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Abstract

Frequency estimation has been studied for a large number of years. One
reason for this is that the problem is easy to understand, but difficult
to solve. Another reason, for sure, is the large number of applications
that involve frequency estimation, e.g radar using frequency modulated
continuous wave (FMCW) techniques where the distance to the target is
embedded in the frequency, resonance sensor systems where the output
signal is given as the frequency displacement from a nominal frequency,
radio frequency identification systems (RFID) where frequency modu-
lation is used in the communication link, etc. The requirement on the
frequency estimator varies with the application and typical issues include:
accuracy, precision or (bias) processing speed or complexity, and ability
to handle multiple signals. A lot of solutions to different problems in this
area has been proposed, but still several open questions remain.

The first part of this thesis addresses the problem of frequency esti-
mation using low complexity algorithms. One way of achieving such an
algorithm is to employ a coarse quantization on the input signal. In this
thesis, a 1-bit quantizer is considered which enables the use of low com-
plexity algorithms. Frequency estimation using look-up tables is studied
and the properties of such an estimator are presented. By analyzing
the look-up tables using the Hadamard transform a novel type of low-
complexity frequency estimators is proposed. They use operations such
as binary multiplication and addition of precalculated constants. This
fact makes them suitable in applications where low complexity and high
speed are major issues. A hardware demonstrator using the table look-up
technique is designed and a prototype is analysed by real measurements.

Today, the interest of using digital signal processing instead of analog
processing is almost absolute. For example, in testing analog-to-digital
converters an important part is to fit a sinewave to the recorded data,
as well as to calculate the parameters that in least-squares sense result
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in the best fit. In this thesis, the sinewave fitting method included in
the IEEE Standard 1057 is studied in some detail. Asymptotic Cramér-
Rao bounds for three- and four model parameters are derived under the
Gaussian assumption. Further, the sinewave fitting properties of the
algorithm are analyzed by the parsimony principle. A novel model order
selection criterion is proposed for waveform fitting methods in the case
of a linear signal model. A generalization of this criterion is made to
include the non-linear sinewave fitting application.

For multiple sinewave fitting applications two iterative algorithms are
proposed. The first method is a combination of the standardized sinewave
fit algorithm and the expectation maximization algorithm. The second al-
gorithm is an extension of a single sinewave model to a multiple sinewave
model employing the standardized sinewave fitting algorithm. Both al-
gorithms are analysed by numerical means and are shown to accurately
resolve multiple sinewaves and produce efficient estimates. Initialization
issues of such algorithms are included to some extent.
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7.2.2 Estimates of ŷi . . . . . . . . . . . . . . . . . . . . 108
7.2.3 Maximization of pŷi
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Chapter 1

Introduction

1.1 Background

In many applications it is a frequency contents of a signal that carry the
information about some sought property. Examples include a frequency
modulated communication system, a frequency modulated continuous
wave (FMCW) radar system, resonance sensor systems, etc. An even
longer list can be made with the frequency estimators that have been
proposed during the last centuries. One of the pioneers in the area was
Baron Gaspard Riche de Prony. He discovered that evenly spaced samples
of a signal consisting of a sum of complex-valued exponentials obey the
homogeneous difference equation [dP95]

x[n + p] + αp−1x[n + p − 1] + · · · + α0x0[n] = 0. (1.1)

In todays leading edge signal processing algorithms one often uses a re-
cursive formula when generating a sinewave. The recursive formula used
is nothing but a special case of de Prony’s general formula (1.1). Consider
the problem of creating samples of a sinusoid at an angular frequency ω.
Then given two initial values y[0] and y[1], the consecutive samples can
be calculated using

y[n + 2] = αy[n + 1] − y[n], n = 0, 1, 2, . . . (1.2)

where α = 2 cos(ω) and the initial values are given by y[0] = 0 and
y[1] = sin(ω), respectively. Using (1.2), it is possible to generate N sam-
ples of the signal y[n] = sin(ωn) using N − 1 multiplications, N − 2 addi-
tions and two sin-function calls. Performing the generation of a sinewave,



2 1 Introduction

it is the sin function calls that demand the major computer resources.
Even for a small number of samples, it is a substantial difference in nu-
merical complexity using the recursive formula (1.2) compared with direct
sin-function calls. Of course, there is a drawback using the recursive for-
mula. Since the present sample depends on all the old samples, errors are
accumulated. The error sources are in the addition/multiplication oper-
ations due to limited number precision. However, modern digital signal
processors (DSP) often support floating point precision which keeps the
error on an acceptable level.

The recursive sinewave formula (1.2) is a good example of a simplified
suboptimal method. Here, suboptimal in the context of the trade-off
between accuracy and numerical computations. Suboptimal algorithms
are becoming more and more commonly used in todays applications. As
stated previously, the reason is that the computational capacity is limited;
either by price or by a limited power source in applications relying on a
battery.

1.2 Model

As in (1.1) and (1.2), the thesis will address evenly spaced sampled sig-
nals. The signal part s[n] is, in its general form, a sum of real valued
sinusoids1

s[n] =

p
∑

ℓ=1

αℓ sin(ωℓn + φℓ) + Cℓ. (1.3)

Here, αℓ is a real valued constant describing the amplitude, ωℓ = 2πfℓ is
the angular frequency and φℓ describes the initial phase. The Cℓ handles
measurement data with non-zero mean value. A DC-level in data is often
present in applications using analog to digital conversion since ADCs
often have a unipolar signal input range. In some cases is it convenient
to write the phase shifted model (1.3) as

s[n] =

p
∑

ℓ=1

Aℓ cos(ωℓn) + Bℓ sin(ωℓn) + Cℓ. (1.4)

The mapping between the parameters Aℓ, Bℓ and αℓ, φℓ is one to one
according to

Aℓ = αℓ sinφℓ Bℓ = αℓ cos φℓ (1.5)

1Note that Cℓ is only introduced for notational simplicity. The actual DC-level is
given by C =

P

Cℓ.
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In this thesis only real valued signal models are considered. A motivation
thereof is that the corresponding complex-valued signal model is already
extensively investigated in the literature. Further, some of the topics in
this thesis discuss signal processing on quantized signals collected from a
measurement system, in such systems there is no advantage in having a
complex-valued signal model.

It is further assumed that the measured signal x[n] contains the signal
and some additional measurement noise w[n], that is

x[n] = s[n] + w[n], n = 1, 2, . . . , N (1.6)

It is difficult to make valid assumptions about the measurement noise.
The noise term often acts as the parameter that describes everything
not included in the signal model, that is thermal and quantization noise,
model imperfections, etc. Though, when algorithms are to be evaluated
a Gaussian assumption is often made to describe the noise. In this thesis,
when needed the noise is modeled as white and Gaussian. The samples in
a white Gaussian process are independent of each other, and each sample
is fully described by its mean value and variance.

Often, it is convenient to use a vector representation to describe (1.6).
A straightforward way of arriving at such a model is to stack the samples
in column vectors, that is

s =

p
∑

ℓ=1

Hℓθℓ (1.7)

with

Hℓ =








cos ωℓ sin ωℓ 1
cos 2ωℓ sin 2ωℓ 1

...
...

...
cos Nωℓ sin Nωℓ 1








θℓ =





Aℓ

Bℓ

Cℓ



 (1.8)

The measured samples x = [x[1] . . . x[N ]]T can then be written as

x = s + w (1.9)

where w = [w[1] . . . w[N ]]T .
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1.3 A Frequency Estimation Example

A classical paper on frequency estimation using discrete time data is the
one by Rife and Borstyn [RB74]. In [RB74], the model (1.6) with s[n]
given by (1.3) in the special case p = 1 and C = 0. Here, the example
of [RB74] is reviewed, for an arbitrary C.

Consider the single sinusoidal signal s[n] with unknown parameters
A, B, C and ω, that is (1.4) with p = 1. The measured signal is then
given by s[n] deteriorated by the additive noise component w[n]. The
noise is assumed to be zero mean white Gaussian with variance σ2. A
typical realization of such a signal is displayed in Figure 1.1. The estima-
tion problem in this case is to estimate the signal parameters using the
measured data samples x = [x[1] . . . x[N ]]T .

The probability density function (pdf)

p(x; θ, ω) =
1

(2πσ2)N
exp

[

− 1

2σ2
(x − Hθ)T (x − Hθ)

]

(1.10)

describes the probability per infinitesimal volume of receiving the data
samples x given a set of parameters {θ, ω}. Here the parameter vector
θ equals θ = (A,B,C)T . In (1.10), H is implicitly dependent on the
frequency ω. The maximum likelihood estimator (MLE) strives to max-
imize the pdf with respect to the unknown parameters for a given x and
use those parameters as an estimate. That is,

[θ̂, ω̂] = arg max
θ,ω

p(x; θ, ω). (1.11)

The expression (1.11) can be further simplified by taking the logarithm
of (1.10), multiplying with −1 and removing the constant terms not de-
pendent on θ or ω, that is

[θ̂, ω̂] = arg min
θ,ω

[
(x − Hθ)T (x − Hθ)

]
. (1.12)

If ω is known then H is a constant matrix and an estimate of θ is given
by the least-squares solution as

θ̂ = (HT H)−1HT x (1.13)

In (1.13), H must have full column rank. This is generally true except
when the angular frequency ω is equal to zero or a multiple of π. Us-
ing the least-squares solution (1.12), the MLE criterion function can be
concentrated to one parameter,

g(ω) = xT H(HT H)−1HT x. (1.14)
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Figure 1.1: Example measurements on a single sinusoid disturbed by
additive white Gaussian noise.

The frequency estimate is then given by maximizing g(ω), that is

ω̂ = arg max
ω

g(ω) (1.15)

The equation (1.15) can be solved by a non-linear search or by using an
iterative step method, i.e a Gauss-Newton iteration [SMFS89], [S1057].
However, when iterative methods are employed an initial estimate of
the frequency is required. The perhaps most common way of solving
an approximation of (1.15) is to calculate the discrete Fourier transform
(DFT) of the signal x and then find the location of the dominating peak.
This approximative solution corresponds to (1.15) if the inverse of HT H
is replaced by a scaled identity matrix. This is a valid approximation
for large N , that is if N ≫ 1/ω. Using the data samples in Figure 1.1,
(1.14) is evaluated and displayed in Figure 1.2. From the peak location
in Figure 1.2 an estimate of the frequency is obtained. In this example,
the noise power is equal to the signal power. The signal to noise ratio
(SNR) is defined by

SNR =
α2

2σ2
=

A2 + B2

2σ2
(1.16)
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Figure 1.2: MLE criterion function g(ω). The true angular frequency
is ω = 0.811, N = 64 and SNR = 0dB.

The signal peaks in Figure 1.2 are easy to distinguish from the noise floor
as long as the SNR is high enough. The threshold above which the signal
peaks can be distinguished from the noise floor depends on the number
of data samples N and the SNR. A rule of thumb is [SB85]

SNR
N

lnN
≫ 1 (1.17)

In practical applications a factor 70 is suitable [SB85]. Using the esti-
mate ω̂ obtained from (1.15) the least-square solution (1.13) can be used
to obtain the parameters in θ. The estimated parameters versus the true
parameters for the considered experimental data are listed in Table 1.1.
As seen in Table 1.1 the estimated parameter values do not exactly co-
incide with the true ones. The accuracy of any estimation method is
strongly dependent on the number of data samples N and the SNR. A
lower bound on the variance of the frequency estimate from an unbiased
estimator is given by the Cramér-Rao (CRB) [Kay93]. For the sought
frequency, it is well known that a large N approximation of the CRB is
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true estimated
α 1.00 1.052
φ 0.67 0.669
ω 0.811 0.812
A 0.620 0.653
B 0.784 0.825
C 0.410 0.423

Table 1.1: Comparison of the true and estimated parameter values.

given by [RB74]

var{ω̂} ≥ 12

SNRN3
. (1.18)

1.4 Contributions and Outline

As indicated in the previous section, frequency estimation has been stud-
ied for a long period of time, and an enormous amount of references can
be found in the literature. See, for example, the detailed list of refer-
ences [Sto93]. However, there are still some white spots on the frequency
estimation map. The aim of this thesis is to explore some of these white
spots in order to get additional insight into this narrow-band research
problem, as well as investigate the associated model-order and waveform
fitting problems.

This thesis can be divided into three major parts. The first part
(Part I, Chapter 2, 3 and 4) concerns parameter estimation utilizing
coarse quantization in general, and frequency estimation in particular.
The second part (Part II, Chapter 5 and 6) concerns properties and ex-
tensions of the IEEE standard 1057 (1241) sinewave fitting algorithm.
The third, and final part, (Part III, Chapter 7 and 8) concerns parame-
ter estimations of multiple sinewaves.

The chapters are written as individual parts and can be read inde-
pendently from each other. Accordingly, some overlap in the contents of
the chapters may exist as well as some differences in the used notation.
An overview of the contents is given below.
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Part I

Chapter 2

A method for fast frequency estimation by table look-up (FFETL) pro-
cessing is presented. The estimation is based on data that has been
quantized at one bit per sample, and all data processing is represented
by a single table look-up operation, resulting in O(1)-complexity. The
performance of the proposed method is compared with the proper CRB
for one bit quantized data, and the MLE for unquantized data by aid of
Monte Carlo simulations. The FFETL method is shown to be (almost)
statistically efficient over a wide range of SNRs, as encountered in prac-
tical applications. Practical aspects such as implementation issues, and
the performance limitations due to quantization are discussed in some
detail. The contents of this chapter have been published in

Tomas Andersson, Mikael Skoglund, and Peter Händel. Frequency
estimation by 1-bit quantization and table look-up processing. In
Proceedings European Signal Processing Conference, pages 1807–
1810, Tampere, Finland, September 2000. EURASIP.

Chapter 3

This chapter is devoted to implementation of the frequency estimator of
Chapter 2 as well as an application on post-correction of analog-to-digital
converters (ADCs). The table-lookup method presented in Chapter 2 is
well suited for implementations requiring a low complexity. A prototype
based on low-level logic circuits has been developed for demonstration
purposes. In this chapter, the functionality of the prototype is described,
as well as a few implementation issues are discussed. Some issues regard-
ing low-complexity implementation of parameter estimators are included
in

P. Händel, M. Skoglund, T. Andersson, and A. Høst-Madsen.
Method and apparatus for estimation physical parameters in a sig-
nal. Swedish Patent 520067, May 2003.

Recently, the experimental performance of the prototype was evaluated
by aid of an available measurement test-bed, see [BAH05]. The evaluation
is also available as
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Tomas Andersson and Peter Händel. Experiments on a hardware
frequency estimator utilizing table look-up processing. Technical
report IR-S3-SB-0541.

A tentative application of the fast frequency estimator is for error
correction of ADCs. It is possible to take the frequency contents of
the ADC output into account in order to make a more accurate ADC
correction than methods only utilizing the present input value of the
input. The joint work is presented in [LASH02]

Henrik Lundin, Tomas Andersson, Mikael Skoglund, and Peter
Händel. Analog-to-digital converter error correction using fre-
quency selective tables. In RadioVetenskap och Kommunikation
(RVK), pages 487–490, June 2002.

Chapter 4

Fast analog-to-digital conversion with 1-bit per sample does not only
make high sampling rates possible, but also reduces the required hardware
complexity. For short data buffers or block lengths, it has been shown
in Chapters 2-3 that tone frequency estimators can be implemented by
a simple table look-up. In this chapter, an analysis is presented of such
tables using the Hadamard transform. As an outcome of the analysis, a
class of nonlinear estimators of low complexity is proposed. Their perfor-
mance is evaluated using numerical simulations. Comparisons are made
with the proper CRB and with the table look-up approach. Chapter 4 is
available as

Tomas Andersson, Mikael Skoglund, and Peter Händel. Frequency
estimation utilizing the Hadamard transform. In IEEE Workshop
on Statistical Signal Processing, Singapore, pages 409–412, August
2001.

Part II

In testing digital waveform recorders and analog-to-digital converters, an
important part is to fit a sinusoidal model to recorded data, as well as to
calculate the parameters that in least-squares sense result in the best fit.
Algorithms performing a sinewave fit have been standardized in IEEE
standard 1057 and IEEE standard 1241 [S1057,S1241]. Depending if the
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sinewave frequency is known, or not, the algorithms are often denoted by
the three-parameter fit and the four-parameter fit, respectively; where
the three-parameter fit includes fitting of amplitude, initial phase and
DC-offset. Normally, the four-parameter fit is employed, and software
implementations of it are described in, for example, [MK01, Bla99]. A
detailed performance comparison between the three- and four-parameter
fit can be found in Chapter 5.

Notes on the performance of the four-parameter algorithm can be
found in [BMS+02,Hän00]. In [BMS+02], the performance dependence
on the initial estimates was addressed. The stop criterion of the iterative
four-parameter sinewave fit was also given some attention. In [Hän00],
the small error performance of the four-parameter algorithm is com-
pared with the performance of an alternative nonlinear least-squares al-
gorithm. The alternative algorithm in [Hän00] utilizes the fact that the
least squares criterion can be concentrated with respect to three of the
parameters, and thus the problem is reduced to a one-dimensional opti-
mization problem. Some alternative methods to the four-parameter fit
of [S1057] can be found in [GT97,HDM99,dSS01]. In this research area,
the thesis contribution are listed below.

Chapter 5

Chapter 5 deals with some fundamental properties of the sinewave fit
algorithm included in IEEE Standards 1057 and 1241 [S1057], [S1241].
Asymptotic Cramér-Rao bounds for three- and four model parameters
are derived under the Gaussian assumption. Further, the sinewave fit-
ting properties of the algorithm are analyzed by the parsimony princi-
ple [SS89]. A decision criterion whether to use the three- or four pa-
rameter model is derived. It is shown that a three parameter sinewave
fit produces a better fit than the four parameter fit, if the frequency is
known to be within an interval related to the number of samples and
the signal-to-noise ratio. By a numerical analysis the theoretical results
are shown to also be valid for the uniform noise model of quantization.
Chapter 5 is available as

Tomas Andersson and Peter Händel. IEEE standard 1057, Cramér-
Rao bound and the parsimony principle. IEEE Transactions on
Instrumentation and Measurements. In Press.
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A short version is available as

T. Andersson and P. Händel. IEEE-STD-1057, Cramér-Rao bound
and the parsimony principle. 8th International Workshop on ADC
Modeling and Testing. Perugia, Italy September 8-10, 2003.

Chapter 6

Chapter 6 is an extension of Chapter 5, and presents a criterion for model
order selection. By usage of the parsimony principle the mean sum-
square-error is evaluated for models subject to imperfections in parameter
values. In particular, model imperfections in different sinewave-fitting
scenarios are analyzed. The analysis is carried out considering linear
models. The obtained result is generalized to models incorporating non-
linear parameters. Numerical illustrations are provided in order to gain
insight of the behavior of model imperfections, as well as to numerically
verify the theoretical results. The main contributions include a general
result for linear signal models, as well as some novel results on sinewave-
fitting. This work is presented in

Tomas Andersson and Peter Händel. Robustness of wave-fitting
with respect to uncertain parameter values. In Proceedings IEEE
Instrumentation and Measurement Technology Conference, May 2005.
Ottawa, Canada.

Part III

Multi-sinewave test methods require algorithms for multiple-tone pa-
rameter estimation. There exist a vast amount of publications on the
topic [Sto93]. When several sinewaves are present in the signal one can
generally not rely on algorithms designed for signals with only a single
sinusoid. In this part of the thesis two algorithms are presented that
jointly resolves several sinewaves. Emphasis has been made on practical
convergence, i.e that the estimates of the parameters converge to the true
parameters.

Chapter 7

In this chapter, the single sinewave fitting algorithm, described in Chap-
ter 5, is extended to the multi-tone case. The main objective is to derive
a multi-tone algorithm based on the standardized single-tone fit in IEEE
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standards 1057 and 1241, respectively. By utilizing the expectation max-
imization (EM) algorithm in combination with a single-tone fit one can
estimate the parameters for each sinewave independently. Further it is
shown that the algorithm produces statistically efficient frequency esti-
mates at high signal to noise ratios, that is the variance of the estimates
reaches the CRB, independently of the actual number of tones present in
the measured data. A full version of this chapter is presented as

Tomas Andersson and Peter Händel. Multiple-tone estimation
by IEEE standard 1057 and the expectation-maximization algo-
rithm. IEEE Transactions on Instrumentation and Measurements.
In press.

and a short version is available as

Tomas Andersson and Peter Händel. Multiple-tone estimation by
IEEE standard 1057 and the expectation-maximization algorithm.
IEEE Conf. on Instrumentation and Measurement, Vail, CO, May
2003.

Chapter 8

This chapter presents a generalization of the IEEE four-parameter sinewave
fit algorithm suitable to handle data comprising multiple sinewaves. The
proposed method directly estimates the 3p + 1 parameters of a p-tone
model. The algorithm is analyzed numerically with emphasize on its
convergence properties and statistical efficiency. The initialization of the
algorithm is of major importance and an attempt to formulate a proper
initialization procedure is presented. This work is presented as

Tomas Andersson and Peter Händel. Toward a standardized multi-
sinewave fit algorithm. In 9th European Workshop on ADC Mod-
elling and Testing, volume 1, pages 337–342, Athens, Greece, Septem-
ber 2004.

