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Abstract

The aim of source coding is to represent information as accurately as possible us-
ing as few bits as possible and in order to do so redundancy from the source needs
to be removed. The aim of channel coding is in some sense the contrary, namely
to introduce redundancy that can be exploited to protect the information when be-
ing transmitted over a nonideal channel. Combining these two techniques leads
to the area of joint source–channel coding which in general makes it possible to
achieve a better performance when designing a communication system than in the
case when source and channel codes are designed separately. In this thesis four
particular areas in joint source–channel coding are studied: analog (i.e. continu-
ous) bandwidth expansion, distributed source coding over noisy channels, multiple
description coding (MDC) and soft decoding.

A general analog bandwidth expansion code based on orthogonal polynomi-
als is proposed and analyzed. The code has a performance comparable with other
existing schemes. However, the code is more general in the sense that it is imple-
mentable for a larger number of source distributions.

The problem of distributed source coding over noisy channels is studied. Two
schemes are proposed and analyzed for this problem which both work on a sample
by sample basis. The first code is based on scalar quantization optimized for a
certain channel characteristics. The second code is nonlinear and analog.

Two new MDC schemes are proposed and investigated. The first is based on
sorting a frame of samples and transmitting, as side-information/redundancy, an
index that describes the resulting permutation. In case that some of the transmit-
ted descriptors are lost during transmission this side information (if received) can
be used to estimate the lost descriptors based on the received ones. The second
scheme uses permutation codes to produce different descriptions of a block of
source data. These descriptions can be used jointly to estimate the original source
data. Finally, also the MDC method multiple description coding using pairwise
correlating transforms as introduced by Wang et al. is studied. A modification of
the quantization in this method is proposed which yields a performance gain.

A well known result in joint source–channel coding is that the performance of
a communication system can be improved by using soft decoding of the channel
output at the cost of a higher decoding complexity. An alternative to this is to
quantize the soft information and store the pre-calculated soft decision values in a
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lookup table. In this thesis we propose new methods for quantizing soft channel
information, to be used in conjunction with soft-decision source decoding. The
issue on how to best construct finite-bandwidth representations of soft information
is also studied.

Keywords: source coding, channel coding, joint source–channel coding, band-
width expansion, distributed source coding, multiple description coding, soft de-
coding.
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Introduction

In daily life most people in the world uses applications resulting from what today
is known as the areas of source coding and channel coding. These applications
may for instance be compact discs (CDs), mobile phones, MP3 players, digital
versatile discs (DVDs), digital television, voice over IP (VoIP), videostreaming
etc. This has further lead to a great interest in the area of joint source–channel
coding, which in general makes it possible to improve the performance of source
and channel coding by designing these basic building blocks jointly instead of
treating them as separate units. Source and channel coding is of interest when for
instance dealing with transmission of information, i.e. data. A basic block diagram
of this is illustrated in Figure 1. Here Xn = (X1, X2, · · · , Xn) is a sequence
of source data, originating for instance from sampling a continuous signal, and
information about this sequence is to be transmitted over a channel. In order to
do so the information in Xn needs to be described such that it can be transmitted
over the channel. We also want the receiver to be able to decode the received
information and produce the estimate X̂n = (X̂1, X̂2, · · · , X̂n) of the original
data. The task of the encoder is to produce a representation of Xn and the task of
the decoder is to produce the estimate X̂n based on what was received from the
channel. In source–channel coding one is in interested in how to design encoders
as well as decoders.PSfrag replacements

Xn X̂n

Encoder DecoderChannel

Figure 1: Basic block diagram of data transmission.

This thesis focuses on the area of joint source–channel coding and is based
on the publications [2–12]. An introduction to the topic is provided and seven of
the produced papers are included (papers A-G). The organization is as follows:



2 INTRODUCTION

Part I contains an introduction where Section 1 explains the basics of source cod-
ing. Section 2 discusses channel coding which leads to Section 3 where the use of
joint source–channel coding is motivated. In Section 4 one particular area of joint
source–channel coding is discussed, namely analog bandwidth expansion which is
also the topic of Paper A. The basics of distributed source coding is briefly summa-
rized in Section 5 and Papers B–C deal with distributed source coding over noisy
channels. Another example of joint source–channel coding is multiple description
coding which is introduced in Section 6 and further developed in Papers D, E and
F. Section 7 and Paper G consider source coding for noisy channels. In Section 8
the main contributions of Papers A–G will be summarized and finally, Part II of
this thesis contains Papers A–G.

1 Source Coding

When dealing with transmission or storage of information this information gener-
ally needs to be represented using a discrete value. Source coding deals with how
to represent this information as accurately as possible using as few bits as possi-
ble, casually speaking “compression.” The topic can be divided into two cases:
lossless coding, which requires the source coded version of the source data to be
sufficient for reproducing an identical version of the original data. When dealing
with lossy coding this is no longer required and the aim here is rather to reconstruct
an approximated version of the original data which is as good as possible.

How to define “good” is not a trivial question. In source coding this is solved
by introducing some structured way of measuring quality. This measure is called
distortion and can be defined in many ways depending on the context. See for
instance [13] for a number of distortion measures applied to gray scale image
coding. However, when dealing with the more theoretical aspects of source coding
it is well-established practice to use the mean squared error (MSE) as a distortion
measure. The dominance of the MSE distortion measure is more likely to arise
from the fact that the MSE in many analytical situations can lead to nice and closed
form expressions rather than its ability to accurately model the absolute truth about
whether an approximation is good or bad. However, in many applications the MSE
is a fairly good model for measuring quality and we will in this entire thesis use
MSE as a distortion measure. Assuming the vector Xn contains the n source data
values {Xi}ni=1 and the vector X̂n contains the n reconstructed values {X̂i}ni=1,
the MSE is defined as

DMSE = E

[

1

n

n
∑

i=1

(Xi − X̂i)
2

]

. (1)
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1.1 Lossless Coding
Assume Xn, where the Xi’s now are discrete values, in Figure 1 describes for
example credit card numbers which are to be transmitted to some receiver. In
this case it is crucial that the received information is sufficient to extract the exact
original data since an approximated value of a credit card number will not be very
useful. This is hence a scenario where it is important that no information is lost
when performing source coding which requires lossless coding.

It seems reasonable that there should exist some kind of lower bound on how
much the information in Xn can be compressed in the encoder. This bound does
indeed exist and can be found by studying the entropy rate of the process that pro-
duces the random vector Xn. Let X be a discrete random variable with alphabet
AX and probability mass function p(x) = Pr{X = x}, x ∈ AX . The entropy
H(X) of X is defined as

H(X) = −
∑

x∈AX

p(x) log2 p(x). (2)

H(X) is mainly interesting when studying independent identically distributed
(i.i.d.) variables. When looking at non–i.i.d. stationary processes the order-n en-
tropy

Hn(Xn) = − 1

n

∑

xn∈An
X

p(xn) log2 p(xn) (3)

and the entropy rate
H∞(X) = lim

n→∞
Hn(Xn) (4)

are of greater interest. Note that all these definitions measures entropy in bits
which is not always the case, see e.g. [14]. It turns out that the minimum expected
codeword length, Ln, per coded symbol Xi, when coding blocks of length n,
satisfies

Hn(Xn) ≤ Ln < Hn(Xn) +
1

n
(5)

meaning that by increasing n, Ln can get arbitrary close to the entropy rate of a
random stationary process. It can be shown that Hn+1(X

n+1) ≤ Hn(Xn) ∀n and
hence, the entropy rate provides a lower bound on the average length of a uniquely
decodable code. For the case of non–stationary processes the reader is referred
to [15].

There are a number of coding schemes for performing lossless coding; Huff-
man coding, Shannon coding, Arithmetic coding and Ziv-Lempel coding are some
of the most well known methods [14].

1.2 Lossy Coding
As previously stated when dealing with lossy coding we no longer have the re-
quirement of reconstructing an identical copy of the original data Xn. Consider
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for example the situation when we want to measure the height of a person; the
exact length will be a real value meaning that there will be an infinite number of
possible outcomes of the measurement. We therefore need to restrict the outcomes
somehow, we could for instance assume that the person is taller than 0.5m and
no taller than 2.5m. If we also assume that we do not need to measure the length
more accurately than in centimeters the measurement can result in 200 possible
outcomes which will approximate the exact length of the person. Approximations
like this is done in source coding in order to represent (sampled) continuous sig-
nals like sound, video etc. These approximations are referred to as quantization.
Furthermore, from (2) it seems intuitive that the smaller the number of possible
outcomes, i.e. the courser the measurement, the fewer bits are required to repre-
sent the measured data. Hence, there exists a fundamental tradeoff between the
quality of the data (distortion) and the number of bits required per measurement
(rate).

Scalar/Vector Quantization

Two fundamental tools in lossy coding are scalar and vector quantization. A scalar
quantizer is a noninvertible mapping, Q, of the real line, R, onto a finite set of
points, C = {ci}i∈I , where ci ∈ R and I is a finite set of indices,

Q : R→ C. (6)

The values in C constitute the codebook forQ. Assuming |I| gives the cardinality
of I the quantizer divides the real line into |I| regions Vi (some of them may
however be empty). These regions are called quantization cells and are defined as

Vi = {x ∈ R : Q(x) = ci}. (7)

We think of i as the product of the encoder and ci as the product of the decoder

PSfrag replacements

X

X̂
i ci

X Encoder Decoder

Figure 2: Illustration of an encoder and a decoder.

as shown in Figure 2. Vector quantization is a straightforward generalization of
scalar quantization to higher dimensions:

Q : R
n → C. (8)

with the modification that cn
i ∈ R

n. The quantization cells are defined as

Vi = {xn ∈ R
n : Q(xn) = cn

i }. (9)
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Vector quantization is in some sense the “ultimate” way to quantize a signal vector.
No other coding technique exists that can do better than vector quantization for a
given number of dimensions and a given rate. Unfortunately the computational
complexity of vector quantizers grows exponentially with the dimension making
it infeasible to use unstructured vector quantizers for high dimensions, see e.g.
[16, 17] for more details on this topic.

Finally we also mention the term Voronoi region: if MSE is used as a distortion
measure the scalar/vector quantizer will simply quantize the value xn to the closest
possible cn

i . In this case the quantization cells Vi are called Voronoi regions.

Rate/Distortion

As previously stated there seems to be a tradeoff between rate, R, and distortion,
D, when performing lossy source coding. To study this we define the encoder as a
mapping f such that

f : Xn → {1, 2, · · · , 2nR} (10)

and the decoder g
g : {1, 2, · · · , 2nR} → Xn. (11)

For a pair of f and g we get the distortion as

D = E
[ 1

n
d(Xn, g(f(Xn)))

]

(12)

where d(Xn, X̂n) defines the distortion between Xn and X̂n (the special case of
MSE was introduced in (1)). A rate distortion pair (R,D) is achievable if there
exist f and g such that

lim
n→∞

E
[ 1

n
d(Xn, g(f(Xn)))

]

≤ D. (13)

0 0.5 1 1.5
0

1

2

3

PSfrag replacements

D

R
(D

)

Figure 3: The rate distortion function for zero mean unit variance i.i.d. Gaussian
source data.
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Furthermore, the rate distortion region is defined by the closure of all achievable
rate distortion pairs. Also, the rate distortion function R(D) is given by the in-
fimum of all rates R that achieve the distortion D. For a stationary and ergodic
process it can be proved that [14]

R(D) = lim
n→∞

1

n
inf

f(X̂n|Xn):E[ 1
n

d(Xn,X̂n)]≤D

I(Xn; X̂n). (14)

This can be seen as a constrained optimization problem: find the f(X̂n|Xn) that
minimizes mutual information I(Xn; X̂n) under the constraint that the distortion
is less or equal to D. In Figure 3 the rate distortion function is shown for the well
known case of zero mean unit variance i.i.d. Gaussian source data. The fundamen-
tal tradeoff between rate and distortion is clearly visible.

Permutation Coding

One special kind of lossy coding, which is used in Paper B of this thesis, is per-
mutation coding which will be explained in this section. Permutation coding was
introduced by Slepian [18] and Dunn [19] and further developed by Berger [20]
which also is a good introduction to the subject. We will here focus on “Variant I”
minimum mean-squared error permutation codes. There is also “Variant II” codes

−3 −2 −1 0 1 2 3

−3 −2 −1 0 1 2 3

PSfrag replacements

ξj

ξj

ξ1 ξ2 ξ3

ξ51

n = 3

n = 101

Figure 4: The magnitude of the samples in two random vectors containing zero
mean Gaussian source data are shown. In the upper plot the dimen-
sion is 3 and the lower the dimension is 101.
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10−3 10−2 10−1 100
0

1

2

3

4
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Figure 5: Performance of permutation codes (dashed line), entropy coded quan-
tization (dash–dotted line) and rate distortion function (solid line) for
unit variance i.i.d. Gaussian data. The permutation code has dimen-
sion n = 800.

but the theory of these is similar to the theory of “Variant I” codes and is therefore
not considered.

Permutation coding is an elegant way to perform lossy coding with low com-
plexity. Consider the case when we want to code a sequence of real valued random
variables {Xi}∞i=1. With permutation coding this sequence can be vector quantized
in a simple fashion such that the block Xn = (X1, X2, · · · , Xn) is quantized to
an index I ∈ {1, . . . ,M}. To explain the basic idea consider Figure 4 where an
experiment where two random vectors Xn have been generated containing zero
mean i.i.d. Gaussian source data. The magnitude of the different samples are plot-
ted on the x–axis. The first vector has dimension 3 and the second has dimension
101. Furthermore, define ξj , j = 1, · · · , n, to be the jth smallest component of
Xn and then consider the “mid sample,” ξ2 in the first plot and ξ51 in the second.
If we imagine that we would repeat the experiment by generating new vectors it
is clear that ξ51 from this second experiment is likely to be close to ξ51 from the
first experiment. This is also true for the the first plot when studying ξ2 but we can
expect a larger spread for this case. A similar behavior will also be obtained for all
the other ξj’s.

Permutation coding uses this fact, namely that knowing the order of the sam-
ples in Xn can be used to estimate the value of each sample. Therefore, the order
of the samples is described by the encoder. One of the main advantages of the
method is its low complexity, O(n log n) from sorting the samples, which makes
it possible to perform vector quantization in high dimensions. In [21] it shown
that permutation codes are equivalent to entropy coded scalar quantization in the
sense that their rate versus distortion relation are identical when n → ∞. Al-
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though this result only holds when n → ∞ the performance tends to be almost
identical as long as intermediate rates are being used for high, but finite, n’s. For
high rates this is no longer true. Typically there exists some level for the rate when
increasing the rate no longer improves the performance. This saturation level de-
pends on the size of n and increasing n moves the saturation level to a higher R,
see [20]. This is illustrated in Figure 5 where the performance is shown of permu-
tation codes (dashed line), entropy coded quantization (dash–dotted line) as well
as the rate distortion function (solid line) for unit variance Gaussian data. For the
permutation code n = 800 was used and the saturation effect starts to becomes
visible around R = 3.5 bits/sample. In [22] it is shown that, somewhat contrary
to intuition, there exist permutation codes with finite n’s possessing an even better
performance than when n→∞ and hence also entropy coded scalar quantization.
This effect does however depend on the source distribution.

When encoding and decoding in permutation coding there will exist one code-
word, for instance corresponding to the first index, of the form

cn
1 = (

←n1→
µ1, · · · , µ1,

←n2→
µ2, · · · , µ2, · · · ,

←nK→
µK , · · · , µK) (15)

where µi satisfies µ1 ≤ µ2 ≤ · · · ≤ µK and the ni’s are positive integers satisfy-
ing n1 + n2 + · · ·+ nK = n. All other codewords cn

2 , cn
3 , · · · , cn

M are constructed
by creating all possible permutations of cn

1 meaning that there in total will be

M =
n!

∏K
i=1 ni!

(16)

different codewords. If the components of Xn are i.i.d. all of these permutations
are equally likely meaning that the entropy of the permutation index I will equal
log2 M . It is a fairly straightforward task to map each of these permutations to
a binary number corresponding to a Huffman code. Hence, the rate per coded
symbol, Xi, is given from

R &
1

n
log2 M (17)

where “&” means “close to from above”. Also, it turns out that the optimal encod-
ing procedure, for a given set {(ni, µi)}Ki=1, is to replace the n1 smallest compo-
nents of Xn by µ1, the next n2 smallest components by µ2 and so on. This further
means that ordering the components of Xn also will decide the outcome of the
vector quantization. This is an appealing property since sorting can be done with
O(n log n) complexity which is low enough for implementing permutation vector
quantization in very high dimensions.

Now define Si = n1 + n2 + · · · + ni and S0 = 0 and assume the ni’s to be
fixed. The optimal choice of µi, for the MSE case, is then given from

µi =
1

ni

Si
∑

j=Si−1+1

E[ξj ] (18)
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which can be used to design the different µi’s. Hence, the expected average of the
n1 smallest ξj’s creates µ1 etc. When designing the ni’s we instead assume the
µi’s to be fixed. Defining

pi =
ni

n
(19)

gives an approximation of the rate as

R ≈ −
K

∑

i=1

pi log2 pi. (20)

Using this as a constraint when minimizing the expected distortion results in a
constrained optimization problem giving the optimal choice of pi as

pi =
2−βµ2

i

∑K
j=1 2−βµ2

j

(21)

where β is chosen such that (20) is valid. However, pi will be a real value and ni

is required to be an integer meaning that we from (21) need to create an approx-
imate optimal value of ni. With these equations we can optimize (18) and (21)
in an iterative fashion eventually converging in some solution for the parameters
{µi, ni}Ki=1. K is found by trying out this iteration procedure for different K’s
(many of them can be ruled out) and the best K, i.e. the K producing the best
distortion, is chosen. For a more detailed description of this procedure see [20].

2 Channel Coding
When performing source coding one aims to remove all redundancy in the source
data, for channel coding the opposite is done; redundancy is introduced into the
data in order to protect the data against channel errors. These channel errors can for
instance be continuous valued, considered in Papers A–C, packet losses, consid-
ered in Papers D–F, or bit errors considered in Paper G. In Figure 6 the nonideality
of the channel is modelled as discrete memoryless disturbance, p(j|i), when trans-
mitting the index i and receiving index j. Note that j is not necessarily equal to i.
Channel coding tries to protect the system against these kinds of imperfections.

PSfrag replacements
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Figure 6: Model of transmission over a channel.

There exist theoretical formulas for how much information that, in theory, can
be transmitted over a channel with certain statistics. This value is called capacity



10 INTRODUCTION

and tells us the maximum number of bits per channel use that can be transmitted
over the channel such that an arbitrary low error probability can be achieved. It
should be noted that the capacity is an supremum which it not necessarily achiev-
able itself, this will depend on the channel statistics. For stationary and memory-
less channels the capacity is

C = max
p(x)

I(X;Y ) (22)

which is the well known formula for capacity originating from Shannon’s ground-
breaking paper [1]. X and Y are not required to be discrete in this formula but
generally when dealing with continuous alphabets a constraint on p(x) in (22) is
introduced such that the power is restricted, i.e. p(x) : E[X2] ≤ P . Furthermore,
if the channel has memory Dobrushin [23] derived the capacity for “information
stable channels” (see e.g. [24] for explanation) and Verdú and Han [25] showed a
general formula valid for any channel.

3 The Source–Channel Separation Theorem
It is now time to combine the results from the discrete source coding theorem, (5),
and the channel capacity theorem, (22). The discrete source coding theorem states
that the data Xn can be compressed to use arbitrarily close to H∞(X) bits per
coded source symbol and the channel capacity theorem states that arbitrarily close
to C bits per channel use can be reliably transmitted over a given channel. Know-
ing these separate results the question about how to design the encoder/decoder
in a system which needs to do both source and channel coding, as in Figure 6,
arises. Since the discrete source coding theorem only depends on the statistical
properties of the source and the channel coding theorem only depends on the sta-
tistical properties of the channel one might expect that a separate design of source
and channel codes is as good as any other method. It turns out that for stationary
and ergodic sources a source–channel code exist when H∞(X) < C such that
the error probability during transmission can be made arbitrary small. The con-
verse, H∞(X) > C, implies that the error probability is bounded away from zero
and it is not possible to achieve arbitrary small error probability. The case when
H∞(X) = C is left unsolved and will depend on the source statistics as well as
the channel properties.

For nonstationary sources the source–channel separation coding theorem takes
an other shape and we need to use concepts like “strictly dominating” and “domi-
nation.” This was introduced and explained in [24, 26].

Based on these theoretical results it may appear as if source and channel codes
could be designed separately. However, this is only true under the assumptions
valid when deriving the results in (5) and (22). One of these assumptions is the
use of infinitely long codes, i.e. n → ∞. In practice this is not feasible, espe-
cially when dealing with real time applications like video streaming or VoIP. This
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motivates the study of joint source–channel coding since for finite n’s it will be
possible to design better source–channel codes jointly than done separately. This
subject is the main focus in this thesis.

4 Analog Source–Channel Coding
The topic of analog source–channel coding deals with the problem illustrated in
Figure 7 where k source samples are transmitted by using n orthogonal channels.
The encoder maps a vector of source symbols xk ∈ R

k to a vector yn ∈ R
n which

is transmitted over the channel. Hence,

f : R
k → R

n (23)

where a power constraint
E

[

‖Y n‖2
]

≤ nP (24)

is invoked on the encoder. As can be seen from the figure the channel adds con-
tinuous valued noise on the transmitted values and rn ∈ R

n is received by the
decoder. The decoder estimates xk as

g : R
n → R

k (25)

and the objective is to minimize the expected distortion.
When both the source and the noise is i.i.d. zero-mean Gaussian, the distortion

is measured in MSE and k = n, it is well known that linear encoding is optimal,
i.e. f(xk) =

√

(P/σ2
x)xk, under the assumption that the decoder knows the source

and noise variances, see e.g. [27]. However, we will focus on the case when k 6= n
and then linear encoding is, in general, not optimal. The challenge is to design en-
coders and decoders yielding the highest possible performance given some certain
source and channel statistics. For the case when k < n this problem is referred to
as bandwidth expansion and for the opposite case, i.e. k > n, it is referred to as
bandwidth compression.

