

U(Θ,Θ(k)). (4.6)

Closed form solutions of the update equation exist for many problems.
In the case of Gaussian mixture estimation, the complete data is chosen such
that f(yi;Θ) = ρif(x;Θi), and the update equations that solve (4.6) are
given by
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ρ
(k+1)
i =

1

Nx

Nx
∑

n=1

ν
(k)
i (n) (4.7)

µ
(k+1)
i =

∑Nx

n=1 ν
(k)
i (n)xn

∑Nx

n=1 ν
(k)
i (n)

(4.8)

C
(k+1)
i =

∑Nx

n=1 ν
(k)
i (n)(xn − µ

(k+1)
i )(xn − µ

(k+1)
i )T

∑Nx

n=1 ν
(k)
i (n)

(4.9)

where ν
(k)
i (n) denotes the posterior probabilities f(yi|xn;Θ(k)), defined by

ν
(k)
i (n) =

ρ
(k)
i fi(xn; θ

(k)
i )

∑M
j=1 ρ

(k)
j fj(xn; θ

(k)
j )

. (4.10)

The EM-algorithm has the attractive property that each iteration in-
creases the likelihood function, i.e. L(Θ(k+1)) ≥ L(Θ(k)). This means that
the algorithm is guaranteed to converge, at least to some local optimum.

4.3 Image Coder Summary

This section summarizes the different aspects of the image coder and gives
a brief description of how to put the pieces together.

The first part of the image coder is a subband transform, described in
Section 4.1.1. It is implemented as a filter bank, using the 32-tap Johnston
QMF filters [23]. Four splits are used in the transform which gives 13 dif-
ferent subbands. The output from the filter bank is formed into vectors as
illustrated in Figure 4.10. The vectors are then quantized using separate
vector quantizers for each subband. The vector dimension for each subband
is given in Table 4.1.

The design of the vector quantizers is based on Gaussian mixture models
of the subband vector probability density functions. When designing the
models, a value of M = 4 was used in (4.3), i.e. four components were used
in each GM density. The design procedure is described in Table 4.2.

The result of the procedure in Table 4.2 is a set of vector quantizers at
different rates for each subband vector pdf model. By generating new data
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Table 4.2. Steps in the VQ design.

1. Collect a database of images for use as empirical distribu-
tions

2. Apply the image transform to each image.

3. Normalize each subband so the values are in the same
range for all subbands, i.e. divide subbands 11–13 by 2,
subbands 8–10 by 4, subbands 5–7 by 8, and subbands
1–4 by 16.

4. Collect vectors from subbands 2, 3, 5, 6, 8, 9, 11 and
12 and use as training database for designing the model
corresponding to horizontal/vertical detail subbands.

5. Use the training database with the EM-algorithm to ob-
tain the GM model for horizontal/vertical detail subband
vectors.

6. Repeat with subbands 4, 7, 10 and 13 to get the GM model
for the diagonal detail subband vectors.

7. Use the obtained models to generate training data for VQ
training.

8. Train vector quantizers for different rates using the gener-
ated training data.
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and quantizing it using the newly designed VQ’s, an empirical distortion–
rate function can be generated. The distortion–rate function has to be scaled
for each subband, since the VQ-design was based on normalized vectors. The
rate should also be scaled to the unit “bits per pixel in the original image”.
When empirical rate–distortion curves have been found for all subbands, bit
allocation can be done as described in Chapter 1, Section 1.1.2, with the
difference that the true distortion–rate functions are replaced by empirical
ones. An example of a bit allocation for a total rate of 0.5 bits/pixel is
given in Table 4.3. Note that the highest frequency detail subbands are not
encoded at all.