1.5 Conclusions and Future Research

With the present thesis as a starting point several directions of further
research can be outlined. The conclusions and topics for further research
are presented below, and not in a separate chapter at the end of the
thesis.
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1.5.1 Conclusions

High-speed Tone Frequency Estimation

In this thesis, among other things, a novel frequency estimator using
table look-up processing has been proposed. The algorithm is derived
using an input signal quantized with only 1-bit per sample. Methods for
creating the table have been studied. Theoretical results and training
approaches have been proposed. Further studies of the table used in the
table look-up estimator using the Hadamard transform have resulted in
a new class of low-complexity estimators. The studies have shown that
such estimators are appropriate when the input signal is quantized with
1-bit.

The table look-up estimator is appropriate when a fast and low com-
plexity processing is of importance. As an application example an ADC
post correction application using the table look-up estimator has been
presented. Further, the simplicity of the table look-up estimator has
been visualised with the development of a demonstrator. Measurements
on the demonstrator have shown that the performance is in accordance
with performed numerical simulations.

Waveform Fitting

Standardized waveform fitting methods have been studied. Performance
analyses employing the Cramér-Rao bound and the parsimony principle
have been performed. The quality of the waveform fit is evaluated in
terms of the mean sum-squared-error. A simple rule-of-thumb is derived
suitable when selecting a proper estimation algorithm for the given prob-
lem. Also, the influence of quantization has been considered to some
extent. In particular the presented analysis has been shown to be valid
under the uniform noise model of quantization.

When using a linear model a simple criterion for model order selection
has been derived. A generalization of this result to include non-linear
models has been studies in the special case of sinewave fitting.

Multi-Tone Sinewave Fitting

An algorithm solving the multiple sinewave parameter estimation prob-
lem has been proposed. The algorithm utilizes the standardized wave-fit
method along with the expectation maximization algorithm. Studies pre-
sented in this thesis have shown that the algorithm produces statistically
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efficient estimates of the parameters. A second algorithm solving the mul-
tiple sinewave parameter fitting problem by extending the standardized
single sinewave fitting algorithm has been proposed. Initialization issues
and convergence has been studied by means of numerical simulations.
Multi-tone waveform fitting is a non-trivial task and the proposed meth-
ods have potential to be useful tools for the practician in instrumentation
and measurement.

1.5.2 Future Research

Fast methods for multi-bit data

The table look-up approach is highly memory consuming. The outcome
from Chapter 4 can be viewed as way of trading memory against com-
putations. In this thesis, these methods were studied when the input is
quantized with 1-bit. Studies have shown [HMH00] that frequency esti-
mation using 4-bit quantization is almost as good as using unquantized
input data. An algorithm combining the 1-bit technique with the use of
4-bit data is an interesting topic which may be subject to future research.

Robustness of wave-fitting

The result derived in Chapter 5, about whether to choose a three- or a
four-parameter method, is intuitive and easy to understand. The result
has been generalised when a linear model is employed. The result also
holds for a non-linear model in the special case of sinewave fitting. Fur-
ther generalization of the result to a general non-linear model may be
possible and is subject to further studies.

Easy-to-use algorithms

When constructing an algorithm to be subject for possible standardiza-
tion, one must make the usage easy and false proof. In the two proposed
multi-sinewave algorithms (Chapter 7 and Chapter 8, respectively) there
are two issues that are swepth under the carpet, namely i) the detection
of the number of sinewaves and finding initial estimates of the parameter
to ensure convergence, and ii) since the both algorithms are iterative,
when to stop the iterations.

i) If the tones are well separated in frequency the detection is generally
not a problem. For instance the number of tones can be detected
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by the most significant peaks in the periodogram. If the tones
are closely separated in frequency and differs in amplitude other
methods must be applied to solve the problem, i.e [Fuc88] [Fuc94].

ii) Often the user has some accuracy demands that could be used to
decide when to stop iterating. That is, if the parameters converge.
If, one the other hand, the parameters diverge this has to be de-
tected to notify the user that the estemated parameters are not to
be trusted.

These two issues are equally important in order to design an easy to use
multiple-sinewave fitting algorithm. Important topics for further research
include detection schemes and stop criterions for this type of algorithms.





Part I

High-speed Tone
Frequency Estimation





Chapter 2

Frequency Estimation by
Table Look-up

2.1 Introduction

Tone frequency estimation from an N -sequence of noise corrupted data

{x[0], . . . , x[N − 1]} (2.1)

is a well-established research area, and several estimators have been pro-
posed during the past decades. If the additive noise is white Gaussian,
the maximum likelihood estimator (MLE) of the unknown frequency f
is given by a non-linear least squares fit of a sinusoidal model to the
samples (2.1) [RB74]. For a large sample-size N , the MLE is known
as the location at which the periodogram P (f), the magnitude squared
Fourier transform of observations (2.1), attains its maximum. In prac-
tice an efficient approximation of the MLE can be implemented by aid
of the fast Fourier transform (FFT) of the discrete time observation fol-
lowed by a search for the maximum of the power spectral density [RB74].
An FFT-based implementation requires O(N log N) floating point oper-
ations. Fast methods of order O(N) have been derived, e.g. by fitting a
straight line to the unwrapped phase of data [Tre85,Kay89]; See [FL96]
for efficient implementations of the algorithm in [Kay89]. The transfor-
mation from x[n] to phase data is often implemented by a table look-up.
Processing speed can be increased by replacing the floating point arith-
metics with fixed point. It was shown in [HMH00] that 1-bit processing
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is sufficient if a sampling rate beyond Nyqvist is employed.

In this chapter, faster methods based on 1-bit quantized observations
will be studied. Using quantized data it is possible to design an algorithm
of computational complexity O(1). Our scheme utilizes the fact that for a
finite N there exist only a finite number of different possible realizations
of the observed data, and hence the whole frequency estimator can be
implemented using a table look-up approach. This approach is described
in the following section.

2.2 Frequency Estimation by Table Look-up

Consider the signal model

x[n] = s[n] + w[n], s[n] = A sin(2πfn + φ) (2.2)

where A > 0 is the amplitude, φ the initial phase, and f is the normalized
frequency, 0 < f < 1/2, i.e. f = F/fs where F is the signal frequency and
fs is the sampling frequency. The noise is assumed white and Gaussian
with variance σ2. Our aim in this work is to devise an estimator, say f̂ ,
that strives to estimate the true value, say f0, of the unknown frequency
f , based on a block of observed data according to (2.1). We utilize
the assumption that before the data is processed by the estimator, the
observations x[n] are quantized to form a binary sequence according to

y[n] = sign(x[n]) (2.3)

where sign(x) = 1 for x ≥ 0 and sign(x) = −1 for x < 0. Our goal is

then to find an estimator f̂ : {±1}N → R, operating on the observed and
quantized data

{y[0], . . . , y[N − 1]} (2.4)

that is optimal in the sense of minimum mean-square error (MMSE).

That is, we strive to find the estimator that minimizes E[(f̂ − f)2] over

all possible f̂ .

One key observation of this work is that, because of the quantization,
the number of possible sequences that can be observed by the estimator
is finite. More precisely, we note that a particular observed sequence
according to (2.4) of length N can be uniquely mapped to an integer
i ∈ {0, 1, . . . ,M − 1}, with M = 2N . The mapping from an observed
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Figure 2.1: Exemplary description of frequency estimation by table look-
up processing. An N -sequence of binary data {y[0], . . . , y[N − 1]} defines the
pointer i corresponding to a frequency estimate f̂(i). The stored table is de-
signed according to the MMSE criterion.

sequence to the index i is here chosen as

i =
N−1∑

n=0

1 − y[n]

2
· 2n. (2.5)

Since the observed data is of finite resolution there can only be a finite
number of possible estimator outputs. Thus, without loss of generality,
all possible frequency estimators based on a sequence of quantized data,
as in (2.4), can be implemented in two steps: (a) determine the index i
that corresponds to the observed sequence according to (2.5), and (b) use
this index as a pointer to an entry in a table, the look-up table

{f̂(0), f̂(1), . . . , f̂(M − 1)} (2.6)

containing all possible frequency estimates that can be produced by the
estimator. Designing the best possible frequency estimator is then equiv-
alent to constructing the table (2.6). Under the MMSE criterion [Kay93],
we have that the table entries should be chosen as

f̂(i) = E[f | i] (2.7)

where the conditional expectation can be computed under the assumption
that the a priori distribution for the unknown frequency f is known.



22 2 Frequency Estimation by Table Look-up

When the table has been calculated and stored, the operation of the new
frequency estimator can be illustrated as in Fig. 2.1.

2.3 Look-up Table Design

If the noise and the frequency distribution are known a priori, it is possi-
ble to calculate the look-up table analytically. However, if the noise has a
different color than white and/or the frequency distribution is more com-
plex than just uniform, the analytical expressions tend to be tedious to
evaluate numerically. An alternative approach is then to train the table
using a large set of training data. These two approaches are discussed in
detail below.

2.3.1 Calculating the Look-up Table

In the case of white Gaussian noise and a uniform frequency distri-
bution over [0, 1/2), we can calculate the table entries (2.6) explicitly
from (2.7). Let pθ(θ) denote the probability density function (pdf) of the
stochastic quantity θ. We have from (2.7)

f̂(i) = E[f |i] =

∫ 1/2

0

f · pf |i(f |i) df (2.8)

where pf |i(f |i) is given by Bayes’ rule as

pf |i (f |i) =
pf (f) pi|f (i|f)

pi(i)
(2.9)

where the probability mass function (pmf) pi(i) is given by

pi(i) =

∫ 1/2

0

pf (f) pi|f (i|f)df. (2.10)

We note that the index i is a function of the sequence (2.4), as given
by (2.5). Hence, to find pi(i) and pi|f (i|f) we need to examine the indi-
vidual samples y[n]. For white noise w[n] in (2.2) the pmf for each y[n]
(conditioned on frequency and phase) is given as

py|f,φ(y[n]|f, φ) =
1

2

[

1 + y[n] · erf
(√

SNR sin(2πfn + φ)
)]

(2.11)
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where erf(·)1 is the error function and the signal to noise ratio is defined
as

SNR =
A2

2σ2
. (2.12)

Since y[n] are independent for different n (conditioned on frequency and
phase) we have

pi|f,φ(i|f, φ) =

N−1∏

n=0

py|f,φ(y[n]|f, φ) (2.13)

where y[n], n = 0, . . . , N − 1, gives i according to (2.5). It is reasonable
to assume that the phase φ is uniformly distributed over [0, 2π). Thus
we can remove the phase dependency in (2.13) by integrating over φ
according to

pi|f (i|f) =
1

2π

∫ 2π

0

pi|f,φ(i|f, φ) dφ. (2.14)

Using the above results we can then form a closed form expression for
the table entries in (2.8) as

f̂(i) =

∫ 1/2

0

f · g(i, f) df

∫ 1/2

0

g(i, f) df

(2.15)

where

g(i, f) =

∫ 2π

0

N−1∏

n=0

py|f,φ(y[n]|f, φ) dφ. (2.16)

In (2.16), py|f,φ(y[n]|f, φ) is given by (2.11) and {y[0], . . . , y[N − 1]} is
related to i as described in (2.5).

From (2.15) we note that, for a given i, the value of f̂(i) is a function
of the SNR only.

1erf(x) =
2
√

π

Z

x

0

exp(−t
2)dt
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2.3.2 Training the Look-up Table

A straightforward alternative approach to determine the table entries
(2.6), for a given SNR, is to use a training sequence T = {ik}K

k=1 (where
each ik corresponds to a particular length-N block of quantized data).
Such a sequence can be obtained by simulating the assumed model for
y[n]. That is, the k-th index ik in the training sequence is determined as:

a) Draw a frequency f and an initial phase φ, according to known (or
assumed) a priori distributions on these;

b) Draw noise samples w[n] according to a known (or assumed) distri-
bution and compute x[n] according to (2.2), for n = 0, . . . , N − 1;

c) Quantize according to (2.3), and;

d) Determine the resulting index ik according to (2.5).

Repeat steps a–d to get a new index, ik+1. Now, given a training sequence
T , the i-th table entry, f̂(i), can be computed as the average over all
frequencies f that gave rise to those sequences that correspond to index
i. For completeness we let f̂(i) = 0, for those i that are not in T (if any).

The main advantage of the training set approach is that it is relatively
insensitive to the distribution of the noise and the a priori distributions
for f and φ, and it may therefore be used, e.g., when the noise color is
such that an analytical treatment according to Sec. 2.3.1 is infeasible.

2.3.3 Storage Complexity

It is readily realized that the size of the table (2.6) grows very fast (ex-
ponentially) with the block-size N . Consequently, the straightforward
approach, as described above, of computing all table entries and then
storing the whole table is not practical for N greater than, say, 20–25.
However, we emphasize that there are several possible approaches that
can be employed to compress the table and reduce its size.

It is straightforward to realize that a sequence y[0], . . . , y[N − 1] and
its complement, obtained by switching −1 ↔ +1, give rise to the same
estimate f̂ . Hence, only f̂(i) for i = 0, . . . ,M/2 − 1 need to be stored

(since f̂(M − 1 − i) = f̂(i)). Moreover, there are more sophisticated
techniques to compress the table, for example similar to the one used
in [SS98] (in a different application). Such techniques are subject to
further study in Chapter 4.
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2.4 Performance Evaluation

In this section we evaluate the performance of the considered frequency
estimator.

2.4.1 Loss in Performance due to Quantization

A lower bound on the variance of any unbiased estimator is given by
the Cramér-Rao bound (CRB) [Kay93]. For the model (2.2) the CRB
of frequency is known to be inversely proportional to the SNR and the
third power of N , see e.g. [RB74]. Due to the quantization in (2.3) inferior
performance of any estimator employing y[n] is expected over the MLE of
frequency given x[n]. This loss in performance can be reduced by proper
over-sampling prior to quantization [HMH00].

Further, for finite N all estimators employing y[n] are biased (also
asymptotically as σ2 → 0). For practical values of SNR and N , how-
ever, the squared bias may be negligible in comparison with the variance.
Thus, a comparison between the CRB for (2.2) and for the augmented
model (2.2)–(2.3) is indeed relevant. In [HMH00], it was shown that for
1-bit quantized data the CRB strongly depends on the frequency of the
signal. But it was also shown that τ > 4 times oversampling is as good
as infinite quantization in terms of a frequency independent asymptotic
CRB. Combining the CRBs for unquantized data and 1-bit data, we ob-
tain an oversampling factor τ > 4 for which we expect a similar lower
bound on accuracy processing 1-bit observation y[n] in place of x[n]. For
high SNR (2.12) we obtain τ ≈ 1.2

√
SNR.

2.4.2 Training and Evaluation

A look-up table was determined using the training set approach of Sec. 2.3.2.
The frequency f was taken as a set of realizations equally distributed
over [0, 1/2), and with φ according to a uniform distribution over [0, 2π).
Three look-up tables were trained at the different SNRs of 0 dB, 20 dB,
and ∞ dB (no noise), respectively. The number of data points per block
was N = 16, and the number of indices in the training set was K = 1010,
for the noisy cases, and K = 107 for the noise-free case.

The performance of the proposed method (denoted by FFETL-frequency
estimation by table look-up) was tested on independent sets, of size 5·105,
of evaluation data per SNR value.
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Figure 2.2: Empirical MSE as function of SNR for the proposed method.
Three look-up tables trained at the different SNRs of 0 dB (▽), 20 dB (♦)
and noise-free (�) are compared. As reference, the performance of MLE for
unquantized data (+) and the CRB (∗) are displayed. The true signal frequency
is f0 = 0.1, and the data length is N = 16.

2.4.3 Performance versus SNR

In Fig. 2.2, the empirical mean-square error (MSE) is displayed for the
three different tables. In this simulation we take the true frequency to
be f = f0 = 0.1. Clearly, the performance depends on the SNR level of
the training data and we note that, by construction, FFETL is optimal
(i.e. minimum MMSE) when working on data with the same SNR as the
training data. The results displayed in Fig. 2.2 not only show this fact,
but also the fact that choosing a lower SNR when training the look-up
table results in a more robust estimator, i.e. with only a minor loss in
performance at higher SNRs. The table trained by noise-free data results
in the worst performance over the range of considered SNRs. For refer-
ence, the performance of the exact MLE for unquantized data [Kay93],



2.4 Performance Evaluation 27

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5
20

25

30

35

40

45

50

−
1
0

lo
g
1
0
(M

S
E

)

f

Figure 2.3: Empirical MSE (solid line) as function of frequency for the
proposed method. SNR = 10 dB, data length N = 16 and the look-up table
is trained at an SNR of 0 dB. As reference the asymptotic CRB is displayed
(∗). The frequency f0 = 0.1 is marked with “◦”, corresponding to the result in
Fig. 2.2 (▽ at 10 dB).

and the asymptotic CRB for 1-bit quantized data [HMH00] are displayed
in Fig. 2.2. Comparing with the performance of MLE indicates the loss
of performance due to quantization (which can be compensated for, as
discussed in Sec. 2.4.1), and also indicates an increased SNR threshold
when processing 1-bit quantized data. However, it is obviously not “fair”
to compare the performance of MLE with FFETL. A more reasonable
benchmark is the asymptotic CRB for any unbiased estimator subject to
1-bit quantized data [HMH00]. One can note from Fig. 2.2 that in regions
where the error variance dominates over the squared bias the performance
of FFETL is close to the asymptotic CRB. In particular, FFETL with a
look-up table trained at 20 dB has performance close to the asymptotic
CRB over a wide range of SNRs (15–35 dB).



28 2 Frequency Estimation by Table Look-up

2.4.4 Performance versus Frequency

The performance of FFETL depends on the true signal frequency, f0.
The performance of FFETL as function of the true frequency is stud-
ied in Fig. 2.3. For frequencies f0 near the boundaries at f = 0 and
f = 1/2, FFETL is unable to provide a reasonable frequency estimate,
resulting in a low MSE figure. This behavior is similar to the behavior
of MLE of frequency for unquantized data. We observe, however, that
the performance of FFETL at frequencies well within the region (0, 1/2)
is relatively constant.

2.5 Conclusions

A fast frequency estimator based on table look-up processing has been
proposed. In an exemplary description an N -sequence of 1-bit quantized
data is used as pointer to a 2N -cell memory containing all of the possible
different estimates. The look-up table, i.e. the set of memory entries, is
constructed by minimizing an MMSE criterion. The performance of the
described method has been evaluated by aid of Monte Carlo simulations
and compared with the appropriate Cramér-Rao bound. It has been
shown that the method is able to produce almost statistically efficient
estimates of the signal frequency for a wide range of scenarios of practical
interest.



Chapter 3

Implementation and
Application

This chapter presents one implementation and an application of the ta-
ble look-up estimator described in Chapter 2. The purpose with the
prototype is to illustrate the simplicity of the estimator. The second
part of this chapter present a joint work with ADC post correction. The
frequency estimator is used in combination with static ADC post correc-
tion tables, which in combination make the ADC post correction scheme
frequency-dependent.

3.1 A 20MHz Prototype

The main purpose of developing the prototype card was to illustrate the
simplicity of the frequency estimator using table-look up described in
Chapter 2. It is shown, with this prototype that it is possible to esti-
mate the frequency of a signal up to 10MHz using on-the-shelf standard
components. Figure 3.1(a) includes a picture of the prototype board. A
description of the different circuits on the board is found in Figure 3.1(b).

3.1.1 Function

The names of the different parts on the prototype board are showed
in Figure 3.1(b). In the following sections the function of each part is
described shortly.
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(a) Prototype Circuit Board
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(b) Prototype Board Block Description

Figure 3.1: 20MHz hardware prototype
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Input Signals

The prototype board takes two input signals, a) measurement signal with
unknown frequency and b) a clock signal which is used as the sample
frequency as well as a clock signal to the circuits on the board. The
input signal amplitude should be stronger than 100mVpeak. The clock
signal could be an arbitrarily shaped signal as long as the zero-crossings
are well defined and the amplitude is larger than 500mV. The prototype
board support clock signals up to 20MHz.

1-bit Quantizer

The 1-bit quantizer is build around a 2-channel comparator AD8598 from
Analog Devices. The channels work independently of each other. The
first channel generates a square-wave clock signal by comparing the input
signal with the ground (GND). The square-wave use standard TTL levels
and has a rise and fall time below 10ns. The second channel is used to
quantize the measurement signal using the following specification.

y(t) =

{
0V x(t) < 0V
5V x(t) ≥ 0V

(3.1)

where x(t) is the analog measurement signal and y(t) is the output signal
from the quantizer. The output voltage of 5V corresponds to a well
defined HIGH LEVEL TTL signal or for short a ’1’.

Shift Register

The shift register is built using two 74574, each containing 8 synchronous
clocked D type flip-flops. The D flip-flops are connected in a stack in
such a way that the data from a previous D flip-flop are the input to
the next D flip-flop. In this way a 16-bit shift register is obtained. The
quantized input signal obtained from the 1-bit quantizer is used as input
to the first D flip-flop.

4-bit Counter

The 4-bit counter is the board’s control unit. It controls the operation
of all the other units on the board by sending control signals at each op-
eration cycle. This type of behavior is called state space machine(SSM).
The SSM has 16 cycles, and thus requires a 4-bit control unit. The 4-
bit counter is constructed using four D-flipflops in two 7474 forming an
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asynchronous counter. By empirical experiment it was found out that
this design was faster than the one circuit solution using a synchronous
4-bit counter (74169).