The common solution for bandwidth expansion/compression is digital and is
implemented by producing separate source and channel codes. In practice, this isPSfrag replacements
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g
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k

Figure 7: Bandwidth expansion (k < n) and compression (k > n).
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generally done by quantizing the source followed by digital channel coding and
transmission. Due to powerful source and channel coding techniques the perfor-
mance of such systems can be very high when the channel quality is close to what
the system has been designed for. There are, however, some disadvantages with
the digital approach. In order to get a high performance long block lengths are
required both for the source and channel code. This will therefore introduce de-
lays into the system which may be undesirable, especially for a real time system.
There is also a threshold effect associated with a digital system: if the channel
quality goes below a certain level the channel code will break down and the sys-
tem performance will deteriorate rapidly. On the other hand, if the channel quality
is increased above this level the performance will not increase but rather reach a
constant level which is due to the nonrepairable errors introduced by the quantizer.

In recent years analog, or at least partially analog, systems as an alternative to
digital systems have received increased attention, see e.g. [28] and the references
therein. Analog systems do, in general, not have the same disadvantages as digital
systems. Hence, in some scenarios an analog approach may be more suitable than
a digital one. On the other hand, in practice, the performance of a digital system
is in general higher than for an analog system when being used for the channel
quality that it has been designed for.

4.1 Analog Bandwidth Expansion
Analog bandwidth expansion was briefly discussed already in one of Shannon’s
early papers [29]. One of the reasons that linear encoding is suboptimal when
k < n is that a linear encoding function f(xk) uses only a k–dimensional subspace
of the channel space. More efficient mappings would use a higher number of the
available channel space dimensions. An example of this is illustrated in Figure 8
for k = 1 and n = 2. By using nonlinear encoding functions, illustrated by the
solid ’S-shaped’ curve f(x), we are able to better fill the channel space than when
using linear encoding functions, represented by the dashed curve. A longer curve
essentially means a higher resolution when estimating x as long as we decode
to the right fold of the curve, illustrated by sample x1 in the figure. However,
decreasing the SNR will at some point result in that different folds of the curve will
lie too close to each other and the decoder will start making large decoding errors,
illustrated by sample x2 in the figure. Decreasing the SNR below this threshold
will therefore significantly deteriorate the performance. We refer to these errors as
’small’ and ’large’ decoding errors. Increasing the SNR, on the other hand, will
always improve the performance since the magnitude of the small decoding errors
will decrease. This is one of the main advantages of analog systems compared to
digital systems since the performance of a digital system will approach a saturation
level when the SNR grows large.

The problem of designing analog source–channel codes is therefore a problem
of finding nonlinear curves such that points far separated in the source space are
also far separated in the channel space. Hence, we would like to ’stretch’ the
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curve as much as possible under the power constraint at the same time as we keep
different folds of the curve separated enough for a given channel noise level.

Important publications on bandwidth expansion are [30, 31] where the perfor-
mance of analog bandwidth expansion source–channel codes is analyzed for high
SNR’s. Furthermore, although linear expansions in general are suboptimal they
are easy to analyze and optimize and this is done in [32]. Some ideas on how con-
struct nonlinear codes are presented in e.g. [8, 33, 34] and more explicit codes are
presented in [9, 12, 35–37]/Paper A.

4.2 Analog Bandwidth Compression

Analog bandwidth compression was studied in for instance [38, 39] where a few
explicit codes were developed and analyzed. In particular, it was concluded that
for a Gaussian source and an AWGN channel the Archimedes’ spiral, illustrated in
Figure 9, is appropriate for 2 : 1 compression for a large range of SNR’s. In order
to perform the compression the encoder maps a point (x1, x2) to the closest point
on the spiral, i.e.

f(x1, x2) = α arg min
x

[

(x1 − β1(x))2 + (x2 − β2(x))2
]

(26)

where the spiral is described by (β1(x), β2(x)). α will control the output power
and f(x1, x2) is transmitted over the channel. Based on the received value r =
f(x1, x2) + w the decoder estimates (x1, x2).

Another paper on the topic is [40] where bandwidth compression is studied for
the relay channel.
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5 Distributed Source Coding
Distributed source coding is an important extension to the traditional point to point
source coding discussed in Section 1. The main message in this topic is that in a
situation with one decoder but many encoders, where each of them observes some
random variable, there is a gain in performing distributed source coding if the
random variables are correlated. This gain can be obtained even if the encoders do
not communicate with each other. Good introductions to the topic are for instance
[41, 42] and the references therein.

Correlated source data seems like a reasonable assumption in for instance wire-
less sensor networks where a high spatial density of sensor nodes potentially leads
to correlation between different sensor measurements. Given that the sensors run
on batteries it would be desirable to lower the amount of transmitted data since
that could prolong the battery life time. In many applications also lowering the
required bandwidth for a sensor network may be of interest. These observations,
together with the increasing interest in wireless sensor networks, have fueled the
research of distributed source coding in recent years. Another interesting applica-
tion for distributed source coding has shown to be video coding, see e.g. [43] and
the references therein.

5.1 Theoretical Results
The Slepian–Wolf Problem

One of the fundamental results for distributed source coding is the Slepian–Wolf
theorem, published in [44] by Slepian and Wolf. We will briefly summarize and
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Figure 10: (a) One encoder and two sources. (b) Two encoders and two sources.

discuss this theorem.
Consider the situation in Figure 10(a): Two discrete i.i.d. random variables,

X1 and X2, are to be encoded by an encoder using rate R as

f : Xn
1 ×Xn

2 → {1, 2, · · · , 2nR} (27)

and a decoder

g : {1, 2, · · · , 2nR} → Xn
1 ×Xn

2 (28)

needs to reconstruct the encoded data such that X̂n
1 = Xn

1 and X̂n
2 = Xn

2 is
ensured with arbitrary small error probability. This situation is essentially the same
as the point to point source coding problem as discussed in Section 1 and we
conclude that a rate R arbitrary close to H(X1, X2) can be used, hence R =
H(X1, X2).

Now consider instead Figure 10(b). Again, two discrete i.i.d. random variables,
X1 and X2, are to be encoded but this time we use two separate encoders that do
not communicate with each other, hence

f1 : Xn
1 → {1, 2, · · · , 2nR1}, (29)

f2 : Xn
2 → {1, 2, · · · , 2nR2}. (30)

For the decoder we have

g : {1, 2, · · · , 2nR1} × {1, 2, · · · , 2nR2} → Xn
1 ×Xn

2 (31)
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and we also here need to reconstruct the encoded data such that X̂n
1 = Xn

1 and
X̂n

2 = Xn
2 with arbitrary small error probability. According to the Slepian–Wolf

theorem [44] the rate region illustrated in Figure 11 and described by

R1 ≥ H(X1|X2)

R2 ≥ H(X2|X1)

R1 + R2 ≥ H(X1, X2) (32)

is achievable. This result is somewhat nonintuitive since it means that the sum
rate R = R1 + R2 = H(X1, X2) is achievable also for this second situation.
Hence, in terms of sum rate, there is no loss in using separate encoders compared
to joint encoders. Therefore, in situations where we have separate encoders and
correlated source data there is a gain in considering distributed source coding since
H(X1, X2) < H(X1) + H(X2).

Example of Slepian–Wolf Coding

In Figure 12 we give a simple example of Slepian–Wolf coding. Let us assume that
we have a random source (X1, X2) with 16 possible outcomes, these outcomes
are marked with circles in Figure 12 and they are all equally likely. Given that
we need to encode these outcomes using the structure from Figure 10(a), hence
encode X1 and X2 jointly, we would simply label the 16 possible outcomes with
indexes 0, 1, · · · , 15 which would require 4 bits. If we instead use the structure
from Figure 10(b), hence encode X1 and X2 separately, one way to encode the
variables would be to entropy code them using R1 = H(X1) and R2 = H(X2).
This would however result in a higher sum rate than in the previous case. A more
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sophisticated way would be to use the index labelling f1(x1), shown in the figure,
when encoding X1 and the labelling f2(x2) when encoding X2. Hence, as can
be seen we are labelling X1 with indexes 0, 1, 2, 3 which will require 2 bits and
the same is done for X2. In total there will be 4 · 4 = 16 possible outputs for
(f1(x1), f2(x2)) and all of them will be uniquely decodable. Therefore, we will in
total require R1 + R2 = 4 bits, just as in the first case when we did the encoding
jointly.

The Wyner–Ziv Problem

The Slepian–Wolf theorem considers lossless source coding of discrete sources.
In [45] Wyner and Ziv made a continuation on this result by considering lossy
source coding with side information at the decoder as illustrated by Figure 13. It
was shown that for a discrete stationary and ergodic source Xn with continuous
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stationary and ergodic side information Y n the lowest achievable rate satisfies

R(D) = lim
n→∞

inf
f(Zn|Xn):E[ 1

n
d(Xn,g(Y n,Zn))]<D

I(Xn;Zn)− I(Y n;Zn) (33)

for a given distortion D. This result was later also developed to the case of continu-
ous sources Xn in [46]. Unlike Slepian–Wolf coding a rate loss is usually suffered
when comparing Wyner–Ziv coding to the case when the side information is avail-
able to both the encoder and the decoder. One important exception to this is when
Xn and Y n are jointly Gaussian and MSE is used as a distortion measure. Here,
the achievable rates are the same no matter if the side information is available to
the encoder or not. Given that the covariance matrix, for this case, is

(

σ2
X ρσXσY

ρσXσY σ2
Y

)

the Wyner–Ziv rate distortion function is

R(D) = RX|Y (D) =
1

2
log+

[

σ2
X(1− ρ2)

D

]

(34)

where log+ x = max(log x, 0).

5.2 Practical Schemes
Ideas on how to perform practical Slepian–Wolf coding are presented in [47, 48],
allowing the use of powerful channel codes such as LDPC and Turbo codes in the
context of distributed source coding, see e.g. [49, 50]. For the case with continuous
sources, i.e. lossy coding, relevant references include [51, 52]. In general, all these
methods require the use of long codes.

Alternative approaches are found in [53–58] where the distributed source cod-
ing problem is interpreted as a quantization problem. For wireless sensor networks
it is also relevant to include noideal channels into the problem which is studied in
for instance [59]. Practical schemes for this problem includes [6, 7, 10, 60, 61].
In [60] distributed detection over non-ideal channels is studied and in [61] quanti-
zation of correlated sources in a packet network is studied, resulting in a general
problem including multiple description coding, see Section 6, as well as distributed
source coding as special cases. [6, 7, 10]/Paper B designs and evaluates scalar
quantizers for continuous channels.

Yet another approach for the distributed source coding problem with nonideal
channels is to consider analog source–channel codes. This is studied in for in-
stance [62, 63] where linear source–channel codes are proposed and analyzed.
The linear approach is however suboptimal for the case with orthogonal channels,
see e.g. [59] and compare to [64, 65] for the nonorthogonal case, and motivated by
this [12]/Paper C proposes and analyzes an analog nonlinear approach.
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6 Multiple Description Coding
In multiple description coding (MDC) the total available rate for transmitting
source data is split between a number of different channels. Each of these channels
may be subject to failure, meaning that some of the transmitted data may be lost.
The aim of MDC is then to reconstruct an approximated version of the source data
even when only a subset of the used channels is in working state. The problem is
illustrated in Figure 14 for two channels. Here f1 and f2 are the encoders used for
channels 1 and 2 respectively and defined as

fk : Xn → {1, 2, · · · , 2nRk} ∀k ∈ {1, 2}. (35)

Hence, the encoders will use R1 and R2 of the total available rate R = R1 + R2.
There will exist three decoders: g1 and g2 used when only the information from
one channel is received and g0 used when the information from both channels are
received, i.e. both channels are in working state. The decoders are defined as

gk : {1, 2, · · · , 2nRk} → Xn ∀k ∈ {1, 2} (36)

g0 : {1, 2, · · · , 2nR1} × {1, 2, · · · , 2nR2} → Xn. (37)

For the different decoders we define distortions as

Dk = E
[ 1

n
d(Xn, X̂n

k )
]

∀k ∈ {0, 1, 2}. (38)

We call D0 the cental distortion and D1 and D2 side distortions.
As an example of MDC, consider the case when X is i.i.d. binary distributed

taking values 0 and 1 with probability 1/2. Also assume the Hamming distance is
used as a distortion measure, i.e. d(1, 1) = d(0, 0) = 0 and d(0, 1) = d(1, 0) = 1.
Suppose that D0 = 0 is required, R1 = R2 = 0.5 bits per symbol and the aim is
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to minimize D1 = D2 = D. One intuitive approach would be to transmit half of
the bits on one channel and the other half on the other channel. This would then
give D = 0.25 (achieved by simply guessing the value of the lost bits). However,
in [66] it is shown that one can do better and it is in fact, somewhat surprisingly,
possible to achieve D = (

√
2− 1)/2 ≈ 0.207.

The MDC literature is vast, theoretical results as well as practical schemes are
presented in the sections below.

6.1 Theoretical Results
One of the first results in MDC was El Gamal and Cover’s region of
achievable quintuples (R1, R2, D0, D1, D2) [67]. This result states that
(R1, R2, D0, D1, D2) is achievable if there exist random variables X̂0, X̂1, X̂2

jointly distributed with sample X from an i.i.d. source such that

R1 > I(X; X̂1), (39)

R2 > I(X; X̂2), (40)

R1 + R2 > I(X; X̂0, X̂1, X̂2) + I(X̂1; X̂2), (41)

Dk ≤ E
[

d(X, X̂k)
]

∀k ∈ {0, 1, 2}. (42)

Ozarow [68] showed this bound to be tight for the case of Gaussian sources with
variance σ2

X (although Ozarow uses σ2
X = 1 in his paper) and also derived closed

form expressions for the achievable quintuples which satisfy

D1 ≥ σ2
Xe−2R1 (43)

D2 ≥ σ2
Xe−2R2 (44)

D0 ≥
{

σ2
Xe−2(R1+R2) 1

1−(
√

Π−
√

∆)2
if Π ≥ ∆

σ2
Xe−2(R1+R2) otherwise

(45)

where

Π = (1−D1/σ
2
X)(1−D2/σ

2
X) (46)

∆ = D1D2/σ
4
X − e−2(R1+R2). (47)

Studying these equations by setting R1 = R2 we see that there will be a tradeoff
between the performance D1, D2 versus the performance D0. Decreasing D1 and
D2 means that we need to increase D0 and vice versa (can for instance bee seen in
Figure 4 of Paper E where D1 = D2).

Ahlswede [69] showed that the El Gamal–Cover region is tight for the “no
excess rate for the joint description” meaning the case when the best possible D0

is achieved according to R1 + R2 = R(D0), where R(D) is the rate distortion
formula. In [70] Zhang and Berger constructed a counterexample which shows
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that the El Gamal–Cover region is not tight in general. The problem of finding
a bound that fully describes the achievable multiple description region for two
descriptors is still unsolved.

In [71] Zamir shows that

D∗(σ2
X , R1, R2) ⊆ DX(R1, R2) ⊆ D∗(PX , R1, R2). (48)

Here σ2
X is the variance of the source, PX = 22h(X)/2πe where h(X) is the

differential entropy of X . D∗(σ2, R1, R2) denotes the set of achievable distortions
(D0, D1, D2) when using rates R1 and R2 on a Gaussian source with variance σ2.
DX(R1, R2) denotes the set of achievable distortions (D0, D1, D2) for the source
X .

In [72] outer and inner bounds on the achievable quintuples are achieved that
relate to the El Gamal–Cover region. The multiple description problem has also
been extended the K-channel case in [73] as well as in [74, 75] where the area of
distributed source coding [76, 77] is used as a tool in MDC. Further results can be
found in [78, 79].

6.2 Practical Schemes

Also the more practical area of MDC has received considerable attention, see
e.g. [80]. Below are a few of the most well known MDC methods explained in
brief.

Multiple Description Scalar Quantizers

In [81] Vaishampayan makes the first constructive attempt at designing a practical
MDC scheme, motivated by the extensive information theory research summa-
rized in the previous section. The paper considers designing scalar quantizers, for
memoryless source data, as encoders (f1, f2) producing indices (i, j). It is impor-
tant to note that the quantization intervals of f1 and f2 can be disjoint intervals as
shown in Figure 15. This will in turn lead to the existence of a virtual encoder f0

created by the indices from f1 and f2 and an index assignment matrix, see exam-
ples in Figure 16. The index generated from f1 is mapped to a row of the index
assignment matrix and f2 is mapped to a column. Hence, when both indices are
received we know that the original source data must have been in the interval cre-
ated by the intersection of the two quantization intervals described by f1 and f2,
i.e. x ∈ {x : (f1(x) = i) ∧ (f2(x) = j)}. The virtual encoder f0 will therefore
give rise to the cental distortion D0 which is illustrated in Figure 15 where the left
index assignment matrix of Figure 16 is used.

Based on this idea the MDC system is created by optimizing the lagrangian
function

L = E[d(X, X̂0)] + λ1(E[d(X, X̂1)]−D1) + λ2(E[d(X, X̂2)]−D2). (49)
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Figure 15: Encoders f1 and f2 will together with the (left) index assignment
matrix of Figure 16 create a third virtual encoder f0.
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Figure 16: Two examples of index assignment matrices. The left matrix will
enable more protection against packet losses and hence a lower per-
formance on D0. The right matrix will on the other hand enable a
higher performance on D0.

It is shown that this optimization problem results in a procedure where (i) for a
fixed decoder, optimal encoders can be created, and (ii) for a fixed encoder, op-
timal decoders can be created. Alternating between these two optimization crite-
rions will eventually converge to a solution just as in regular vector quantization
training. By choosing low values for λ1 and λ2 the solution will converge to an
MDC scheme with high performance on D0 and low performance on D1 and D2.
Choosing high values for the λk’s will on the other hand yield a low performance
on D0 and a high performance on D1 and D2. Hence, λ1 and λ2 can be used to
design the system for different levels of error protection.

Furthermore, also the design of the index assignment matrix will impact the
tradeoff between D0, D1 and D2. In order to optimize D0 there should be no
empty cells in the matrix leading to as many quantization regions for the virtual
encoder f0 as possible. On the other hand, if we are interested in only optimizing
D1 and D2 there should only be nonempty cells along the diagonal of the in-
dex assignment matrix corresponding to transmitting the same description on both
channels. In Figure 16 two examples of index assignment matrices are shown and
since there are more nonempty cells in the right example using this matrix will
make it possible to get a better performance on D0 than if the left matrix was used.

The difficult problem on how to actually design the optimal index assignment
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matrix is not solved in the paper, instead two heuristic methods to design these
matrices are presented which are argued to have good performances.

This original idea of Vaishampayan has been investigated and improved in
many papers since it was introduced in [81]. In [82] the method is extended to
entropy–constrained MDSQ (ECMDSQ). Here, two additional terms are added
in the Lagrangian function (49), similar to what is done in entropy–constrained
quantization (see e.g. [83]), resulting in

L = E[d(X, X̂0)] + λ1(E[d(X, X̂1)]−D1) + λ2(E[d(X, X̂2)]−D2)

+λ3(H(I)−R1) + λ4(H(J)−R2) (50)

where H(I) and H(J) are the entropy of the indices i and j generated by the
encoders f1 and f2. It is shown that introducing this modification still leads to an
iterative way to optimize the system. Hence, also λ3 and λ4 can be used to control
the convergence of the solution, increasing the values of these will try to force the
solution to use a lower rate. A comparison between MDSQ and ECMDSQ can for
instance bee seen in Figure 4 of Paper B where D1 = D2.

In [84] a high–rate analysis of MDSQ and ECMDSQ is presented. Motivated
by the fact that comparing different MDC schemes is hard due to the many pa-
rameters involved (cental/side distortions, rates at the different channels) it is also
proposed that the product D0D1 for the balanced case, i.e. R1 = R2, is a good
figure of merit when measuring performance. As a special case MDSQ/ECMDSQ
are analyzed for the Gaussian case and then compared to the Ozarow bound (43-
45). This resulted in an an 8.69 dB/3.07 dB gap respectively compared to the
theoretical bound. This result was later strengthen in [85].

Some improved results on the index assignment were obtained in [86] and this
problem was also studied in [87] where an algorithm is found for designing an
index assignment matrix when more than two channels are used.

Multiple Description Lattice Vector Quantization

The idea of multiple description lattice vector quantization (MDLVQ) is intro-
duced in [88, 89]. This is in some sense an extension of the idea of MDSQ to
the vector quantization case. However, when dealing with unconstrained vector
quantization the complexity grows very quickly with the number of dimensions;
in order to reduce this complexity the vector quantization can be constrained in
some way which generally results in a decreased complexity at the cost of a sub-
optimal performance. One example of this is lattice vector quantization where all
codewords are from a lattice (or possibly a subset). This greatly simplifies the
optimal encoding procedure and a lower encoding complexity is achieved. The
high complexity of unconstrained vector quantizers implies that a pure multiple
description vector quantization (MDVQ) scheme, suggested in e.g. [90–92], may
be impractical for high dimensions and rates which motivates the use of lattice
vector quantization in the framework of MDC.
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In an n-dimensional MDLVQ two basic lattices are used: the fine lattice Λ ⊂
R

n and the coarser lattice Λ′ ⊂ R
n. Λ will constitute the codewords of the central

decoder and Λ′ will constitute the codewords of the side decoders. Furthermore, Λ′

is chosen such that it is geometrically similar to Λ meaning that Λ′ can be created
by a rotation and a scaling of Λ. In addition, no elements of Λ should lie on the
boundaries of the Voronoi regions of Λ′. An important parameter is the index

K =

∣

∣

∣

∣

Λ

Λ′

∣

∣

∣

∣

(51)

which describes how many lattice points from Λ there exist in the Voronoi regions
of Λ′ (it is assumed that K ≥ 1). The lower the value of K, the more error
protection is put into the system.

Based on these lattices an index assignment mapping function `, which is an
injection, is created as a one-to-one mapping between a lattice point in Λ and two
lattice points in Λ′ × Λ′. Hence,

Λ
1−1←→ `(Λ) ⊆ Λ′ × Λ′. (52)

The encoder will start start quantizing a given vector Xn to the closet point λ ∈ Λ.
By deriving `(λ) the resulting point is mapped to (λ1, λ2) ∈ Λ′×Λ′, i.e. two points
in the coarser lattice. It should here be noted that the order of these points are of
importance meaning that `−1(λ1, λ2) 6= `−1(λ2, λ1). Descriptions of λ1 and λ2

are then transmitted over one channel each and if both descriptions are received the
inverse mapping `−1 is used to recover λ. If only one descriptor is received λ1, or
λ2, is used as a reconstruction point. This means that the distance between λ and
the λk’s will affect the side distortion and [89] considers the design of the index
mapping for the symmetric case when producing equal side distortions from equal-
rate channels (further investigated in [93] for the asymmetric case). An asymptotic
analysis is also provided which reveals that the performance of MDLVQ can get
arbitrarily close to the asymptotic multiple description rate distortion bound [94]
when the rate and dimension approach infinity. Also [85] provides insight in the
asymptotical behavior of MDLVQ.