Subband number 1 2 3 4 5 6 7 8 9 10 11 12 13
VQ rate 8 10 10 9 10 10 8 8 8 4 0 0 0

Table 4.3. Bit allocation for image coder at 0.5 bits/pixel

4.4 Image Examples

This section presents some image results when using the proposed image
coder. Four different images were encoded at a rate of 0.5 bits/pixel using the
bit allocation in Table 4.3. The result is presented in Figures 4.11–4.14. The
(a) parts show the original images and the (b) parts show the encoded images.
Note that throwing away the highest frequency subbands has resulted in some
loss of detail. This is particularly noticeable in Figure 4.12, which contains
lots of fine details.
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(a)

(b)

Figure 4.11. (a) Original. (b) Encoded at 0.5 bits/pixel
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(a)

(b)

Figure 4.12. (a) Original. (b) Encoded at 0.5 bits/pixel
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(a)

(b)

Figure 4.13. (a) Original. (b) Encoded at 0.5 bits/pixel
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(a)

(b)

Figure 4.14. (a) Original. (b) Encoded at 0.5 bits/pixel



Chapter 5

Robust Quantization for Channels

with Both Bit Errors and Erasures

5.1 Introduction

For packet data networks where parts of the overall transmission are over
wireless links, phenomena occur that are not present in traditional wired
networks (over optical fiber and/or cable links). In particular, it is not a rea-
sonable assumption to neglect bit-errors over wireless channels. In addition
to bit-errors, source coder robustness relates to its sensitivity to packet-loss,
which may occur in the network due to overload (or, sometimes, over wireless
paths due to detected bit-errors in packets that are then declared lost).

The source–channel separation theorem, discussed in Chapter 2, Sec-
tion 2.1, states that there is no loss in treating source and channel coding
as two separate problems. As discussed in Chapter 2, the separation can
however be made without loss only in the limit of infinite delay and cod-
ing complexity; a fact that has been frequently pointed out to motivate the
use of combined source–channel codes. Many current source coders employ
only error concealment to make the coder robust, while we emphasize the
use of combined source–channel coding, with a focus on techniques based on
channel optimized vector quantization.

The concept of COVQ originates in [4, 11, 12, 27, 53], and we introduced
the basics in Chapter 2, Section 2.2.1. The use of COVQ has been proposed
in many different contexts. However, even if much has already been said on
the subject, most of the previous works have been focused towards channels
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with bit-errors, such as the binary symmetric channel. In contrast, the main
contributions of the present chapter are an extension to channels with both
bit-errors and bit-erasures, and a demonstration of how the new COVQ
technique can be implemented to enhance the performance of a subband
image coder. This image coder was described in Chapter 4. Previous related
work on error-robust image coding includes [6, 30, 36,46].

5.2 The Binary Symmetric Erasure Channel
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Binary Symmetric Channel Binary Erasure Channel

Binary Symmetric Erasure Channel

Figure 5.1. Three special cases of the BSEC

We consider channels where both erasures and bit-errors occur. Such
channels can arise, e.g., when information is communicated over several con-
secutive channels with different properties. Consider for instance the case
where a packet-switched network is used for long distance communication,
but local access is made through a wireless link. The network may fail to
deliver a packet on time, causing packet erasures. The wireless link, on the
other hand, is prone to introduce bit-errors.
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A wireless link, as defined by its physical properties, modulation, non-
perfect channel coding, etc., can be replaced by an equivalent discrete chan-
nel. Often this discrete channel can be modeled as a binary symmetric chan-
nel (BSC) with a transition probability α, corresponding to the bit-error rate
(BER) of the channel. In packet loss channels, erasures come in groups of
many bits. We assume however, that bit-level interleaving, using a pseudo-
random spreading sequence, is implemented in such a way that all bits in a
symbol are transmitted in different packets. This way, from a symbol per-
spective, independent packet losses are turned into independent bit-erasures.
The resulting channel is the binary erasure channel, defined by the erasure
probability β which will be referred to as the bit-loss rate (BLR). Note that
in our case the BLR is equal to the packet loss rate (PLR).

If the binary symmetric channel and the binary erasure channel are con-
catenated, the binary symmetric erasure channel (BSEC), depicted in Fig-
ure 5.1, is obtained. For the BSEC, bits are complemented with probability
α and lost with probability β. Thus, the probability of a correctly received
bit is (1 − α)(1 − β), the probability of a complemented bit is α(1 − β) and
the probability of an erasure is β. Note that both the binary symmetric
channel and the erasure channel are obtained as special cases of the BSEC.