During the first 16 cycles, samples are collected in the shift register.
After the 16-th cycle the input of the buffer is opened and the contents
of the shift register is loaded. The output of the buffer is connected to
the address input of the memory.

8 cycles after the samples have been loaded into the memory the
memory output data is opened. The memory output is then driving the
estimator output delivering a frequency estimate as a 16-bit word.

Buffer

The buffer consist of two 74574’s each containing 8 synchronous clocked
D-flip-flops. The output from the shift register is used as an input. Each
16-th cycle the content of the buffer is replaced with the contents of the
shift register. The output is connected directly to the address input of
the frequency table.

16-bit Frequency Table

The frequency table is constructed using two 64k × 8-bit flash PROM
memories. A flash PROM is a programmable read only memory which
can be reprogrammed using a special programming device. Using two
8-bit memories in parallel a 16-bit output word is obtained.

Control Logic

The control logic consists of four inverting or (NOR) gates in a 7402
circuit. The control logic is used by the 4-bit counter to generate the
appropriate signals to control the buffer and the memory.

16-bit Digital Frequency Estimate

The output frequency estimate is given as a 16-bit word in the interval
[0, 1/2]. The output interval is uniformly quantized in 216 levels. The
output signal is valid during the 10-th and the 16-th cycle. Each new
frequency estimate is signaled by a logic control signal. The control
signal is available on the output bus as well.
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3.1.2 Measurement Setup

Two Marconi 2024 signal generators were used. One generator for the
clock signal, from here called the reference signal, and the other generator
to produce the measurement signal with unknown frequency, from here
on denoted as the input signal. The internal clocks in the two generators
were synchronized in order to avoid frequency drift between the input
signal and the reference. The reference frequency was set to 20MHz. As
noise generator, a Rohde & Schwarz SMU 200A Vector signal generator
was used. The output from the noise generator was combined with the
input signal using a passive combiner to form the noise-corrupted input
signal to the frequency estimator. The effective SNR could be adjusted
by varying the noise amplitude using passive dampers and also by fine
tuning the amplitude of the sinewave.

The 16-bit estimate was recorded into a first-in-first-out buffer (FIFO).
The contents of the FIFO were then recorded for further analysis by using
a parallel digital data interface. The performance of the frequency esti-
mator was tested on independent sets of estimates. For each frequency a
set of 5 · 104 estimates were collected.

3.1.3 Performance

The empirical mean-square error (MSE) measured using the hardware
prototype is displayed in Figure 3.2. Also plotted is the MSE obtained
from numerical simulations, see also Figure 2.2. In this simulation the
signal frequency was set to f = f0 = 0.1 and the frequency look-up table
was trained at an SNR equal to 20dB. Noted from Figure 3.2 is that the
measured MSE using the hardware prototype follows the corresponding
simulated curve. In the measurement setup there was some difficulties
to adjust the SNR which resulted in an accuracy of about ±1dB. Taking
this into account the hardware prototype performs in accordance with
the simulations.

3.1.4 Performance versus Frequency

The performance of FFETL depends on the signal frequency, f0, of the
input signal. The performance of FFETL as function of the input fre-
quency is studied in Figure 3.3. For frequencies f0 near the boundaries
at f = 0 and f = 1/2, the estimation using a look-up table is unable to
provide a reasonable frequency estimate, resulting in a low MSE figure.
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Figure 3.2: Empirical MSE as function of SNR using the hardware
prototype (◦) as well as simulated performance (–). The true signal
frequency is f0 = 0.1, and the data length is N = 16.

This behavior is similar to the behavior of MLE of frequency for unquan-
tized data. Also here, the performance of the hardware prototype is in
accordance with the performance predicted by the numerical simulations.

3.1.5 Summary

A fast frequency estimator based on table look-up processing has been in-
vestigated. In an exemplary description an N -sequence of 1-bit quantized
data is used as pointer to a 2N -cell memory containing all of the possible
different estimates. The look-up table, i.e. the set of memory entries, is
constructed by minimizing an MMSE criterion. The performance of the
described method has been evaluated by aid of experimental validation of
a hardware prototype, Monte Carlo simulations and compared with the
appropriate Cramér-Rao bound. Even though the circuits were specified
to run at a maximum sampling rate of 20MHz the demonstrator worked
stable using a sample frequency up to 40MHz. Using sub sampling the
hardware prototype is expected to handle input signals up to ∼ 100 MHz.
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ing the hardware prototype (−) and from numerical simulations (· · · ).
SNR = 20 dB, data length N = 16 and the look-up table is trained at an
SNR of 20 dB. As reference the asymptotic CRB is displayed (−−).
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3.2 ADC Correction

Error correction for analog-to-digital converters (ADCs) is considered.
The frequency-dependent nature of ADC errors motivates the proposal of
a novel scheme, incorporating look-up table correction and fast frequency
estimation. The method is evaluated using experimental converter data,
and the performance, measured in SFDR and SINAD, is found to be
superior to that of non frequency-dependent correction methods.

The demand for highly linear ADCs is ever increasing. It is a well-
known fact that practical ADCs suffer from various errors, e.g., gain,
offset and linearity errors. These errors stem from numerous sources such
as non-ideal spacing of transition levels and timing jitter, to mention a
few, and they contribute to deterioration of the linearity of the converter.
Several methods have been proposed to externally compensate for such
errors, e.g., [HSP00,LSH01,IHK91,Mou89]. External in this case implies
that digital signal processing methods which operate outside of the actual
converter are used in the calibration and compensation schemes.

s(t) s(n) x(n)
S/H Q

Figure 3.4: The ADC model. The first block is an ideal sample-and-
hold circuit and the second block is an imperfect quantizer.

Here a b-bit ADC. The ADC will be modeled as an ideal sample-and-
hold circuit followed by an imperfect quantizer, depicted in Figure 3.4.
The sample-and-hold circuit samples the continuous-time input signal
s(t) at the sampling rate fs, resulting in a discrete-time signal

s(n) = s(t)
∣
∣
t=n/fs

. (3.2)

The Q-block of Figure 3.4 then quantize s(n) into one of the M = 2b

output states {xj}, j = 0, . . . , M − 1, and produces the corresponding
output x(n) = xj .

One frequently used method to correct ADCs is the look-up table
correction. In classic look-up table correction, the correction table (con-
taining the corrected output ŝj associated with each ADC output state
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xj) is addressed using the present ADC output sample, x(n). Obviously,
this addressing yields the same correction for a given ADC output sample,
regardless of the dynamic properties of the input signal. This is referred
to as static correction. However, the errors of an ADC are in general
frequency dependent. This often results in a severe performance loss for
table look-up correction methods when applied at frequencies other than
the calibration frequency. In this chapter a frequency-selective correc-
tion scheme is presented and evaluated. The method is based on two
key components: a fast frequency region estimator, based on [ASH00],
and a correction table. These are described in the following two sec-
tions. Results obtained using experimental ADC data are presented in
Section 3.2.3.

3.2.1 Frequency Region Estimator

Tone frequency estimation from an N -sequence of noise corrupted data is
a well known problem which can almost be considered solved. However,
with “almost solved” we refer to the case where the number of data N is
large, the signal to noise ratio (SNR) is high, and there exists an infinite
amount of computer resources. In the ADC error correcting application
this is not the case. The number of data N can not be made large, since
we then will miss the information about the instantaneous frequency. In
the considered application the SNR is usually high. In terms of computer
resources this is an application where almost none are present.

A traditional way of constructing frequency estimators is by optimiz-
ing some criterion related to the frequency. The perhaps most commonly
used method is the method of maximum likelihood, or approximate vari-
ants thereof [Kay93]. That is, choosing an estimate of the frequency in
such a way that the model in use is the most likely given some data
samples. In common for most frequency estimation methods is that the
output frequency estimate is a continuous variable. Here, on the other
hand, we consider the problem of finding the most probable region to
hold the unknown frequency, out of a finite (small) set of regions.

Consider the input s(n) to the quantizer in Figure 3.4 to be modelled
as a sine wave and additive Gaussian noise. The input is then given by,

s(n) = A sin(2πf0n + φ) + w(n) (3.3)

where A > 0 is the real valued amplitude, φ is the initial phase, f0 is the
unknown normalized frequency, 0 < f0 < 1/2, and w(k) is the noise with
variance σ2. The output from the quantizer x(n) is a b-bit quantized
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version of s(n). It has been shown [ASH00] that there exists a high-
performance frequency estimator of low complexity employing only 1-bit
of the input signal. The use of 1-bit data also has the advantage that
the estimator does not depend on the power of the input signal, that is
no gain control is needed. Here, we are not limited to use 1-bit data but
the resulting structure with a table look-up procedure is tractable since
it supports the demand of a fast estimator of low complexity.

Operation

The frequency estimator input y(n) is given by the most significant bit
(msb) of x(n),

y(n) = sign(s(n)), (3.4)

where sign(x) = 1 for x ≥ 0 and sign(x) = −1 for x < 0. By collecting
N successive binary samples at each time instant n, that is

{y(n), . . . , y(n − N + 1)}. (3.5)

The number of possible input sequence are finite and can be uniquely
mapped onto an integer i ∈ {0, . . . , 2N − 1}. The index i is then used
as a pointer to an entry in a frequency region estimation table, see Fig-
ures 3.5–3.6. Finally, the i-th table entry contains a region estimate
F̂ (n) ∈ {F1, . . . , FK}, indicating that the instantaneous signal fre-
quency is within the k-th frequency region. The frequency regions Fk

are defined as,

Fk = {f ∈ [0, 1/2) : |f − fk| ≤ |f − fl|, l = 1, . . . ,K} (3.6)

where k = 1, . . . ,K. In this chapter, the frequencies fl have been chosen
equally spaced over the region [0, 1/2), but could be chosen arbitrary over
the space of possible input frequencies.

Design

As a frequency region estimate we choose the region that maximizes the
probability of including the unknown frequency f0, that is

F̂ (n) = arg max
∀Fk

Pr{f0 ∈ Fk|y(n), . . . , y(n − N + 1)} (3.7)

A straightforward way to obtain the table is to use a training approach
[ASH00]. Given a set of data samples x(n) based on different frequencies,
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within the regions F1, . . . , FK , it is possible to build a training set T =
{il}L

l=1, where each il corresponds to a block of N samples of the msb
in x(n). The samples x(n) are generated using an input of a single
sinusoid, at a known frequency, disturbed by noise. Hence, to each block
il there is a corresponding true frequency belonging to one of the regions
f1, . . . , fK . Now, given a training set T the i -th table entry can be
computed as the index of the most probable frequency region over those
il corresponding to the index i. For completeness, we let f̂k(i) = ⌈K/2⌉
for those i that are not in the training set T .

3.2.2 Correction Table

Static ADC correction yields the same corrected value ŝj given the ADC
output xj , regardless of the signal frequency, while the errors sought to
mitigate for in general are frequency dependent. The correction scheme
presented here utilizes a frequency selective correction table. This is
accomplished by extending the usual one-dimensional correction table
of classical look-up table compensation to a two-dimensional table, us-
ing both the present ADC output x(n) = xj and the present frequency

region estimate F̂ (n) = Fk for addressing. This method can also be in-
terpreted as selecting a specific one-dimensional correction table for each
frequency estimate Fk ∈ {F1, . . . , FK}. Thus, the corrected output ŝ(n)
is the table entry ŝj, k associated with xj and Fk. The correction system
has two operation modes, compensation and correction, which are briefly
described below, see [LASH02], for a detailed description.

Compensation and Calibration

In compensation mode, i.e. normal ADC operation with correction en-
gaged, the ADC output sample, x(n), is mapped through the correction
table to a compensated output value ŝ(n). The correction is determined
by the present ADC output together with the current frequency region
estimate, as depicted in Figure 3.5. Thus, the compensation becomes

s(t) → (xj , Fk) → ŝj, k = ŝ(n) (3.8)

ŝj, k ∈ {ŝi, ℓ}(M−1, K)
(i, ℓ)=(0, 1) .

With this structure, the compensation is made dynamic, with table ad-
dressing depending on the frequency contents of the signal.

Prior to using the correction table for compensation, it must be cali-
brated. Generally, calibration is performed with a calibration signal s(t)
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Figure 3.5: Compensation system outline. The frequency region esti-
mator selects the appropriate ADC correction table.

applied to the ADC input. The calibration system outline is shown in Fig-
ure 3.6. The table entries ŝj, k should be selected such that the resulting
conversion s(t) →

(
xj , Fk

)
→ ŝj, k = ŝ(n) is “better” than without cor-

rection. The employed design criterion is to minimize the mean squared
error, E[(ŝ(n) − s(n))2], where E[·] denotes the expected value. Since
the selection of ŝ(n) = ŝj, k depends on the ADC output x(n) and the

frequency region estimate F̂ (n), the criterion becomes

ŝj, k = arg min
ŝ

E
[
(ŝ − s(n))2

∣
∣x(n) = xj , F̂ (n) = Fk

]
(3.9)

It can be shown [HSP00, Llo82] that in order to minimize the criterion
(3.9), ŝj, k should be set to the mean value of all input samples, s(n), that
were quantized into the value xj while the frequency region estimate was
equal to Fk. Under the interpretation that the frequency region estimate
F̂ (n) selects which table, out of a set of one-dimensional correction tables,
to use, the result above is equivalent to saying that the correction value
sj in the k-th table should be set to the mean of all samples, s(n), that
produced the ADC output x(n) = xj while the k-th table was selected.

We see that in order to calibrate the correction table, the discrete time
versions s(n) of the analog calibration signal must be known. However,
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Figure 3.6: ADC correction table calibration system. The reference
signal sref(n) is an estimate of the input signal samples s(n).

these are in general not available and must therefore be estimated with
some estimate sref(n). This estimate can be obtained in several ways; a
“better” ADC in parallel with the ADC under test, a digitally generated
calibration signal fed to the ADC through a digital-to-analog converter
[TL97], or signal reconstruction using optimal filtering [HSP00] are all
feasible methods for producing sref(n).

3.2.3 Performance

The proposed method has been evaluated with experimental ADC data
from an Analog Devices AD876 10-bit converter, running at 20 MHz sam-
pling frequency. The ADC correction table was calibrated using sinusoid
calibration signals at several different frequencies. The calibration signal
estimate ŝ(n) was obtained using the optimal filtering method proposed
in [HSP00].
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Figure 3.7: SFDR improvements for frequency-selective correction
(solid lines) compared with static correction (dotted line). Circles repre-
sent a frequency estimator with 8 regions (K = 8) and squares represent
16 regions (K = 16).

Spurious-free dynamic range (SFDR) and signal-to-noise and distor-
tion ratio (SINAD) [S1241] are used to evaluate the method. The per-
formance is presented as SFDR and SINAD improvements compared to
the uncompensated case, and is shown in Figures 3.7 and 3.8, respec-
tively. The performance for a static correction scheme is also plotted in
Figure 3.7-3.8 for comparison.

The frequency-selective correction was evaluated for two test cases:
the first case having 8 frequency regions (K = 8) and the second case
having 16 regions (K = 16). Both cases comprise a 16-bit shift-register
(N = 16). The results indicate that the frequency-selective correction
method is superior to the frequency-static method in general, but also
that increasing the number of frequency ranges K from 8 to 16 does not
give any significant improvement.
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Figure 3.8: SINAD improvements for frequency-selective correction
(solid lines) compared with static correction (dotted line). Circles repre-
sent a frequency estimator with 8 regions (K = 8) and squares represent
16 regions (K = 16).

We see from the results in Figure 3.7-3.8 that the SFDR is improved
with between zero and 7 dB, while the improvement in SINAD is below
1 dB except at frequencies near the Nyquist frequency (10 MHz), where
the SINAD improvement is approximately 2 dB. As opposed to the case
of static correction, the improvement for frequency selective correction
never fall below zero, i.e., the performance of the corrected ADC will
never be inferior to that of the uncompensated ADC.

3.2.4 Conclusions on ADC-calibration

We have in this chapter derived an extension of classic look-up table
ADC correction. The extension comprises a frequency selective look-up
table method, using a fast frequency region estimator together with a
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two-dimensional correction table. The motivation for using a frequency
selective correction method was that the errors of AD converters in gen-
eral vary with frequency. The proposed method was evaluated using
experimental ADC data, and results showed that the ADC performance,
measured as SFDR and SINAD, improved compared with the perfor-
mance of a static correction scheme.





Chapter 4

Frequency Estimation
Utilizing the Hadamard
Transform

4.1 Introduction

Frequency estimation by using table-look-up methods has been discussed
in Chapter 2. One of the conclusions were that the table grows exponen-
tially with the number of data samples N . In the case of 32 data sample
this would mean a table of ∼ 4 · 109 entries. Here the problem with
table-look-up methods due to limited memory resources is addressed. By
utilizing the Hadamard transform a class of suboptimal frequency esti-
mators is derived. The key-point is that memory resources are traded
against computations. However, the utilization of the one-bit quantiza-
tion is taken into account when deriving the algorithm to make them fast
and easy to implement.

Tone frequency estimation from an N -sequence

{x[0], . . . , x[N − 1]} (4.1)

of noise corrupted data is a well-established research area and several
estimators have been proposed during the past decades. In this chapter,
the considered signal model is

x[n] = s[n] + e[n], s[n] = A sin(2πfn + φ) (4.2)
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where A > 0 is the amplitude, φ the initial phase, and f is the normalized
frequency, 0 < f < 1/2, i.e. f = F/fs where F is the signal frequency
and fs is the sampling frequency. The frequency f is an unknown pa-
rameter and the phase φ is assumed to be uniformly distributed over the
interval [0, 2π] (and independent of other signal parameters). The noise
is assumed white Gaussian with variance σ2.

The observed data y[n] is assumed to be a a quantized version of x[n]
forming a binary sequence

{y[0], . . . , y[N − 1]} (4.3)

according to

y[n] = sign(x[n]) (4.4)

where sign(x) = 1 for x ≥ 0 and sign(x) = −1 for x < 0. In an electronic
circuit we would represent such binary data by ones and zeros.

Here we consider estimators that strive to estimate the true value, say
f0 (a deterministic constant), of the unknown frequency f , based on a bi-
nary sequence of the observed data according to (4.3). The goal is to find

an estimator f̂ : {±1}N → R, operating on the observed and quantized
data and optimal in the sense of minimum mean square error (MMSE).

That is, to find the estimator that minimizes E[(f̂ − f)2] subject to an
assumed a priori distribution for the unknown frequency f . The a priori
distribution for the frequency is a design parameter of the estimator.

Because of the quantization, the number of possible different sequences
(4.3) is finite. Hence, a particular observed sequence, of length N , can
always be mapped to an index i ∈ {0, . . . ,M − 1}, with M = 2N , where
the mapping from an observed sequence to the index i is chosen as

i =

N−1∑

n=0

1 − y[n]

2
2n. (4.5)

Since there is only a finite number of possible observed sequences, there
is also a finite number of possible estimator outputs. Thus any estimator
can be implemented in two steps: (a) determine the index i that cor-
responds to the observed sequence according to (4.5), and (b) use this
index as a pointer to an entry in a table

{f̂(0), f̂(1), . . . , f̂(M − 1)} (4.6)
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containing all possible frequency estimates. Under the MMSE criterion
we have that the table entries should be chosen as

f̂(i) = E[f | i]. (4.7)

where the expectation is with respect to the assumed a priori distribution
for f , the phase and the noise, conditioned on the observed sequence
(as represented by the index i). In Chapter 2 methods for computing
estimator tables (4.6) based on (4.7) were studied. The performance of
the resulting MMSE estimator was also investigated. As demonstrated
in Chapter 2, table based frequency estimation performs well compared,
e.g., with the Cramér–Rao bound for one-bit quantized data [HMH00].
However, the size of the table grows exponentially with the block-length
N , and the method is hence not feasible for block-lengths larger than, say,
24–26 samples. The aim here is to investigate methods to compress the
table, that is, characterizing the set of possible estimates f̂ using (much)
less than 2N table entries. The main tool in achieving such compression
is the Hadamard transform, as explained next.

4.2 The Hadamard Transform

Any function γ : {0, . . . ,M − 1} → R, where M = 2N and with a finite
domain represented by the integers {0, . . . ,M − 1}, can be expanded as

γ(i) = tT h(i), with

h(i) ,

[
1

y[N − 1]

]

⊗ · · · ⊗
[

1
y[0]

]

=





















1
y[0]
y[1]

y[0]y[1]
y[2]

y[0]y[2]
y[1]y[2]

...
N−1∏

n=0

y[n]





















(4.8)

where ⊗ denotes the Kronecker matrix product and with the relation
between the index i and the binary variables {y[n]} defined as in (4.5).
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The vector t, with elements {tm}, is then the Hadamard transform of
g = [ γ(0) · · · γ(M − 1) ]T , computed as

t = 2−N Hg (4.9)

where H is the size M × M Hadamard matrix, with rows
hT (0), . . . , hT (M − 1). Computing t, as in (4.9), requires O(NM) op-
erations [MS77]. Note that the representation γ(i) = tT h(i) gives the
value γ(i) in terms of the “bits” {y[n]} of the index i. This property has
proven to be of great use in synthesis and analysis of quantizers [HKS95].
In the application studied here, the finite-domain function of interest is
the estimator f̂(i), and the binary variables {y[n]} are the one-bit quan-
tized data samples (4.4). By using (4.8) the Hadamard transform can be
employed to represent this estimator as

f̂(i) = tTh(i) =

M−1∑

m=0

tmhm(i) = t0 + t1 y[0] + t2 y[1]

+ t3 y[0]y[1] + · · · + tM−1

N−1∏

n=0

y[n]. (4.10)

That is, f̂ can be represented in terms of the transform coefficients
{tm} and all possible different products that can be formed using the vari-

ables {y[n]}. For a given f̂(i) the coefficients {tm} (the t-coefficients, for
short) are calculated via the Hadamard transform. It is important to
note that the representation (4.10) is exact.