In [95] a simple, yet powerful, modification of the encoder is introduced which
makes it possible not only to optimize the encoding after the cental distortion
which was previously the case. This is done by instead of, as in the original idea,
minimizing

‖Xn − X̂n
0 ‖2 (53)

minimize

α‖Xn − X̂n
0 ‖2 + β(‖Xn − X̂n

1 ‖2 + ‖Xn − X̂n
2 ‖2). (54)

Choosing a large value on β will decrease the side distortion at the cost of increas-
ing the central distortion and vice versa.
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Multiple Description Using Pairwise Correlating Transforms

Multiple description coding using pairwise correlating transforms (MDCPC) was
introduced in [96–99]. The basic idea here is to create correlation between the
transmitted information. This correlation can be exploited in the case of a packet
loss on one of the channels since the received packet due to the correlation will
contain information also about the lost packet. In order to do this a piecewise
correlating transform T is used such that

[

Y1

Y2

]

= T

[

X1

X2

]

, (55)

where

T =

[

r2 cos θ2 −r2 sin θ2

−r1 cos θ1 r1 sin θ1

]

. (56)

Here r1 and r2 will control the length of the basis vectors and θ1 and θ2 will control
the direction. The transform is invertible so that

[

X1

X2

]

= T
−1

[

Y1

Y2

]

. (57)

Based on the choice of r1, r2, θ1, θ2 a controlled amount of correlation, i.e. redun-
dancy, will be introduced in Y1 and Y2 which are transmitted over the channels.
The more redundancy introduced the lower side distortion will be obtained at the
cost of an increased central distortion.

However, in their present form (55)-(57) use continuous values. In order to
make the idea implementable quantization needs to be performed at some stage
in these equations. This is solved by quantizing X1 and X2 and then finding
an approximation of the transform T which ensures that also Y1 and Y2 will be
discrete. In [2]/Paper F of this thesis we propose to change the order of this such
that the transformation is performed first and secondly Y1 and Y2 are quantized.
This results in a performance gain.

To get some intuition about the behavior of the original method some of the
theoretical results of [98, 100] are reviewed: For the case when R1 = R2 = R
and using high rate approximations it can be showed that when no redundancy is
introduced between the packets, i.e T equals the identity matrix, the performance
will behave approximately as

D∗0 =
πe

6
σ1σ22

−2R (58)

D∗s =
1

4
(σ2

1 + σ2
2) +

πe

12
σ1σ22

−2R (59)

where D∗s is the average side distortion between the two channels. Using the
transformation matrix

T =
1√
2

[

1 1
1 −1

]

(60)
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we instead get

D0 = ΓD∗0 (61)

Ds =
1

Γ2

1

4
(σ2

1 + σ2
2) + Γ

πe

12
σ1σ22

−2R (62)

where

Γ =
(σ2

1 + σ2
2)/2

σ1σ2
. (63)

Hence, the central distortion is increased (assuming σ1 > σ2) and the constant
term in the average side distortion is decreased at the same time as the exponential
term is increased. Two conclusions can be drawn; firstly MDCPC is not of interest
when the rate is very high, since Ds is bounded by a constant term. Secondly, the
method also requires unequal variances for the sources X1 and X2 since otherwise
Γ = 1. The method is however efficient in increasing robustness with a small
amount of redundancy.

The method has been further developed in [100] where it is extended for using
more than two channels. Some analytical results on the case of Gaussian source
data are presented in [101].

Multiple Description Coding Using Frames

The idea of multiple description coding using frames has obvious similarities with
ordinary block channel coding, see e.g. [102]. The idea presented in [103–106]
is to multiply an n-dimensional source vector Xn with a rectangular matrix F ∈
R

m×n of rank n and with m > n;

Y m = FXn. (64)

Y m will constitute an overcomplete representation of Xn and Xn is hence de-
scribed by m discriptors which can be transmitted over one channel each in the
ordinary MDC fashion. In the case that at least n discriptors are received Xn can
be recovered by creating the (pseudo-)inverse matrix corresponding to the received
descriptors in Y m. In the case that q < n descriptors are received the received data
will describe and (n − q)–dimensional subspace Sq such that Xn ∈ Sq . Xn can
then be reconstructed as

x̂n = E[Xn|xn ∈ Sq] (65)

if the aim is to minimize the MSE [107].
In the idea above we have not included the fact that quantization will be nec-

essary of the descriptors Y m. The basic idea is however still valid and the impact
of the quantization is analyzed in [32].



7 SOURCE CODING FOR NOISY CHANNELS 27

Other Methods

An other interesting approach was introduced in [108] where entropy–coded
dithered lattice quantizers are used. The method is shown to have a good per-
formance but it is not asymptotic optimal. This work is carried on in [109, 110]
which results in a scheme that can achieve the whole Ozarow region for the Gaus-
sian case when the dimension becomes large.

In [5]/Paper D we study the possibility to use sorting as a tool to produce MDC
and somewhat related to this we study the use of permutation codes in an MDC
scheme in [4]/Paper E.

7 Source Coding for Noisy Channels
In Section 1 we explained the basics of source coding. Here a random variable
Xn was encoded into an index i which in turn is decoded to an estimate X̂n

i of
Xn. However, when transmitting i over a nonideal channel imperfections in the
channel may lead to that we receive a value j which not necessarily equals i. This
effect needs to be taken into consideration when designing a source code that will
be transmitted over a nonideal channel. We introduce the basic concepts by an
example; consider a 2–dimensional source distributed as in Figure 17(a) where
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Figure 17: (a) Illustration if a 2–dimensional distribution and (b) the channel
p(j|i).

the source data is uniformly distributed over 3 regions. Further assume that we
need to quantize this source to an index i ∈ {1, 2, 3} which will be transmitted
over a channel p(j|i) described by Figure 17(b). In traditional source coding we
would simply aim for minimizing the distortion without invoking channel knowl-
edge in the design. This would, in the MSE case, produce quantization regions
and reconstruction points as illustrated in Figure 18(a). Hence, a large contribu-
tion to the distortion occurs when transmitting the index i = 2 since the receiver
will interpret this as if i = 1 was actually transmitted and reconstruct accordingly.
However, invoking information about the channel statistics in the design would
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Figure 18: Using the MSE distortion measure: (a) Encoder/decoder optimized
for an ideal channel and (b) encoder/decoder optimized for the non-
ideal channel of Figure 17(b).

make it possible to optimize the system better. This will enable the system to bet-
ter protect itself against channel failures resulting in the design illustrated in Figure
18(b) where a better overall MSE will be obtained than in the previous case. Note
that in the encoding we need to consider both how to design the quantization re-
gions as well as the index assignment, i.e. how to label the quantization regions
with indices (changing the labelling affects the performance). The basic problems
of source coding with noisy channels are clear from this example: quantization,
index assignment and decoding. These problems are discussed in the following
sections.

7.1 Scalar Source Coding for Noisy Channels
The first constructive work on scalar source coding for noisy channels was carried
out by Fine in [111]. Here a communication system with a discrete noisy channel
is considered and rules for creating encoders as well as decoders are presented.
This work continues in [112] where optimal quantizers and decoders are developed
for the case of binary channels, both for the unrestricted scalar quantizer as well
as for uniform quantizers. In [113] Farvardin and Vaishampayan extended this
result to other channels and they also introduced a procedure to improve the index
assignment. These results are central in this topic and are summarized below.
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Figure 19: Model of a communication system.

The considered system is illustrated in Figure 19 where X is assumed to be
an i.i.d. source and i ∈ {1, · · · ,M}. It is also assumed that MSE is used as a
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distortion measure. For a fixed decoder g the encoder is created as

f(x) = arg min
i

(

E[(x− X̂)2|I = i]
)

. (66)

This will result in optimal scalar quantizers for a given index assignment and a
given decoder g since it will consider the fact that X̂ is a random variable. It is fur-
ther shown that (66) can be developed such that the boarders of the optimal scalar
quantizer can be found in an analytical fashion. Altogether, these two steps will
improve the performance of the encoder and the algorithm moves on to optimize
the decoder under the assumption that the encoder f is fixed. The optimal encoder
is given by

g(j) = E[X|J = j]. (67)

These equations makes it possible to optimize the encoder and decoder in an iter-
ative fashion and will result in a locally optimal solution for f and g, which not
necessarily equals the global optimal solution.

7.2 Vector Source Coding for Noisy Channels
Early works that can be categorized as vector source coding for noisy channels
include [114, 115] but the first more explicit work can be found in [116]. Here
optimality conditions for encoders and decoders are formulated which results in
channel optimized vector quantization (COVQ). Also [117, 118] studies this sub-
ject where [118] is good introduction to COVQ. The central results of these publi-
cations are summarized for the MSE case. The system considered is basically the
same as in Figure 19 with X replaced by Xn and X̂ replaced by X̂n. For a fixed
decoder g the encoder should perform its vector quantization as

f(xn) = arg min
i

(

E[(xn − X̂n)2|I = i]
)

(68)

and for a fixed encoder f the decoder should be designed as

g(j) = E[Xn|J = j]. (69)

Also here the design is done by alternating between optimizing the encoder, (68),
and the decoder, (69). Although the algorithm usually tends to converge to a good
solution the initialization of the index assignment usually affects the performance
of the resulting design.

Further work is done in [119] where it is shown that once a COVQ system has
been designed the complexity is no greater than ordinary vector quantization. This
indeed motivates the use of COVQ. However, just as in regular vector quantization
complexity will be an issue when the dimension and/or the rate is high. One solu-
tion to this problem is to somehow restrict the structure of the quantization regions
by performing a multistage VQ, see e.g. [120, 121] for ideal channels and [122]
for noisy channels. These quantizers will in general have a lower performance but
also a lower complexity.
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Soft Decoding

Most of the work done in joint source–channel coding uses a discrete channel
model, p(jk|ik), arising from an analog channel in conjunction with a hard deci-
sion scheme. This is illustrated in Figure 20 where ik is transmitted and distorted
by the analog channel such that rk is received as

rk = ik + wk (70)

where wk is additive (real–valued) noise. This value is then converted to a discrete
value jk which results in a discrete channel model. However, if it is assumed
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Figure 20: Model of a channel arising from an analog channel in conjunction
with a hard decision scheme

that the receiver can access and process the analog (or soft) values rk the decoder
g could be based on rk, instead on jk. Since ik → rk → jk will constitute a
Markov chain we can conclude that rk will contain more, or possibly an equal
amont of, information about ik than jk which means that decoding based on rk

should make it possible to get a better performance than decoding based on jk.
For instance in the MSE case the optimal decoder is given as

X̂n = E[Xn|Rk = rk]. (71)

Decoding based on soft channel values is often referred to as soft decoding
and the idea originates from [123]. Further work is the area includes [124] where
Hadamard–based optimal and suboptimal soft decoders are developed. In [125] a
general treatment for soft decoding of noisy channels with finite memory is pro-
vided. One of the main results is that the complex algorithms resulting from this
theory can be written in a recursive manner lowering the complexity. Also in [126]
channels with memory is studied.

Using soft decoding results in a high decoding complexity. In [127, 128] this
complexity is decreased by quantizing the soft channel values. The quantization
produces a vector jqk and is hence a compromise between using the complete soft
information rk and the commonly occurring coarse version, jk, of the informa-
tion. The design criteria used is to design uniform scalar quantizers for the rm’s
such that the mutual information between rm and jq

m is maximized. We further
investigate how to create jqk by presenting a different approach in [3]/Paper G of
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this thesis where theory for designing nonuniform quantizers are developed. These
quantizers are optimal in the MSE sense.

7.3 Index Assignment
When dealing with noisy channels the index assignment of the different codewords
becomes an important issue to consider. Otherwise, codewords that interchange
frequently may be far apart in the signal space which may cause a large contribu-
tion to the distortion. However, the index assignment problem is NP-hard and to
find the optimal solution one would have to run a full search over the M ! possible
orderings of the M codevectors (although some of these permutations can be ruled
out). Conducting a full search is not feasible in most practical situations which
have made the research focus on suboptimal algorithms, with limited complexity,
to solve the problem.

Early publications about the index assignment problem are [129, 130] where
heuristic algorithms are described. In [118, 131] simulated annealing is used to
generate good index assignments and in [132] a greedy method called “Pseudo–
Gray Coding” is developed which is shown to have a good performance. In [133,
134] the Hadamard transform is used as a tool to create, as well as to indicate the
performance of, index assignments for binary symetric channels. The method is
demonstrated to have a high performance and a fairly low complexity. This work
is extended to cover more general channel models in [135].

8 Contributions of the Thesis
In this thesis we focus on four topics:

• Analog Bandwidth expansion. In Paper A we introduce and analyze a new
analog source–channel code based on orthogonal polynomials.

• Distributed source coding over noisy channels. In Papers B and C we
present new joint source–channel schemes for distributed source coding over
nonideal orthogonal channels.

• Multiple description coding. In papers D and E we introduce new MDC
schemes. These schemes are analyzed as well as simulated. In paper F
we improve the quantization in multiple description coding using pairwise
correlation transforms, briefly explained in Section 6.2.

• Soft decoding. The main contribution in paper G is the study of how to
quantize soft information for later use in a soft decision scheme.

The connections between these different topics and papers are illustrated in Fig-
ure 21. MDC can be seen as a packet based expansion which makes this problem
somewhat similar to the analog bandwidth expansion problem. The same goes for
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Figure 21: The connection between the different papers/topics in the thesis.

soft decoding, but here we transmit bits instead of packets and we can therefore
think of this situation as a kind of ”bit based expansion“. Finally, the bandwidth
expansion problem is a special case of distributed source coding over orthogonal
channels which will be discussed more in Paper C. The main contributions made
in each paper are summarized below.

Paper A: Polynomial Based Analog Source–Channel Codes [12]

We study the problem of bandwidth expansion, i.e. when one source sample, X ,
is transmitted over N orthogonal channels yielding a 1 : N expansion ratio. An
analog source–channel code based on orthogonal polynomials is proposed and an-
alyzed. Previous analog source-channel bandwidth expansion schemes have either
focused on a uniform source distribution or otherwise a general source distribution
but only for small N ’s. Our main contribution in this paper is that we produce a
code for a large number of source distributions implementable also for large N ’s.
The code can be generated using a Gram-Schmidt procedure, to fit virtually any
source distribution. By simulations we show that the performance is comparable
to other existing schemes. However, the proposed scheme is more general and can
be implemented a larger class of source distributions.
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Paper B: Distributed Quantization over Noisy Channels [10]

The problem of designing distributed quantizers for noisy channels is considered in
a joint source–channel perspective. An algorithm for designing channel optimized
distributed scalar quantizers for orthogonal channels is proposed and evaluated.
The algorithm will produce a system operating on a sample by sample basis in
a similar fashion as a channel optimized scalar quantizer (COSQ). In particular
the cases of the binary symmetric channel as well as the additive white Gaussian
noise channel are studied. It is demonstrated that the algorithm produces a well
working system which is also robust against channel SNR mismatch. The work
also results in some interesting visualizations which clarifies the connection be-
tween bandwidth expansion and distributed source coding over noisy channels.
This connection is elaborated further in Paper C.

Paper C: Nonlinear Coding and Estimation for Correlated Data in Wireless
Sensor Networks [11]

Consider the problem when a number of sensors access noisy observations of a ran-
dom source. These observations need to be communicated over orthogonal noisy
channels to a final destination where the source value is estimated. We demon-
strate similarities between this problem and the problem of bandwidth expansion
which motivates the use of analog source–channel codes similar to what is used for
bandwidth expansion. This results in nonlinear analog source–channel codes for
distributed estimation over noisy channels which are analyzed in a general setting.
The conducted analysis reveals that there is a fundamental tradeoff when designing
analog source–channel codes for this problem: either one aims for combating the
sensor observation noise which will make the system more sensitive to the channel
noise. On the other hand, if one instead would like to combat the channel noise
the system will become more sensitive to the observation noise.

Based on this understanding an explicit source–channel code is proposed, an-
alyzed and simulated. One appealing property of the proposed scheme is that it is
implementable for many sources, contrary to most existing nonlinear distributed
source–channel coding systems.

Paper D: Sorting–based Multiple Description Quantization [5]

A new method for performing multiple description coding is introduced. The
scheme is based on sorting a frame of samples and transmitting, as side-
information/redundancy, an index that describes the resulting permutation. In the
case that some of the transmitted descriptors are lost this side information (if re-
ceived) can be used to estimate the lost descriptors based on the received ones.
This can be done since the side information describes the order of the descriptors
within the frame and hence each received descriptor will narrow down the possible
values of the lost ones. The side information is shown to be useful also in the case
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when no descriptors are lost. For the case of a uniform i.i.d. source a closed form
expression for the performance is derived making it possible to analytically opti-
mize the choice of system parameters. Simulations conducted show the scheme to
have a similar performance to multiple description scalar quantization. The main
advantage of the suggested method is that it has virtually zero design complexity,
making it easy to implement and adapt to varying loss probabilities. It also has the
advantage of allowing straightforward implementation of high dimensional MDC.

Paper E: Multiple Description Coding using Rotated Permutation Codes [4]

The problem of designing multiple description source codes for J channels is ad-
dressed. Our proposed technique consist mainly of two steps; first J copies of
the vector Xn, containing the source data {xi}i=n

i=1 , are rotated by multiplication
of J random unitary matrices, i.e. one rotation matrix is generated and used for
each channel. Secondly each of the resulting vectors are, independently of the
other vectors, vector quantized using permutation source coding. Furthermore, the
decoding of the received information when only one channel is received is done
by applying the inverse rotation to the result of standard permutation decoding;
the optimum strategy for combining the information from multiple channels is a
more difficult problem. Instead of implementing optimal combining we propose to
simply average the decoded output of the individual channels and then adjust the
length of the resulting vector based on a theoretical analysis valid for permutation
codes. The choice of using permutation codes comes from the fact that their low
complexity makes high dimensional vector quantization possible, i.e. large n’s,
and our simulations have indicated that the random generation of rotation matrices
works well when the dimension is high. For low dimensions different outcomes of
the generated rotation matrices seem to yield quite different performance, mean-
ing that the random design may not be as appropriate for this case. Hence, any
vector quantization scheme able to perform quantization in high dimensions could
potentially replace the permutation coding in the proposed scheme.

Using i.i.d. zero-mean Gaussian data for the xi’s we evaluated the proposed
scheme by comparing it to multiple description scalar quantization (MDSQ) as
well as entropy-constrained MDSQ (ECMDSQ). It was shown that when using
J = 2 and R = 4 bits/symbol the proposed system outperformed MDSQ. Com-
pared to ECMDSQ a performance gain was achieved when optimizing the systems
for receiving, close to, only one descriptor. Otherwise ECMDSQ had the better
performance. The main advantages of the proposed method are its relatively low
complexity and its ability to easily implement any number of descriptions.

Paper F: Improved Quantization in Multiple Description Coding by Corre-
lating Transforms [2]

Multiple description using pairwise correlation transforms (MDCPC) is studied.
Here a pairwise correlating transforms introduces correlation between different
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bitstreams. In the case of a lost bitstream, this correlation can be used in order to
get an estimate of a lost stream. In this paper we suggest a new approach for per-
forming the quantization in MDCPC. Using the original method the data is quan-
tized and then transformed by a matrix operator in order to increase the redundancy
between descriptors. We suggest to reverse the order of these operations: first the
data is transformed and then quantized. We show that this leads to a modification
of the distortion measure. Using the generalized Lloyd algorithm when designing
the quantization codebook also leads to a new way to update the codevectors. The
modification makes it possible to improve the shape of the quantization cells and to
tailor these to the employed transform. Our simulations indicates that the modified
method performs better than the original one when smaller amounts of redundancy
are introduced into the transmitted data. For the simulations conducted the modi-
fied method gave 2 dB signal–to–distortion gain compared to the original system
when no descriptors were lost. The gain decreased to about 0.5-1 dB when the
probability of lost descriptors was increased.

Paper G: On Source Decoding based on Finite–Bandwidth Soft Information
[3]

Designing a communication system using joint source–channel coding in general
makes it possible to achieve a better performance than when the source and channel
codes are designed separately, especially under strict delay-constraints. The ma-
jority of work done in joint source-channel coding uses a discrete channel model,
corresponding to an analog channel in conjunction with a hard decision scheme.
The performance of such a system can however be improved by using soft decod-
ing at the cost of a higher decoding complexity. An alternative is to quantize the
soft information and store the pre-calculated soft decision values in a lookup table.
In this paper we propose new methods for quantizing soft channel information, to
be used in conjunction with soft-decision source decoding.

The issue on how to best construct finite-bandwidth representations of soft
information is further studied and compared for three main approaches: 1) re-
quantization of the soft decoding estimate; 2) vector quantization of the soft chan-
nel values, and; 3) scalar quantization of soft channel values. We showed analyt-
ically that 1) and 2) are essentially equivalent. Also, since 3) is a special case of
2) it can only yield similar or worse performance. However, we derived expres-
sions that specify the optimal scalar quantizers, and when using designs based on
these a performance close to that of approaches 1) and 2) was achieved. The gain
of this suboptimality is a substantially lower complexity which makes the method
interesting.
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[2] N. Wernersson, T. Sköllermo, and M. Skoglund, “Improved quantization in multi-
ple description coding by correlating transforms,” in IEEE MMSP 2004, September
2004.

[3] N. Wernersson and M. Skoglund, “On source decoding based on finite-bandwidth
soft information,” in Proceedings IEEE Int. Symp. Information Theory, September
2005, pp. 87–91.

[4] ——, “Multiple description coding using rotated permutation codes,” in Data Com-
pression Conference, March 2006.

[5] ——, “Sorting–based multiple description quantization,” IEEE Transactions on
Communications, vol. 54, no. 9, pp. 1521–1526, September 2006.