5.3 Channel Optimized VQ for the BSEC

For ease of reference, we repeat here some basic results about COVQ and
COVQ design (see also Chapter 2, Section 2.2.1).

In general, a VQ or COVQ is defined by two basic operations, the encoder
and decoder. The encoder, ε(·), transforms a source vector, X ∈ R

k, into a
quantization index, I = ε(X), I ∈ IM = {0, 1, . . . , M − 1}. The encoder
operation is defined by a partitioning, P = {S0,S1, . . . ,SM−1}, of R

k such
that ε(x) = i, iff x ∈ Si. The decoder, δ(·), is a mapping from a finite set of
integers to an associated set of vectors, Y = δ(J), J ∈ {0, 1, . . . , N − 1}.
The set of reconstruction vectors, C = {y0, y1, . . . ,yN−1}, yj ∈ R

k, is
called the decoder codebook.

Suppose that the index I = ε(X) is sent over a noisy channel, and that J
is observed at the receiver. Assume also that the distortion measure d(x, y)
associated with mapping an input vector, x, into an output vector, y, is
given by the squared Euclidean distance, i.e.

d(x, y) = ‖x − y‖2 . (5.1)
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Then necessary conditions for minimizing the expected distortion,

D(P, C) = E [d(X, Y )] (5.2)

are

Si =







x :
N−1
∑

j=0

P (j|i)
∥

∥x − yj

∥

∥

2
≤

N−1
∑

j=0

P (j|i′)
∥

∥x − yj

∥

∥

2
, ∀i′ 6= i







(5.3)

and

yj = E [X|J = j] =

∑M−1
i=0 Pr(I = i)P (j|i)ci
∑M−1

i=0 Pr(I = i)P (j|i)
, (5.4)

where in (5.4) we defined the encoder centroids ci = E [X|I = i] , and where
P (j|i) = Pr(J = j|I = i) are the transition probabilities of the channel.
Generally (see, e.g., [12,27,53] and Chapter 2, Section 2.2.1), COVQ design
is based on iterating between (5.3) and (5.4) until convergence to a (local)
optimum in terms of a stationary point of D(P, C).

We emphasize that the precise model assumed for the discrete channel
influences the design only through the transition probabilities P (j|i). Note
in particular, that if the channel in Figure 5.1 is used, the decoder codebook
has to be larger than the number of encoder indices, effectively resulting in
soft source (and channel) decoding at the receiver, c.f. [31, 42]. The soft
information used by the decoder stems from the additional erasure output
symbol of the BSEC. We stress that under the assumptions made and since
the decoder codebook is optimal subject to these assumptions, the decoder
utilizes the available soft information in an optimal manner.

An alternative interpretation of COVQ’s trained for the BSEC, is in
terms of multiple description coding. Each received bit can be used to de-
crease the distortion of the reproduced value, independently of which other
bits are received. This is nothing but a special case of multiple description
coding, where each bit can be viewed as a description. This topic is fur-
ther investigated in Chapter 6. Related recent work uses channel optimized
scalar quantizers to design multiple description coders for the two channel
case [55].

The basic principle of optimizing a COVQ jointly for bit-errors and era-
sures, that is for P (j|i)’s corresponding to the channel in Figure 5.1, is
illustrated in Figure 5.2. The figure shows the performance of COVQ’s
trained for uncorrelated Gaussian data with unit variance. An ordinary
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Figure 5.2. Performance of COVQ over different channel parameters.

VQ, trained with the splitting algorithm [29] followed by the binary switch-
ing algorithm [54], is used to initialize the COVQ training. In this example,
the rate is 2 bits/dimension for 3-dimensional data, and the channel is per-
fectly matched to the training parameters. The x- and y-axes correspond
to different bit error and bit loss probabilities α and β respectively, and
the z-axis shows performance in terms of reproduced signal-to-noise ratio
E‖X‖2/E[d(X, Y )].