Noting that the estimator f̂ is completely defined by the t-coefficients
it is possible to use (4.10) as a basis for reducing the number of parame-
ters needed in implementing the estimator. However, since there are M
different tm nothing is gained by using (4.10) to implement the estimator
(on the contrary there is a loss in computational complexity since the sum
in (4.10) needs to be calculated, while a table look-up implementation
based on (4.6) basically requires no computation at all). It is reasonable,
however, to assume that not all of the t-coefficients are significant (in
the sense that some of them are zero or close-to zero). Hence, if the
t-coefficients that are most significant can be identified, only these have
to be stored (setting “insignificant” coefficients to zero) to compute an
approximate estimate using (4.10). Compared with using a table look-up
implementation such an approach can be used to trade storage complex-
ity for computations.
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4.3 Table Analysis

Consider a known table used in a table look-up frequency estimator (4.6),
say g. That is

g =
[

f̂(0), f̂(1), . . . , f̂(M − 1)
]T

. (4.11)

The table entries in g can be expressed as a function of the corresponding
t-coefficients and a binary representation of the entry index, as in (4.10).
To illustrate the structure of the t-coefficients a table (4.11) trained at
SNR = A2/(2σ2) = 20 dB and for a block-length N = 16 is used, ac-
cording to [ASH00]. The t-coefficients for this table are computed, as
in (4.9), and their normalized magnitudes |ti|/t0 are displayed in Figure
4.1. Note that there exist coefficients that are significantly larger in mag-
nitude than the rest (marked in Figure 4.1 above the dashed line). In
further analyzing the t-coefficients one can note that all the dominant
t-coefficients correspond to a weight two product in the sum (4.10), i.e t3
is multiplied with the product y[0]y[1] and t6 is multiplied with y[1]y[2]
and so forth. From this, the dominant t-coefficients can be divided into
two sets:

A) t-coefficients that correspond to a weight two product of neigh-
boring samples. For example correspond the coefficient t12 to the
product y[2]y[3] and the coefficient t24 correspond to the product
y[3]y[4].

B) t-coefficients that correspond to a weight two product of samples
separated by a distance of an even number of samples. The set B
is exemplified by t9 corresponding to the binary product y[0]y[3],
or t33 corresponding to y[0]y[5].

The coefficient t0 is included in both sets. Neighboring samples are sep-
arated by a zero distance, hence set A is a subset of B. Using one of the
sets A or B an approximation of each entry in the true g can be formed.
These entries form an estimate of the table ĝ. By calculating an entry
estimate only when needed, it is possible to reduce the memory complex-
ity since fewer coefficients need to be stored. Accordingly, the memory
complexity is reduced from storing the entire table with 2N coefficients
to N or N2/4 + 1 using set A or B, respectively. That is, a reduction
from an exponential to a polynomial relation between the block length
and the number of coefficients. A block diagram of a type-A estimator
is given in Figure 4.2.
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Figure 4.1: The normalized magnitudes of the first 72 t-coefficients
in (4.10) for a fixed table of size M = 216. The coefficients above the
dashed line correspond to weight two binary products of neighboring
samples (�), samples at distance 3 (◦) and 5 (∇), respectively.

4.4 Estimator Design

In was shown above how to form an approximation of each table en-
try using a reduced set of t-coefficients. Calculating the entire set of
t-coefficients requires storage of the full table g. This is not feasible for,
say, N > 26. The structure of the approximate estimator is, however,
independent of N . Here, we use the structure of such an estimator and
calculate the corresponding reduced set of coefficients under the MMSE
criterion.

Let h̃A(i) and h̃B(i) denote vectors containing the signal products in
(4.10) corresponding to the t-coefficients in the sets A and B, respectively.
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Figure 4.2: A proposed estimator where neighboring binary products
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That is,

h̃A(i) =








1
y[0]y[1]
y[1]y[2]

...








, h̃B(i) =
















1
y[0]y[1]
y[1]y[2]
y[0]y[3]
y[2]y[3]
y[1]y[4]
y[3]y[4]

...
















(4.12)

where the relation between the index i and the sequence y[n] is given
by (4.5). We denote the corresponding vectors with t-coefficients by t̃A
and t̃B, respectively. We can now formulate two corresponding frequency
estimators as

f̂A(i) = t̃T
Ah̃A(i), (4.13)

f̂B(i) = t̃T
Bh̃B(i). (4.14)

In order to optimize the performance of the estimators in (4.13),(4.14)
let t̃k be a design parameter to be chosen optimally. Using the MMSE
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criterion t̃k is given by

t̃k = arg min
a

E(f − aTh̃k(i))2

=(E[h̃k(i)h̃k(i)T])−1 E[h̃k(i)f ] k = A,B (4.15)

where the expectation is with respect to frequency f , phase φ and noise
e[n].

A feasible approach to calculate the expectations needed in (4.15) is
by aid of Monte Carlo integration. Such a training procedure for the
problem at hand is discussed in Chapter 2.

4.5 Relations to the MLE

The relation between the estimators obtained by the present approach
and the method of maximum likelihood (MLE) for unquantized data is
considered in this section. A natural approach is to employ the MLE, or
approximations thereof, directly to one-bit quantized data and hope that
it will provide accurate estimates also in the one-bit quantized case.

The MLE is given by a non-linear least-squares fit of the sinusoidal
model (4.2) to the observed data {x[n]} in (4.1). In order to continue,
we consider the Hilbert transformed counterpart to (4.2), that is

z[n] = A exp(jφ) exp(j2πf) + e[n] (4.16)

where A is the real valued amplitude, φ is the initial phase and e[n]
is complex-valued circular Gaussian noise with variance 2σ2. Tretter
showed in [Tre85] that for high SNR the additive noise can be written as
a phase noise, and that the approximation of MLE is obtained solving a
(linear) least squares problem. The difficulty with this estimator is that
the phase sequence needs to be unwrapped. A remedy to this problem
was given in [Kay89] where the estimator was rewritten in differenced
phase data. The latter estimator is known as the weighted phase averager
(WPA). Normalizing the differenced phase data ∠{z[n]z∗[n − 1]} by 2π
(where * denotes conjugate) implies that the MLE is well approximated
by

f̂ =

N−1∑

n=1

wnfn wn =
6n(N − n)

N(N2 − 1)
(4.17)

where fn = ∠{z[n]z∗[n − 1]}/2π. The scalar fn is a two-points estimate
of the sought frequency. Thus, a high-SNR approximation of the MLE of
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frequency is given by a parabolicaly weighted sum of two-points estimates
of the sought frequency.

In the considered case in this chapter, the signal model is real-valued.
A key motivation for using one-bit processing is the low complexity on
the digital side, and accordingly we also strive to minimize the analog
preprocessing of data. Thus, we consider a one-bit implementation em-
ploying observations (4.4) only.

The observed data (4.4) spans the measurement interval (N − 1)/fs.
For simplicity, consider a time interval that covers an integer number of
periods of s[n] in (4.2), Then, the measurement interval can be expressed
in the number of zero-crossings of s[n] as p/2fs, where p is the number
of zero crossings. Accordingly, the sought frequency can (as σ2 → 0) be
expressed as

f0 =
p

2
(N − 1) (4.18)

With the unipodal representation of y[n], the number of zero crossings
can be expressed as

p =
N−1∑

n=1

1 − y[n]y[n − 1]

2

△
=

N−1∑

n=1

pn (4.19)

where pn is a two-points estimate of the fractional number of zero crossing
between two consecutive samples. Accordingly, a two-points estimate of
the sought frequency is given by

fn =
pn

2
(4.20)

Thus, a one-bit implementation of the estimator (4.17) is

f̂ =

N−1∑

n=1

wn
pn

2
=

1

4

N−1∑

n=1

wn (1 − y[n]y[n − 1]) . (4.21)

By observing the similarity between (4.13) and (4.21) it is possible to
form an estimator with same structure as (4.13) but with an alternative

derivation. The estimator f̂MLE(i) follows from (4.21) by a straightfor-
ward calculation, that is

f̂MLE(i) ≈ f̂ =
1

4
+

N−2∑

n=0

bn+1 y[n]y[n + 1] (4.22)
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where bn = −wn/4. The estimator (4.22) is a high SNR (σ2 → 0)
approximation of the MLE for unquantized data applied to binary mea-
surements.

At high SNR, it is possible to interchange the phase angle calculation
and the summation in the estimator (4.17). Then we end up with an
estimator known as the weighted linear predictor [Kay89]. For finite, but
high SNR the weights {bn} can be optimized depending calculated as
shown below. In [CKQ94], an SNR dependent optimal weighting scheme
was derived. After appropriate scaling, we have that for finite (but high)
SNR the coefficients bn in (4.22) can be approximated by [CKQ94]

bn = −
sinh(θ/2)

4
× (4.23)

sinh(Nθ) − sinh(nθ) − sinh({N − n}θ)

(N−1) sinh(θ/2) sinh(Nθ) − 2 sinh(Nθ/2) sinh({N−1}θ/2)

where θ = log α with α = 1 + β/2 + (β2/4 + β)1/2 and the scalar β given
by β = 1/SNR.

In conclusion, note the structural similarity between (4.22) and the
estimator in (4.13). Figure 4.3 displays a comparison between the coef-
ficients obtained from (4.15) versus the coefficients calculated using the
MLE approach (4.23). The similarity between the t̃A and the bn coeffi-
cients are convincing. From formula (4.23) the bn coefficients are formed
like a second order parabola while the t̃A has a higher order parabolic
shape. This difference is possible due to approximations in the derivation
of (4.23). The t̃A coefficients are, in fact optimized for this specific sce-
nario without any approximations. A drawback is though, that the t̃A
coefficients need to be re-optimized if the preferences are to be changed.
However, the derivation of the t̃A coefficients are not only restricted to a
frequency estimation scenario, but could be used in any scenario where
an estimator is needed. Though not verified in simulations, the two fre-
quency estimators using the sets t̃A and bn of coefficients are expected
to perform equally well.

4.6 Numerical Evaluation

In Figure 4.4, the empirical mean square error (MSE) is shown as function
of SNR for a data record of length N = 16. The performance of the
estimator using the full table g in (4.11) is compared with using subsets of
parameters, that is type-A and type-B in (4.13) and (4.14), respectively.
As reference, the asymptotic (N → ∞) CRB for the given signal model
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Figure 4.3: Comparison of t-coefficients t̃A (♦) (4.15), and bn (�)
(4.23). In both cases, evaluation has been performed using N = 64 and
SNR = 20dB.

is included [HMH00]. The table g in (4.11) is obtained using a training

approach discussed in [ASH00]. The t-coefficients t̃A and t̃B for f̂A(i) and

f̂B(i) are calculated according to (4.15) using Monte Carlo integration at
SNR = 20 dB. The a priori distribution of f is chosen as a uniform
distribution on the interval [ε, 0.5 − ε] where ε is a design parameter
and has been set to ε = 0.04. Our experience indicates that a smaller
value of ε typically results in a significant performance reduction while a
larger value does not appear to influence the performance negatively. In
Figure 4.4 (as well as in Figure 4.5), the performance is evaluated for the
signal in (4.2) with the true frequency f0 = 0.1. Further the MSE figures
are averaged over 100.000 independent trials. From Figure 4.4, we note a
decreased performance when the complexity of the estimator is reduced.
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Figure 4.4: Performance of the proposed estimators for N =16. Dis-

played are: CRB (∗), table look-up estimator (4.6) (+), estimator f̂A(i)

(♦) and f̂B(i) (◦).

We observe further that for high SNRs the performance of (4.11) starts
to deviate from the CRB due to a non-negligible bias term in the MSE.
For f̃A(i) and f̃B(i) the bias is even more significant.

The experiment is repeated in Figure 4.5, but now for N = 64. In this
case, it is not feasible to implement (4.11) and it is therefore excluded
from the comparison. From the figure, we note that the performance
of f̂B(i) almost coincides with the asymptotic CRB for all SNRs above
a threshold at about 15 dB. We also note that the difference in perfor-
mance between f̂A(i) and f̂B(i) is negligible for low SNRs. At high SNRs
the difference is more significant. In Figure 4.6, the empirical MSE
is shown as a function of the unknown signal frequency f0 at a fixed
SNR = 20 dB and block length N = 64. As a reference the asymptotic
CRB is displayed. We observe that both the estimators, f̂A(i) and f̂B(i)
performs well, except at frequencies near 0 or 0.5, and that the difference
in performance between them is negligible. However, the performance
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Figure 4.5: Performance of the proposed estimators for N =64. Dis-

played are: CRB (∗), estimator f̂A(i) (♦) and f̂B(i) (◦).

is dependent on the unknown signal frequency f0 and for some isolated
frequencies the performance is significantly deteriorated.

4.7 Summary and Conclusions

We have shown that the table based approach used as a frequency esti-
mator in Chapter 2 can be transformed using the Hadamard transform
to an equivalent representation based on a sum over binary products and
a set of coefficients. We have also investigated how the set of coefficients
can be reduced, and how such reduction makes it possible to handle large
blocks of data. We furthermore showed how the remaining coefficients
can be optimized to increase the performance of the estimator with re-
duced complexity. An alternative derivation of a coefficient set using the
MLE frequency estimator were also performed. The performance of the
new estimators was then evaluated by aid of simulations and their per-
formance was compared with the appropriate Cramér–Rao bound. The
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simulations indicated that the considered methods are able to produce
nearly statistically efficient estimates.



Part II

Waveform Fitting





Chapter 5

Model Order Selection in
Standardized Sinewave
Fitting

An important problem in many applications is to fit a sinusoidal model to
recorded data, as well as to calculate the parameters that in least-squares
result in the best fit. Algorithms have been standardized in IEEE Stan-
dard 1057 and IEEE Standard 1241 [S1057, S1241]. For easy reference,
the three- and four-parameter sinewave fit algorithms of [S1241, Sect.
4.1.4] are hereafter denoted as the three- and four-parameter algorithm,
respectively. Software implementations of the four-parameter algorithm
can be found in [MK01,Bla99], and investigations of its performance is
the main topic in [ASDM01,BMS+03,Hän00]. In this chapter the perfor-
mance of the standardized three- and four-parameter methods is studied.

For example when testing waveform recorder or ADCs it is known that
the three- and four parameter algorithm produce biased estimates, due
to harmonic distortion originating from either non-coherent sampling or
nonlinearities [PS96,HP03]. Parametric modeling of the harmonic distor-
tion is the basis for the improved waveform fits in [PS96]. Modifications
of the three- and four-parameter algorithms are beyond the scope of the
chapter, and the analysis is based on an assumption of unbiased estima-
tion.

The aim of this chapter is to investigate some fundamental proper-
ties of the three- and four parameter algorithms and answer the question
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whether to use the former or latter for a given scenario. Under the Gaus-
sian assumption a thorough answer is provided, both theoretically and
by aid of extensive computer simulations. It is further shown that the
derived results are applicable under the ideal noise model of quantiza-
tion, described by a uniform probability density function. Finally, the
applicability of the result of fitting sine waves in ADC testing is briefly
discussed, that is in scenarios where the quantization noise is clearly not
uniform neither independent of the sinewave [KB04].

The remaining part of this chapter is organized as follows. In Section
5.1, the signal model is introduced and the non-linear least squares for
parameter estimation is reviewed. In Section 5.2, the asymptotic Cramér-
Rao bound (CRB) using the model (5.1) is derived for three and four
unknown parameters, respectively. In section 5.3, the parsimony principle
is used in order to derive an expression on the mean-squared-error. When
a three parameter model is employed the mean-squared-error is frequency
dependent, and this dependency is studied in some detail. A numerical
example illustrating the parsimony principle, as well as a discussion of
the impact of the presented theory in a practical estimation scenario and
finally, the uniform model of quantization, are gathered in Section 5.4.
Conclusions that are drawn are presented in Section 5.5.

5.1 Signal Model and Non-linear Least Squares

Assume that the data vector (a column vector) contains the sequence of
measurement samples x = [x1 . . . xN ]T taken at time instants {t1, . . . , tN}.
It is further assumed that data can be modeled by

sn(ϑ) = A cos(ωtn) + B sin(ωtn) + C (5.1)

where A, B, C and ω are (known or unknown) constants. The angular
frequency ω is related to the signal frequency by ω = 2πf , where f
is the signal frequency in Hertz. For short, ω is from here on called
frequency. Stressing the dependence of sn(ϑ) on the generic parameter
vector ϑ turns out to be convenient for the following discussion, where
the unknown parameters are gathered in ϑ. Throughout this chapter,
the vector ϑ represents either the set of three parameters (A,B,C), or
a set of four parameters, depending on if the frequency ω is known or
not. The sinewave fit problem is solved by minimizing the sum-squared-
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error [S1057], [S1241]

V (ϑ) =
1

N

N∑

n=1

(xn − sn(ϑ))
2

(5.2)

with respect to the unknown parameters ϑ. Consider a signal model
where the measurements are described by

xn = sn(ϑ) + wn (5.3)

where xn is the observation and sn(ϑ) the underlying sinewave (5.1)
described by the parameter vector ϑ. The process wn describes the mod-
eling error, noise, etc, and is assumed to be a zero-mean white Gaussian
stochastic process with variance σ2. The Gaussian assumption is cru-
cial to the validity of the theoretical results derived in this chapter and
may seem restrictive. However, in many practical cases where the mea-
surement noise is independent of the signal sn, the Gaussian assumption
is a reasonable approximation, and the derived results are (at least ap-
proximately) valid. One such scenario is estimation of the frequencies
of sinewaves from quantized measurements where the measurement noise
is significantly larger than the quantization noise [AH05a]. A numerical
example for this scenario is included in Section 5.4.2. By aid of numerical
simulations, it is shown that the derived results are applicable under the
uniform noise model of quantization. On the other hand, in ADC-testing
the Gaussian assumption is not valid, and the quantization noise is nei-
ther Gaussian nor independent of the sinewave [KB04]. In fact, the ideal
quantization noise is deterministic. Accordingly, the derived results are
not directly applicable in testing ADCs.

Consider the particular parameter vector ϑ = θ, where

θ = [θT ω]T (5.4)

and

θ =
[
A B C

]T
. (5.5)

Let D(ω) be the N × 3 matrix

D(ω) =






cos ωt1 sin ωt1 1
...

...
...

cos ωtN sinωtN 1




 . (5.6)
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Then, the sum-squared-error (5.2) can be written as

V (θ) = V (ω, θ) =
1

N
(x − D(ω) θ)

T
(x − D(ω) θ) . (5.7)

When the frequency ω is known, (5.7) is minimized in the least-squares
sense by solving the set of linear equations D(ω)θ = x [Kay93]. If D(ω)
has full column rank the solution is given by

θ̂ =
(
D(ω)T D(ω)

)−1
D(ω)T x. (5.8)

One should not that a direct calculation of (5.8) may be numerically
imprecise and from an implementation point of view it is recommended
to use some matrix factorization algorithm [GvL96]. When the frequency
is unknown, the criterion (5.7) can be concentrated with respect to θ by
plugging in the least-squares solution (5.8) into (5.7) [Kay93]. Thus,

V (ω) =
1

N

(
xT x − xT Π(ω)x

)
(5.9)

where Π(ω) is the projection matrix

Π(ω) = D
(
ω)(D(ω)T D(ω)

)−1
D(ω)T . (5.10)

It is straightforward to show that ω can be found by a one-dimensional
search for the maximum of [Kay93]

g(ω) = xT D(ω)
(
D(ω)T D(ω)

)−1
D(ω)T x (5.11)

The dependency of (5.11) on ω is non-trivial. Although, efficient algo-
rithms exist for this class of non-linear least-squares problems. One may
note that for large N (that is, as N → ∞) the columns in D(ω) become
orthogonal. Thus, D(ω)T D(ω) becomes a diagonal matrix with elements
[N/2 N/2 N ] in the main diagonal. Accordingly, g(ω) in (5.11) is well
approximated by g∞(ω), where

g∞(ω) =
2

N

(
N∑

n=1

cos(ωtn)xn

)2

+
2

N

(
N∑

n=1

sin(ωtn)xn

)2

+
1

N

(
N∑

n=1

xn

)2

= 2P (ω) +
1

N

(
N∑

n=1

xn

)2

. (5.12)
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The definition of the periodogram P (ω) in (5.12) follows the standard
literature [Kay93]

P (ω) =
1

N

∣
∣
∣
∣
∣

N∑

n=1

xn exp(−jωtn)

∣
∣
∣
∣
∣

2

. (5.13)

Once (5.11) has been maximized and the corresponding argument (say ω̂)
has been determined, the unknowns in θ are obtained by a least-squares
fit (5.8), replacing ω in (5.8) with ω̂.