[6] J. Karlsson, N. Wernersson, and M. Skoglund, “Distributed scalar quantizers for
noisy channels,” in International Conference on Acoustics, Speech and Signal Pro-
cessing (ICASSP), April 2007, pp. 633–636.

[7] N. Wernersson, J. Karlsson, and M. Skoglund, “Distributed scalar quantizers for
gaussian channels,” in Proceedings IEEE Int. Symp. Information Theory, June 2007,
pp. 1741–1745.

[8] P. A. Floor, T. A. Ramstad, and N. Wernersson, “Power constrained channel opti-
mized vector quantizers used for bandwidth expansion,” in IEEE International Sym-
posium on Wireless Communication Systems, October 2007.

[9] N. Wernersson, M. Skoglund, and T. Ramstad, “Analog source-channel codes based
on orthogonal polynomials,” in Asilomar Conference on Signals, Systems and Com-
puters, November 2007.

[10] N. Wernersson, J. Karlsson, and M. Skoglund, “Distributed quantization over noisy
channels,” IEEE Transactions on Communications, 2008, to appear.

[11] N. Wernersson and M. Skoglund, “Nonlinear coding and estimation for correlated
data in wireless sensor networks,” IEEE Transactions on Communications, 2008,
submitted.

[12] N. Wernersson, M. Skoglund, and T. Ramstad, “Polynomial based analog source–
channel codes,” IEEE Transactions on Communications, 2008, submitted.

[13] A. Eskicioglu and P. Fisher, “Image quality measures and their performance,” IEEE
Transactions on Information Theory, vol. 43, no. 12, pp. 2959–2965, dec 1995.

[14] T. M. Cover and J. A. Thomas, Elements of Information Theory. Wiley-Interscience,
1991.
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Niklas Wernersson, Mikael Skoglund and Tor Ramstad

Abstract

In many communication applications one is interested in transmitting a time-discrete
analog-valued (i.e. continuous alphabet) source over a time-discrete analog channel. We
study this problem in the case of bandwidth expansion, in the sense that one source sample,
X , is transmitted over N orthogonal channels. An analog source–channel code based on
orthogonal polynomials is proposed and analyzed. The code can be generated using a
Gram-Schmidt procedure, to fit virtually any source distribution.

Index Terms–Modulation, nonlinear functions, source coding, channel coding, error
correction.

1 Introduction
We consider the problem of analog bandwidth expansion over a Gaussian memoryless chan-
nel. This means designing analog source–channel bandwidth expansion codes where a
source sample X is transmitted using an AWGN channel N times, yielding a 1 : N ex-
pansion rate. (We will from now on refer to these codes as ’analog source–channel codes’.)
The common solution for this problem is digital and is implemented by producing sepa-
rate source and channel codes. In practice, this is generally done by quantizing the source
followed by digital channel coding and transmission. Due to powerful source and channel
coding techniques the performance of such a system can be very high when the channel
quality is close to what the system has been designed for. There are, however, some disad-
vantages with the digital approach. In order to get a high performance long block lengths
are required both for the source and channel code. This will therefore introduce delays into
the system which may be undesirable, especially for a real time system. There is also a
threshold effect associated with a digital system: if the channel quality goes below a cer-
tain level the channel code will break down and the system performance will deteriorate
rapidly. On the other hand, if the channel quality is increased above this level the perfor-
mance will not increase but rather reach a constant level which is due to the nonrepairable
errors introduced by the quantizer.

In recent years analog, or at least partially analog, systems as an alternative to digital
systems have received increased attention, see e.g. [1, 2] and the references therein. Analog
systems do, in general, not have the same disadvantages as digital systems. Hence, in some
scenarios an analog approach may be more suitable than a digital one. On the other hand, in
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practice, the performance of a digital system is in general higher than for an analog system
when being used for the channel quality that it has been designed for.

Analog bandwidth expansion was briefly discussed already in one of Shannon’s early
papers [5]. Furthermore [6] analyzes the performance of analog source–channel codes at
high SNR’s. The papers [7–9] present ideas for how to construct these codes and in [10, 11]
it is concluded that the problem also relates to the problem of distributed estimation. How-
ever, to our knowledge, the only more explicit results on how to design analog source–
channel codes are found in [2–4]. In all these papers a uniform source distribution is con-
sidered.

Our main contribution in this paper, which was partly presented in [12], is to present
a method for designing well-performing analog source–channel codes assuming a general
source distribution.

The paper is organized as follows. In Section 2 the problem is formulated. Section 3
provides a brief introduction to orthogonal polynomials. Section 4 will propose an analog
source–channel code and Section 5 will present some analytical results for this code. Finally
we present some simulation results and conclusions in Sections 6-7.

2 Problem Formulation
Consider the problem illustrated in Figure 1. An analog source value x, with variance σ2

x

and pdf f(x), is encoded by the function

s(x) = (s1(x), s2(x), . . . , sN (x))T (1)

and transmitted over N orthogonal AWGN channels created by using e.g. TDMA or FDMA.
The different encoding functions perform analog mappings, that is si : R → R, under the
power constraints

E[si(X)2] =

�
R

f(x)si(x)2dx ≤ P ∀i ∈ {1, 2, . . . , N}. (2)

The decoder estimates x based on the received values

r = s(x) + w (3)
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where w is independent and identically distributed (i.i.d.) memoryless Gaussian distributed
with covariance matrix σ2

wI . Hence, the decoding is performed as

x̂ = x̂(r) (4)

and the objective is to minimize the expected mean square error (MSE) E[(X − X̂)2].
When the source is i.i.d. zero-mean Gaussian and N = 1, it is well known that lin-

ear encoding is optimal, i.e. s1(x) = � (P/σ2
x)x, under the assumption that the decoder

knows the source and noise variances. However, when N > 1 this is no longer true and
nonlinear encoding can have superior performance compared to linear encoding strategies,
see e.g. [13]. One of the reasons for this is that a linear encoding function s(x) only uses
a one dimensional subspace of the channel space. More efficient mappings would use a
higher number of the available channel space dimensions. An example of this is illustrated
in Figure 2 for N = 2. By using nonlinear encoding functions, illustrated by the solid
’S-shaped’ curve s(x), we are able to better fill the channel space than when using linear
encoding functions, represented by the dashed curve. A longer curve essentially means a
higher resolution when estimating x as long as we decode to the right fold of the curve, il-
lustrated by sample x1 in the figure. However, decreasing the SNR will at some point result
in that different folds of the curve will lie too close to each other and the decoder will start
making large decoding errors, illustrated by sample x2 in the figure. Decreasing the SNR
below this threshold will therefore significantly deteriorate the performance. We refer to
these errors as ’small’ and ’large’ decoding errors. Increasing the SNR, on the other hand,
will always improve the performance since the magnitude of the small decoding errors will
decrease. This is one of the main advantages of analog systems compared to digital systems
since the performance of a digital system will approach a saturation level when the SNR
grows large.

The problem of designing analog source–channel codes is therefore a problem of find-
ing nonlinear curves s(x) : R → R

N under the power constraints (2) such that points far
separated in the source space also are far separated in the channel space, i.e.

‖s(x) − s(x + δ)‖2 > ∆2 ∀{(x, δ) : f(x) > 0, |δ| > δ0} (5)

where ∆ and δ0 are some positive constants. If this condition is true, no large (the value
of δ0 will define “large”) decoding errors will occur if the probability of noise vectors
2‖w‖2 > ∆2 can be neglected, see e.g. [14]. This will be true when the SNR reaches
above some certain threshold. Furthermore, given that no large coding errors occur the
expected MSE will only depend on the small decoding errors. In [15] it is shown that under
these conditions the MSE will depend on the stretch of s(x) defined as

S(x) = ���� d

dx
s(x) ���� , (6)

which preferably should be as large as possible. The expected MSE is then well approxi-
mated by

E[(X − X̂)2] = σ2
w

�
R

f(x)

‖ d
dx

s(x)‖2
dx. (7)

To summarize, we would like to ’stretch’ the curve s(x) as much as possible under
the constraints in (2) and (5). We will in this paper design such curves using orthogonal
polynomials.
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3 Orthogonal Polynomials
The orthogonal polynomials literature is vast, see e.g. [16, 17] for an introduction to the
area. We will here summarize some important results which will be used in the following
sections.

3.1 Definition
A sequence of polynomials {Pn(x)}∞n=0 is called orthogonal with respect to the weight
function f(x) if Pn(x) is a polynomial of degree n and for all non-negative n and m�

R

f(x)Pn(x)Pm(x)dx = δnmKn, Kn 6= 0 (8)

where δnm is Kronecker’s delta symbol. Furthermore, if Kn = 1 ∀n the sequence of
polynomials {Pn(x)}∞n=0 is orthonormal. We will use the notation pn(x) when referring
to orthonormal polynomials, hence

pn(x) = � 1/KnPn(x). (9)

3.2 The recurrence formula and zeros
It can be shown that given a sequence of orthogonal polynomials {Pn(x)}∞n=0 there exist
constants cn and λn such that

Pn(x) = (x − cn)Pn−1(x) − λnPn−2(x), n > 0 (10)

where P0(x) = 1 and P−1(x) = 0. These constants will depend of the weight function
f(x). The zeros of Pn(x) are real and simple. We will denote the k:th smallest zero of
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Pn(x) as xk,n. It can be shown that the zeros of Pn(x) and Pn+1(x) mutually separate
each other such that

xk,n+1 < xk,n < xk+1,n+1, k = 1, 2, . . . , n. (11)

These properties explain the well known fact that orthogonal polynomials have an oscil-
lating behavior, see e.g. [18]. Due to that all zeros of Pn(x) are real and simple we can
write

Pn(x) ∝ (x − x1,n)(x − x2,n) · · · (x − xn,n), (12)

meaning that as x increases Pn(x) will alternate sign when the different zeros are passed.
In fact, the polynomial Pn(x) usually behave quite similar to a sine if studied in a fairly
short interval where f(x) is strong, at least when n grows large. This is illustrated in Figure
3 where orthonormal polynomials for a Gaussian source with variance 0.5 is plotted. As it
turns out, the oscillating property will be important for our proposed analog source–channel
code.

3.3 Gram–Schmidt
Given a weight function f(x) ≥ 0 orthonormal polynomials {pn(x)}∞n=0 will exist. These
polynomials can be derived by a Gram–Schmidt procedure described briefly below.

1. Set P0(x) = 1 and create p0(x) from (9). Set n = 0.

2. Create

Pn+1(x) = xn+1 −
n�

k=0

akpk(x) (13)

where by choosing

ak =

�
R

f(x)xn+1pk(x)dx (14)
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it is ensured that Pn+1(x) is orthogonal to {pl(x)}n
l=0 since�

R

f(x)Pn+1(x)pl(x)dx =

�
R

f(x)xn+1pl(x)dx −
�

R

f(x)

n�
k=0

akpk(x)pl(x)dx

= al − al = 0 (15)

if l < n + 1.

3. Create pn+1(x) by (9) and set n = n + 1. Go to Step 2.

Hence, given a certain pdf f(x) the procedure above will produce the corresponding or-
thonormal polynomials.

3.4 The Christoffel–Darboux identity
Finally we state the Christoffel–Darboux identity,

N�
n=0

pn(x)pn(u) = � KN+1

KN

pN+1(x)pN (u) − pN (x)pN+1(u)

x − u
. (16)

4 Encoding and Decoding
We propose a nonlinear analog source–channel code as follows. Given I =
{i1, i2, . . . , iN} the analog source–channel code sI(x) is created by choosing

sj(x) =
√

Ppij (x) ∀j ∈ {1, 2, . . . , N}. (17)

For example, given a source distribution f(x) and I = {1, 2, 3, 4} we will use
√

Pp1(x)
as encoding function for the first channel,

√
Pp2(x) for the second channel and so on. Here

the pn(x)’s are orthonormal with respect to the weight function f(x). Hence, the weight
function equals the source pdf meaning that the power constraint in (2) will be fulfilled
since

E[sj(X)2] =

�
R

f(x)[
√

Ppij (x)]2dx = P. (18)

Optimal decoding, in the minimum MSE sense, is given as [19]

x̂(r) = E[x|r] (19)

but this decoding function would be very complex to implement. We therefore choose to
instead implement the suboptimal maximum likelihood decoder

x̂(r) = arg max
x

g(r|x) = arg min
x

‖sI(x) − r‖2 = arg min
x �� �

ij∈I

(
√

Ppij (x) − rj)
2 �� ,

(20)
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where g(·|·) denotes the channel transition pdf. Hence, the decoding procedure is equivalent
to minimizing a 2iN -degree polynomial (assuming iN is the largest index in I). Efficient al-
gorithms exist for minimizing univariate polynomials which makes this feasible.1 It should
be emphasized that (20), i.e. the receiver, does not need to know σ2

w .
Finally, note that the special case IL , {1, 1, . . . , 1} means that the encoding is linear

as discussed in Section 2 and in Figure 2. We will later use this system as a benchmark
system.

5 Analysis
We will here discuss the three desirable properties for analog source–channel codes dis-
cussed in Section 2: A) distance properties as in (5), B) stretch properties as in (7) and
finally, C) the ability to use up to all available channel space dimensions. We will show
that the proposed scheme possesses properties A and C and we further conjecture that it
also possesses property B for a large class of pdf:s f(x). For such pdf:s the suggested
scheme will therefore procedure a working source–channel code which consequently can
be generated using the Gram–Schmidt procedure from Section 3.

5.1 Distance
Assume that four consecutive orthonormal polynomials are used as an analog source–
channel code, hence I = {n − 3, n − 2, n − 1, n}. We will here show that this implies
(5).

Proof : If (5) is not valid for some x and |δ| > 0 we have ‖sI(x) − sI(x + δ)‖ = 0
meaning Pi(x) = Pi(x + δ) for i ∈ I. If we use this in the recurrence equation (10) we
get

Pn(x + δ) = (x + δ − cn)Pn−1(x + δ) − λnPn−2(x + δ)

and hence

Pn(x) = (x − cn)Pn−1(x) + δPn−1(x) − λnPn−2(x).

Comparing this last equation with (10) we realize that this can be true only if: i) δ = 0 or
ii) Pn−1(x) = 0. Hence, x must equal one of Pn−1(x)’s zeros xk,n−1. Repeating this
derivation for polynomials {n − 3, n − 2, n − 1} and studying x = xk,n−1 we get

Pn−1(xk,n−1) =(xk,n−1 − cn−1)Pn−2(xk,n−1) + δPn−2(xk,n−1) − λn−1Pn−3(xk,n−1).

Hence, also Pn−2(xk,n−1) needs to equal 0 which can not be true according to (11). Hence,
there can be no point where sI(x) = sI(x+δ) if |δ| > 0 and I = {n−3, n−2, n−1, n}
meaning that ∆2 > 0 will exist such that (5) is fulfilled. �

In Figure 4 we illustrate the distance properties for a few different I’s by plotting the
function ‖sI(x) − sI(x0)‖2 in the case of a uniform source distribution, i.e. f(x) = 1/2
for x ∈ (−1, 1). All these codes have appropriate distance properties.

1It should here be pointed out that when simulating the scheme for large iN ’s our computer’s default
accuracy for float values was not high enough making the minimization procedure to fail due to round
off errors. This therefore needed to be considered. For our simulations in Section 6 the effect became
visible for iN ’s somewhere between 20 and 25.
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sen.

5.2 Stretch
Given that the SNR is high the MSE is well approximated by (7). We conjecture that given
a smooth and continuous f(x) for I = {1, 2, · · · , N}, where N is large enough, we have�

R

f(x)

‖ d
dx

sI(x)‖2
dx <

�
R

f(x)

‖ d
dx

sIL
(x)‖2

dx. (21)

In fact, for all the different f(x):s we have evaluated, for instance the ones in the Section 6,
the inequality has been true already for N = 2. Consequently, for high SNR’s the proposed
code will produce a better MSE than a linear code.

5.3 Dimensions
As earlier commented on a weakness with the linear code sIL

(x) is that only a one dimen-
sional subspace of the channel space is used for transmission. We will here show that given
f(xk,iN +1) 6= 0 ∀k and I = {i1, i2, . . . , iN} where i1 < i2 < · · · < iN all dimensions
in the channel space will be used.

Proof : If we use Ī = {0, 1, . . . , iN} to create the (iN + 1) × (iN + 1) matrix

Ā = [sĪ(x1,iN +1) sĪ(x2,iN +1) · · · sĪ(xiN +1,iN +1)]

all columns will be orthogonal. This comes from the fact that the right-hand-side of (16)
will always equal 0 if x = xi,iN +1 and u = xj,iN +1 and i 6= j. The left-hand-side of (16)
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describes the dot product of column vectors i and j in Ā which hence are orthogonal. This
further means that Ā is full rank. If we instead create the matrix

A = [sI(x1,iN +1) sI(x2,iN +1) · · · sI(xiN +1,iN +1)]

it is a version of Ā where a number of rows are removed. Since Ā is full rank also A will
be full rank. Hence, sI(x) will use all N available dimensions in the channel space for
transmission since we have assumed f(xk,iN +1) 6= 0 ∀k. �

To summarize, the curve sI(x) is not contained in a subspace of the N -dimensional
channel space.

6 Simulations
6.1 Choosing I
In Section 5 we motivated that orthogonal polynomials have properties making them appro-
priate as analog source–channel codes as proposed in Section 4. However, the question on
how to choose which indexes to include in I remains. We will here present a strategy for
this based on results derived in [2]. Only the case with symmetric pdf’s will be considered
and we will leave the asymmetric case as a future topic.

As discussed in Section 3 orthonormal polynomials have an oscillating property. In this
sense our proposed scheme is similar to the scheme in [2] where sine and cosine functions
with different frequencies are used to create analog source–channel codes for a uniformly
distributed source x ∈ (−1, 1). Furthermore, [2] carries out a rigorous analysis in order to
optimize the choice of which frequencies to use which leads to the encoding structure

s1+2i(x) = α cos(πaix)
s2+2i(x) = α sin(πaix) 	 ∀i ∈ {0, 1, . . . , N/2 − 1} (22)

where a ∈ N. It is shown that a higher a leads to a higher stretch but also that different folds
of the curve is packed closer to each other. If we study (s1(x), s2(x)) we note that this pair
of functions will create a circle in the plane when x is increased from −1 to 1. Furthermore,
for (s1+2i(x), s2+2i(x)) the same behavior is obtained with the difference that the function
will go ai laps around the circle. Our proposed structure will approximate this behavior if

I = {2a0 − 1, 2a0, 2a1 − 1, 2a1, 2a2 − 1, 2a2, . . .}. (23)

This comes from the fact that p2ak (x) will have 2ak zeros and hence ak ’periods’ (oscilla-
tions) before the polynomial starts approaching ±∞. Due to the distribution of zeros (11)
there will exist ’phase shifts’ between pi(x) and pi+1(x) and we can roughly think of every
other polynomial as a sine and every other as a cosine, at least for symmetric pdf’s. The
curve (p2ai−1(x), p2ai(x)) will therefore approximate the circles created by the system in
(22). This is illustrated in Figure 5 where (p49(X), p50(X)) have been simulated for 50000
Gaussian source samples X , darker points in the plot means more occurring points. Most
of the source samples are mapped to an area approximately looking like a circle around the
origin although we also note that the samples in the tails of the pdf f(x) will be mapped
to regions further out. Therefore the results obtained in [2] motivates the choice of I as in
(23). This choice has also been supported by simulations conducted where other choices of
I have been evaluated.
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6.2 Optimal companding and benchmark systems

As previously noted, to our knowledge, the only existing schemes of analog source–channel
codes are [2–4] which all are designed for a uniform distribution. We will use [2, 3] as
benchmark systems and from now on refer to these as the V&C and C&W codes. A weak-
ness with these is that s(−1) = s(1). Hence, they are sensitive for large decoding errors
when transmitting values close to the ends of the support region for the distribution. This
is solved by instead encoding βx, rather than x, where β is some appropriate constant less
than 1 in order to prevent large decoding errors. However, this property makes it hard to nat-
urally extend the ideas to other distributions, for instance the Gaussian distribution which
does not have a limited support. This was briefly commented on in [2] and it was sug-
gested that optimal companding, see e.g. [15], could be used in conjunction with the codes
in order to create codes for other distributions. In order to get some benchmark systems
for nonuniform sources we therefore use optimal companding together with the V&C and
C&W codes. The compander will map the source x to y(x) ∈ (−1, 1) and then transmit
s(y(x)).2 From [15] we get the optimal compander, in the minimum MSE sense, as

y(x) = 2 
 x

−∞
f(u)

1
3 du
 ∞−∞ f(u)
1
3 du

− 1. (24)

The receiver will estimate ŷ and the inverse companding operation is performed such that
x̂ is found fulfilling ŷ = y(x̂).

2Since y(x) produced by the compander not is uniformly distributed the individual power con-
straints of (2) will be violated. We allow this and instead require the total power consumption to be less
than NP for the benchmark systems.
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6.3 Results
In order to evaluate the proposed code we carried out simulations for three different source
distributions: Uniform, Gaussian and a Gaussian mixture (GM). The pdf’s for these can be
written

fU (x) = 1/2 x ∈ (−1, 1)

fG(x, σ2) =
1√

2πσ2
exp(− x2

2σ2
)

fGM (x, σ2) =
�

i

qifG(x − µi, σ
2)

where we used σ2 = 0.5 for the Gaussian case. This results in two of the most famous
orthogonal polynomials for the Uniform and Gaussian source, namely the Legendre and
Hermite polynomials which both are well documented and explicit formulas for the poly-
nomials exists. For the GM distribution we used σ2 = 1, q = 1/6 · [1, 1, 2, 1, 1] and
µ = [−7,−4, 0, 4, 7] which is not a well documented weight function. Therefore this sim-
ulation tested the usefulness of the Gram–Schmidt procedure from Section 3 which was
used to generate the corresponding analog source–channel code.

In Figure 6 simulation results are presented for the case of 1 : 6 expansion. Performance
is measured in terms of 1/MSE versus SNR per channel, i.e. SNR , P/σ2

w . All curves
show similar behavior, for low SNR’s large decoding errors occur and the performance is
low. Increasing the SNR from this point leads to an increase in performance and eventually
the threshold where large decoding errors stop occurring is reached and the performance
starts behaving according to (7).