5.4 Application to Subband Image Coding

In the present chapter, we will use the basic subband image coder described
in Chapter 4, to investigate the performance over channels with bit errors
and erasures. As described in Chapter 4, the coder uses a four-level pyramid
subband decomposition [3, 35, 39], giving a total of 13 different subbands.
Vectors are formed within subbands (no crossband vectors) and each subband
is assigned a certain bit rate according to the “equal-slope” method (c.f. [8]).
The output indices from the VQ’s are put directly in the bit stream, without
any additional entropy- or channel coding (except for bit-level interleaving),
resulting in a fixed bit rate. Although better compression is possible by using
variable-rate entropy coding, we motivate our fixed bit-rate structure by its
avoidance of error propagation.
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Designing COVQ’s for the image coder requires the use of training data.
As described in Chapter 4, the approach we use to generate training data is
to fit a Gaussian mixture model to the empirical probability density function
of vectors from each subband [22]. The model parameters are estimated from
a set of images not including the test images. The estimated models can then
easily be applied in generating an arbitrary amount of training data. The
main reason for using a model of the source distribution instead of training
on image data directly, is to avoid over-fitting the COVQ’s to a small set of
image data.

5.5 Image Results

Figure 5.3. Result from subband coder using regular VQ at 0.5 bits/pixel,
designed assuming no channel errors, when subject to 10% bit-losses and 5%
bit-errors in the actual channel.
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Figure 5.4. Subband coder using COVQ at 0.5 bits/pixel, optimized for
10% bit-losses and 5% bit-errors.

Figure 5.3 shows the result of a subband coder based on ordinary VQ
and Figure 5.4 shows the result of a COVQ-based subband coder. In both
cases the channel is the binary symmetric erasure channel with 10% erasures
and 5% bit errors. For the ordinary VQ case, codewords received with lost
bits are reproduced by the unconditional mean of all codevectors that match
the partially received codeword. The image results speak for themselves and
show a large difference in favor of the COVQ based image coder.

Figures 5.5 and 5.6 show the performance of the same image coders when
there are no errors in the transmission. Clearly, the image coder designed
under an error free assumption performs better in this case. Of course,
the effect is less pronounced than in the case above, but it serves well to
illustrate the trade off between designing for good compression and designing
for robustness.
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Figure 5.5. Result from subband coder using regular VQ at 0.5 bits/pixel.

5.6 Comparison with Forward Error Correction

To compare the performance of the COVQ approach with the performance
of a more traditional one, the same image coder structure is used, but with
VQ’s optimized for the source statistics only. The resulting bit stream from
the image coder is then further encoded using BCH codes for protection
against errors and erasures. Using forward error correction (FEC) increases
the total bit rate, so to get a fair comparison, the number of bits allocated
to the image coder has to be reduced until the total transmission rate is the
same for COVQ and VQ+FEC.

Figure 5.7 shows the performance for three different approaches. One
COVQ coder, optimized for BER = 5% and BLR = 10%, and two FEC
coders, using BCH codes of length 15 and dimensions 7 and 5 respectively.



5.6. COMPARISON WITH FORWARD ERROR CORRECTION 65

Figure 5.6. Subband coder using COVQ at 0.5 bits/pixel, optimized for
10% bit-losses and 5% bit-errors. Received without errors.

The former BCH code can correct 2 errors or 4 erasures and the latter can
correct 3 errors or 6 erasures by using ML decoding. In all cases the well
known test image Goldhill was encoded to a total bit rate of 0.5 bpp. To
demonstrate a channel with both bit errors and erasures, the erasure prob-
ability was set to twice the bit error probability for a range of values. The
results show that COVQ outperforms FEC for all the simulated channels,
even though it is only optimized for one specific point on the curve. The
flat part of the curves for FEC corresponds to the case when the BCH code
can correct all errors and erasures. When the code breaks down, the per-
formance drops rapidly. COVQ shows a smoother degradation, observed by
others as being typical of COVQ.

Note that it should always be possible to find a COVQ that performs
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Figure 5.7. Performance of COVQ compared with VQ+FEC

equally well or better than VQ+FEC for any given channel. Such a COVQ
can be found trivially, by using VQ+FEC as the initial encoder partitioning
in the COVQ training. Since training only can improve performance, one
iteration is sufficient to guarantee equally good or better performance.