5.2 Cramér-Rao Bound

A lower bound on the accuracy (covariance) of any unbiased estimator is

given by the CRB, that is cov(ϑ̂) ≥ CRB(ϑ) where ≥ is to be interpreted

as that the difference cov(ϑ̂)−CRB(ϑ) is positive semidefinite. The CRB
is given by the inverse of the Fisher information matrix J(ϑ), that is
CRB(ϑ) = J(ϑ)−1. The Fisher information matrix is given by [Kay93]

J(ϑ) = E

{(
∂ ln p(x;ϑ)

∂ϑ

)(
∂ ln p(x;ϑ)

∂ϑ

)T
}

(5.14)

where p(x;ϑ) denotes the probability density function (pdf), and where
the derivative is evaluated at the true parameters. By the Gaussian
assumption on wn, the pdf for x is given by

p(x;ϑ) =
1

(2πσ2)N/2
exp

[

− 1

2σ2
(x − s(ϑ))

T
(x − s(ϑ))

]

. (5.15)

The derivative of a scalar function y(ϑ) with respect to the vector ϑ is
defined as the vector

∂y(ϑ)

∂ϑ
=










∂y(ϑ)

∂ϑ1
...

∂y(ϑ)

∂ϑp










(5.16)

where p = dim(ϑ) and {ϑ1 . . . ϑp} are the elements in ϑ. Now, calculating
(5.14) using (5.15)-(5.16) yields

J(ϑ) =
1

σ2

N∑

n=1

ψnψ
T
n (5.17)
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where,

ψn =
∂sn(ϑ)

∂ϑ
=










∂sn(ϑ)

∂ϑ1
...

∂sn(ϑ)

∂ϑp










. (5.18)

A derivation of (5.17) can be found in Appendix 5.A. In the forthcoming
discussion the following formula describing the elements of the Fisher
information matrix J(ϑ) is useful.

[J(ϑ)]ℓ,r =
1

σ2

N∑

n=1

[ψn]ℓ[ψn]r. (5.19)

In (5.19), [·]ℓ,r denotes the ℓ, r-th element of the matrix within the paren-
theses and [·]ℓ denotes the ℓ-th element in the vector. With ϑ = θ ac-
cording to (5.4), we have to calculate

J(θ) =







JAA JAB JAC JAω

JAB JBB JBC JBω

JAC JBC JCC JCω

JAω JBω JCω Jωω







(5.20)

where JAA = [J(θ)]1,1 according to (5.19), etc. The derivatives in (5.19)
are straightforward to calculate and can be found in [Hän00]. The ex-
pressions derived in [Hän00] are suitable for numerical evaluation of the
information matrix, and the CRB follows by numerical inversion of the
result; See [Hän00] for examples on the performance of the frequency es-
timate using IEEE standard 1057 [S1057] compared with the exact CRB.
The results in [Hän00] are a straightforward generalization of the well-
known results in [RB74]; The signal model is extended to include the
DC-level (the C parameter).

5.2.1 Asymptotic CRB

In order to get analytical insight, we derive an asymptotic expression
valid for large N (as N → ∞) and uniform sampling at fs Hertz, that is

tn =
n

fs
, n = 1, . . . , N. (5.21)
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Without loss of generality fs has from here on in the chapter been set to
fs = 1Hz. Starting from the results in [Hän00], straightforward calcula-
tions of (5.20) yield

J(θ) =
1

2σ2
(J1 + J2) (5.22)

where

J1 =








N 0 0 −BN2

2

0 N 0 AN2

2
0 0 2N 0

−BN2

2
AN2

2 0 (A2+B2)N3

3








(5.23)

and

J2 =







O(1) O(1) O(1) O(N)
O(1) O(1) O(1) O(N)
O(1) O(1) O(1) O(N)
O(N) O(N) O(N) O(N2)







. (5.24)

In (5.24), O(x) denotes a quantity that is asymptotically linear in x, that
is limx→∞ |O(x)/x| = c where 0 < c < ∞, and O(1) denotes a bounded
quantity. Now, the CRB yields

CRB(θ) = J(θ)−1 = 2σ2 (J1 + J2)
−1 ≃ 2σ2J−1

1 (5.25)

where the second equality follows from (5.22), and ≃ denotes an equality
where only the dominant terms have been retained. A proof of the last
equality for a related signal model can be found in Appendix B of [NP86].
Modifications needed for the model under study are straightforward.

5.2.2 Three Parameter Model

For known frequency, that is ϑ = θ = [A B C]T according to (5.5), the
corresponding information matrix is given by the the upper left 3×3 sub-
matrix of (5.20). For large N the sub-matrix is diagonal, c.f., (5.23), and
inversion of it is straightforward. The diagonal elements of the inverse
yield the lower bound on the variance of the estimates, that is

var(Â) ≥ CRB(A) ≃ 2σ2

N
(5.26)

var(B̂) ≥ CRB(B) ≃ 2σ2

N
(5.27)

var(Ĉ) ≥ CRB(C) ≃ σ2

N
(5.28)
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Since the upper left 3 × 3 sub-matrix of J1 in (5.23) is diagonal, the
lower bound on estimation accuracy of A and B does not depend if the
offset is assumed known or is estimated. Accordingly, a two parameter
model with only A and B as unknown parameters results in the bounds
(5.26)-(5.27).

5.2.3 Four Parameter Model

A four parameter model corresponds to θ = [θT ω]T as in (5.4). Straight-
forward calculations of the inverse of (5.23) yield

J−1
1 =









1
N

(

1 + 3B2

α2

)

− 3AB
α2N 0 6B

α2N2

− 3AB
α2N

1
N

(

1 + 3A2

α2

)

0 6A
α2N2

0 0 1
2N 0

6B
α2N2 − 6A

α2N2 0 12
α2N3









(5.29)

where α2 = A2 + B2, that is the signal amplitude squared. Accordingly,
the CRB on the parameters yields

var(Â) ≥ CRB(A) ≃ 2σ2

N

(

1 +
3B2

α2

)

(5.30)

var(B̂) ≥ CRB(B) ≃ 2σ2

N

(

1 +
3A2

α2

)

(5.31)

var(Ĉ) ≥ CRB(C) ≃ σ2

N
(5.32)

var(ω̂) ≥ CRB(ω) ≃ 24σ2

α2N3
(5.33)

As above, the result of A, B is independent of C. Also, CRB(ω) is asymp-
totically independent of the fact if C is estimated or assumed known. One
may note from (5.30)-(5.31) that the CRB’s for the A and B parameters
are 1 to 4 times the corresponding CRB’s in (5.26) and (5.27), respec-
tively. In order to further analyze the above CRB’s, a re-parameterized
model is considered below.

Consider

sn(α, φ,C, ω) = α sin(ωtn + φ) + C (5.34)

where A=α sin φ and B=α cos φ. Let

Ψ =
[
α φ C ω

]T
(5.35)
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then the CRB for this parameter vector follows from the general relation-
ship [Kay93]

CRB(Ψ) =

[
∂Ψ

∂θ

]

CRB(θ)

[
∂Ψ

∂θ

]T

(5.36)

where the k, r-th element of [∂Ψ/∂θ] is ∂Ψk/∂θr. Here,

[
∂Ψ

∂θ

]

=







sin φ cos φ 0 0
cos φ

α − sin φ
α 0 0

0 0 1 0
0 0 0 1







(5.37)

The CRB for the re-parameterized model follows from

var(α̂) ≥ CRB(α) ≃ 2σ2

N
(5.38)

var(φ̂) ≥ CRB(φ) ≃







2σ2

Nα2
three parameter model

8σ2

Nα2
four parameter model

(5.39)

var(Ĉ) ≥ CRB(C) ≃ σ2

N
(5.40)

var(ω̂) ≥ CRB(ω) ≃ 24σ2

α2N3
four parameter model (5.41)

In conclusion from (5.38)–(5.41), the uncertainty in the phase φ is depen-
dent on whether ω is known or not, while the uncertainty in the amplitude
α and DC-level C is independent of this fact.

In wave-form fitting, the quality of the parameter estimates is not as
important as the quality of the actual wave-form fit, that is, the value of
(5.2) for the given estimate. Clearly, for a given set of data the minimum
value of (5.2) is reduced if the number of free parameters is increased.
In fact with a suitable parameter vector with N entries, it is possible
to obtain a perfect fit for a sequence of N input data, that is, the sum-
squared-error (5.2) can be forced to zero. On the other hand, increasing
the number of parameters implies that the estimator fits the parameters
to the noise, and not to the signal. Thus, one should strive to use as few
parameters as possible, but still have a model flexible enough to describe
the behavior of the signal. The question to be asked is if the three- or
four-parameter model should be used. Clearly, if the frequency is known
one should use the three-parameter model, since more accurate estimates
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of the parameters are expected, according to the CRB. On the other
hand, if the frequency is unknown one should use the four-parameter
model. In some applications, often the frequency is partially known, or
known to be within some frequency range. In the forthcoming Section,
the problem when to use the three- and four-parameter models is studied
by aid of the parsimony principle.

5.3 The Parsimony Principle

Consider the criterion (5.2) for the signal (5.3) described by a vector ϑ0,
that is, the set of true but unknown parameters. Then the expected value
of (5.2) is given by

E[V (ϑ0)] =
1

N

N∑

n=1

E[(xn − sn(ϑ0))
2
] = σ2 (5.42)

Here the expectation is with respect to the measurement noise. Thus,
when an estimate (say, ϑ̂) is exact ϑ̂ = ϑ0, the residual is white noise

and has minimum variance. Now, assuming an estimate ϑ̂ based on some
past data, then a Taylor series expansion of εn(ϑ) = xn − sn(ϑ) around
ϑ = ϑ0 gives

E[V (ϑ̂)] =
1

N

N∑

n=1

E





(

εn(ϑ0) +
∂εn(ϑ)

∂ϑ

∣
∣
∣
∣

T

ϑ=ϑ0

(ϑ̂− ϑ0)

)2


 . (5.43)

Then, using the notation introduced in (5.18)

ψn(ϑ0) =
∂sn(ϑ)

∂ϑ

∣
∣
∣
∣
ϑ=ϑ0

= − ∂εn(ϑ)

∂ϑ

∣
∣
∣
∣
ϑ=ϑ0

(5.44)
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where the definition of εn(ϑ) was used in the second equality. Now, it
follows that

E[V (ϑ̂)] =
1

N

N∑

n=1

E

[(

εn(ϑ0) −ψT
n (ϑ0)(ϑ̂− ϑ0)

)2
]

= σ2 +
1

N

N∑

n=1

E
[

ψT
n (ϑ0)(ϑ̂− ϑ0)ψ

T
n (ϑ0)(ϑ̂− ϑ0)

]

= σ2 + Tr

{

1

N
E[(ϑ̂− ϑ0)(ϑ̂− ϑ0)

T ]

N∑

n=1

ψn(ϑ0)ψ
T
n (ϑ0)

}

= σ2 +
σ2

N
Tr
{

cov(ϑ̂)CRB(ϑ)−1
}

(5.45)

where in the second equality it is assumed that the estimate is unbiased.
In the third equality the trace (Tr) operator is used to change the order
of which the vectors are multiplied. Also in the third equality the order
of summation and the trace operator has changed order. From (5.45),

one note that replacing ϑ0 with an estimate ϑ̂ results in an increased
mean-squared-error, where the effects of the estimate is given by the
second term in (5.45). In the fourth equality the definition of the Fisher
information matrix (5.17) has been used. If an efficient estimator is

used to estimate the parameters in ϑ, the covariance cov(ϑ̂) equals the
CRB(ϑ). Hence, the term within the trace operator in (5.45) equals an
identity matrix of size p, where p = dim(ϑ). If a less accurate estimator

is used cov(ϑ̂) − CRB(ϑ) > 0. Accordingly, the trace term in (5.45) is
bounded below by p, so that

E[V (ϑ̂)] ≥ σ2
(

1 +
p

N

)

. (5.46)

According to (5.46), the expected sum-squared-error increases with an in-
creasing model order p. This is a known result and a general derivation of
the parsimony principle can be found in [SS89]. As already stated, (5.46)
holds with equality when an efficient estimator is employed. For uniform
sampling according to (5.21) there exist in the considered scenario several

unbiased estimators such that cov(ϑ̂) ≃ CRB(ϑ) [Kay93].
From (5.46) it is clear that the three parameter fit always (in expecta-

tion) results in a smaller sum-squared-error (5.2) than the four-parameter
method. However, a three parameter method requires the frequency ω
to be known. In many practical cases the frequency is known up to some
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uncertainty quantity, a quantity that here is denoted by ωδ. Accordingly,
the frequency variable of the three-parameter fit (say ω̃) deviates from
the actual frequency ω0, that is

|ω̃ − ω0| ≤ ωδ. (5.47)

The question addressed is when a four parameter method performs bet-
ter than a three parameter method, in terms of a smaller expected sum-
squared-error. Clearly, a four parameter method results in a constant
mean-squared-error independent of ωδ, as seen from (5.46). In the three
parameter case, however, the expectation of (5.9) depends on ω, as ana-
lyzed below.

5.3.1 Mean-squared-error analysis

Let V(ω) denote the expectation (w.r.t the noise wn) of (5.9), that is

V(ω) = E [V (ω)] . (5.48)

Hence, V(ω) is the expected sum-squared-error, and is a measure of the
expected quality of the wave-form fit. A second order Taylor series ex-
pansion of V(ω) around the true frequency ω = ω0 gives

V(ω) ≃ V(ω0) +
∂V(ω)

∂ω

∣
∣
∣
∣
ω=ω0

(ω −ω0) +
1

2

∂2V(ω)

∂ω2

∣
∣
∣
∣
ω=ω0

(ω −ω0)
2 (5.49)

The first two derivatives of V(ω) with respect to ω are given below, that is

∂V(ω)

∂ω
= E

{

− 2

N
[x − s(θ)]T

∂s(θ)

∂ω

}

(5.50)

∂2V(ω)

∂ω2
= E

{
2

N

∂sT (θ)

∂ω

∂s(θ)

∂ω

}

− E

{
2

N
[x − s(θ)]

T ∂2s(θ)

∂ω2

}

. (5.51)

The used estimator is assumed unbiased which implies that the expecta-
tion of the difference [x−s(θ)] in (5.50) evaluated for θ = θ0 by definition
equals the zero vector. Therefore, the first derivative of V(ω) with re-
spect to ω in (5.49) equals zero. The same argument holds in (5.51),
that is putting the second term to zero as well. In the reconstruction of
sn(θ), the estimate of the three parameters in θ̂ depends on the assumed
frequency ω̃, see (5.8). For notational simplicity this dependency is not
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explicitly shown in the calculations below. Replacing θ with its least-
squares solution (5.8) and taking the derivative with respect to ω using
the chain rule yields

∂s(θ)

∂ω
=

∂

∂ω
D[DT D]−1DT x

=Dω[DT D]−1DT x + D[DT D]−1DT
ωx

− 2DDT D
[
DT

ωD
]−1

DT DDT x (5.52)

where the subscript [·]ω denotes an element-wise derivative with respect
to ω. The differentiating rules applied on the inverse of DT D can be
found in Appendix 5.B (see (5.59)). The derivation of the second deriva-
tive (5.51) is straightforward, but tedious. It can also be found in Ap-
pendix 5.B. Evaluated at ω = ω0, the second derivative can be expressed
as

∂2V(ω)

∂ω2

∣
∣
∣
∣
ω=ω0

≃ (A2 + B2)N2

12
(5.53)

Inserting (5.53) in the Taylor series expansion (5.49), the expected value
of V (ω) using a three parameter model is described by a second order
parabola

V(ω) ≃ σ2(1 +
3

N
) +

(A2 + B2)N2

24
(ω − ω0)

2. (5.54)

The mean-squared-error (5.54) is a main result in this chapter. To sum-
marize, applying a four-parameter fit results in a mean-squared-error
given by (5.46) for p = 4. For a three-parameter method the correspond-
ing result is given by (5.54), which is a function of the difference between
the actual signal frequency ω0 and the frequency variable of the algorithm
ω = ω̃.

The break-even frequency for which the considered methods perform
equally well is obtained by setting (5.46) for p = 4 equal to (5.54) and
solving for |ω − ω0|. The result yields

|ω − ω0| =

√

24σ2

α2N3
. (5.55)

It is interesting to note that the break-even distance from ω0 equals the
square root of the CRB(ω) in (5.33). Hence, if the algorithm variable ω̃
is guaranteed to be close enough (as given by (5.55)) to ω0, the three-
parameter model should be used in favor of a four-parameter model.
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Figure 5.1: The mean-squared-error V(ω) normalized with the noise
variance σ2 for a three- (parabola) and four-parameter (straight line)
model. The dashed lines are numerical evaluations of the residual using
the different models. The curves have been obtained for N = 128 and
SNR = 18dB.

5.4 Discussion and Numerical results

The theoretical results in section 5.2 and 5.3 are based on the Gaussian
assumption. The purpose of this section is twofold. First, the theoretical
results are illustrated by numerical examples under the Gaussian assump-
tion. Secondly, the applicability of the theoretical results in practical
scenarios is investigated. A typical estimation scenario with quantized
measurements is investigated followed by an investigation of applicability
of the theoretical results on ADC-testing.
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5.4.1 Illustration of the Parsimony Principle

In Figure 5.1, the mean-squared-error V(ω) (5.48) is shown, both the
theoretical results (5.46) for p = 4 and (5.54) for p = 3, respectively; and
experimental evaluations thereof based on Monte-Carlo simulations. The
results have been obtained for the Gaussian scenario for N = 128 and a
signal-to-noise ratio SNR = α2/(2σ2) with α2 = A2 +B2 at 18dB. In the
evaluation, the sampling rate fs = 1Hz and the actual frequency ω0 has
been randomly and uniformly drawn in the region [(2π)/N, π − (2π)/N ].
The DC-level C has been randomly and uniformly drawn in the re-
gion [−0.1, 0.1]. The mean-squared-error has been evaluated using a
frequency with a variable displacement from the true frequency for the
three-parameter method, and a maximum-likelihood estimate of the sig-
nal frequency for the four-parameter fit, respectively. In the simulations,
the expectation has been approximated with the sample mean, using
2.5 · 105 independent Monte-Carlo simulations at each frequency point.

In Figure 5.1, it is seen that for small deviations of ω from ω0 a
sinewave fit using a three-parameter model performs better than a four-
parameter model in terms of a smaller mean-squared-error, as predicted
by the theory. Further, there is an excellent agreement between theoret-
ical results and the results obtained from Monte-Carlo simulations.

5.4.2 Quantization in an Estimation Scenario

Finding the maximum likelihood estimates of the signal parameters ϑ
is under the Gaussian assumption equivalent with minimizing the sum-
squared-error (5.9). The previous discussion indicates that the waveform
fit performs better (that is, a lower mean-squared-error) if the frequency
is known. In this example the waveform fit performance is investigated
when the measurements are quantized. The use of quantized data will be
in conflict with the considered signal model. However, the quantization
can be modeled by the noise term wn, which is not Gaussian anymore. In
Figure 5.2, the mean-squared-error (5.48) using quantized measurements
is shown. The measurement signal has been quantized with a uniform
5-bit quantizer. The range of the quantizer influences the numerical value
of the mean-squared-error. To fully investigate the influence of the gain
control prior to quantization is out of the scope of this chapter. The
quantizer input range is tuned to fully cover the signal, and the full scale
range (FSR) equal to 2.4 has been used. The signal- and noise levels, the
number of data points and the number of Monte-Carlo runs are the same
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Figure 5.2: The mean-squared-error V(ω) normalized with the noise
variance σ2 for a three- (parabola) and four-parameter (straight line)
model. The lines show numerical evaluations of the residual using the
different models. The two topmost curves are obtained when the mea-
surement signal has been quantized with a 5-bit quantizer. The two lower
curves show the residual power using un-quantized measurements. The
curves have been obtained for N = 128 and SNR = 20dB.

as in the setup resulting in Figure 5.1. The signal-to-noise-and-distortion
ratio is in this case neglectable compared with the Gaussian noise vari-
ance. In an estimation scenario this is often the case. It is seen from
Figure 5.2 that the mean-squared-error increases when the measurements
are quantized compared with the corresponding results for un-quantized
data. However, the parabolic shape of the mean-squared-error using the
three-parameter model is unchanged, and the intersection points with
the mean-squared-error using the four-parameter model coincides with
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Figure 5.3: The break-even frequency ∆ωb for quantized data. The
break-even frequency is normalized by ∆ω∞ given by (5.54). The curve
has been obtained for N = 128 and SNR = 20dB.

the corresponding point for un-quantized measurements. A formula for
this intersection is found in (5.55).