Figure 1.6(a) shows results for the uniform source. This is the case for which both the
V&C and C&W codes were constructed. We experienced that the V&C code perform better
than our proposed scheme. It appears as if when the stretch for both codes are chosen such
that the performance is similar above the threshold the V&C code reaches its threshold at a
lower SNR than our code. The C&W code on the other hand is quite far behind in terms of
performance. The slope of the performance curve for the C&W code is on the other hand
steeper which was also explained in [3]. The linear code, sIL

(x), is the best choice only
for very bad channels.

In Figure 1.6(b) the Gaussian source is simulated and optimal companding has been
implemented for the V&C and C&W codes. The companding (24) and the inverse com-
panding operations, which for this case can be expressed in terms of the Q–function, will
naturally add complexity. Here the proposed scheme has the superior performance.

Finally, in Figure 1.6(c) we have also simulated the GM source. Deriving the com-
panding integral (24) for this pdf is difficult and we can therefore only compare to linear
coding. From the figure we see that the Gram–Schmidt generated polynomials produces
a well working analog source–channel code. This illustrates the power of the proposed
scheme and the Gram–Schmidt procedure in order to design analog source–channel codes
for general distributions.
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(c) Gaussian mixture

Figure 6: Simulations for different source distributions. In (a)–(b) we use a ∈
{3, 4} for V&C and a ∈ {4, 5} for sI(x). In (c) we use a ∈ {2, 5}
for sI(x).
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7 Conclusions
We have presented an analog source-channel coding scheme for bandwidth expansion and
a Gram-Schmidt procedure for generating the code for a general source has been described.
The scheme has a similar performance to the the best previous existing scheme but is more
general and can be implemented for a larger class of source distributions.
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Distributed Quantization over Noisy Channels

Niklas Wernersson, Johannes Karlsson and Mikael Skoglund

Abstract

The problem of designing simple and energy-efficient sensor nodes in a wireless sensor
network is considered from a joint source–channel coding perspective. An algorithm for de-
signing distributed scalar quantizers for orthogonal channels is proposed and evaluated. In
particular the cases of the binary symmetric channel as well as the additive white Gaussian
noise channel are studied. It is demonstrated that correlation between sources can be useful
in order to reduce quantization distortion as well as protecting data when being transmitted
over non-ideal channels. It is also demonstrated that the obtained system is robust against
channel SNR mismatch.

Index Terms–Source coding, quantization, channel coding, correlation.

1 Introduction
Wireless sensor networks are expected to play an important role in tomorrow’s sensing
systems. One important property in these networks is that there may be a high correlation
between different sensor measurements due to high spatial density of sensor nodes. This
motivates source coding of correlated sources, which has been analyzed in for instance [1]
where the well known Slepian–Wolf theorem is stated. Ideas on how to perform practical
Slepian–Wolf coding are presented in [2, 3], allowing the use of powerful channel codes
such as LDPC and Turbo codes in the context of distributed source coding, see e.g. [4, 5].
For the case with continuous sources, i.e. lossy coding, relevant references include [6, 7].
In general, these methods require the use of long codes and the encoding complexity will
require some data processing in the sensor nodes. This will therefore counteract one of
the desired design criteria in sensor network design, namely low cost and energy efficient
sensor nodes. In addition, in many applications for example in networked control, a low
delay is essential, preventing the use of long codes.

An alternative is therefore to design sensor nodes of very low complexity and low delay.
This can be accomplished by interpreting the distributed source coding problem as a quan-
tization problem. Previously, quantization of correlated sources has been studied in [8–13].
Our work is however targeted towards wireless sensor networks and introducing noisy chan-
nels is necessary in order to make the system more realistic. For non-ideal channels related
previous work includes [14] which considers the problem of distributed detection over non-
ideal channels. In [15] quantization of correlated sources in a packet network is studied,
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Figure 1: Structure of the system.

resulting in a general problem including multiple description coding as well as distributed
source coding as special cases.

We will in this paper summarize and continue the work carried out in [16, 17] where
distributed scalar quantizers were designed for different channel models. In what follows,
we propose a design algorithm that results in sensor nodes operating on a sample by sample
basis in a similar fashion as a channel optimized scalar quantizer (COSQ) [18].

2 Problem Formulation
We consider the problem of distributed joint source–channel coding illustrated in Figure 1.
Two correlated random variables X1 and X2 are to be encoded by two encoders separated
in space preventing cooperation between the encoders. To achieve low-complexity and low-
delay encoding, the mappings f1 and f2 work in the following manner: f1 and f2 will first
scalar quantize X1 and X2 to indexes i1 and i2 according to

qk : Xk → Ik ∈ {0, 1, ..., N − 1} ∀k ∈ {1, 2} (1)

and these indexes are then transmitted over an additive white Gaussian noise (AWGN) chan-
nel. Two different transmission methods will be studied resulting in two different channel
models. The first model is created by using BPSK on the AWGN channel in conjunction
with hard decision decoding. This results in a binary symmetric channel (BSC) with some
given bit error probability. Hence, in the first model each index is transmitted using the
BSC R , log2 N times. In the second model we will transmit each index by mapping the
quantization index to a symbol in an N pulse amplitude modulated (N–PAM) signal. We
will refer to this case as the ’Gaussian channel’. We explain these two cases in greater detail
below.

2.1 Binary Symmetric Channel
For the case of the BSC the quantization index ik from (1) will be mapped to its binary
representation as

fk : Xk
qk→ Ik → {−1, 1}R ∀k ∈ {1, 2}. (2)
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Hence, fk will use qk to create the index ik which is then represented binary. These bits are
transmitted over a Gaussian channel using BPSK resulting in

rk = fk(xk) + wk ∀k ∈ {1, 2} (3)

where w is zero mean i.i.d. Gaussian noise with covariance matrix σ2
wI. For each of these

R received values a hard decision decoding rule is applied such that

jk(m) = sign(rk(m)) m = 1, 2, · · · , R (4)

where

sign(x) = � 1, x ≥ 0
−1, x < 0.

(5)

Given that −1 was transmitted, and letting Q(·) denote the Q-function, this will result in a
bit error probability

ε =

� ∞
0

1√
2πσ2

w

e
−

(r+1)2

2σ2
w dr = Q � 1

σw 
 , (6)

which is also, due to the symmetry, the total bit error probability.
Denoting the decimal representation of jk as jk the decoding will be performed as

x̂k = gk(j1, j2) ∀k ∈ {1, 2}. (7)

Hence, the decoding is based on both j1 and j2.
Given this system, we define the mean squared error (MSE) as

D =
1

2
(D1 + D2) =

1

2 � E[(X1 − X̂1)
2] + E[(X2 − X̂2)

2] � (8)

and our objective is to design the encoders and the decoder in order to minimize the MSE.1

2.2 Gaussian Channel
For the Gaussian channel each of the indexes (i1, i2) are mapped to an N pulse amplitude
modulated (N–PAM) signal such that

fk(xk) = α(2qk(xk) − N + 1) ∀k ∈ {1, 2}. (9)

Here α is a constant such that the power constraints

E[fk(Xk)2] ≤ P ∀k ∈ {1, 2} (10)

are satisfied. The two PAM signals are then transmitted over two orthogonal channels,
created by using e.g. TDMA or FDMA, resulting in the received values

rk = fk(xk) + wk ∀k ∈ {1, 2} (11)

1As pointed out by one of the reviewers one could also define a weighted MSE as D(ρ) = ρD1 +
(1−ρ)D2 and adopt our derived equations accordingly. One interesting case would be D(1) meaning
that the second observation x2 only serves as side information when estimating x1. However, we will
only study the case D(0.5), i.e. as in (8).
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where the noise terms wk are independent zero-mean Gaussian distributed with variance
σ2

w . The decoder will have access to both r1 and r2 and forms its estimate of the original
source data as

x̂k = gk(r1, r2) ∀k ∈ {1, 2}. (12)

Here the objective is to design the encoders and the decoder in order to minimize the MSE
from (8) under the power constraints given in (10).

3 Analysis
As in traditional Lloyd-Max training [19] we will optimize each part in the system in an
iterative fashion keeping the other parts fixed. Note that the system contains three parts:
two encoders and one decoder, although the decoder contains two decoding functions. We
will in this section consider the design of these parts under the assumption that

Xk = Y + Zk ∀k ∈ {1, 2} (13)

where Y , Z1 and Z2 are independent zero-mean Gaussian distributed random variables with
variances σ2

Y , σ2
Z1

= σ2
Z2

= σ2
Z . Hence, X1 and X2 are correlated which can be exploited

in the encoding as well as the decoding.
For this jointly Gaussian distribution we get the conditional pdf

p(x2|x1) =
1√

2πσ2
exp ��� − � x2 − σ2

Y

σ2
Y

+σ2
Z

x1 � 2

2σ2 ���� (14)

where

σ2 =
σ4

Z + 2σ2
Y σ2

Z

σ2
Y + σ2

Z

. (15)

Without loss of generality we will further assume that E[X2
1 ] = E[X2

2 ] = 1, hence σ2
Y +

σ2
Z = 1.

3.1 Encoder for BSC
Only the design of f1 will be considered since f2 can be designed in the same fashion. Given
that the encoder f1 observes x1 and produces index i1 it can derive the expected distortions
for D1 and D2 as

D1(x1, i1) =
�
j1

�
j2

P (j1|i1)P (j2|x1) [x1 − g1(j1, j2)]
2 (16)

D2(x1, i1) =

� �
j1

�
j2

P (j1|i1)p(x2|x1)P (j2|q2(x2)) [x2 − g2(j1, j2)]
2 dx2, (17)

where the integral is taken from −∞ to ∞ and

P (j2|x1) =
�
i2

P (j2|i2)P (i2|x1) (18)
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where
P (i2|x1) =

�
x2:q2(x2)=i2

p(x2|x1)dx2. (19)

The other transition probabilities P (·|·) are straightforward to derive, see e.g. [20]. In order
to minimize the distortion (8) the quantizer q1(x1) should be designed according to

q1(x1) = arg min
i1

(D1(x1, i1) + D2(x1, i1)). (20)

In [18] the case of a single source was studied. In this case, the solution resulted in
encoder regions which were intervals, and analytical expressions for finding the endpoints
of these intervals were derived. However, (20) does in general not result in a similar solution
and the encoder regions will in general not be intervals, but rather unions of separated
intervals (this will be illustrated in Section 4).

3.2 Encoder for Gaussian Channel
For the Gaussian channel D1 and D2 can be expressed as

D1(x1, i1) =

���
p(r1|i1)p(r2|x1) [x1 − g1(r1, r2)]

2 dr2dr1 (21)

D2(x1, i1) =

�����
p(r1|i1)p(x2|x1)p(r2|q2(x2)) [x2 − g2(r1, r2)]

2 dr2dx2dr1, (22)

where the integrals are taken from −∞ to ∞. In order to minimize the distortion (8) under
the power constraint (10) the quantizer q1(x1) should be designed according to

q1(x1) = arg min
i1

(D1(x1, i1) + D2(x1, i1) + λ(2i1 − N + 1)2). (23)

Here, the first two terms aim at minimizing the distortion introduced by the quantizer
whereas the third term will allow us to control the power consumption by choosing a value
for the Lagrangian multiplier λ, see e.g. [21]. Unfortunately the integrals in (21)–(22) are
difficult to evaluate since they contain g1(r1, r2) and g2(r1, r2) which vary with r1 and
r2. In order to get around this problem we use the technique of prequantizing r1 and r2

according to
h : (R1,R2) → (J1,J2) ∈ {1, 2, ..., M}2 (24)

which will produce the decoding functions

x̂k = gk(h(r1, r2)) = gk(j1, j2) ∀k ∈ {1, 2}. (25)

Furthermore, in this work we choose M = N and let h(r1, r2) simply map (r1, r2) to the
closest possible output from the encoders defined by (f1(x1), f2(x2)). Hence

h(r1, r2) = arg min
(j1,j2)

((r1 − α(2j1 − N + 1))2 + (r2 − α(2j2 − N + 1))2). (26)

The decoding functions will now be piecewise linear over r1 and r2 which greatly sim-
plifies the derivation of (21–22) and we get the same equations as in (16–17) (although the
transition probabilities are different). Using (23) together with (16–17) will therefore define
the optimal quantizer q1(x1) under the assumption that the decoder and the second encoder
are fixed.
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3.3 Decoder
Assuming fixed encoders it is a well known fact from estimation theory that the optimal, in
minimum MSE sense, estimates of x1 and x2 are given as

x̂k = gk(j1, j2) = E[xk | j1, j2] ∀k ∈ {1, 2}. (27)

Hence, (27) is used to derive the decoders for both considered transmission methods.

3.4 Design algorithm
Based on the developed equations (20), (23) and (27) it will be possible to optimize the
encoders and the decoder. A natural order to optimize these is : 1) the first encoder, 2) the
decoder, 3) the second encoder, 4) the decoder. Each step in the iteration will guarantee the
distortion to decrease and the training is repeated until the solution converges. Just as in the
case of the Lloyd-Max algorithm this will result in a locally optimal system which is not
necessarily the global optimum.

One problem with the suggested training above is that the obtained local optimum pro-
duced will depend greatly on the initialization of the decoder and encoders. In fact, in
our simulations we experienced that very poor local optima were often found using the ap-
proach suggested above. This problem has also been encountered in [18, 22–24] where the
method of noisy channel relaxation was introduced. The idea is essentially that it is easier to
find a good local optimum for channels with high noise energy than for channels with low
noise energy. Therefore a system is first designed for a very bad channel. Next, the channel
quality is gradually improved and a new system is designed in each step. For each design,
a full iterative training algorithm is executed using the reconstruction codebook from the
previous design as initialization for the current design. We incorporate this idea by starting
designing a system for a noise variance σ′2w � σ2

w . When this is completed σ′2w is decreased
with a stepsize σ2

∆ and a new system is designed. This is repeated L times. The algorithm
is summarized below.

1. Initialize encoders and optimize the decoder by using (27).
2. Set values for L and σ2

∆. Create σ′2w = σ2
w + Lσ2

∆.
3. Design a system for the channel noise σ′2w according to:

(a) Set the iteration index k = 0 and D(0) = ∞.
(b) Set k = k + 1.
(c) Find the optimal quantizer q1 by using (20) (or (23)).
(d) Find the optimal decoder by using (27).
(e) Find the optimal quantizer q2 by using q2(x2)’s equivalence to (20) (or (23)).
(f) Find the optimal decoder by using (27).
(g) Evaluate the distortion D(k) for the system. If the relative improvement of

D(k) compared to D(k−1) is less than some threshold δ > 0 go to Step 4.
Otherwise go to Step (b).

4. If σ′2w = σ2
w stop the iteration. Otherwise create σ′2w = σ′2w − σ2

∆ and go to Step 3
using the current encoders and decoder when initializing the next iteration.

We also experienced that when searching for a good local optima a small improvement was
sometimes obtained by also performing a noise relaxation procedure for the correlation,
i.e. varying σ2

z . However, the main improvement was obtained by the algorithm above.
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3.5 Optimal Performance Theoretically Attainable
Recently the rate region for the quadratic two-terminal source coding problem has been
completely characterized in [25]. Furthermore, in [26] it is shown that separating the source
and channel code design, when the block lengths are approaching infinity, will be asymptot-
ically optimal for the problem we are considering. Hence, by simply studying the channel
capacity of the different orthogonal channels we get rate constraints, R1 and R2, on the
source code since these rates can be safely communicated to the decoder. Assuming that
we have access to a capacity achieving channel code for the BSC we get

βBSC = R1 = R2 = RCBSC = R(1 + ε log2 ε + (1 − ε) log2(1 − ε)) (28)

where CBSC is the capacity of the BSC [27]. For the Gaussian channel we note that both
encoders have the same power constraint (10) and that both channels have the same noise
power. This gives

βAWGN = R1 = R2 = CAWGN =
1

2
log2 � 1 +

P

σ2
w 
 (29)

where CAWGN is the capacity of the AWGN channel [27]. Using the appropriate β, from (28)
or (29), and simplifying the expressions in [25] (remember the assumption σ2

Y + σ2
Z = 1)

gives
D1D2 ≥ 2−4β(1 − σ4

Y ) + σ4
Y 2−8β . (30)

Since D1 is inversely proportional to D2 the total distortion in (8) will be minimized by
setting D = D1 = D2. This gives the optimal performance theoretically attainable (OPTA)
according to

D = � 2−4β(1 − σ4
Y ) + σ4

Y 2−8β . (31)

That is, D in (31) is the lowest possible achievable distortion for this problem.

4 Simulations
We will here visualize the structure of the encoders obtained when using the design algo-
rithm presented in Section 3.4. The performance of a designed system is also compared to
the OPTA derived in Section 3.5. In order to do so we measure the signal-to-distortion ratio
(SDR) defined as

SDR = 10 log10 � E[X2
1 ] + E[X2

2 ]

E[(X1 − X̂1)2] + E[(X2 − X̂2)2] 
 (32)

and we also define the correlation SNR as

CSNR = 10 log10 � σ2
Y

σ2
Z 
 . (33)

Hence, CSNR = −∞ dB means that X1 and X2 are uncorrelated and CSNR = ∞ dB
means that they are fully correlated. We use the term SNR when referring to the channel
SNR defined as 10 log10(P/σ2

w). As initial encoders we used uniform quantizers and for
the case of BSC the folded binary code [28] was used as initial codeword assignment.
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Figure 2: Encoder structures for systems with CSNR = 20 dB and R = 2
bits/sample, ε = 0 in (a) and R = 3 bits/sample, ε = 0.05 in (b). The
small dots in the background show a sample distribution of (X1, X2)
and the dashed lines show the boundaries for the quantization regions.
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4.1 Structure of the Codebook - BSC
In Figure 2 systems have been designed for CSNR = 20 dB and the resulting encoders are
illustrated for different bit error probabilities. Starting with Figure 1.2(a), where ε = 0 and
R = 2 bits per sample and source, a number of source data samples are marked by the
grayish distribution. These samples are spread out along the diagonal due to the correlation
between x1 and x2. In the plot the different quantization intervals for q1 and q2 are marked
by the dashed lines. The representation of codewords produced by the quantizers in the
different intervals are also marked. It is here interesting to note that many of the codewords
are used for more than one quantization region. For example the codeword i2 = 1 is used
for 3 separated intervals such that q2(x2) = 1 when x2 belongs (approximately) to the set
{(−1.7,−1.0) ∪ (0.4, 0.6) ∪ (1.5, 1.9)}. With information from only one of the channels
it is not possible to identify which of these different intervals x2 belongs to. However, with
help from i1 (or rather j1) this can be accomplished since i1 = 0 or 1 is highly likely when
x2 ∈ (−1.7,−1.0), i1 = 3 is highly likely when x2 ∈ (0.4, 0.6), and so on. Hence, i1 will
indicate which of the separated intervals x2 belongs to. In this way the distributed coding
is used to decrease the quantization distortion. It is noteworthy that the sets of separated
intervals are created by the design algorithm despite the fact that the initial encoders are
regular quantizers where all quantization regions are single intervals.

When the bit error probability increases the encoders will be more restrictive in using
all possible codewords since they will be more likely to be decoded incorrectly. In Figure
1.2(b) a system has been designed for ε = 0.05 and R = 3 bits per sample and source.
As can be seen only a subset of the codewords are now used by the encoders and these
codewords have been placed with an appropriate index assignment.

4.2 Structure of the Codebook - Gaussian Channel
In order to illustrate the characteristics of the resulting system for the Gaussian channel a
simple system with N = 8 has been designed and used for SNR = 10 dB and CSNR = 20
dB. The resulting quantizers are shown in Figure 1.3(a) and in Figure 1.3(b) it is illustrated
how the quantization indexes are mapped to the channel space.

Starting with Figure 1.3(a) we once again see that the codewords will be reused as
discussed in the previous section. See for instance the codeword i1 = 5 which is used
both when x1 belongs (approximately) to the set (−0.8,−0.3)∪ (1.7, 2.1). With help from
i2 (or rather r2) the decoder will be able to distinguish between these two intervals since
i2 = 2 or 3 is highly likely if x1 belongs to the first interval and otherwise i2 = 5 or 6 will
be highly likely.

Let us now consider what will happen when the source data is quantized by q1 and q2

and mapped to the signal space by f1 and f2 as described by (9). Both f1 and f2 uses
8–PAM, resulting in 64 possible combinations at the encoder output. However, many of
these combinations are very unlikely to occur and for the simulation conducted the occurred
outputs are marked by circles in Figure 1.3(b). Furthermore, when transmitting these output
values the channels will add noise to the outputs creating a distribution of (r1, r2) which is
indicated by the grayish distribution in Figure 1.3(b).

Finally, some extra source data values were created in Figure 1.3(a) where x1 = x2 =
x, hence σ2

Z = 0, and we let x increase from −∞ to ∞. These values are marked by
the line along the diagonal. The reason for adding these extra fully correlated values is
that studying how this line is mapped to the channel signal space will give insight in the
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space for a system designed and used for N = 8, SNR = 10 dB
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mapping procedure. By connecting the outputs created, when encoding this extra source
data, we see how the line is mapped to the channel signal space (marked by a dashed line
in Figure 1.3(b)). From this we note that, in general, samples far apart in the source signal
space are also far apart in the channel signal space and vice versa. The power constraint
will also focus the outputs in the area around the origin as much as possible in order to keep
down the power consumption.

In Figures 1.4(a)–1.4(b) we present two other illustrations of the channel space, this
time for N = 32. Figure 1.4(a) represents the case of high CSNR whereas Figure 1.4(b)
represents low CSNR. From, for instance, Figure 1.4(a) we can imagine an underlying
continuous curve (f̃1(x), f̃2(x)) which would be a good choice if we let N → ∞. Further-
more, the curves created by (f1(x), f2(x)) appear to, especially for the high CSNR case,
relate to what is often referred to as the bandwidth expansion problem mentioned already
in one of Shannon’s first papers [29]. This is the resulting problem when CSNR = ∞ dB,
i.e. x1 = x2, meaning that one is allowed to use a channel twice in order to transmit one
source sample. It is well know that optimal encoding functions f1 and f2 will be nonlinear
for this case, see e.g. [30, 31] and the references therein.