5.7 Summary

We have presented a simple but important extension of previous work on
COVQ for binary memoryless channels with bit-errors to channels with both
errors and erasures. Such channels are motivated by a scenario where parts of
a network connection are over wireless links. Bit-errors stem from transmis-
sion errors and bit-erasures stem from packet losses. An implicit assumption
is that no retransmissions are utilized in the network, e.g., due to strong
real-time requirements. Hence, packets potentially recognized to contain
bit-errors are not declared lost. Instead, packet losses are assumed to be due
to other phenomena, such as network overload.

The results show that COVQ is a useful tool for designing joint source-
channel codes for the binary symmetric erasure channel. In particular, ad-
vantages of joint source-channel coding over separate source and channel
coding were demonstrated.



Chapter 6

COVQ-based Multiple Description

Coding

In this chapter we present a slightly different approach to multiple descrip-
tion coding than is used in most other papers on MDC. The channel model
resulting from the MDC problem description fits perfectly into the frame-
work of channel optimized vector quantization, and an optimal solution to
the MDC problem can be identified by inspection.

Even though the traditional formulation of the COVQ design problem
obviously holds for general discrete memoryless channels, a major part of
the previous works on COVQ have focused on binary symmetric channels.
More importantly, only a few previous papers have utilized the connection
between the channel optimized and the multiple description quantization
problems, including the work by Zhou and Chan [55] and our paper [43].
Zhou and Chan [55] used channel optimized scalar quantizers to make the
two-channel multiple description scalar quantization (MDSQ) scheme in [48]
robust against symbol errors as well as erasures.

This chapter is arranged as follows: In Section 6.1 we demonstrate that
a large class of multiple description design problems can be recast to fit the
framework for channel optimized vector quantization (COVQ). Our focus is
on problems involving more than two descriptions, since it turns out that the
COVQ approach makes these problems relatively simple to implement. In
Section 2.3, an index assignment design procedure is presented, that takes ad-
vantage of the inherently good index assignment achieved by COVQ training
alone. In Section 6.3 we present numerical examples of multiple description
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coding with more than two descriptions. The results demonstrate perfor-
mance gains over previous results on the two description case, while keeping
the total transmitted rate constant.
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Figure 6.1. Traditional two channel multiple description model
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Figure 6.2. Modified multiple description channel model

6.1 Multiple Description Channel Model

Consider the multiple description coding problem as described in Section 2.4.
Traditionally, MDC design has been based on having a set of decoders, each
decoder representing a possible channel breakdown pattern. Figure 6.1 shows
this approach for the two-channel case. The design problem is to create an
encoder together with a set of decoders, such that the average distortion
of each decoder is minimized. This is complicated by the fact that the
distortions associated with different decoders are coupled, and the design
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problem becomes a multi-criterion optimization problem. It is not clear how
to make the trade-off between different decoder distortions.

The standard approach to multi-criterion optimization, is to scalarize
the problem as in [48], using Lagrange multipliers to place different weights
on different decoder distortions. After scalarization, the problem is read-
ily solved for a local minimum. Typically, several different values of the
Lagrange multipliers are tested, until the desired trade-off between the dif-
ferent decoder distortions is achieved.

There are, however, several drawbacks with scalarization. First of all,
the properties of the channels do not directly enter into the optimization
procedure, but is related in some way to the values of the Lagrange multipli-
ers. Second, and perhaps more important, is that it is difficult to extend the
results to systems with more channels than two, due to the rapidly increasing
number of Lagrange multipliers needed for the scalarization.

The approach taken in this thesis, is to only consider one decoder, and
instead extend the symbol alphabet to account for all possible loss patterns.
This approach is depicted in Figure 6.2. Note that I and J in this figure
belong to different symbol alphabets. If all sub channels are erasure channels,
then it is possible to describe the relationship between inputs I and outputs
J by the discrete channel transition probabilities P (J = j|I = i). This set of
probabilities, together with the source distribution, is all that is needed to
write down necessary conditions for the optimal solution using the COVQ
framework as given by (2.10) and (2.14).