A numerical evaluation of the break-even frequency as a function of
the number of bits in the quantization has been performed. The intersec-
tion occurs when the three-parameter algorithm is used with a frequency
variable ω̃ that differs from ω0. Let ∆ωb be the difference |ω−ω0| where
the intersection occurs, that is the break-even frequency. Here, the sub-
script b denotes the number of bits used in the quantizer. In Figure 5.3,
∆ωb is plotted for the quantization levels b ∈ {2, 3, 4, 5, 6, 7, 8}. From
the figure it can be noted that ∆ωb increases with a decreasing num-
ber of bits. In the case of b = 5, ∆ω5 is about 6% larger than for the
un-quantized case ∆ω∞. It can also be noted that if the measurement
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data is quantized with 8-bits then the effect of quantization is negligi-
ble, for the considered SNR. The deviation of ∆ωb from ∆ω∞ is due
to the quantization, where each bit of reduction decreases the signal-to-
noise-and-distortion ratio by 6 dB. From Figure 5.3, it is evident that
for the considered scenario the quantization noise has an impact on the
break-even frequency for quantizers with less than 6 bit.

5.4.3 Uniform Noise Model of Quantization and ADC
Testing

In this example the validity of the derived results is investigated under
the uniform noise model of quantization. Consider a 3-bit quantizer with
a FSR of 2.46 and a signal with unit amplitude, that results in a signal-
and distortion ratio (SNDR) equal to 18dB. The mean-squared-error is
displayed in Figure 5.4. The simulation setup is identical to the one in
Section 5.4.1. From the diagram in Figure 5.4 we can conclude that the
derived results are also valid under the uniform noise model of quantiza-
tion.

It is worth mention that the uniform noise model of quantization is
a poor approximation in testing ADCs [KB04]. In particular the pdf
is not uniform with strong peaks whose location depends on the signal
amplitude and DC-offset, as well as a dependency between the quantiza-
tion error and the signal. The implication is that neither the three- or
four-parameter model describe the measured data, and more complicated
models are needed for unbiased estimation such as the one in [PS96].

5.5 Conclusions

The IEEE standard 1057 for tone frequency estimation and signal re-
covery has been considered, and a performance analysis employing the
Cramér-Rao bound (CRB) and the parsimony principle has been per-
formed. The asymptotic CRB analysis shows, among other things, that
the accuracy of the amplitude estimate is independent of the DC-level.
The quality of the wave form fit is evaluated in terms of the expected
sum-squared-error, and a simple rule (5.55) is derived, that is suitable
as a rule-of-thumb when selecting a proper estimation algorithm for the
given problem. The rule (5.55) is shown to be valid also under the uni-
form noise model of quantization.
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Figure 5.4: The mean-squared-error V(ω) normalized with the noise
variance σ2 for a three- (parabola) and four-parameter (straight line)
model. The dashed lines are numerical evaluations of the residual using
the different models. The curves have been obtained for N = 128 and a
uniform noise at SNR = 18dB.
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Appendix 5.A Derivation of the Fisher in-
formation matrix J(ϑ) (5.17)

The quantity ∂ ln p(x;ϑ/∂ϑ) in (5.14) can be expanded as

∂ ln p(x;ϑ)

∂ϑ
=

∂

∂ϑ

{

− 1

N
ln(2πσ2) − 1

2σ2
(x − s(ϑ))

T
(x − s(ϑ))

}

= − 1

σ2

∂s(ϑ)T

∂ϑ
(x − s(ϑ)) (5.56)

The quantity ∂s(ϑ)T /∂ϑ is a (p×N) matrix, following from the definition
of (5.16). Let v be a column vector with the elements {v1 . . . vN} which
are independent of ϑ. Then

∂

∂ϑ
(s(ϑ)T v) =









∂

∂ϑ1
s(ϑ)T v

...
∂

∂ϑp
s(ϑ)T v









=









∂

∂ϑ1
s1(ϑ) . . .

∂

∂ϑ1
sN (ϑ)

...
∂

∂ϑp
s1(ϑ) . . .

∂

∂ϑp
sN (ϑ)









v

=
∂s(ϑ)T

∂ϑ
v (5.57)

Now inserting (5.56) and (5.57) with v = (x − s(ϑ)) = [w1 . . . wN ]T

into (5.14), one has

J(ϑ) =
1

σ4
E

{

∂s(ϑ)T

∂ϑ
(x − s(ϑ)) (x − s(ϑ))

T

(
∂s(ϑ)T

∂ϑ

)T
}

=
1

σ4

∂s(ϑ)T

∂ϑ
E{








w2
1 w1w2 . . . w1wN

w2w1 w2
2 . . . w2wN

...
...

. . .
...

wNw1 wNw2 . . . w2
N







}
(

∂s(ϑ)T

∂ϑ

)T

=
1

σ2

∂s(ϑ)T

∂ϑ

(
∂s(ϑ)T

∂ϑ

)T

. (5.58)

The third equality follows from the assumption that the noise terms wn

are uncorrelated, and thus the noise covariance matrix equals σ2I. Using
the notation introduced in (5.18), the result (5.17) follows. The deriva-
tions above follows the one in [Kay93] closely.
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Appendix 5.B The Derivative of the Mean-
squared-error

Let M be a matrix where all elements are differentiable with respect to
ω and with an inverse such that M−1M = I. Then

0 =
∂I

∂ω
=

∂

∂ω
(MM−1) = MωM−1 + M[M−1]ω

⇒ ∂

∂ω
M−1 = −M−1MωM−1. (5.59)

In (5.59) the notation [·]ω denotes derivation of [·] with respect to ω.
Using (5.59) the derivative (5.52) can be expressed as

∂s(θ)

∂ω
=

∂

∂ω
D[DT D]−1DT x = Dω[DT D]−1DT x + D[DT D]−1

ω DT x

+ D[DT D]−1DT
ωx − D(

[
DT D

]−1
DT

ωD
[
DT D

]−1

+
[
DT D

]−1
DT Dω

[
DT D

]−1
)DT x (5.60)

Using the fact that for large N (that is N → ∞), DT
ωD is symmetric and

(5.60) can be expressed

∂s(θ)

∂ω
=Dω[DT D]−1DT x + D[DT D]−1DT

ωx

− 2D
[
DT D

]−1
DT

ωD
[
DT D

]−1
DT x (5.61)
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The product of (5.61) with its transpose, as appeared in (5.51) equals

E

{
∂sT (θ)

∂ω

∂s(θ)

∂ω

}

=xT D
[
DT D

]−1
DT

ωDω

[
DT D

]−1
DT x (TI)

+ 2xT D
[
DT D

]−1
DT

ωD
[
DT D

]−1
DT

ωx (TII)

− 4xT D
[
DT D

]−1
DT

ωD
[
DT D

]−1

DT
ωD

[
DT D

]−1
DT x (TIII)

+ xT Dω

[
DT D

]−1
DT D

[
DT D

]−1
DT

ωx (TIV )

− 4xT Dω

[
DT D

]−1
DT D

[
DT D

]−1

DT
ωD

[
DT D

]−1
DT x (TV )

+ 4xT D
[
DT D

]−1
DT

ωD
[
DT D

]−1

DT D
[
DT D

]−1
DT

ωD
[
DT D

]−1
DT x (TV I)

(5.62)

As N ≫ 1/ω, the quantity DT D above can be approximated by the
constant matrix

DT D ≃





N
2 0 0
0 N

2 0
0 0 N



 . (5.63)

The same approximation is applied to DT
ωD and DT

ωDω, that is

DT
ωDω ≃





N3

6 0 0

0 N3

6 0
0 0 0



 , (5.64)

and

DT
ωD ≃





0 N2

4 0
N2

4 0 0
0 0 0



 . (5.65)

Further exploiting the fact that D(ω0)θ0 = s(θ0), implies that

x = s(θ0) + w = D(ω0)θ0 + w. (5.66)
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Now, each term in (5.62) can be expressed in terms of the true parameters

θ0. Towards that end let E
{

∂s
T (θ)
∂ω

∂s(θ)
∂ω

}

= TI + · · · + TV I , then

TI =θT
0 DT D
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ωDω

[
DT D

]−1
DT w

}
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0 DT
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{
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ωDω

[
DT D

]−1
}

≃ (A2 + B2)N3

6
+

σ2N2

3
(5.67)

TII =2θT
0 DT D

[
DT D

]−1
DT

ωD
[
DT D

]−1
DT

ωDθ0 + 4θT
0 . . . E{w}

+ 2E Tr
{

wT D
[
DT D
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DT

ωD
[
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DT

ωw
}

=2θT
0 DT

ωD
[
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]−1
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{

DT
ωD

[
DT D

]−1
DT

ωD
[
DT D

]−1
}

≃ (A2 + B2)N3

4
+ σ2N2 (5.68)

where (. . .) indicates a product of factors that is multiplied by the zero
vector E{w}.

TIII = − 4θT
0 DT D

[
DT D

]−1
DT

ωD
[
DT D

]−1
DT

ωD
[
DT D
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DT Dθ0
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= . . .
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0 DT Dω
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DT D

[
DT D
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DT
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{
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[
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[
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DT
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{
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[
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3
(5.70)
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TV = − 4θT
0 DT Dω

[
DT D

]−1
DT

ωDθ0 − 8θT
0 . . . E{w}

− 4E Tr
{

wT Dω

[
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DT

ωD
[
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DT w

}

≃− (A2 + B2)N3
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− 2σ2N2 (5.71)

TV I =4θT
0 DT

ωD
[
DT D

]−1
DT

ωDθ0 + 8 . . . E{w}

+ 4E Tr
{

wT D
[
DT D

]−1
DT

ωD
[
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]−1
DT

ωD
[
DT D

]−1
DT w

}

≃ (A2 + B2)N3

2
+ 2σ2N2 (5.72)

The sum of all terms (TI + . . . TV I) yields

E

{
∂sT (θ)

∂ω

∂s(θ)

∂ω

}

≃(A2 + B2)N3

(
1

6
+

1

4
− 1

2
+

1

8
− 1

2
+

1

2

)

+ σ2N2

(
1

3
+ 1 − 2 +

2

3
− 2 + 2

)

=
(A2 + B2)N3

24
(5.73)

By (5.73), equation (5.53) directly follows by multiplication with 2/N .



Chapter 6

Model Order Selection in
Waveform fitting

6.1 Introduction

Waveform fitting based on digital data is a common problem in instru-
mentation and measurements. In this chapter, model order selection for
accurate fitting of waveforms is considered for a linear signal model in
general, and a sinewave model in particular. The problem at hand is to
derive guidelines for the user how to select among different structures
within a hierarchical set of models. For models that are linear in the
sought parameters, a general relation between parameter uncertainty and
quality of wave-fit is derived. Studied as well is the sinewave fit, where
the sought frequency enters the model in a non-linear fashion. Presented
results are extensions of the work presented in Chapter 5.

A crucial question in system identification is the proper selection of
model structure. Consider a parametric model M1 described by the
parameter vector θ1, where θ1 has n1 entries. Further consider the model
M2 described by θ2 with n2 > n1 entries. The models M1 and M2

are hierarchically related, meaning that the more restricted model M1 is
a subset of M2. With θ2 = (θT

1 , ηT )T (where T denotes the transpose
operation), the hierarchical relationship can be expressed by

M1(θ1) = M2(θ2)|θ2=(θT

1
, η̄T )T (6.1)

Here, the vector η of dimension dim(η) = n2−n1 denotes the parameters
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of M2 that are not included in θ1. Due to the hierarchical relationship
between the models, (6.1) is fulfilled when η in M2 is replaced by the
known set of variables η̄, where η̄ is implicitly included in M1. An impor-
tant example of hierarchical models in waveform fitting is the sinewave
model, as outlined below.

6.1.1 Sinewave-fitting

In sinewave-fitting two models are employed [S1057], namely the more re-
strictive three parameter model (here, corresponding to M1) with sought
parameters

θ1 = (A, B, C)T (6.2)

and the four parameter model (that is, M2) with

θ2 = (A, B, C
︸ ︷︷ ︸

θ1

, ω
︸︷︷︸

η

)T (6.3)

The model structure M that contains M1 as well as M2 is given by

x[n; θ] = A sin(ω n) + B cos(ω n) + C (6.4)

In (6.4), θ denotes a generic parameter vector. Further, the variable ω
is assumed to be a known constant ω = ω̄ for M1, whereas for M2 it is
gathered in the vector θ2 of sought parameters.

6.2 The Parsimony Principle

In scenarios where all four parameters A, B, C and ω are unknown,
clearly M2 should be used as the basis for a parametric estimation pro-
cedure, and thus all n2 = 4 parameter values are sought for. In scenarios
where the more restrictive model M1 is sufficient to describe the behav-
ior of the measurement, it should be used in favor of M2 due to the
parsimony principle [SS89], briefly reviewed below. Indeed, for a given
set of measurement data

{y[0], . . . , y[N − 1]} (6.5)

the more flexible model (that is M2) will result in a smaller minimum
sum-squared-error, than M1. In other terms, for a given set of data (6.5)
it holds that

min
θ2

V (θ2) ≤ min
θ1

V (θ1) (6.6)
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where V (θ) (for a generic parameter vector θ) equals the sum-squared-
error

V (θ) =
1

N

N−1∑

ℓ=0

(y[ℓ] − x[ℓ; θ])2 (6.7)

In (6.7), x[n; θ] denotes the signal model parameterized by the generic
parameter vector θ (for example, sinewave-fitting according to (6.4)). A
small sum-squared-error is not necessarily a measure of a good fit of the
model to the measurements. The reason behind this it that the mini-
mizing argument of V (θ) not only fits the data (6.5) to the parametric
model x[n; θ], but also to the measurement noise and model imperfec-
tions. In order to analyze this behavior, we consider an additive model
of the measurements as

y[n] = x[n; θ̄] + e[n] (6.8)

In (6.8), y[n] denotes the measurements, x[n; θ̄] the signal model de-
scribed by the set of true parameters θ = θ̄, and e[n] models noise, model
imperfections and so alike. It is further assumed that e[n] is zero-mean
white Gaussian noise with variance σ2. Inserting (6.8) into (6.7), and
taking expectation with respect to the additive noise yields, the mean
sum-squared-error (MSSE)

V(θ̄)
△
=

1

N
E[V (θ̄)] =

1

N

N−1∑

ℓ=0

E[e(n)2] = σ2 (6.9)

Thus, a perfect waveform fit yields a MSSE given by the variance of the
additive noise. The result (6.9) is however of little practical use since θ
is indeed unknown and has to be estimated. In this paper, an estimate
is denoted by θ̂. Due to the additive noise it no longer holds that θ̂ = θ̄.
In fact, the estimate θ̂ is a stochastic variable that may be characterized
by its first and second order moments, that is mean value and covariance
matrix. If not otherwise stated we assume that θ̂ is a statistically efficient
estimate, that is unbiased and with a covariance matrix corresponding to
the Cramér-Rao lower bound (CRB) [Kay93]. Now, the MSSE is given
by, [SS89]

V(θ̂) ≃ σ2
(

1 +
p

N

)

(6.10)

where p = dim(θ). In (6.10), ≃ denotes an approximate equality where
only the dominant terms have been retained. In order to illustrate the
importance of (6.10), we consider the sinewave-fitting application.
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6.2.1 Sinewave-fitting (cont’d)

Sinewave-fitting with respect to M1 and M2 is considered in [S1057].
The implication of (6.10) to sinewave-fitting is that i) if the sinewave fre-
quency ω̄ is known the three parameter fit should be used in favor of the
four parameter fit. The MSSE is given by (6.10) with p = dim(θ1) = 3.
ii) If, on the other hand, the four parameter fit is employed the re-
sulting error variance is slightly increased, that is given by (6.10) with
p = dim(θ2) = 4. From a robustness point of view, it is often argued
that one should always employ the four parameter fit, regardless of the
extra parameter resulting in an inferior MSSE. This robustness aspect
was studied in some detail in [AH05a] where the influence of frequency
errors on the MSSE was studied. Clearly, if the frequency is not perfectly
known, there is a boarder line beyond which the four parameter fit out-
performs the three parameter fit. In particular, it was shown that for the
three parameter fit [AH05a]

V(θ̂1,∆ω) ≃ σ2

(

1 +
3

N

)

+
(A2 + B2)N2

24
∆ω2 (6.11)

where ∆ω is the frequency error ∆ω = ω−ω̄. For small errors |∆ω| ≈ 0
the MSSE (6.11) is smaller than (6.10) for p = 4, and thus the three
parameter fit should still be employed. On the other hand, for large
frequency errors |∆ω| ≫ 0 the four parameter fit should be employed,
resulting in a better fit through its flexibility to adjust the frequency
parameter. For ∆ω=0, the expression (6.11) coincides with (6.10) for
p = 3. An illustration of the theoretical results above can be found in
Figure 6.1. Also included in the diagram of Figure 6.1 is results obtained
from extensive Monte-Carlo simulations; See Chapter 5 for details.

6.3 Linear Models

Consider a hierarchical structure linear in θ, that is the waveform x[n; θ]
can be written in matrix form as

x[θ] = Hθ1 + Gη (6.12)

where the n-th row in x[θ] corresponds to x[n, θ]. H and G are the known
matrices of size (N × n1) and (N × n2 − n1), respectively. Further, we
assume a low order model M1 described by θ1 of dimension n1, and a high
order model M2 of dimension n2. The models are assumed hierarchically
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Figure 6.1: The MSSE normalized by the noise variance σ2 for a three-
(parabola) and four-parameter model (straight line). The dashed lines
are numerical evaluations of the MSSE using the different models. The
curves have been obtained for N = 128 and SNR = 20dB.

related with θ2 = (θT
1 , ηT )T , where dim(η) = n2 − n1. The parameter

difference ∆η = η− η̄ describes the error in the variable η when applying
M1 for solving the estimation problem. The goodness of the fit when
using M2 in terms of MSSE is directly related to the number of unknown
parameters n2 and given by (6.10) with p = n2.

The use of structure M2 requires an estimate of θ2. If all columns in
the model matrices H and G are linearly independent, an unbiased and
minimum variance estimate of θ2 can be found by [Kay93]

θ̂2 =

[

θ̂1

η̂

]

=

[
HT H HT G
GT H GT G

]−1 [
HT

GT

]

y. (6.13)

In (6.13), y denotes the vector of measurements. Further, a lower limit
on the covariance of the estimate (6.13) is given by the CRB. The CRB
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is determined by the model and the noise variance as [Kay93]

CRB

([
θ1

η

])

= σ2

[
HT H HT G
GT H GT G

]−1

. (6.14)

The CRB for θ̂1 and η̂ is given by the upper left n1 × n1, and the lower
right (n2 − n1) × (n2 − n1) block matrices of (6.14), respectively. By
performing a UDL factorization [SS89], the inverse in (6.14) results in

CRB(θ1) = σ2
[
HT Π⊥

GH
]−1

(6.15)

CRB(η) = σ2
[
GT Π⊥

HG
]−1

(6.16)

where the projection matrix (for a matrix A) Π⊥
A, is defined by Π⊥

A =
I − A(AT A)−1A.

When the uncertainty in η is small (that is, the norm of ∆η is small),
M1 is expected to result in a lower MSSE than M2. The essential ques-
tion is how the fit is dependent on ∆η and for which ∆η M1 is a better
model than M2. When using the model M1 the parameter vector θ̂1 is
estimated by [Kay93]

θ̂1 = (HT H)−1HT (y − Gη). (6.17)

Now, the MSSE using model M1 and θ̂1 according to (6.17) can be
expressed as

V(θ̂1, η) =
1

N
E ||y − Hθ̂1 − Gη||2

=
1

N
E ||Π⊥

Hy − Π⊥
HGη||2 (6.18)

where for any vector z the vector norm is defined as ||z||2 = zT z. For
small uncertainties in η, the MSSE (6.18) can be expanded in a Taylor
series as

V(θ̂1,∆η) =V(θ̂1, η̄) +

[
∂

∂η
V(θ̂1, η)

]T
∣
∣
∣
∣
∣
η=η̄

∆η

+
1

2
∆ηT

[

∇2
ηV(θ̂1, η)

]∣
∣
∣
η=η̄

∆η + . . . (6.19)

where the ∇2
η[·] denotes the Hessian with respect to η. The first term

in (6.19) is given by equation (6.10) using θ̂ = θ̂1. Differentiation of
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(6.18) with respect to η and insertion of η = η̄ results in (decomposing
y = x + e)

∂

∂η
V(θ̂1, η)

∣
∣
∣
η=η̄

= − 2

N
E
{
GT Π⊥

H (y − Gη)
}

= − 2

N
E







GT Π⊥
H




Hθ̄1 + Gη̄ + e
︸ ︷︷ ︸

=y

−Gη̄












= − 2

N
GT Π⊥

H E {e} = 0 (6.20)

The Hessian of (6.18) with respect to η is given by

∇2
η

[

V(θ̂1, η)
]

=
2

N
GT Π⊥

HΠ⊥
HG =

2

N
GT Π⊥

HG. (6.21)

In the last equality the fact that Π⊥
H is an idempotent matrix is used. Fur-

ther, higher than second order derivatives of (6.18) are zero. Observing
(6.16) it is evident that the Hessian of (6.18) is coupled to the CRB(η).
Using (6.10), (6.20) and (6.21) the Taylor series expansion (6.19) can be
written as

V(θ̂1,∆η) ≃σ2
(

1 +
n1

N

)

+
σ2

N
∆ηT CRB(η)−1∆η. (6.22)

In terms of MSSE the goodness of the fit (6.22) using model M1 is given
as a function of the uncertainty ∆η and the CRB(η). Comparing (6.22)
with (6.10) for p = n2 one can conclude that M1 should be used in favor
of M2 when

∆ηT CRB(η)−1∆η ≤ dim(η). (6.23)

In the special case of dim(η) = 1, the results above reduces to

|∆η| ≤
√

CRB(η). (6.24)

Intuitively the above result make sense since a large variance of η̂ makes
information of η more valuable, and vice versa, if η can be accurately
estimated model M2 can be used instead of M1 without loss of perfor-
mance.