The connection between the bandwidth expansion problem and distributed source cod-
ing is an interesting insight and we draw the conclusion that if an analog system is to be
used for distributed source coding linear operations for f1 and f2 are not necessarily appro-
priate. We have elaborated on this further in [32]. It is interesting to note that the curves
(f1(x), f2(x)) are not necessarily continuous when N → ∞ which also seems to be indi-
cated by Figure 1.4(b).

Finally we comment on the fact that the number of used encoder outputs from f1 and
f2 are not the same. For instance, in Figure 1.3(b) f1 uses 8 encoder outputs whereas
f2 only uses 6. The curves (f1(x), f2(x)) created will have two properties, the first is
that the distance between different folds of the curve will be high enough to combat the
channel noise. The second property is that the created curves will place the most commonly
occurring encoder outputs in the center where the power consumption is low. Less common
encoder outputs will be placed further out and the curves will therefore grow outwards.
However, due to the power constraint the power consumption will at some stage become to
high and the algorithm will prevent the curve to grow any further. This will therefore cause
the encoders to use different numbers of outputs.

4.3 Performance Evaluation
We begin with evaluating a system designed for the BSC with R = 3 bits per source
sample, ε = 0.01 which is equivalent to a channel with SNR = 7.3 dB (using the inverse
of (6)) and CSNR = 13 dB. In Figure 5 we study the performance of the system (dashed
line) when the SNR is varied. We have also included the OPTA (solid line) as well as a
reference method (dotted line) in the plot. The reference method is traditional COSQ [18]
where two independent COSQ’s are designed for R = 3 bits per sample and SNR = 7.3
dB, hence the correlation is not taken into consideration in the design. At the design SNR
the gap to the OPTA curve is about 8 dB. Here it should be emphasized that achieving the
OPTA requires infinite block-lengths, while our system works without delay on a sample
by sample basis. Also, achieving OPTA will require that the system is optimized for each
specific SNR whereas our simulated system is designed for one particular SNR but used
for all simulated SNR’s. By comparing to the reference method we can see that the gain of
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Figure 5: Evaluating the effect of varying the SNR when CSNR = 13 dB for a
system designed for R = 3 bits per sample, SNR = 7.3 dB and CSNR
= 13 dB.
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Figure 6: Evaluating the effect of varying the CSNR when SNR = 7.3 dB for a
system designed for R = 3 bits per sample, SNR = 7.3 dB and CSNR
= 13 dB.

utilizing the source correlation in the encoders and the decoder is about 3 dB at the design
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SNR. When the SNR is increased above 10 dB the main contribution to the distortion comes
from quantization which is limited by R = 3 bits per source sample, increasing the SNR
above this point will therefore only have a small influence on the performance.

Next we keep the SNR fixed at 7.3 dB and look at the effect of a CSNR mismatch. That
is, we evaluate the performance of the same system as above, which is designed for CSNR
= 13 dB, when the true source correlation is varied. The result is shown in Figure 6 where
we can see that the system is quite sensitive to a too low CSNR whereas a higher CSNR
only gives a slight improvement in the performance. The designed system is however better
than the reference method as long as the CSNR is above 7 dB. The reference method will
not depend on the correlation and therefore has a constant performance.

In Figures 7–8 we present similar simulation results for the Gaussian channel. The
simulated system is the same system as shown in Figure 1.4(b) designed for N = 32, SNR
= 10 dB, CSNR = 13 dB and λ = 0.01. We have also here included the OPTA as well
as a reference method, traditional COSQ, in the plot. In Figure 7 we let the CSNR equal
13 dB, hence what the system is designed for, but we vary the true SNR in order to study
the effects of SNR mismatch. From the figure we see that in the area around SNR = 10
dB we are about 4 dB away from the OPTA (the additional figure is a magnification of the
region around SNR = 10 dB). Increasing the SNR from this point will naturally increase the
performance of OPTA and lowering the SNR will decrease the performance. It is therefore
interesting to note that the designed system is able to follow the OPTA curve with essentially
a constant 4 dB distance in the interval SNR ∈ [5 dB, 15 dB]. The system is hence robust
to a too low SNR and at the same time it is able to exploit a high SNR in order to increase
the performance. Comparing the system to the reference method we see that there is about
a 1 dB performance gain when the SNR is above 5 dB.

In Figure 8 we instead let SNR=10 dB and study the effect of a mismatch in CSNR.
Here it appears as the system is, just as in the BSC case, more sensitive to a too low CSNR.
It can tolerate some mismatch but the performance will quite soon start decreasing rapidly.
A too high CSNR only gives a slight improvement in performance and a saturation level is
reached after only a few dB increase. Hence, for a high CSNR the proposed method has the
better performance and vice versa.

5 Conclusions
A design algorithm for joint source–channel optimized distributed scalar quantizers is pre-
sented and evaluated. The resulting system works on a sample by sample basis yielding a
very low encoding complexity, at an insignificant delay. Due to the source correlation, the
resulting quantizers use the same codeword for several separated intervals in order to reduce
the quantization distortion. Furthermore, the resulting quantization indexes are mapped to
the channel signal space in such a way that source samples far from each other in the source
signal space are well separated also in the channel signal space, and vice versa. This gives
systems robust against channel SNR mismatch which was shown when comparing designed
systems to the optimal performance theoretically attainable. The proposed main application
of these quantizers is in low-complexity and energy-efficient wireless sensor nodes.
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Figure 7: Evaluating the effect of varying the SNR when CSNR = 13 dB for a
system designed for SNR = 10 dB and CSNR = 13 dB. The upper left
plot shows a magnification of the area around SNR = 10 dB.
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Abstract

The problem of designing simple and energy-efficient nonlinear distributed source–
channel codes is considered. By demonstrating similarities between this problem and the
problem of bandwidth expansion, a structure for source–channel codes is presented and
analyzed. Based on this analysis an understanding about desirable properties for such a
system is gained and used to produce an explicit source–channel code which is then ana-
lyzed and simulated. One of the main advantages of the proposed scheme is that it is imple-
mentable for many sources, contrary to most existing nonlinear distributed source–channel
coding systems.

1 Introduction
Wireless sensor networks are expected to play an important role in tomorrow’s sensing sys-
tems. One important property in these networks is that there may be a high correlation
between different sensor measurements due to high spatial density of sensor nodes. This
motivates distributed source and channel coding of correlated sources, as analyzed in for
instance [1–3], and optimal source–channel codes for this problem often require that non-
linear operations are carried out by the encoder on the source data (see e.g. [4, 5] for a case
where this is not the case).

The research in finding practical codes for distributed source and channel coding can
roughly be divided into two groups. The first contains work which considers nonlinear
source–channel codes, and has produced numerous papers, for instance [6, 7] leading to a
powerful, high delay, source coding algorithm termed DISCUS, which can be combined
with traditional channel codes in order to produce high performing source–channel codes,
see also [8–11]. On the other hand, [12, 13] use an alternative approach, with low delay, in
order to design nonlinear source–channel codes. The drawback with all these approaches
is that, although straightforward in theory, they are in general hard to implement for a large
number of sources. In fact, there are very few papers considering a case where more than
two correlated sources are involved.

This has motivated the research within the other group where analog linear source–
channel codes are used, see e.g. [14–16] and references therein. The use of linear codes



C2 NONLINEAR CODING AND ESTIMATION FOR CORRELATED DATA IN WIRELESS SENSOR NETWORKS

PSfrag replacements

...
...

...
...

s1(x1)

x

n1

n2

nk

x1

x2

xk

r1

w1

s2(x2)
r2

w2

sk(xk)
rk

wk

x̂

Figure 1: Structure of the system.

will in general lead to systems that are possible to optimize and implement for a large
number of correlated sources. The drawback is that the linear approach in many situations
is suboptimal. Hence, it should be possible to improve these systems by allowing nonlinear
operations.

Our main contribution in this paper is that we consider an approach for analog nonlinear
distributed source–channel coding, with better performance than linear codes, which can be
implemented in the case of a large number of sources.

2 Problem Formulation
Consider the problem illustrated in Figure 1. An analog, i.e. continuous-valued, random
source sample X with variance σ2

x is observed by k separate encoders (sensors) through the
noisy observations

xi = x + wi, 1 ≤ i ≤ k (1)

where the Wi’s are independent identically distributed (i.i.d.) zero mean Gaussian with vari-
ance σ2

w . Each encoder encodes its own observation xi by performing an analog mapping,
that is si : R → R, under the power constraint

E[si(Xi)
2] ≤ P. (2)

The encoded values,
s(x) , (s1(x1), s2(x2), . . . , sk(xk))T (3)

are transmitted over k orthogonal AWGN channels, created by using e.g. TDMA, FDMA
or CDMA, and the decoder estimates x based on the received values

r = s(x) + n (4)

where N is i.i.d. memoryless Gaussian distributed with covariance matrix σ2
nI . Hence, the

decoding is performed as
x̂ = x̂(r) (5)

and the objective is to minimize the expected mean square error (MSE) E[(X − X̂)2]. The
main focus of this paper is on how to design s(x).



3 DISCUSSION AND PROPOSED SCHEME C3

PSfrag replacements

s1(x)

s2(x)

n1 r1

s(x̂1)

s(x1)

n2

r2

s(x̂2)

s(x2)

Figure 2: x1 illustrates a ’small’ decoding error and x2 illustrates a ’large’ de-
coding error.

3 Discussion and Proposed Scheme
We will in Subsections 3.A–B discuss two important special cases of the problem setting
described in Figure 1. Understanding for these special cases leads to insight about how to
design the encoding function s(x) for the general case. Based on this insight we present
and analyze a structure for s(x) in Subsections 3.C–D. Finally, based on the derived results
we propose an explicit scheme for s(x) in Subsection 3.E.

3.1 σ2
w > 0 and σ2

n → 0

For the case when σ2
w > 0 and σ2

n → 0 the AWGN channels are approaching ideal,
i.e. noiseless, channels and ri will approach si(xi). This means that given the linear en-
coding strategy,

si(xi) = � P

σ2
x + σ2

w

xi, 1 ≤ i ≤ k, (6)

the decoder will get access to the noisy observations {xi}k
i=1 (since the channel is close to

perfect). Given these observations we could theoretically perform the best possible estima-
tion based on the noisy observations as given by the Cramer–Rao lower bound, see e.g. [17].
It is clear that there will be no way to obtain a better performance, since that would require
better sensor observations, and we can therefore conclude that the linear coding strategy
described above is approaching the optimal strategy when σ2

n → 0.

3.2 σ2
w = 0 and σ2

n > 0

In the case when σ2
w = 0 and σ2

n > 0 we will get xi = x ∀i which we will write as
s(x) = s(x). This problem is equivalent to the problem often referred to as the band-
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width expansion problem mentioned already in one of Shannon’s first papers [18], see
also [19–21] and the references therein. It is well known for this problem that when the
source is i.i.d. zero-mean Gaussian and k = 1, linear encoding is optimal under the as-
sumption that the decoder knows the source and noise variances. However, when k > 1
this is no longer true and nonlinear encoding can have superior performance compared to
linear encoding strategies, see e.g. [22]. One of the reasons for this is that a linear encoding
function s(x) uses only a one dimensional subspace of the available channel space. More
efficient mappings would use a higher number of the available channel space dimensions.
An example of this is illustrated in Figure 2 where k = 2 is assumed. By using nonlinear
encoding functions, illustrated by the solid ’S–shaped’ curve s(x), we are able to better fill
the channel space than when using linear encoding functions, represented by the dashed
curve. A longer curve essentially means a higher resolution when estimating x as long as
we decode to the right fold of the curve, illustrated by sample x1 in the figure. However,
decreasing the SNR will at some point result in that different folds of the curve will lie too
close to each other and the decoder will start making large decoding errors, illustrated by
sample x2 in the figure. Decreasing the SNR below this threshold will therefore signifi-
cantly deteriorate the performance.

3.3 Objective
Based on the intuition from these two special cases we can conclude that for the problem
considered in this paper, where both σ2

w > 0 and σ2
n > 0, good encoding functions s(x)

should take both these aspects into consideration. We illustrate the use of a nonlinear en-
coding function s(x) in Figure 3. Again, s(x) will be a point on the ’S–shaped’ curve.
However, we are not encoding x but x which will create the point s(x). Hence, the distri-
bution of points s(x) will be spread around the curve, as illustrated by the dotted region, and
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Figure 3: Using a nonlinear encoding function s(x). The dotted region illus-
trates the distribution of the encoded values s(x).



3 DISCUSSION AND PROPOSED SCHEME C5

the amount of spread will depend on the observation noise variance σ2
w . When the encoded

value is transmitted over the channels we also get a noise contribution n from the channel
and based on the received r the decoder creates the estimate x̂ corresponding to some s(x̂).
Our objective in this paper is to analyze and design nonlinear encoding functions s(x) of
the type illustrated in Figure 3.

3.4 Analysis
In order to gain understanding for the use of nonlinear encoding functions s(x) we make
a performance analysis under the assumptions that σ2

w and σ2
n are small. We also assume,

in this subsection, that all encoding functions si(xi) are continuous and differentiable and
that the curve s(x) is appropriately designed such that no large decoding errors occur under
the assumed noise variances.

Let us start by studying a certain encoded observation x and the resulting estimate
x̂ = x+z, with z representing the estimation error. Under the above assumptions, i.e. small
noise variances, also z will be small and hence

s(x̂) = s(x + z) ≈ s(x) + zs′(x). (7)

where

s
′(x) , � d

dx
s1(x),

d
dx

s2(x), . . . ,
d

dx
sk(x) 
 T

. (8)

Now consider the decoder. It is well known that in order to minimize the MSE the
decoder should be implemented as

x̂(r) = E[X|r]. (9)

This function will however, in general, be difficult to implement. We will therefore consider
the suboptimal maximum likelihood (ML) decoder. Since σ2

w is small, s(x) can be linearly
approximated as

s(x) ≈ s(x) + diag(s′(x))w (10)

which gives
r = s(x) + n ≈ s(x) + diag(s′(x))w + n. (11)

We approximate1 the ML decoder as

x̂(r) = arg max
x

p(r|x) ≈ arg min
x

‖s(x) − r‖2 (12)

where p(·|·) denotes the transition pdf from x to r. Hence, the decoding function corre-
sponds to decoding r to the closest point on the curve s(x̂). However, for small values of
|x − x̂| the curve s(x̂) is approximately linear and parallel to s′(x). This means that the
decoder will remove the noise contributions orthogonal to s′(x) and we get

s(x̂) ≈ s(x) +
(diag(s′(x))w + n) · s′(x)

‖s′(x)‖
s′(x)

‖s′(x)‖ (13)

1The true ML decoder will be difficult to analyze since the variances of the resulting noise terms in
(11) will depend on x.
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where the dot product describes the projection of the added noise onto the vector s′(x).
Expanding the dot product we get

(diag(s′(x))w + n) · s′(x) = (diag(s′(x))w) · s′(x) + n · s′(x) , w + n (14)

where

W ∼ N (0, σ2
w

k�
i=1

s′i(x)4)

N ∼ N (0, σ2
n

k�
i=1

s′i(x)2).

From (7) and (13) we identify

z ≈ w + n

‖s′(x)‖2
(15)

and hence

E[(x − X̂)2] = E[Z2|x] ≈ E[W 2|x]

‖s′(x)‖4
+

E[N2|x]

‖s′(x)‖4
= σ2

w � k

i=1 s′i(x)4

‖s′(x)‖4
+ σ2

n

1

‖s′(x)‖2
.

(16)

From this we conclude

E[(X − X̂)2] ≈
�

f(x) � σ2
w � k

i=1 s′i(x)4

‖s′(x)‖4
+ σ2

n

1

‖s′(x)‖2 � dx (17)

where f(x) is the pdf of x.
The second term in (17) is the MSE contribution from the channel noise. (This term

was also derived in [23] for the bandwidth expansion case.) It tells us that we should aim
for stretching the curve as much as possible, like stretching a rubber band, keeping in mind
the constraint (2) at the same time as we also keep a high enough distance between different
folds of the curve preventing large decoding errors. In order to stretch the curve it needs to
turn in different directions which occurs when s′i(x) 6= s′j(x) for some i 6= j. If we instead
study the first part of (17), which is the MSE contribution from the observation noise, it is
minimized when

∂

∂s′I(x) � � k

i=1 s′i(x)4

‖s′(x)‖4 � = 0 (18)

for all I . By deriving this partial derivative it is straightforward to show that there is a global
minimum at

s′I(x) = ± � � k

i=1 s′i(x)4� k

i=1 s′i(x)2
. (19)

Neglecting the ±–sign, which is of no importance here, this is only true when s′1(x) =
s′2(x) = · · · = s′k(x). This indicates a linear system.

Hence, from (17) we understand the tradeoff between optimizing the system for being
robust to the channel noise and for being robust to the observation noise: If we want to
combat the channel noise we should create nonlinear curves s(x). On the other hand, if we
want to combat the observation noise linear encoding functions will be more appropriate.
(This is also clearly visible from the results in [13].)
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3.5 Proposed Scheme
Based on the analysis in Section 3.4 we concluded that linear functions s(x) are good with
respect to the observation noise but inefficient with respect to the channel noise. Therefore,
in order to produce a system which is able to handle both observation and channel noise,
we propose a piecewise linear encoding function s(x) as follows

si(xi) = � αxi 1 ≤ i ≤ k0

α(xi − ∆  xi

∆ ! ) k0 < i ≤ k
(20)

where b·e denotes rounding to the nearest integer and α will control the power usage.
Hence, we allow noncontinuous and nondifferentiable functions which was not the case
in the analysis. The reason is that this results in a system where s′1(x) = s′2(x) = · · · =
s′k(x), except at the discontinuities, which is desirable with respect to the observation noise.
At the same time we get a nonlinear system, better able to use the available channel space,
which is desirable with respect to the channel noise. The drawback is that the approximation
in (11) is violated making the decoder (12) inefficient. We therefore modify the decoding
function as follows:

1. Create the ML estimate of x based on the linear encoding functions:

x̂k0 =
1

k0

k0�
i=1

ri

α
. (21)

2. Assume that |x̂k0 −xi −ni/α| ≤ ∆/2 for k0 < i ≤ k and create the ML estimates

x̂i(ri) = arg min
xi " (si(xi) − ri)

2|xi ∈ {|x̂k0 − xi| ≤ ∆/2} # . (22)

This function tries to predict the removed part ∆  xi

∆ ! from (20) based on the derived
x̂k0 . The operation is illustrated in in Figure 4 for a few examples.

3. Based on this, create the final estimate of x as

x̂ =
1

k �� k0�
i=1

ri

α
+

k�
i=k0+1

x̂i(ri) �� . (23)

Let us now analyze the power consumption. Note that the power used by the nonlinear
encoding functions will be less than the power used by the linear encoding functions. We
define the normalized average power consumption as

P (∆, k0) =
1

kα2 " k0E[sI(XI)
2] + (k − k0)E[sJ(XJ)2] # (24)

where we assume I ≤ k0 < J ≤ k. (The reason for dividing with α2 is that we want
P (∆, k0) to represent the change in power consumption due to ∆ and k0 and not due to
the scaling factor α.) By performing timesharing the sensors could use the linear encoding
function for a fraction k0/k of the available time slots and then use the nonlinear encoding
functions the rest of the time. Hence, P (∆, k0) can be seen as the average power used by
each sensor when α = 1.
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Figure 4: Illustration of the decoding function for the nonlinear encoding func-
tion si(x). The decoder assumes that |x̂k0 − xi − ni/α| ≤ ∆/2 and
therefore limits the estimate x̂i to lie within this interval, illustrated
with the white area in the figure. Three examples are shown, for x1

the assumption made is correct and the estimation of the nonlinear
part ∆  xi

∆ ! is correct. For x2 the assumption made is incorrect and
the estimated nonlinear part will be wrong. Finally, for x3 the as-
sumption is actually wrong but the estimated nonlinear part will still
be decoded correctly resulting in x̂3 = x3.

4 Performance Analysis

It is clear that the performance of the system proposed in (20), given a certain P , will
depend on ∆ and k0. In order to optimize these parameters we will here derive the MSE as
a function of ∆ and k0 under the assumption that x is i.i.d. zero–mean Gaussian. Hence,
evaluating this function for different choices of ∆ and k0 will provide a possibility to design
the system for a certain set of noise variances.

For a given ∆ and k0 we should choose

α = � P

P (∆, k0)
(25)

in order to get the power consumption P . In order to simplify the following equations we
will instead study the equivalent system where α = 1 and the channel noise variance equals
P (∆, k0)/Pσ2

n.
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Given a certain r and x the decoder in (23) will produce

x̂(r,x) ≈ 1

k

k�
i=1

(xi + ni)$ %�& '
,x̂a

+

k�
i=k0+1

∆

k ( x̂k0 − xi − ni

∆ )$ %*& '
,x̂b

(26)

where x̂b is a penalty term arising if |x̂k0 − xi − ni| > ∆/2 meaning that the assumption
made in (22) is incorrect. This situation is illustrated with sample x2 in Figure 4. The
reason for using an approximation sign in (26) is the kind of situation illustrated by sample
x3 in Figure 4. For this example |x̂k0 −xi −ni| > ∆/2 is true but the estimated nonlinear
part is still correct. Hence, in some specific cases the decoder (23) will perform better than
what is described by (26).

For the expected MSE we get

MSE(∆, k0) = E[(X − X̂)2] = E[(X − X̂a − X̂b)
2]

= E[(X − X̂a)2] + E[(X̂b)
2] + 2E[(X − X̂a)X̂b] (27)

where we directly see

E[(X − X̂a)2] =
σ2

w + P (∆, k0)/Pσ2
n

k
. (28)

Here we see the role played by ∆ and k0: decreasing ∆ and/or k0 will decrease P (∆, k0)
and hence lower the effective channel noise variance. At the same time we can expect the
second term in (27) to increase since the assumption made in (22) will get more likely to be
incorrect. For the second term we get

E[X̂2
b ] = (k − k0)

∆2

k2 � E �,+ X̂k0 − Xi − Ni

∆ - 2 �
+(k − k0 − 1)E �.+ X̂k0 − Xi − Ni

∆ - + X̂k0 − Xj − Nj

∆ - �/�
= (k − k0)

∆2

k2 � E � ( ξi

∆ ) 2 � + (k − k0 − 1)E 0 ( ξi

∆ )1( ξj

∆ ).2 � (29)

where i 6= j, ξi , X̂k0 − Xi − Ni and

X̂k0 − Xi − Ni ∼ N (0, (
1

k0
+ 1)(σ2

w + P (∆, k0)/Pσ2
n)). (30)

It is straightforward to calculate the first expected value in (29) by using the Q-function. For
the second expected value we need to consider that the resulting Gaussian terms ξi and ξj

are correlated since they both contain x̂k0 . The expression can be evaluated numerically or
otherwise well approximated by approximating the jointly Gaussian distribution f(ξi, ξj)
as a Gaussian Mixture

f(ξi, ξj) ≈ 1

4πσ2
e
−

(ξ1−µ)2

2σ2 e
−

(ξ2−µ)2

2σ2 +
1

4πσ2
e
−

(ξ1+µ)2

2σ2 e
−

(ξ2+µ)2

2σ2 (31)
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where σ2 = ( 1
k0

+ 1)(σ2
w + P (∆, k0)/Pσ2

n) and µ = � σ2/k0. With this approximation
also the second expected value in (29) is straightforward to derive using the Q-function.