As an example, consider the simplest possible case: a two-bit codeword
split in two one-bit descriptions. If we assume that independent erasures
occur with probability p and let q = (1− p), then P (J =j|I = i) is given by:

I

J
00 01 0x 10 11 1x x0 x1 xx

00 q2 0 pq 0 0 0 pq 0 p2

01 0 q2 pq 0 0 0 0 pq p2

10 0 0 0 q2 0 pq pq 0 p2

11 0 0 0 0 q2 pq 0 pq p2
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6.2 Index Assignment for MD-COVQ

One issue that is always of great importance in robust quantization, is the
problem of index assignment as described in Section 6.2. To deal with the
complexity of index assignment design, several authors have presented differ-
ent heuristic approaches to solve the problem suboptimally [12,18,48,52,54].
These methods all have in common that they guarantee that a local optimum
can be found at a complexity that is significantly lower than a full search. It
is often not very clear how to initialize these methods. The index assignment
methods specifically designed for the multiple description problem often re-
quire that a number of design parameters must be selected, e.g. the number
of redundant encoder symbols to use.

The approach to index assignment preferred by the author of this thesis,
takes advantage of a fact that has been observed as being typical for COVQ.
Namely that training a COVQ, as described in Section 2.2.4, usually results
in a relatively good index assignment. This is true in particular when train-
ing for high error probabilities. Another property that turns out to be useful,
is that the encoder partitioning after training often has many empty cells,
i.e. unused encoder symbols. Having many empty cells significantly reduces
the number of possible permutations of the index assignment, since switch-
ing place between two empty cells has no impact on the resulting average
distortion. This may dramatically shorten the time needed by any additional
index assignment algorithm.

A recommended turn-the-crank procedure for the design process is as
follows: Start with a codebook generated for an error free channel, i.e. a
standard VQ that can be created using e.g. the splitting algorithm [29].
Next, use this codebook to initialize the generalized Lloyd algorithm, and
optimize a COVQ for the given multiple description channel. After conver-
gence, the index assignment will be reasonably good and we may choose to
stop here. Otherwise we can continue and perform an index assignment algo-
rithm such as the binary switching algorithm (BSA) [54], modified as in [18]
to suit the particular MD-channel. If there are many redundant (unused)
encoder symbols after the COVQ optimization, then the extra cost for per-
forming the index assignment is relatively low. These steps are summarized
in Table 6.1.
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Table 6.1. Design steps in codebook generation

1. Select initial codebook

2. Perform COVQ training for the specified channel

3. Optimize the index assignment using the BSA

4. Possibly repeat steps 2. and 3. until no further improve-
ment

6.3 Experimental Results

To demonstrate the performance of the suggested design procedure, a num-
ber of simulations on Gaussian data were run. In all simulations, two-
dimensional uncorrelated Gaussian data were quantized to 4 bits/dimension,
so that the total transmission rate was 8 bits/symbol. These 8 bits were then
split into packets of 4, 2 and 1 bit(s), corresponding to 2, 4, and 8 descriptions
respectively. The resulting performance is compared with a reference system
using conventional VQ, combined with forward error correction (FEC).

Figure 6.4 shows the results of simulations run with quantizers perfectly
matched to the channel. In Figure 6.4a, the performance of our suggested
design procedure, implemented for the two description case, is compared to
the top curve of Figure 4 in [18]. The source distributions, VQ dimension-
alities and total bit-rates are identical for both curves. The difference in
performance for low probabilities of packet loss, is due to the fact that our
suggested procedure (denoted COVQ+BSA) does not put any constraints
on the number of redundant encoder symbols, while the design in [18] (MD-
BSA) has fixed the number of used encoder symbols to 64 out of 256. Fig-
ure 6.4b demonstrates the effect of increasing the number of descriptions,
while keeping the total bit-rate constant. The curve corresponding to two
descriptions is identical to COVQ+BSA in Figure 6.4a. We see that in this
case, a performance gain is possible by splitting the encoder output into
more descriptions.