94 6 Model Order Selection in Waveform fitting

6.4 Application to Sinewave-fitting

6.4.1 Sinewave-fitting with Known Frequency

Consider the sinewave model (6.4) with known frequency. Let the un-
knowns A and B be contained in the parameter vector θ1 of dimension
dim(θ1) = 2. Let the DC-level C be regarded as the parameter η in M2,
whereas it is regarded as a known variable in M1. With appropriate
selection of the matrices H and G the model set-up coincides with the
linear model in (6.12). Applying the result (6.24) one can conclude that
the model M1 should be used in favor of M2 if

|C − C̄| ≤
√

σ2

N
. (6.25)

That is, if the uncertainty in the DC-level is small according to (6.25) it
can be treated as a known constant, or if it is known to have a magnitude
smaller than σ/

√
N it can be disregarded from the model. A numerical

illustration of this property is displayed in Figure 6.2.

6.4.2 Sinewave-fitting with Unknown Frequency

An extension of the previous example to the case when the frequency is
unknown is made by consider the following signal model,

x[θ] = H(ω)

[
A
B

]

+ 1C (6.26)

where each row in x[θ] is equal to x[n; θ] in (6.4) using θ = (A,B,C, ω)T .
Here the model M1 is described by the parameter vector θ1 = (A,B, ω)T

of dimension n1 = 3. The second model M2 is described by the parameter
vector θ2 = (θT

1 , C)T . Because ω enters the problem in a non-linear
fashion the result in (6.24) is not directly applicable. As in the previous
example the CRB(C) is given by σ2/N .

The minimum variance estimator of ω given a set of measurements y
is given by [Kay93]

ω̂ = arg maxω yT Πωy − 1T Πω1C2. (6.27)

Here, the projection matrix Πω is given by Πω = H(ω)(H(ω)T H(ω))−1H(ω)T .
If N ≫ 2π/ω then the second term in (6.27) 1T Πω1 ≈ 0, making ω̂ in-
dependent of the DC-level C. Given ω̂ the estimate of A and B is now
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Figure 6.2: The MSSE normalized with the noise variance σ2 for
the two-parameter (A,B) case (parabola) and three-parameter (A,B,C)
(straight line) case. The dashed lines are numerical evaluations of the
MSSE using the different models. The curves have been obtained for
N = 128 and SNR = 20dB.

given by
[
Â

B̂

]

= H(ω̂)T H(ω̂))−1H(ω̂)T (y − 1C) (6.28)

Using (6.26) and (6.27) the MSSE V(θ̂1, C) can be written similar to
(6.18) as

V(θ̂1, C) =
1

N
E
∣
∣
∣
∣Π⊥

ω̂ y − Π⊥
ω̂ 1C

∣
∣
∣
∣
2

(6.29)

where Π⊥
ω̂ = I−Πω̂. The Hessian of (6.29) with respect to C is given by

∇2
[

V(θ̂1, C)
]

=
2

N
1T Π⊥

ω̂ 1 ≃ 2. (6.30)

This is a result that is in accordance with (6.21) and results in: Model
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Figure 6.3: The MSSE normalized with the noise variance σ2 for the
three-parameter (A,B, ω) case (parabola) and four-parameter(A,B,C, ω)
(straight line) case. The dashed lines are numerical evaluations of the
MSSE using the different models. The curves have been obtained for
N = 128 and SNR = 20dB.

M1 shall be used in favor of M2 if relation (6.25) holds, independent
of the fact that ω is known or not. In the latter case the result holds
asymptotically as N ≫ 2π/ω. However, this is a weak assumption since
there is no point in estimating ω if ω < 2πN . This limit is referred to as
the Fourier resolution [Kay93]. A numerical illustration of the MSSE in
the current scenario is displayed in Figure 6.3.

6.5 Conclusions

A simple criterion for model order selection has been derived (6.23). This
criterion holds when the model is linear in the unknown parameters. The
correction term in the MSSE (c.f the second term in (6.19)) holds exactly



6.5 Conclusions 97

for linear models. A generalization of the result to include non-linear
parameters have been studied in the special case with one non-linear
parameter. Numerical illustrations of the theoretical results have shown
good agreement with the theoretical analysis.

From the two examples above we can conclude that estimation of the
DC-level is superfluous if |C| <

√

σ2/N in sinewave-fitting, as well as in
linear models with a CRB associated to the DC-level given by σ2/N .
The assumption under which the results have been derived includes a
Gaussian requirement on the white noise additive model imperfections,
and that the model M2 describes the signal correctly. Thus, the result
may not be applicable for example in ADC-testing where the considered
noise model is questionable [KB04].





Part III

Multi-Tone Sinewave
Fitting





Chapter 7

Multi-Tone Parameter
Estimation using IEEE
1057 Sinewave Fit and
the EM-algorithm

The aim of this work is to present an efficient algorithm for multiple-tone
parameter estimation. The algorithm is inspired by the expectation-
maximization algorithm, and it utilizes the IEEE standard 1057 for sin-
gle tone parameter estimation. In the derivation of the algorithm it is
assumed that the number of tones are known and that the frequencies are
well separated. The algorithm is evaluated using noisy data consisting of
multiple real-valued tones. The performance of the frequency estimator
is studied and compared with the asymptotic Cramér-Rao bound (CRB).
It is shown that the algorithm produces statistically efficient frequency
estimates at high signal to noise ratios, that is the variance of the esti-
mates reaches the CRB. Finally, it is illustrated that the algorithm can
produce efficient estimates independent of the number of tones in the
input signal.

In this chapter, we consider the problem of estimating the parameters
of multiple real-valued tones by aid of the IEEE standard 1057, in com-
bination with the expectation-maximization (EM) algorithm. The EM
algorithm was introduced and formulated in [DLR77] and has received
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attention in different areas. Feder and Weinstein [FW88] have address
the problem of finding multiple direction of arrival angles using the EM
algorithm, that is the spatial analogy to the temporal version presented
in this paper. The main advantage of the EM algorithm over alterna-
tive algorithms is that it provides an iterative solution where a multiple
parameter estimation problem is decoupled into several single param-
eter estimation problems [FW88]. In particular, we consider a signal
consisting of p superimposed tones, and the problem of estimating its
parameters. This is a classic problem and it has received some atten-
tion in the past [RB76, SMFS89]. In [RB76], the parameter estimation
problem was formulated and the maximum likelihood (ML) estimator
was studied. The ML estimator, which is both non-linear and involves a
multi dimensional search, was found hard to resolve. Methods based on
the discrete Fourier transform (DFT) were proposed as an approximation
of the ML estimator. However, in the case when more than one tone is
present a DFT-based method will produce biased estimates. Accordingly,
some windowing methods were proposed to reduce the bias [RB76]. The
bias problem was solved in [SMFS89] were the true ML was derived and
evaluated. An iterative Gauss-Newton algorithm was proposed as a way
to minimize the ML criterion function. In the iterative algorithm proper
initial estimates are essential, and the importance of them was also given
some attention in [SMFS89]. The method proposed in [SMFS89] was
shown to produce statistically efficient frequency estimates. However,
the method is computationally intensive and requires a (3p × 3p) ma-
trix inversion to be solved in each iteration. Here, we present a solution
to the multiple-tone estimation problem that utilizes both the EM al-
gorithm and a four-parameter fit implementation of the IEEE standard
1057. The EM algorithm is employed to decouple the problem into p
separate parameter estimation problems, that is p single-tone problems.
Once the signal has been decomposed a four-parameter fit can be used
to efficiently find the sought parameters. The number of single-tones p is
assumed to be known. This is a reasonable assumption in many applica-
tions where the number of sought waveforms is known. For unknown p,
a method for estimating p is presented in [Fuc88].

7.1 Signal Model

Consider N samples of the signal x[n] which consists of p number of real-
valued tones contaminated by an additive measurement noise. Each tone
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can be modeled as

si[n] = Ai cos(ωin) + Bi sin(ωin) + Ci, n = 1, . . . , N (7.1)

where Ci is a DC-term, and i = 1, . . . , p. The constants Ai, Bi and Ci are
all assumed to be unknown. The constant angular frequencies ωi are also
considered as unknown parameters. Here, ωi = 2πfi/fs were fi is the
signal frequency in Hertz and fs is the sampling frequency. The model
(7.1) is equivalent with modeling each tone as an amplitude- and phase
shifted sinusoid, that is

si[n] = αi sin(ωin + φi) + Ci (7.2)

where Ai = αi sin(φi) and Bi = αi cos(φi).
The measured signal x[n] is a sum of the p tones and an additional

noise term w[n], that is

x[n] =

p
∑

i=1

si[n] + w[n], n = 1, . . . , N. (7.3)

The noise w[n] is assumed to be zero-mean white Gaussian with vari-
ance σ2. The assumption that w[n] is Gaussian may appear somewhat
restrictive. However, if the Gaussian hypothesis fails to be true, the
method may still be applicable but will no longer provide ML estimates.
However, the estimator still yields minimum variance estimates if w[n]
is an i.i.d sequence [SMFS89]. If w[n] is a colored sequence it is shown
in [SMFS89] that an ML estimator under white Gaussian noise condition
gives accurate estimates.

Further, it is assumed that the frequencies are unique and well sepa-
rated, meaning that

|ωi − ωj | ≫
1

N
for all i 6= j. (7.4)

The implication of (7.4) is that the estimation problem may be solved
by Fourier-based methods in order to generate proper initial values. The
proposed method does not rely on (7.4), and thus it may work for sig-
nals with closely spaced frequencies as well. In [Fuc88] it is shown that
sinewaves with frequencies even closer than (7.4) can be detected. The
main focus in this paper, however, is to present a practical algorithm
for multiple-tone estimation, and apply it to the common problem when
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(7.4) is fulfilled. In practice, if a DFT-based method is used to initialize
the method, equation (7.4) reads

|ωi − ωj | >
6π

N
for all i 6= j. (7.5)

This bound ensures that neighboring signal peaks in the DFT are well
separated.

For convenience in the further discussion a vector notation is intro-
duced. The signal samples si[n] are stacked in a column vector as

si =
[
si[1] si[2] . . . si[N ]

]T
(7.6)

where T denotes transpose. Each tone can then be written as

si = Hiθi (7.7)

where Hi contains the signal basis functions as

Hi =








cos ωi sin ωi 1
cos 2ωi sin 2ωi 1

...
...

...
cos Nωi sinNωi 1








(7.8)

and the linear parameters are gathered in

θi =
[
Ai Bi Ci

]T
. (7.9)

Accordingly, the data model (7.3) can be written as

x = Hθ + w (7.10)

where H is the (N × 2p + 1)-matrix

H=








1 cos ω1 sin ω1 . . . cos ωp sin ωp

1 cos 2ω1 sin 2ω1 . . . cos 2ωp sin 2ωp

...
...

...
...

...
1 cos Nω1 sin Nω1 . . . cos Nωp sin Nωp








(7.11)

and θ is the parameter vector

θ =
[
C A1 B1 A2 B2 . . . Ap Bp

]T
. (7.12)
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In (7.12), the DC-level C has been introduced as the sum of individual
DC-components, that is

C =

p
∑

i=1

Ci. (7.13)

For the case p = 1, the model (7.10)-(7.13) is used in the IEEE standards
[S1057,S1241]. In the case of several tones, that is p > 1, it is not possible
to resolve the individual Ci’s. As a consequence, the DC-level (7.13) is
included in the parameter vector (7.12).

The data model (7.10) is convenient to work with as all the unknown
linear parameters are collected in θ. The unknown frequencies ωi are im-
plicitly collected in H. For convenience they are stacked in the parameter
vector ω as

ω =
[
ω1 ω2 . . . ωp

]T
. (7.14)

7.2 Algorithm

The aim of the proposed algorithm is to estimate the parameters in (7.12)
and (7.14). In estimation methods derived from the method of ML, the
criterion function to be optimized depends on the probability density
function (pdf) of the data x given the parameters [Kay93], where

x =
[
x[1] x[2] . . . x[N ]

]T
. (7.15)

In the considered scenario the pdf is denoted by px(x;θ,ω), that is a
function of the sought θ and ω. Here, the pdf (and its logarithm) is
both multi-dimensional and nonlinear in the sought parameters and max-
imization of the pdf with respect to the unknown parameters is in general
difficult. Our proposal is therefor to decompose the observed data x into
p new data sets. Let the observed data x be a sum of p individual data
sets yi,

x =

p
∑

i=1

yi (7.16)

where each set yi includes only one single-tone component disturbed by
noise as

yi = si + wi, i = 1 . . . p. (7.17)

In (7.17), wi is a decomposition of the noise term w in (7.10), chosen as

wi = βiw. (7.18)
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A brief discussion on how to choose the coefficients βi is made in [FW88].
It follows directly from (7.3) and (7.16) that the coefficients βi can be
chosen arbitrary as long as they sum up to one, that is

p
∑

i=1

βi = 1. (7.19)

From each decomposed data set yi one can find the corresponding un-
known parameters θi and ωi. The problem of estimating the parameters
of a single tone disturbed by noise is well known, and it may be effi-
ciently solved employing an implementation of the IEEE standard 1057
sinewave fit [S1057]. In short, the proposed algorithm consists of the
following steps:

A) Find initial estimates of θ and ω,

B) find estimates ŷi of the separable signals yi, and

C) use ŷi to maximize pyi
(yi; θi, ωi).

Then, by iterating through the steps B-C, a local minima of px(x;θ,ω)
can be found. This type of algorithm is often refereed to as the EM algo-
rithm. Step B corresponds to the expectation step in the EM algorithm,
and step C to the maximization step [FW88,DLR77]. Details about the
steps A-C are given below.

The initialization procedure is crucial for the convergence of the pro-
posed method (as well as for other methods for the problem at hand).
Clearly the method converges even if the separation is narrower than
(7.5), if a proper initialization can be performed. If the method converges
to the global minima its performance is expected to be close to the CRB.
For well separated spectral components the CRB is approximately given
by the single tone CRB [Hän00], whereas for closely spaced components
approximate expressions for the CRB may be found in [Swi95]. These
approximate CRB expressions may be used as a guideline on algorithm
error variance as function of frequency separation.

7.2.1 Initial Estimates of θ and ω

The initial estimates of the sought parameters can be found by perform-
ing an N -points DFT. If N is chosen as a power of two, fast Fourier
transforms (FFT) methods can be employed, hence reducing the compu-
tational complexity. The p largest peaks in the magnitude of the DFT are
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identified, with the DC-level excluded. The peak locations are chosen as
initial estimates of the frequencies. Amplitude, phase and Ci estimates
are all obtained from the DFT as

θ̂i =






Âi

B̂i

Ĉi




 =

1

N





2 · Re{X(ki)}
−2 · Im{X(ki)}

1
pX(0)



 , i = 1, . . . , p (7.20)

where X(k) is the N -points DFT of the input signal x and ki is the
frequency bin corresponding to the actual peak of |X(k)|. The quantities
Re{·} and Im{·} denote the real and imaginary part of the quantity
between the brackets, respectively. The initial value of the Ci parameter
is rather arbitrary obtained by dividing the DC-level of x into p equal
parts.

At high SNR, the performance of the initial frequency estimates is
given by the grid size of the DFT. With N samples, the error ω̂i − ωi is
typically uniformly distributed over an interval of length 2π/N , implying
that the performance is approaching a mean-squared-error (MSE) of

MSE(ω̂i) = E{(ω̂i − ωi)
2} =

π2

3N2
. (7.21)

In a practical case with N = 128 this corresponds to a MSE of −37dB.
Standard methods such as zero-padding or interpolation may be used in
order to increase the resolution of the DFT calculations.

The approach taken is to identify the dominating peaks as spectral
components. The number of significant (in some sense) peaks has to co-
incide with p, in order to avoid under- or over-modeling. In addition, one
should note that the proposed method does not incorporate prior knowl-
edge on harmonic or folded components, and thus all spectral peaks are
assumed independent. Designing a method utilizing a harmonic or folded
signal model is straightforward [NP86] [PS96] and such an algorithm is
expected to have superior performance in terms of error variance, but
worse robustness properties.

In general, over-fitting the number of parameters is preferred over
under-fitting. If p is larger than the actual number of tones including
harmonic components, the strongest noise peaks present will be modelled
as sinewave components. However, this over-fitting does not degrade the
performance in large samples, other than increasing the computational
load. On the other hand, if p is less than the actual number of tones the
accuracy of the frequency estimates is degraded [RB76]. Accordingly, a
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proper strategy is to select a large p in combination with a procedure
for detection of over-fitting. An applicable procedure can be found in
[SHS94].

7.2.2 Estimates of ŷi

When an initial estimate of θ and ω has been obtained, the ML estimate
of yi is given by [FW88]

ŷi = Ĥiθ̂i + βi

[

x −
p
∑

ℓ=1

Ĥℓθ̂ℓ

]

(7.22)

where Ĥi and θ̂i are estimates of Hi in (7.8) and θi in (7.9), respectively.
The second term in (7.22) can be interpreted as an estimate of wi. The
coefficient βi is related to the decomposition of w, as given by (7.18).
One can choose βi arbitrary as long as (7.19) is fulfilled. One way of
choosing the βi’s is to make the signal-to-noise ratio (γi) equal for all
signals ŷi, where γi is defined as

γi =
α2

i

2σ2
i

=
A2

i + B2
i

2σ2
i

=
θT

i θi

2σ2
i

. (7.23)

Here σ2
i is the variance of the noise term wi in the separated signal yi

(7.17). The relation between the variance of wi and w is obtained by
evaluating the variance of both sides of (7.18), that is

σ2
i = β2

i σ2. (7.24)

In order to determine the constants βi we first manipulate (7.23) and
(7.24), giving us

βi

|αi|
=

√
1

2γiσ2
. (7.25)

Since SNRi is chosen to be constant and independent of i, it follows that
(7.25) also is constant. From (7.19) it follows that

1 =
∑

i

βi =
∑

i

(
βi

|αi|

)

︸ ︷︷ ︸

independent of i

|αi| ⇒ βi =
|αi|
∑

i |αi|
. (7.26)

When forming the signal yi from (7.22) the βi is replaced with an estimate

β̂i. This estimate is formed by replacing the quantity |αi| in (7.26) with

its estimated equivalence
√

θ̂T
i θ̂i.
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7.2.3 Maximization of pŷi
(ŷi; θi, ωi)

After performing the decomposition of x as described above, the signal
ŷi consists of one strong tone with parameters near the true θi and ωi.
After applying the IEEE standard 1057 sinewave fit on the decoupled
signals, estimates of θ and ω are obtained. The obtained estimates are
used to decouple the data once again. Thus, improving the estimates of
the single-tones ωi and θi. This iteration may continue until the esti-
mates have converged. The full algorithm is summarized in Table 7.1. In
Table 7.1, the level of convergence is measured by the Euclidean norm of
the frequency update vector ω̃, that is

∣
∣
∣ω̃

(r)
∣
∣
∣ =

∣
∣
∣ω̂

(r) − ω̂(r−1)
∣
∣
∣ . (7.27)

The iterations continue as long as |ω̃(r)| is larger than a constant ε. Here,
r corresponds to the current iteration step, see Table 7.1. In the case
where the algorithm fails to resolve the frequencies, an upper limit on
the number of iterations should be set. This happens, for example, when
the SNR is below the SNR-threshold that occurs in non-linear estimation
problems.

a) Find initial estimates of θ and ω. Denote them θ̂
(0)

and ω̂(0).

b) Let r = 0 and ω̃(r) = 1.

c) While |ω̃(r)| > ε

d) Build H1 . . . Hp using θ̂
(r)

and ω̂(r) according to (7.8).
e) Build p data sets ŷ1 . . . ŷp according to (7.22).

for i = 1 . . . p
f) Estimate θi and ωi from ŷi using IEEE standard 1057 [S1057].

end

g) Form θ̂
(r+1)

and ω̂(r+1) using outcomes from step f).

h) Form ω̃(r+1) according to (7.27).
i) Let r = r + 1.
j) end

Table 7.1: Multi-Tone Parameter Estimation by aid of the IEEE Stan-
dard 1057 and the EM Algorithm.
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7.3 Simulation Examples

The algorithm in Table 7.1 has been evaluated in three different scenarios
(case i)- iii), below). The number of tones in each scenario is chosen as:
In case i) p=2, in case ii) p=10 and in case iii) p=3, respectively. In all
cases, the signal has been disturbed by zero-mean white Gaussian noise
and the number of samples is chosen to N =128. The amplitudes {αi} in
the first two cases equal to 1. In the third case α1 = 1, α2 = 10−1/4 and
α3 = 10−1/2. With the latter choice of amplitudes, the individual SNRs
are related as SNR1 = SNR2 +5dB and SNR2 = SNR3 +5dB, where the
individual SNRi is defined by

SNRi =
α2

i

2σ2
. (7.28)

The initial phases {φi} have been drawn from a uniform distribution
within the interval [0, 2π). Although the algorithm provides estimates of
all unknown parameters, the main purpose in this paper is to investigate
the performance of the frequency estimates. The unknown frequencies
{ωi} have been drawn from a uniform distribution within the interval
[0, π), conditionally that (7.5) is fulfilled. The noise variance σ2 of w[n]
in (7.3) is varied in such a way that the local SNRi (7.28) is varied in
the range −20 to 70dB. In case iii) where the signal amplitude varies
from tone to tone, the variance σ2 has been chosen in such a way that
the SNR1 (that is, the local SNR of the strongest signal) varies in the
range −20 to 70dB.