Finally, in the appendix we show that

E[(X − X̂a)X̂b] = 0. (32)

5 Simulations
In Figures 5–6 we present results from three simulations. The purpose of the two first
simulations is to investigate the behavior and performance of the proposed code for the
two special cases discussed in Section 3. Finally, the third simulation deals with the more
general situation which is the main focus of this paper. We will use the linear system (6) as
reference system.

In all the simulations we used a zero-mean i.i.d. Gaussian distribution for X with vari-
ance σ2

x and without loss of generality we choose σ2
x + σ2

w = 1. We measure the per-
formance in SDR , (σ2

x + σ2
w)/E[(X − X̂)2] versus SNR , P/σ2

n and the correlation
is measured as ρ , σ2

x/σ2
w . In order to design the systems for different noise levels we

have used (27)–(32) to optimize the choices of ∆ and k0. Since the derivation of (27) is
fast, when using the suggested approximations, the optimization is done by simply deriving
MSE(∆, k0) for a large number of combinations (∆, k0). We then choose the best one out
of these. The different choices are shown in Table 1.

The first simulation is shown in Figure 1.5(a). This system has been optimized for an
environment corresponding to the case described in Section 3.1, more precisely, ρ = 9.5
dB and SNR = 70 dB. Our discussion concluded that a linear system would be efficient for
this case, since the channel is close to perfect, and the search over MSE(∆, k0) did in fact
produce a linear system, i.e. k0 = k. In the simulation we let ρ = 9.5 dB, hence what
the system was designed for, but we vary the SNR in order to study the effects of SNR
mismatch. We present results for two cases: k = 10 and k = 100. The performance of
the linear system is shown by the dashed lines and the performance of the proposed scheme
s(x) is shown by the solid lines. Since the designed system here is linear the dashed and
solid lines will naturally coincide. Finally, MSE(∆, k0) is evaluated for a few points and
illustrated by the crosses. As can be seen, the approximations made in (27)–(32) produce a
good approximation of the true MSE.

k SNR (dB) ρ (dB) ∆ k0

10 70 9.5 ∞ 10
100 70 9.5 ∞ 100
10 10 70 1.18 1

100 10 70 0.50 1
10 20 70 0.36 1

100 20 70 0.12 1
10 10 20 1.56 2

100 10 20 1.08 4

Table 1: The different choices of (∆, k0).
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Figure 5: Systems for k = 10 and k = 100 designed for (a) ρ = 9.5dB and
SNR= 70dB (b) ρ = 70dB and SNR= 10dB as well as SNR= 20dB
(c) ρ = 20 dB and SNR= 10dB. In all simulations the ’true’ ρ has
been used but the SNR is varied.
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Figure 6: Systems for k = 10 and k = 100 designed for ρ = 20 dB and
SNR= 10dB. In both simulations the ’true’ SNR has been used but
the ρ is varied.

In Figure 1.5(b) the systems have been optimized for an environment corresponding to
the case described in Section 3.2, i.e. close to bandwidth expansion which occurs when ρ
has a high value. We have here included two designs for ρ = 70 dB, namely SNR = 10 dB
and SNR = 20 dB. Hence, one of the systems is optimized for a better channel meaning
that different folds of s(x) should be packed closer to each other. This will give a better
performance for high SNR’s but the code will also break down faster when the SNR is
decreased. This is clearly visible in the figure where we again simulate for the designed
ρ but vary the SNR. The linear systems represented by the dashed curves are the better
systems only for low SNR’s.

Finally, we consider the, for this paper, most interesting case where we optimize a
system for both observation and channel noise. In Figure 1.5(c) we have designed systems
for ρ = 20 dB and SNR = 10 dB. Also here we simulate for the designed ρ but we vary the
SNR. It is clear that there will be a large gain over the linear system except at low SNR’s,
where the source–channel code breaks down, and at high SNR’s, where there is no gain in
using nonlinear codes. In Figure 6 we instead evaluate the effects of correlation mismatch
for the same system. That is, we evaluate the performance of the same system as above but
this time we simulate for the designed SNR and let ρ vary. As can be seen the system is quite
sensitive to a too low ρ whereas a higher ρ only gives a slight improvement in performance.

6 Conclusions
We have explained the similarities between the problem of distributed source–channel cod-
ing and the problem of bandwidth expansion. Based on this we have presented and analyzed
a suitable structure for distributed source–channel codes. This analysis gives us insight into
desirable properties for such a system. Based on this understanding an explicit code is pre-
sented, analyzed and simulated. The code is implementable for many sources, contrary to
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most existing schemes, and it is concluded that a large gain is obtained from the nonlinear
code compared to the linear code.

Appendix
We will here show that the third term in (27) equals 0. When doing so we will use the
variable

Ui = Wi + Ni

with pdf f(ui) and variance σ2
u = σ2

w + P (∆, k0)/Pσ2
n. Since both Wi and Ni are

i.i.d. Gaussian also Ui will naturally be i.i.d. Gaussian. We will also use the variables I and
J such that I ≤ k0 < J . We get

E[(X − X̂a)X̂b] = E �� � X − 1

k

k�
i=1

(Xi + Ni) � �� k�
j=k0+1

∆

k
+ X̂k0 − Xj − Nj

∆ - �� ��
=

∆

k2
E �� � k�

i=1

Ui � �� k�
j=k0+1

+ 1
k0 � k0

i=1 Ui − Uj

∆ - �� ��
=

∆(k − k0)

k2
E � � k�

i=1

Ui � + 1
k0 � k0

i=1 Ui − UJ

∆ - �
=

∆(k − k0)

k2 � k0E � UI + 1
k0 � k0

i=1 Ui − UJ

∆ - � +

E � UJ + 1
k0 � k0

i=1 Ui − UJ

∆ - �/�
=

∆(k − k0)

k2 � k0E � UI + UI

k0
+ ξ1

∆ - � − E 0 UJ ( UJ + ξ2

∆ ),2 �
(33)

where

ξ1 ∼ N � 0, � k0 − 1

k2
0

+ 1 
 σ2
u 


ξ2 ∼ N � 0,
1

k0
σ2

u 
 .

Studying the first resulting expected value in (33), with the expectation taken over UI , we
get

E � UI + UI

k0
+ ξ1

∆ - � =

∞�
i=−∞

i

� k0(i∆+ ∆
2
−ξ1)

k0(i∆−∆
2
−ξ1)

uIf(uI)duI

= � σ2
u

2π

k=∞�
k=−∞

e
−

k2
0(i∆−

∆
2

−ξ1)2

2σ2
u . (34)
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The second expected value in (33) can be derived in the same manner and produces a similar
result. This gives

E[(X − X̂a)X̂b] =
∆(k − k0)

k2
� σ2

u

2π

∞�
i=−∞

E � k0e
−

k2
0(i∆−

∆
2

−ξ1)2

2σ2
u − e

−
(i∆−

∆
2

−ξ2)2

2σ2
u �

(35)
where the expectation is on ξ1 and ξ2. Straightforward derivations, for a general case cov-
ering both the expected values in (35), gives

E 3 e−γ(β−ξ)2 4 =

� ∞
−∞

1� 2πσ2
ξ

e(−γ(β−ξ)2)e
− ξ2

2σ2
ξ dξ =

e
− γβ2

2γσ2
ξ
+1� 2γσ2

ξ + 1
(36)

and by substituting γ, β and σ2
ξ with the corresponding coefficients from (35), followed by

a few manipulations, it turns out that

E � k0e
−

k2
0(i∆−

∆
2

−ξ1)2

2σ2
u � = E � e− (i∆−

∆
2

−ξ2)2

2σ2
u � . (37)

Therefore, we can conclude, from (35), that

E[(X − X̂a)X̂b] = 0. (38)
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Sorting–Based Multiple Description Quantization

Niklas Wernersson and Mikael Skoglund

Abstract

We introduce a new method for multiple description quantization (MDQ), based on
sorting a frame of samples and transmitting, as side-information/redundancy, an index that
describes the resulting permutation. The sorting-based approach has a similar performance
to multiple description scalar quantization and a flexible structure, providing straightfor-
ward implementation of multi-dimensional MDQ.

1 Introduction
Packet networks have gained in importance in recent years, for instance by the wide-spread
use and importance of the Internet. Unfortunately, packet losses in these systems can in
general not be neglected and this has to be taken into account in robust source–channel
coding for multimedia communications. One way to deal with packet losses is to use mul-
tiple description coding/quantization where the objective is to code one source of data into
multiple bitstreams. The coding is done in such a way that multiple levels of quality is
achieved. This means that even if one or a few of the bitstreams are lost, the received bits
should make it possible to get an approximated version of the original data. MDQ will
therefore enhance the reliability of the communication system. Multiple-description coding
has received considerable attention, see e.g. [1–5].

In this letter we present an MDQ method which uses sorting in the transmitter in order
to produce a low-quality description of a source frame. This description, if received, can
be used in the receiver either to produce a low-quality estimate or otherwise to improve an
existing estimate based on other descriptions.

The letter is organized as follows. In Section 2 sorting-based MDQ is introduced. In
Section 3 a basic analysis of the the new method is presented. Finally, we provide numerical
results and conclusions in Sections 4–5.

2 Sorting-Based MDQ
The proposed method is illustrated in Figure 1. Consider independent identically distributed
(i.i.d) random variables X1, X2, . . . , XM , Xi ∈ R, with probability density function p(x)
of support [L, U ], −∞ ≤ L < U ≤ ∞. These variables are to be quantized and transmitted
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Figure 1: Sorting-based MDQ. A frame of random source samples are sorted
in the transmitter. Quantized versions of these observations are then
transmitted over different channels, as well as the index I containing
information about how the observations were sorted. The received
information is then used to estimate the original observations.

over a network using M + r packets. We assume that the transmitted packets will be
independently lost during the transmission meaning that it may be necessary to reconstruct
the original data from only a subset of the transmitted packets. The suggested approach
is then based on sorting1 the observed random variables in the transmitter. The sorting
procedure will rearrange a copy of the original values in ascending order. With IM =
{1, . . . , M}, let π : IM → IM describe the corresponding permutation of the indices
1, 2, . . . , M such that

Xπ(1) ≤ Xπ(2) ≤ · · · ≤ Xπ(M). (1)

That is, π(1) denotes the original index of the smallest Xi, etc. There are M ! possible
permutations. Let I ∈ {1, . . . , M !} be an integer that uniquely describes π, see e.g. [6] for
details on how to determine such an index based on π. The index I can be represented in
binary form using

f(M) & log2(M !) (2)

bits (with “ & ” meaning “close to from above”). After sorting, X1, X2, .., XM are quan-
tized using M identical memoryless scalar quantizers. Letting Rj = [lj , uj), L ≤ lj <
uj ≤ U , denote the jth quantization region, the encoding produces the indices j1, . . . , jM

as Xi ∈ Rj ⇒ ji = j. These indices are then transmitted over M channels together with
r identical copies of the index I , using r additional channels.

Let X̂i be the reconstructed version of Xi. In this letter we assume that the mean–
square error (MSE), E[(Xi − X̂i)

2], is used as a distortion measure. We will also as-
sume that the different channels independently lose descriptors (packets) with probability
p. Hence, due to the imperfections in the network some of the transmitted descriptors may
be lost which leads to essentially four different cases when computing X̂π(i):

1There are numerous sorting algorithms in the literature which can be used in the transmitter, for
instance Heap sort, having an O(M log M) complexity which, for our application, is tolerable.
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Figure 2: Three different cases that may occur due to packet losses. Quantiza-
tion intervals are illustrated and possible intervals for some Xi’s are
indicated based on the received indices.

1) At least the three descriptors jπ(i−1), jπ(i), jπ(i+1) as well as the sorting index I

received. In this case (Figure 2(a)) X̂π(i) = E[Xπ(i)|jπ(i)] constitutes a possible estimate.
However, if two or more of the received j–values are equal, the index I will contain infor-
mation that can be utilized to improve the estimate. Assume for instance that jπ(s+1) =
jπ(s+2) = . . . = jπ(s+z) = j, for some s and z such that 1 ≤ s + 1 < s + z ≤ M ,
meaning that Xπ(s+1) ≤ · · · ≤ Xπ(s+z). Hence, in order to minimize the MSE we should
use

X̂π(s+m) = E[Xπ(s+m)|jπ(s+1), . . . , jπ(s+z), I]

= E[Xπ(s+m)|lj ≤ Xπ(s+1) ≤ · · · ≤ Xπ(s+z) < uj ] (3)

for all m ∈ {1, . . . , z}. The same situation occurs when any subset of the descriptors
jπ(s+2), . . . , jπ(s+z−1) is lost, since we based on I and the received j–values will be able
to conclude that jπ(s+1) = . . . = jπ(s+z).

2) At least one of the descriptors jπ(i−1), jπ(i), jπ(i+1) lost and I received. Here jπ(i)

is either lost (Figure 2(b)) or adjacent to a lost descriptor (Figure 2(c)). The information
in I together with the received j–values can be exploited to produce X̂π(i). Assume for
instance that a number w of the j–values are lost, corresponding to the w consecutive
source samples Xπ(s+1), . . . , Xπ(s+w), for some s, and assuming jπ(s−1) < jπ(s) and
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jπ(s+w+1) < jπ(s+w+2), for simplicity. The estimate X̂π(s+m) can then be computed as

X̂π(s+m) =E[Xπ(s+m)|jπ(s), jπ(s+w+1), I]

=E[Xπ(s+m)|ljπ(s)
≤ Xπ(s) ≤ Xπ(s+1) ≤ · · ·

· · · ≤ Xπ(s+w) ≤ Xπ(s+w+1) < ujπ(s+w+1)
,

ljπ(s)
≤ Xπ(s) < ujπ(s)

, ljπ(s+w+1)
≤ Xπ(s+w+1) < ujπ(s+w+1)

] (4)

for m = 0, . . . , w + 1. Note that this formula is used also for m = 0 and m = w + 1
corresponding to received j–values. However, three special cases have to be considered,
leading to modifications. These occur when s + 1 = 1 and/or s + w = M meaning that no
lower/upper bound of the lost sequence is received, in which case we need to use L and/or
U to bound the sequence. If s + 1 = 1 we get

X̂π(m) = E[Xπ(m)|L ≤ Xπ(1) ≤ · · · ≤ Xπ(w) ≤ Xπ(w+1) < ujπ(w+1)
,

ljπ(w+1)
≤ Xπ(w+1) < ujπ(w+1)

] (5)

for m = 1, . . . , w + 1. Similarly, if s + w = M

X̂π(s+m) = E[Xπ(s+m)|ljπ(s)
≤ Xπ(s) ≤ · · · ≤ Xπ(M) ≤ U, ljπ(s)

≤ Xπ(s) < ujπ(s)
]

(6)

for m = 0, . . . , w. If both cases occur simultaneously we will get a similar formula to (3),
where the source data are bounded by L and U and the index I alone will give a description
of the sequence {Xi}M

i=1.
3) The descriptor ji received and I lost. Here no additional information about Xi is

received, so we use
X̂i = E[Xi|ji]. (7)

4) Both ji and I lost. In this case we do not receive any information at all about Xi,
hence we use

X̂i = E[Xi]. (8)

We note here that the structure proposed in Figure 1 transmits r identical copies of I ,
while better performance can actually be obtained for r > 1 if the coordinate system of the
source data is rotated before producing each copy of I , resulting in I1 6= I2 6= . . . 6= Ir .
These indices, if received, can be used jointly to produce a better descriptor. In this letter,
designing such rotations is however left as a topic for future work.

3 Analysis
Here we will further analyze the reconstruction formulas (3)–(4), under the assumption
that Xi is uniformly distributed on [L, U ] = [0, 1]. We start by expanding (3) assuming
a number z of the X–values are quantized to the same quantization cell, with index j. A
uniform distribution gives

X̂π(s+m) = E[Xπ(s+m)|lj ≤ Xπ(s+1) ≤ · · · ≤ Xπ(s+z) < uj ] = lj +
m

z + 1
(uj − lj)

(9)
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for all m ∈ {1, . . . , z}, stating the quite intuitive result that the reconstruction points should
be spread out with an equal distance on the interval bounded by the jth quantization region.
For the expression (4) we get

X̂π(s+m) = E[Xπ(s+m)|jπ(s), jπ(s+w+1), I] = ljπ(s)
+

K
(m + 1)(1 − (1 − u)w+3 − lw+3 + (l − u)w+3)

1 − (1 − u)(w+2) − l(w+2) + (l − u)(w+2)
+

K
u(w + 3)((l − u)(w+2) − (1 − u)(w+2))

1 − (1 − u)(w+2) − l(w+2) + (l − u)(w+2)
,

where K =
ujπ(s+w+1)

− ljπ(s)

w + 3
, u =

ujπ(s)
− ljπ(s)

ujπ(s+w+1)
− ljπ(s)

, l =
ljπ(s+w+1)

− ljπ(s)

ujπ(s+w+1)
− ljπ(s)

(10)

for m = 0, . . . , w + 1, assuming w consecutive descriptors have been lost. In a similar
manner we get

X̂π(m) = E[Xπ(m)|jπ(w+1), I]

=
(ujπ(w+1)

)

w + 2

m(1 − (ljπ(w+1)
/ujπ(w+1)

)w+2)

1 − (ljπ(w+1)
/ujπ(w+1)

)w+1
, for m = 1, . . . , w + 1

(11)

X̂π(s+m) = E[Xπ(s+m)|jπ(s), I]

= ljπ(s)
+

(1 − ljπ(s)
)

w + 2

(m + 1)(1 − (1 − u)w+2) − u(w + 2)(1 − u)w+1

1 − (1 − u)w+1

where u =
ujπ(s)

− ljπ(s)

1 − ljπ(s)

for m = 0, . . . , w (12)

from (5) and (6), corresponding to the cases when we do not receive any descriptors pro-
ducing a lower/upper limit for the lost sequence.

We also introduce a restriction on the rate RX that can be used per quantizer. Let R
denote the total rate per symbol Xi. In the case M = 1 and no sorting index, we would
get RX = R. However, increasing M and transmitting the sorting index will cost an extra
f(M), from (2), bits per M source samples. Hence, fixing the total rate per transmitted
symbol we require the quantizers to restrict their rate to

RX = R − M−1 f(M). (13)

From (2)–(13) a closed-form analytical expression for the MSE when using sorting-
based MDQ for a uniform source distribution can be derived, as shown in the appendix.
The MSE will depend on 4 parameters, namely r – the retransmission index, M – the frame
size, p – the packet loss probability and finally R – the rate per symbol. Using this formula,
assuming R fixed and p known, we can optimize the choice of (M, r).

4 Numerical Results
We investigate the performance of sorting-based MDQ for i.i.d uniform Xi’s by compar-
ing to two other methods: 1) A scheme based on forward error correction (FEC) using
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Figure 3: We compare sorting-based MDQ (solid line), MDS coding

(dashed/dot), MDSQ (dashed) and an uncoded system (small dots).
The circles show simulated results of a sorting-based MDQ system,
coinciding with the analytical curve. We also illustrate the perfor-
mance of sorting-based MDQ when the sorting index is transmitted
over an error–free channel (larger dots). The systems are optimized
for R = 8 and p = 0.002 (giving (M, r) = (7, 1) for sorting–based
MDQ).

maximum distance separable (MDS) codes [7] (MDS codes have the maximum possible
minimum distance between codewords). In order to make the comparison fair we required
the FEC to produce M + r descriptors when encoding k Xi’s, that is M + r channels are
used. Such an MDS code will be able to correct M + r−k losses. Reference [8] presents a
formula to calculate an approximate value of the MSE when a given number of descriptors
are lost, in a system with scalar quantization and FEC based on an MDS code. This ap-
plies directly to our setup, and can easily be extended to give an analytical MSE for a given
packet loss probability, p; 2) We also compare to a practical MDQ system, namely multiple
description scalar quantization (MDSQ) [1]. This method will use fewer channels than the
proposed method but on the other hand it has a higher design complexity. In Figures 3–4 the
different systems are compared when optimized 2 for different loss probabilities and R = 8.
In Figure 3 the systems are optimized for p = 0.002 and in Figure 4 for p = 0.01. Per-
formance is studied by plotting the signal-to-distortion ratio (SDR), E[X2]/E[(X − X̂)2],
versus p. Magnified versions of the plots are also included to show the region with low loss
probability in more detail. The solid line shows the performance of sorting-based MDQ
based on the analytical formula (14) presented in the appendix. The circles are from a sim-

2For the MDS code the best k is found. For sorting-based MDQ (14) is minimized. However,
since MDSQ is specified by the two design parameters n ∈ {0, . . . , 2

R
2 − 1} and λ ∈ R

+, there
are an infinite number of possible systems. We designed all possible combinations of n and λ ∈
{0, 0.001, 0.01, 0.1, 1, 10, 100, 1000} corresponding to a wide range of systems with no protection
to high protection. The best of these was chosen.
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Figure 4: We compare sorting-based MDQ (solid line), MDS coding
(dashed/dot), MDSQ (dashed) and an uncoded system (small dots).
The circles show simulated results of a sorting-based MDQ system,
coinciding with the analytical curve. We also illustrate the perfor-
mance of sorting-based MDQ when the sorting index is transmitted
over an error–free channel (larger dots). The systems are optimized
for R = 8 and p = 0.01 (giving (M, r) = (12, 1)) for sorting–based
MDQ.

ulated version of this system, and as shown these coincide with the curve for the analytical
expression. The dash/dotted line shows the performance of the FEC/MDS-based scheme.
This latter system outperforms the other systems in the region where they were optimized.
It should however be pointed out that this is a theoretical result assuming we have access
to a certain MDS code, finding this code may however be a nontrivial task [7]. The dashed
line corresponds to MDSQ which has a similar performance to the proposed method. As
a reference, the performance of a system using no channel coding is also evaluated, cor-
responding to M = 1 and RX = R for sorting-based MDQ, as shown by the (lower)
dotted line. Finally, in order to study further how I impacts the performance, we also eval-
uate a sorting-based MDQ system where the sorting index I is assumed to be transmitted
over an error-free channel, that is, the probability of losing the index I is 0. This system’s
performance is shown by the (upper) dotted line.