As another reference system, consider a two dimensional VQ with rate
R and a Reed-Solomon (RS) code of length N and dimension K. R, N and
K are chosen such that RN/K = 4 bits/dimension, in order to match the
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rate of the COVQ-based system. RS-codes are maximum distance separable
(MDS) codes, and the performance can be evaluated as described in [21].
Since the VQ is two dimensional, the number of bits per VQ symbol is 2R,
so the RS code is constructed over GF(22R). This gives N = 22R −1, and K
is chosen to match the total rate as closely as possible. For instance, R = 3
gives 6-bit symbols. The RS code is then constructed over GF(64), N = 63
and K = 47 gives RN/K = 4.02. This comparison is far from fair, since
the COVQ system only uses 8-bit codewords, while the RS-code from the
example uses 63·6 = 378-bit codewords! Even so, as shown in Figure 6.3, the
COVQ system shows better performance for most channel realizations. Note
that each FEC-curve has a knee, after which the performance breaks down
rapidly. The COVQ-based system shows a much smoother degradation.
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Figure 6.3. Comparison with conventional system

Figure 6.5 shows the sensitivity to channel mismatch in four different
scenarios. (a)–(b) show the two descriptions case, and (c)–(d) show the 8
descriptions case. The quantizers in (a) and (c) are trained using COVQ
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alone, while those in (b) and (d) have had an extra step of index assignment
optimization using the BSA.

The results in Figure 6.5 show several things worth pointing out. First, it
is obvious that the 8 descriptions case is more sensitive to channel mismatch.
This implies that if there is any uncertainty in the true channel properties,
the gain in performance from increasing the number of descriptions might be
lost. Next, we see that using an additional index assignment optimization
gives little or no improvement at all if we only consider the envelop of the
curves, as we did in Figure 6.4. Index assignment does, however, have a
clear positive effect on the robustness of the quantizers. Finally, the quan-
tizer optimized for 10% packet loss in Figure 6.5b has performance that is
indistinguishable from the result from [18] shown in Figure 6.4a. It turns
out that after COVQ optimization, this particular quantizer makes use of
70 out of 256 encoder symbols, as compared to the 64 used in the example
from [18].

6.4 Image Examples

The images in Figures 6.7– 6.8 were encoded using the image coder from
Chapter 4. Figure 6.7 was designed using standard VQ without knowledge
about the channel. Each bit was transmitted as a separate description.
Bit losses were treated by taking the mean value of all possible codevectors
matching the partially received index, i.e. if the bit pattern {1,×, 0} was
received, the reconstructed value was taken to be the mean value of the
codevectors corresponding to {1, 1, 0} and {1, 0, 0}. Figure 6.8 used COVQ
trained for the correct channel properties, which in this case was a bit loss
probability of 20%.

6.5 Summary

We have presented a simple and straightforward way to design multiple de-
scription codes based on channel optimized vector quantization. The sug-
gested approach makes implementation of multiple description codes with
more than two descriptions easier than in previous works, and simulation
results show that the extensions to more than two descriptions outperform
the two descriptions case for channels with high probability of packet loss.
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Figure 6.4. Simulation results for MD-COVQ: (a) 2 description case com-
pared to results in [18]. (b) Performance for different number of descriptions
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Figure 6.5. Robustness against channel mismatch. (a) 2 descriptions,
COVQ optimized only. (b) 2 descriptions, COVQ with additional index
assignment.
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Figure 6.6. Robustness against channel mismatch, 8 descriptions. (a) 8 de-
scriptions, COVQ optimized only. (b) 8 descriptions, COVQ with additional
index assignment.
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Figure 6.7. Image encoded using standard VQ. Bit loss probability of 20%.
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Figure 6.8. Image encoded using COVQ-based multiple description coding.
Bit loss probability of 20%.



Chapter 7

Conclusions

Error robust source coding has been studied in this thesis. Channel op-
timized vector quantization was used as a tool for two new problems. A
new image coder was designed and used for testing and demonstrating the
performance of the new schemes. The simulations show that there are poten-
tial gains in using joint source–channel coding compared to the traditional
approach of separate source and channel coding.

7.1 Future Work

There are a few possible future extensions to this thesis:

• Construct a video coder similar to the image coder in this thesis.

• Study more realistic channel models

– Internetworking with wireless access

– Delays, queues, memory

• Study more general network problems in the context of joint source–
channel coding

– Distributed coding and quantization. TheWyner-Ziv and Slepian-
Wolf problems.

– Network coding, “generalized routing” [1].
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