The algorithm is implemented as described in Table 7.1. The number
of iterations in the IEEE standard 1057 sinewave fit was fixed to four.
In step c), (according to Table 7.1) ε was set to 1 · 10−7. The number of
iterations carried out in the loop c)–j) varied, depending on the actual
SNR and the number of tones. In the case i), 4−8 iterations were enough,
and in the case ii) and iii)10 − 15. If the algorithm failed to converge
the iterations were stopped after 40 in both cases. For SNRs lower than
−5dB, the maximum number of iterations was commonly reached.

In Figures 7.1-7.3, the evaluated performance in terms of empirical
MSE is shown, based on 5 × 104 independent runs. Here the parameter
of interest is the frequency. As a comparison, the asymptotic Cramér
Rao bound (CRB) is included in the figures [Kay93]. The CRB is a lower
bound on the variance of an unbiased frequency estimate. The exact CRB
is highly frequency dependent, whereas the asymptotic CRB is frequency
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Figure 7.1: Performance of the algorithm when estimating the frequen-
cies of two well separated tones-case i) The number of data samples is
N = 128. Empirical MSEi (solid lines) as a function of the SNRi, for
i = 1, 2. The asymptotic CRB (dashed line) is given as a reference.

independent and given by [Hän00],

var{ω̂i} ≥ 12

N3SNRi
. (7.29)

From the numerical evaluations, presented in Figure 7.1 and 7.2, one
can see that the variance of the frequency estimates reaches the CRB for
SNRs above a certain threshold value. Also in case iii) where the am-
plitudes are varied, the frequency estimates reach the CRB. Here, it can
be seen that for the second strongest tone (i = 2) the MSE is increased
by 5dB compared with the MSE of the strongest tone, which is in fully
accordance with (7.29). Hence, the proposed estimator produces statisti-
cally efficient estimates in the considered examples, above the threshold
SNR. From Figures 7.1 and 7.2 it is also shown that the SNR-threshold
below which the frequency estimates are deteriorated and the algorithm
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Figure 7.2: Performance of the algorithm when estimating the frequen-
cies of ten well separated tones–case ii). The number of data samples is
N = 128. The individual empirical MSEi (solid lines) as a function of
the local SNRi, for i = 1, . . . , 10. The asymptotic CRB (dashed line) is
given as a reference.

fails to resolve the different frequencies is independent on the number
of sinewaves. In Figure 7.3, the SNR-threshold is located at the local
SNRi equal to −5dB. In a single-tone frequency estimation scenario it is
known that the SNR-threshold is only dependent on the number of data
samples N [SB85]. In the case of N = 128 the theoretical threshold is
−5dB according to [SB85], a result that is fully in accordance with the
numerical results achieved by the algorithm presented in this paper.

7.4 Conclusions

In this paper, a novel algorithm for multiple-tone parameter estimation
has been proposed. By numerical evaluation it is shown that the method
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Figure 7.3: Performance of the algorithm when estimating the frequen-
cies of three well separated tones–case iii). Here, the amplitudes are
1(i = 1), 10−1/4(i = 2) and 10−1/2(i = 3). The number of data sam-
ples is N = 128. Empirical MSEi (solid line) as a function of the local
SNR of the strongest tone (SNR1). The asymptotic CRB (dashed line)
corresponding to SNR1 is given as a reference.

is statistically efficient for high SNR, i.e. the frequency estimation MSE
coincides with the asymptotic CRB. The algorithm handles several tones,
as long as they are separated in frequency, without degrading the perfor-
mance on the estimated parameters. The SNR-threshold below which the
algorithm fails to resolve the frequencies is independent on the number
of sinewaves present in the input signal and depends only on the number
of data samples N . The numerical complexity is approximately linear in
the number of tones p. In the case of p=1 the complexity is given by the
complexity of the employed implementation of the IEEE standard 1057
sinewave fit.





Chapter 8

Toward a Standardized
Multiple-Sinewave Fit
Algorithm

Sinewave test methods have for a long period of time been dominating
in testing digital devices. The extraction of the parameters of a single
tone is well known, and there exists a standardized method [S1057,S1241].
There are several physical parameters that can not be measured by single-
sinewave tests. One example is the inter-modulation test for analog to
digital converters (ADCs) [S1057, S1241]. In the inter-modulation test,
one must not only estimate the parameters of the two tones that excite the
ADC, but also the number of harmonics introduced by the nonlinearity
of the ADC.

Unfortunately, it is more difficult from a measurement to resolve mul-
tiple sinewaves than a single one. If one ignores the fact that several
sinewaves are present and use an estimator designed for a single tone the
estimates get biased due to spectral leakage [RB76]. Several researchers
in the area have tried to resolve this problem in several different ways.
One attractive method is to use the maximum likelihood (ML) estima-
tor [Kay93]. However, there exists no closed form solution for the multi-
tone model due to the highly nonlinear criterion function. There exist
some iterative approaches to solve the ML problem, among others the
ones in [SMFS89] and the method presented in Chapter 7, respectively.
The accuracy of these methods reaches the corresponding Cramér-Rao
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bound (CRB). The one presented in Chapter 7, however, has superior
SNR threshold than the method in [SMFS89].

The aim of this chapter is to review some results on frequency esti-
mation and present their implications on the instrumentation and mea-
surement set-up. Further, a generalization of the four-parameter fit
of [S1057, S1241] is presented, that is able to estimate the 3p + 1 pa-
rameters of a multi-tone model.

8.1 Requirements on a Sinewave-fit Algo-
rithm

The multi-tone estimation problem may be separated into subproblems
like signal detection, algorithm initialization and parameter extraction.
In the instrumentation and measurement set-up, we are typically inter-
ested in detection of line spectral components above the noise floor (that
is, the spurious frequencies), as well as the level of the noise floor itself.

8.1.1 Cramér-Rao Bound and Signal Model

In the literature, a complex-valued signal model is often employed. At
first glance, this complex-valued model seems to make the analysis more
complicated than using a real-valued model. In fact, the opposite holds
true that can be seen, for example, from the exact CRB for a single
complex-valued exponential signal (or, cisoid) disturbed by additive white
Gaussian noise. A well known result on the achievable accuracy of any
unbiased estimator of the normalized angular frequency ω for evenly sam-
pled data is given by [RB74]

Var(ω̂) ≥ 6

SNR N2 (N − 1)
(8.1)

where ω̂ denotes an estimate of ω. Here and from now on, N denotes
the number of available samples. Further, SNR denotes the signal-to-
noise ratio. In the real-valued case, the corresponding CRB is more
complicated and results in an expression that is dependent on the signal
frequency and the initial phase [Hän00]. However, an asymptotic (as
N → ∞) expression is known to be

Var(ω̂) ≥ 12

SNRN3
. (8.2)
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Moreover, in a test environment without I/Q-modulation there exclu-
sively exist real-valued signals which make a complex-valued signal model
improper. In this paper, the following multi-sinewave signal model is em-
ployed

s[n] = C +

p
∑

ℓ=1

Aℓ cos ωℓ tn + Bℓ sinωℓ tn, n = 1, . . . , N (8.3)

where tn denotes the (normalized) sampling instants. The parameters
Aℓ, Bℓ and C are all assumed to be unknown constants. The constant
angular frequencies ωℓ are also considered as unknown parameters. Here,
ωℓ = 2πfℓ/fs where fℓ is the signal frequency in Hertz and fs is the
sampling frequency. In (8.3), regular sampling at fs Hertz corresponds
to an integer tn = n. The number of sinewaves p is assumed to be known.
This is a reasonable assumption in many applications where the number
of sought waveforms is known. Estimation of p is further discussed in
Section 8.2.1. The model (8.3) is equivalent with modeling each tone as
an amplitude- and phase shifted sinusoid, that is

s[n] = C +

p
∑

ℓ=1

αℓ sin(ωℓ tn + φℓ) (8.4)

where Aℓ = αℓ sin φℓ and Bℓ = αℓ cos φℓ.
The measured signal x[n] is a sum of the signal (8.3) and an additional

noise term w[n], that is

x[n] = s[n] + w[n], n = 1, . . . , N. (8.5)

The noise is assumed to be zero-mean white Gaussian with variance σ2.
The assumption that w[n] is Gaussian is restrictive, but is, on the other
hand, only used in order to assess the performance of the algorithm by
a comparison with the CRB. If the Gaussian noise hypothesis fails it
is shown in [SJL97] that a least-squares fit asymptotically results in an
efficient estimator. Further, if the covariance matrix of the estimates only
depends on the second order statistics of the data, a least-squares fit will
result in the minimum-variance estimate [SMFS89].

8.1.2 Frequency Resolution

Frequency resolution is an important topic that has to be discussed in
some detail. In general terms, resolution of two line spectral components
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is a function of the separation between them, the amplitudes, as well as
the level of the noise floor. We define frequency resolution as the min-
imum angular frequency separation between two neighboring sinewaves
∆ω = |ωi − ωj | for which both spectral components can be detected and
then estimated accurately. We emphasize that frequency resolution in
model based estimation differs from the Fourier or Rayleigh resolution,
roughly determined by [Kay88]

∆ω =
2π

N
. (8.6)

Accordingly, proper high-resolution methods resolve line spectral compo-
nents within the Fourier resolution. Accurate estimation of closely-spaced
tones has been presented in [Fuc94]. At SNR = 10dB and for N = 100,
the method in [Fuc94] is shown to resolve two equipowered sinewaves with
frequencies as close as ∆ω = π/(2N), that is the fourth of the Fourier
resolution (8.6). Further, the method is shown to resolve two sinewaves
whose amplitudes differ by 10dB at half the Fourier resolution.

8.1.3 Performance of Multi-tone Methods

The performance one can expect from a proper method is a relevant topic.
The performance depends on several causes, but the two most important
items are to detect the correct number of tones and the initialization
procedure for the fine-tuning of the parameter estimator. If detection
and initialization are performed in a correct and successful way the error
variance of the overall method is expected to be close to the CRB. If the
spectral components are well separated in frequency each parameter esti-
mate is expected to reach its corresponding CRB, that for the frequency
approximately coincides with the single tone CRB in (8.2). However, if
two sinewaves are closely located in frequency the single tone assumption
is not valid. In [Swi95], it is shown that if the frequency separation ∆ω
is larger than about 1.5 times the Fourier resolution (8.6) then the CRB
in the dual tone case basically coincides with (8.2).

8.2 A generalized IEEE 1057 algorithm

In Chapter 7, an algorithm for multi-tone parameter estimation based
on the IEEE Standard 1057 four-parameter fit in combination with the
expectation-maximization (EM) algorithm is presented. The EM-algorithm
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was employed to separate the measurements into p single tone compo-
nents that were the input to p parallel four-parameter fits. Here, an
alternative to that method is derived, given by an extension of the four-
parameter fit to a 3p+1-parameter fit, where p denotes the number of
spectral components.

The proposed algorithm can be divided into two steps. First, the indi-
vidual spectral components are detected and initial estimates are formed.
The second step increases the accuracy of the estimates by successive it-
erations. Each step is crucial in order to obtain a fully automated multi-
sinewave estimator. In this Section the attention is concentrated on the
second iterative fine-tuning step.

8.2.1 A procedure for algorithm initialization

A general issue in non-linear parameter estimation is the threshold-effect
that occurs at a certain SNR, below witch the estimates are deteriorated.
In the considered case, this threshold depends on the number of data sam-
ples [SB85]. In [Kno97], an indicator quantity γ = N SNR/ loge N was
introduced. It was shown (by aid of the Barankin bound) that γ ≥ 70
always pull the single tone ML estimator out of the threshold region.
The initialization can be performed by searching for the p largest peaks
in the periodogram. There exist fast and efficient methods to compute
the periodogram and therefore this is an attractive approach. A draw-
back with a periodogram-based method is the poor frequency resolution,
determined by the Rayleigh resolution. Another drawback with the pe-
riodogram is that a strong sinewave shadows weaker ones. This masking
effect results in an inferior frequency resolution than (8.6). When the
periodogram is successful in resolving the individual sinewaves one may
expect an estimation accuracy resulting in a mean-squared-error (MSE)
of (for ℓ = 1, . . . , p)

MSE(ω̂ℓ) = E{(ω̂ℓ − ωℓ)
2} =

π2

3N2
. (8.7)

The MSE in (8.7) results in a root-MSE (RMSE) of order 2/N . The
RMSE indicates the size of the minimum convergence radius of any iter-
ative algorithm used for fine-tuning of the estimates.

Given initial values {ω̂ℓ}, estimates of the unknown {Aℓ}, {Bℓ} and
C can be found by solving a linear system of equations. Using a vector
notation, the signal s[n] in (8.3) can be written as

s = Hθ, (8.8)
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where s is the signal vector

s =
[
s[1] . . . s[N ]

]T
, (8.9)

(T denotes transpose) and θ the parameter vector

θ =
[
C A1 B1 A2 B2 . . . Ap Bp

]T
. (8.10)

Further, H is a N × 2p + 1 matrix given by

H =






1 cos ω1t1 sinω1t1 . . . cos ωpt1 sin ωpt1
...

...
...

...
...

1 cos ω1tN sin ω1tN . . . cos ωptN sinωptN




 . (8.11)

Given initial estimates {ω̂ℓ} for ℓ = 1, . . . , p the in least-squares sense
optimal estimate of θ (8.10) is given by (if the matrix HT H is invertible)

θ̂ =
(
HT H

)−1
HT x. (8.12)

In (8.12), H is formed by plugging in the {ω̂ℓ} into (8.11), and the vector
x contains the measurements, that is

x =
[
x[1] . . . x[N ]

]T
. (8.13)

8.2.2 A 3p + 1 parameter fit algorithm

The algorithm is a generalization of the four-parameter sinewave fit al-
gorithm [S1057, S1241] to handle p-tone data. In the four-parameter
sinewave fit the nonlinear signal is linearized around the previous fre-
quency estimate resulting in a linear signal model. Given the frequency

estimates ω̂
(r)
ℓ at the iteration step r, a Taylor series expansion around

ω̂
(r)
ℓ can be performed as

cos ωℓtn ≈ cos ω̂
(r)
ℓ tn − tn sin ω̂

(r)
ℓ tn · ∆ω

(r)
ℓ (8.14)

and
sin ωℓtn ≈ sin ω̂

(r)
ℓ tn + tn cos ω̂

(r)
ℓ tn · ∆ω

(r)
ℓ , (8.15)

where ∆ω
(r)
ℓ = ωℓ − ω̂

(r)
ℓ . Inserting (8.14) and (8.15) in (8.3) results in

the approximate signal model

s[n;ϑr] ≈ C(r) +

p
∑

ℓ=1

A(r) cos ω̂
(r)
ℓ tn + B(r) sin ω̂

(r)
ℓ tn+

− Â(r−1)∆ω
(r)
ℓ tn sin ω̂

(r)
ℓ + B̂(r−1)∆ω

(r)
ℓ tn cos ω̂

(r)
ℓ , (8.16)
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where the two estimates Â(r−1) and B̂(r−1) from iteration (r − 1) have
been inserted in the last two terms. In (8.16), the multi-sinewave param-
eter vector ϑr is given by

ϑr =
[

C(r) A
(r)
1 B

(r)
1 ∆ω

(r)
1 . . . A

(r)
p B

(r)
p ∆ω

(r)
p

]T

. (8.17)

Using the vector ϑr, (8.16) can be written using matrix notation as

s[ϑr] ≈ Drϑr. (8.18)

The matrix Dr forming the set of basis functions is given by

Dr =
[

1 D
(r)
1 . . . D

(r)
p

]

(8.19)

where the vector 1 =
[
1 1 . . . 1

]T
is of length N , and the sub-

matrices D
(r)
ℓ are given by

D
(r)
ℓ =






cos ω
(r)
ℓ t1 sin ω

(r)
ℓ t1 −A

(r−1)
ℓ t1 cos ω

(r)
ℓ t1 + B

(r−1)
ℓ t1 sinω

(r)
ℓ t1

...
...

...

cos ω
(r)
ℓ tN sinω

(r)
ℓ tN −A

(r−1)
ℓ tN cos ω

(r)
ℓ tN + B

(r−1)
ℓ tN sinω

(r)
ℓ tN







.

(8.20)

The least-squares solution of ϑr can be computed according to

ϑr =
(
DT

r Dr

)−1
DT

r x. (8.21)

For each iteration of (8.21) the frequency estimates {ω̂(r)
ℓ } are updated

according to

ω
(r+1)
ℓ = ω

(r)
ℓ + ∆ω

(r)
ℓ , ℓ = 1, . . . , p. (8.22)

The iterations are stopped when sufficient precision is reached for some

{εℓ} according to |∆ω
(r)
ℓ | ≤ εℓ for all ℓ=1, . . . , p. One should note that

a direct calculation of (8.21) may be numerically imprecise and from
an implementation point of view it is recommended to use some matrix
factorization algorithm [BMS+02].
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8.3 Numerical evaluations

The proposed algorithm has been evaluated in four different scenarios,
all based on equidistant sampling tn = 1, 2, . . .. The first two scenarios
(a and b) have been evaluated using the initialization routine in Section
8.2.1. In the latter two scenarios (c and d) the iterative algorithm is
investigated (for simplicity) when initialization is performed around the
true frequency, according to ω̂ℓ = ωℓ + u, where u is a random variable
with uniform distribution in the interval [−1/(2N), 1/(2N)]. Here, the
initialization is guaranteed to be within the expected resolution of a peri-
odogram based initialization method. The number of data samples N is
set to N = 128 in all scenarios. The normalized angular frequencies {ωℓ}
have been drawn from a uniform distribution within the interval [0, π),
which corresponds to a frequency between 0 and fs/2 Hertz. The initial
phases {φℓ} are chosen from a uniform distribution within the interval
[0, 2π). The amplitude settings in each scenario are given in Table 8.1.

p αℓ

a) 8 1 ∀ ℓ
b) 3 {1, 10−1/4, 10−1/2}
c) 8 1 ∀ ℓ
d) 3 {1, 10−1/4, 10−1/2}

Table 8.1: Parameter values used in the numerical evaluations.

The results (based on 105 independent runs) are presented in Figure 8.1
and Figure 8.2. For high SNRs, each frequency estimate has a corre-
sponding variance that coincides with the CRB (8.2). For low SNRs,
in cases a)–b) there is a distinct threshold where the algorithm fails to
resolve the frequencies, at about SNR = 0dB. However, this threshold is
inherent from the initialization where the periodogram method is used.
In cases c)–d), the threshold is not that distinct as in cases a)–b), and
accurate frequency estimates is obtained for SNRs below 0dB.

In Figures 8.1(b) and 8.2(b), it is observed that the proposed algo-
rithm enables to find proper frequency estimates for signals where the
amplitudes differ as much as 10dB, without affecting the performance.
The threshold effect in Figure 8.1(b) is not as distinct as in Figure 8.2(b),
making it most probable a result of the particular initialization procedure
used.
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8.4 Summary

A real-valued multi-sinewave model has been proposed and the per-
formance of a novel method has been discussed. The four-parameter
sinewave fit of [S1057,S1241] has been generalized to a multi-sinewave fit
using 3p + 1 parameters. Its performance has been studied by numerical
evaluations. The initialization of the algorithm has been briefly discussed
and its influence on the performance of the proposed algorithm has been
somewhat illustrated.



124 8 Toward a Standardized Multiple-Sinewave Fit Algorithm

−20 −10 0 10 20 30 40 50 60 70

−120

−100

−80

−60

−40

−20

0

SNR1(dB)

1
0

lo
g
1
0
(M

S
E

ℓ
)

(a) – Eight tones with amplitudes αℓ = 1 for all ℓ.
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(b) – Three tones with amplitudes αℓ ∈ {1, 10−1/4, 10−1/2}.

Figure 8.1: MSE of the algorithm when estimating the frequencies. The
number of data samples is N = 128. Initialization is performed using
the periodogram method. The individual empiric MSEℓ (solid line) as a
function of the SNR1 = α1/(2σ2). The asymptotic CRB corresponding
to SNR1 (dashed line) is given as a reference.
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(a) – Eight tones with amplitudes αℓ = 1 for all ℓ.
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(b) – Three tones with the amplitudes αℓ ∈ {1, 10−1/4, 10−1/2}.

Figure 8.2: MSE of the algorithm when estimating the frequencies. The
number of data samples is N = 128. Random initialization is performed
according to ω̂ℓ = ωℓ + u, where u is a random variable with uniform
distribution in the interval [−1/(2N), 1/(2N)]. The individual empiric
MSEℓ (solid line) as a function of the SNR1 = α1/(2σ2). The asymptotic
CRB corresponding to SNR1 (dashed line) is given as a reference.
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