We are also interested in further exploring the effect of using the analytical expression
(14) when choosing M and r. This is done in Figure 5, where the solid line represents
the performance when the choice of (M, r) has been optimized for each loss probability.
This system is compared to the same sorting-based MDQ system as in Figure 4 (dashed
line), as well as the system without any channel coding (dotted line). It is clear that the
choice of (M, r) affects the performance. The optimized choices of (M, r) are also shown
in Table 1 for a few different loss probabilities. As can be seen from the table, for low loss
probabilities r = 1 and M is fairly small. When the loss probability is increased the optimal
M increases. At some stage, however, it becomes more beneficial to choose a smaller M
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Figure 5: The performance of a sorting-based MDQ system (solid line) where

the choice of (M, r) is optimized, a sorting-based MDQ system using
the fixed size M = 12 and r = 1 (dashed line) and a system using
no channel coding (dotted line).

and instead transmit I twice, i.e. r = 2, which occurs at p = 0.088. This point is easy to
distinguish in Figure 5.

Table 1: The optimal (M, r) for different loss probabilities.

p 0 0.001 0.002 0.003 · · · 0.087 0.088
r 1 1 1 1 · · · 1 2
M 1 6 7 8 · · · 25 9

5 Conclusions

We introduced sorting-based multiple description quantization. The new MDQ method is
based on sorting a set of source samples, and transmitting as side-information/redundancy
an index that describes the resulting permutation. We also provided analysis of the perfor-
mance holding for i.i.d uniform samples. The new technique was compared numerically to
a scheme that uses FEC with maximum distance separable codes as well as to MDSQ, when
these were designed for a certain packet loss probability. It was found that the FEC-based
scheme had the better performance and that the proposed method had a similar performance
to MDSQ. However, compared to the FEC and MDSQ schemes, the suggested method has
virtually zero design complexity, making it easy to implement and adapt to varying loss
probabilities. It also has the advantage over MDSQ to allow straightforward implementa-
tion of more than two descriptions.
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Appendix
We will here derive an analytical approximation of the MSE for the proposed system, as-
suming the quantizers can use b2RX c quantization cells. We get

MSE = prMSElost + (1 − pr)MSEsort (14)

where MSElost corresponds to the MSE when all r copies of I are lost. The probability
of this event is pr and leads to using (7)–(8) for reconstruction, making the calculation of
MSElost straightforward. Using the well known formula for quantization noise of a uniform
distribution gives

MSElost = p
1

12
+ (1 − p)

1

12b2RX c2 . (15)

MSEsort corresponds to the event when at least one copy of I is received, and is given as

MSEsort =
M�

k=0

P (k|M)
1

M
(MSEr(k) + MSEl(k)) . (16)

Here k describes how many of the M scalar quantization indices that were lost, and

P (k|M) = � Mk � pk(1 − p)M−k (17)

is the probability of this event. We use (10) to reconstruct the lost values and (9) for the re-
ceived values. With k losses, the resulting MSE’s are denoted MSEl(k) (lost) and MSEr(k)
(received), we get:

1) MSEl(k): Assuming that the w consecutive values {jπ(s+m)}m=w
m=1 are lost (10) is

used in order to estimate {Xπ(s+m)}m=w+1
m=0 . However, unless 2RX � M we can ex-

pect X̂π(s) ≈ E[X|jπ(s)] and X̂π(s+w+1) ≈ E[X|jπ(s+w+1)], that is, as if (7) were
used. The interval (E[X|jπ(s)], E[X|jπ(s+w+1)) therefore bounds the lost values and
{Xπ(s+m)}m=w

m=1 can be estimated using (9). Taking quantization noise, approximately
distributed as qi ∼ U [− 1

2b2RX c
, 1

2b2RX c
] (with variance σ2

q ), into account gives

X̂π(s+m) ≈ " Xjπ(s)
+ q1 # +

m

w + 1 " (Xjπ(s+w+1)
+ q2) − (Xjπ(s)

+ q1) # . (18)

Using this formula we get

µ(m|w) = E[(X̂π(i+m) − Xπ(i+m))
2|0 ≤ · · · ≤ Xπ(i) ≤ · · · ≤ Xπ(i+w+1) ≤ · · · ≤ 1]

≈ 1

(M + 1)(M + 2)

m

w + 1
(w + 1 − m) + σ2

q �5� 1 − m

w + 1 
 2

+ � m

w + 1 
 2 � ,

(19)

where µ(m|w) is the expected MSE for X̂π(s+m) in a lost sequence of length w.
We also need to know how likely a lost sequence of w consecutive samples is when

k quantization indices are lost. In total there will be " Mk # equally likely permutations for
a given k. When M − 1 ≤ k it is trivial to calculate how many of these that contain w
consecutive lost samples. Otherwise, let α(w, s) denote the total number of permutations
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where a lost sequence of length w starts at Xπ(s). Two cases need to be considered. The
first is when s = 1 giving

α(w, 1) = � M − w − 1

k − w � . (20)

The same expression is obtained when studying lost sequences of length w that end in
Xπ(M). In between there will be (M − 1 − w) possible locations to start a sequence of
length w, in these cases

α(w, s) = � M − w − 2

k − w � . (21)

Hence, the total number of lost sequences of length w, αtot(w) = � s=M

s=1 α(w, s), will be

αtot(w) = 2 � M − w − 1

k − w � + (M − w − 1) � M − w − 2

k − w � . (22)

Normalizing (22) with the total number of permutations gives

E[αtot(w)|k] =
2 " M−w−1

k−w
# + (M − w − 1) " M−w−2

k−w
#" Mk # (23)

which is the expected number of lost sequences of length w when k quantization indices
have been lost (assuming M − 1 > k). If M − 1 ≤ k we get

αtot(w) = � 2 − 2δ[M − w] when M = k + 1
δ[M − w] when M = k

(24)

(with δ[·] being the Kronecker delta) and normalizing gives E[αtot(w)|k]. (19), (23)–(24)
then give

MSEl(k) =

k�
w=1

� E[αtot(w)|k]

w�
m=1

µ(m|w) � . (25)

2) MSEr(k): We are now interested in the number z = number of Xi’s that were
quantized to a given quantization cell. Assuming that we receive jπ(s+1) = · · · = jπ(s+z)

a similar derivation to (19) gives

ν(m|z) = E[(X̂s+m − Xs+m)2|ljπ(s+1)
≤ Xjπ(s+1)

≤ · · · ≤ Xjπ(s+z)
≤ ujπ(s+z)

]

=
m(z + 1 − m)

b2RX c2(z + 1)2(z + 2)
(26)

where ν(m|z) is the expected MSE when estimating X̂π(s+m). Then we study the prob-
ability of a certain z given that k samples were lost. Denoting βtot(z) the number of
permutations yielding z (this time position is of no interest) gives

E[βtot(z)|k] =
b2RX c " M−k+b2RX c−2−z

M−k−z
#" M−k+b2RX c−1

M−k
# . (27)
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In this calculation we have neglected the case when for instance jπ(2) is lost and jπ(1) =
jπ(3) is received, since this makes it possible to conclude jπ(1) = jπ(2). Finally we use
(26)–(27) to get

MSEr(k) =

M−k�
z=1

� E[βtot(z)|k]
z�

m=1

ν(m|z) � . (28)
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Addendum to the Paper
In the original paper the details on how to develop the expressions (4)–(6) to (10)–(12) were
left out due to lack of space. These derivations are summarized in this section which was
not included in the original paper. To develop (4) given on a form similar to

ξ̂j = E[ξj |0 ≤ ξ1 ≤ ξ2 ≤ · · · ≤ ξk ≤ 1, 0 ≤ ξ1 ≤ u, l ≤ ξk ≤ 1] (29)

we define

V1 = {ξ1, ξ2, . . . , ξk : 0 ≤ ξ1 ≤ ξ2 ≤ . . . ≤ ξk ≤ 1}
V2 = {ξ1, ξ2, . . . , ξk : u ≤ ξ1 ≤ ξ2 ≤ . . . ≤ ξk ≤ 1}
V3 = {ξ1, ξ2, . . . , ξk : 0 ≤ ξ1 ≤ ξ2 ≤ . . . ≤ ξk ≤ l}
V4 = {ξ1, ξ2, . . . , ξk : u ≤ ξ1 ≤ ξ2 ≤ . . . ≤ ξk ≤ l}

and further

V = {ξ1, ξ2, . . . , ξk : 0 ≤ ξ1 ≤ ξ2 ≤ . . . ≤ ξk ≤ 1, 0 ≤ ξ1 ≤ u, l ≤ ξk ≤ 1}
= ((V1\V2) ∪ V4)\V3.

This makes it possible, using the notation ξ = {ξ1, ξ2, . . . , ξk}, to write (29) as

ξ̂i = E[ξi|ξ ∈ V] = 
 V f(ξ)ξidξ
 V f(ξ)dξ
= 
 V ξidξ
 V 1dξ

= 
 V1 ξidξ − 
 V2 ξidξ − 
 V3 ξidξ + 
 V4 ξidξ
 V1 1dξ − 
 V2 1dξ − 
 V3 1dξ + 
 V4 1dξ
(30)

where each of the integrals is straightforward to derive and doing so will result in (10). In
the same manner we get (11)–(12) from (5)–(6).
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Abstract

We introduce a new method for multiple description coding based on producing dif-
ferent permutation coded descriptions of the original source data. The proposed method
is of relatively low complexity and scales easily to any number of descriptions. Perfor-
mance gains compared to resolution-constrained multiple description scalar quantization
are demonstrated. The new approach is also able to match the performance of entropy-
constrained multiple description scalar quantization.

1 Introduction
Packet networks have gained in importance in recent years, for instance via the wide-spread
use and importance of the Internet. Unfortunately, packet losses in these systems can in
general not be neglected and this has to be taken into account in robust source–channel cod-
ing for multimedia communications. One way to deal with packet losses is to use multiple
description coding (MDC) where the objective is to code one source of data into multiple
bitstreams. The coding is done in such a way that multiple levels of quality is achieved.
This means that even if one or a few of the bitstreams are lost, the received bits should
make it possible to get an approximated version of the original data. MDC will therefore
enhance the reliability of the communication system. Multiple-description source coding
has received considerable attention: see e.g. [1–6] for practical coding schemes and [7, 8]
for theoretical bounds.

The contribution of the present paper is to study the possibility of using permutation
coding, see e.g. [9–11], as a basic building block in a new MDC scheme. We produce
multiple descriptions by utilizing permutation coding to code randomly rotated versions of
a source sequence. The result is a low-complexity approach to MDC that easily scales to
any number of descriptions.

The paper is organized as follows. In Section 2 a brief presentation of permutation
codes is given. In Section 3 the proposed MDC scheme is presented. Finally, we provide
numerical results and conclusions in Sections 4–5.
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2 Preliminaries
There have been numerous papers written on permutation codes. We will in this paper focus
on “Variant I” minimum mean-squared error permutation codes meaning that we will use
the popular mean squared error (MSE) as a distortion measure. A good introduction to these
codes and how to design them can be found in [10] which will be briefly summarized in this
section.

Consider the case when we want to code a sequence of real valued random variables
{xi}∞i=1. With permutation coding this sequence can be block quantized in a simple fashion
such that the block x = (x1, x2, · · · , xN )T is quantized to an index I ∈ {1, . . . , M}.
There will exist one codeword, for instance corresponding to the first index, of the form

c1 = (
←n1→

µ1, · · · , µ1,
←n2→

µ2, · · · , µ2, · · · ,
←nK→

µK , · · · , µK) (1)

where µi satisfies µ1 ≤ µ2 ≤ · · · ≤ µK and the ni’s are positive integers satisfying
n1 +n2 + · · ·+nK = N . All other codewords c2, c3, · · · , cM are constructed by creating
all possible permutations of c1 meaning that there in total will be

M = N !/
K6

i=1

ni! (2)

different codewords. If the components of x are independent identically distributed (i.i.d)
all of these permutations are equally likely meaning the the entropy of I will equal log2 M .
It is a fairly straightforward task to map each of these permutations to a binary number
corresponding to a Huffman code. Hence, the rate per coded symbol, xi, is given from

R ' 1

N
log2 M. (3)

Also, it turns out that the optimal encoding procedure, for a given set {(ni, µi)}K
i=1,

is to replace the n1 smallest components of x by µ1, the next n2 smallest components
by µ2 and so on. This further means that ordering the components of x also will decide
the outcome of the block quantization. This is an appealing property since sorting can be
done with O(N log N) complexity which is low enough such that block quantization can be
implemented for very high dimensions. For details on how to design {(ni, µi)}K

i=1 see [10].

3 Proposed MDC Scheme
As briefly mentioned in Section 2 permutation codes have some quite appealing properties,
for instance their ability to perform high dimensional block quantization at low complexity.
In this section we will present an MDC scheme based on permutation codes making it
possible to perform high dimensional MDC. This scheme is illustrated in Figure 1.

Consider the random vector x = (x1, · · · , xN )T where the xi’s are i.i.d zero–mean
Gaussian random variables for i = 1, · · · , N . This vector is to be quantized and transmitted
over a network by the use of J descriptors (or packets). We assume that these descriptors
are transmitted over J channels that independently either loses or otherwise recovers the
descriptor perfectly at the receiver side.
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Figure 1: Proposed scheme for MDC using rotated permutation codes.

When designing the system in Figure 1 we start by generating J random unitary N×N
matrices, {Uj}J

j=1, with eigenvectors uniformly distributed on an N -dimensional hyper-
sphere1. Both the encoder and decoder will have access to these matrices. Then, for each
channel the vector

yj = Ujx (4)

is produced. All these vectors will also be zero–mean Gaussian since the multiplication of
a unitary matrix corresponds to a rotation in the N–dimensional space. The vectors yj are
then block–quantized using a permutation code (denoted Qp in the figure). Note that only
the parameters of one permutation code need to be determined since y1, · · · ,yJ all have
the same pdf. Hence, once one permutation code has been designed, this code can be used
in all the quantizers, Qp. The generated index from each quantized version of yj is then
transmitted over the corresponding channel. The receiver will receive either all or a subset
of the transmitted indices depending on whether indices were lost or not. Let the symbol
’×’ denote “descriptor lost”, i.e., a received value ij = × means the j:th channel failed.
Using MSE as distortion measure the optimal reconstruction point, x̂, is then given as

x̂ = E[x|i1, · · · , iJ ] = r∗v∗ (5)

(with ij ∈ {1, . . . , M,×}) where r∗ is the length of this vector and v∗ is the normalized
direction such that ‖v∗‖2 = 1.

3.1 Calculating E[x|ij]
Consider the case when only one descriptor ij is received. One intuitive way to estimate
x is to set x̂ = U−1

j ŷ where ŷ = E[y|ij ] is given when decoding the permutation code.
This gives the distortion

Dx =
1

N
E‖x − x̂‖2 =

1

N
E‖x − U

−1
j ŷ‖2 =

=
1

N
E‖Uj(x − U

−1
j ŷ)‖2 =

1

N
E‖y − ŷ‖2 = Dy. (6)

Hence, the distortion Dy, which is given when reconstructing y with its optimal recon-
struction point E[y|ij ], equals the distortion Dx. Furthermore, since x and y have the

1This can be done by for instance conducting a QR–factorization of a matrix containing zero–mean
Gaussian variables.
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same distribution we conclude that also x̂ must have been an optimal reconstruction point.
Hence,

E[x|ij ] = U
−1
j E[y|ij ]. (7)

3.2 Calculating E[x|i1, · · · , iJ ]

We will now think of the received indices as descriptions of volumes in an N–dimensional
space. To explain this idea, consider the example, illustrated in Figure 2, with a permutation
code using the parameters N = 2, n1 = n2 = 1. Also assume J = 2 and U1 = I2 where
I2 is the 2–unitary matrix. Receiving i1 will in this case describe whether x1 ≤ x2 or
x2 < x1 corresponding to a volume which we will denote V1. Hence, i1 tells us that
x ∈ V1 which gives the optimal reconstruction point as E[x|i1] = E[x|x ∈ V1]. In the
same manner also i2 will describe a volume, V2, such that x ∈ V2. This volume will
however be different from V1 due to the random rotation. In the case that both i1 and
i2 are received we know that x ∈ V1 ∩ V2 and we get the optimal reconstruction point
E[x|i1, i2] = E[x|x ∈ V1 ∩V2]. In general, each received index ij will describe a volume
Vj and since all channels use the same permutation code all of these volumes will have equal
volume (except in the case of a lost descriptor; ij = × gives Vj = R

N and E[x|ij ] = 0).
This gives

E[x|i1, · · · , iJ ] =

V1∩···∩VJ

xf(x)dx
V1∩···∩VJ

f(x)dx
≈ 1

J ′

J�
j=1

E[x|ij ] = rv (8)

where J ′ is the number of received (i.e. “nonlost”) packets, r is the length of the resulting
vector and v is the normalized direction such that ‖v‖2 = 1. The approximation done
by averaging between all different reconstruction points makes intuitive sense, in Figure
2 the resulting point is symbolized by a circle. This approximation is further motivated
by the results presented in the appendix where we, for the example illustrated in Figure 2,
derive upper and lower bounds on the length r∗ of the optimal reconstruction point in (5).
Furthermore, for the general case we have managed to show an upper bound and we conject
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a lower bound accordingly to7889 K�
i=1

niµ2
i ≤ r∗ ≤

√
2σΓ " N+1

2 #
Γ " N

2
# (9)

where Γ(·) is the gamma function. In Figure 3(a) we show these bounds when R = 2.5
bits/symbol/channel. Increasing the rate will make the gap between the lower and upper
bound smaller and decreasing the rate will increase the gap. We also note that

r2 = ����� 1

J

J�
j=1

E[x|ij ] ����� 2 =
1

J2 :::::
J�

j1=1

J�
j2=1

E[x|ij1 ]T E[x|ij2 ] ::::: ≤
≤ 1

J2

J�
j1=1

J�
j2=1 :::E[x|ij1 ]T E[x|ij2 ] ::: ≤ K�

i=1

niµ
2
i (10)

meaning that the length of the vector yielded by (8) is shorter, or equal, then the lower
bound of the optimal length in (9). We therefore replace the length r by the lower bound
giving the final formula for estimating x̂ as

E[x|i1, · · · , iJ ] ≈ � K�
i=1

niµ
2
i � 1

2

v. (11)

It was also verified in our simulations that this modification of the vector length gave a small
increase in performance.
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3.3 The Effect of the Generating Random Matrices
Since the matrices {Uj}J

j=1 are generated in a random fashion one might expect that dif-
ferent outcomes of this generation process will correspond to varying the performance of
the system. However, our simulations indicate that when J and/or N grows large the per-
formance converges to a fixed value. This is illustrated in Figure 3(b) where we analyze
the performance of 10 different realizations of the system, hence we try 10 different sets
of randomly generated matrices, when receiving all J descriptions. This is done for three
cases, in the first (crosses) we use J = 2, N = 5. From the plot we see that for this case the
performance of the different realizations become quite different meaning that some of the
generated matrices are better than others. In the second case (asterisk) we increase J such
that J = 25, N = 5. For this case it appears to be no greater difference in performance
between the different realizations. This seems to be the case also for the third case (boxes)
when we instead increase N such that J = 2, N = 200. We consider the proposed method
to be most interesting when using large N and moderate values for J corresponding to the
third case. Hence, the conclusion is that for our purposes generating the rotation matrices
at random works satisfyingly.

4 Simulations
In the simulations we use i.i.d. zero–mean Gaussian source data with σ2 = 1, J = 2 and for
the permutation codes N = 1000. It should be noted that the rate, R, is defined per channel,
that is the unit is bits/symbol/channel. In Figure 4(a) we study the the usefulness of (11) by
comparing the central distortion D0, achieved when both descriptors are received, and the
side distortion D1, achieved when only one descriptor is received, for different rates. It is
clear that receiving an extra descriptor will improve the performance. We also see the effect
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that the permutation code stops to improve above a certain rate and in Figure 4(a) and this
effect starts to become visible around R = 4. However, this ’saturation’ level can be moved
to a higher value of R by increasing N (see [10]).

We have also compared the proposed method with two well-known MDC meth-
ods: multiple description scalar quantization (MDSQ) [1] and entropy-constrained MDSQ
(ECMDSQ) [2]. The comparision with MDSQ may seem a bit unfair since MDSQ use a
small block size. However, using a much higher dimension in our scheme based on permu-
tation coding will not necessarily give better performance and allowing for straightforward
implementation of high-dimensional MDC is one of the main strengths of the suggested
method. ECMDSQ is essentially a high-dimensional block coding scheme, since it (implic-
itly) assumes perfect entropy coding on top of scalar quantization. As shown in [11] the
rate–distortion characteristics of permutation coding is equivalent to that of entropy coded
scalar quantization, as N → ∞. Hence, permutation coding is in this sense equivalent to
entropy coded scalar quantization which makes the comparison of the suggested method to
ECMDSQ relevant.

4.1 Introducing More Design Parameters
It is a well known fact that when performing two channel MDC there is a tradeoff between
the central distortion D0 and the side distortion D1 such that if D0 is decreased D1 must be
increased and vice versa (that is, assuming D0 is close to the best theoretical performance
for a given D1; see e.g. [7, 8]). Although the previous simulation indicated good perfor-
mance for the proposed system one of its drawbacks, in it present form, is that it cannot
easily be adjusted to trace out the tradeoff between D0 and D1, while this can be done
when using MDSQ or ECMDSQ by adjusting some design parameters. Although we con-
sider the task of developing such flexibility for our method to be a topic for future work, we
here introduce a quite straightforward method to approach the tradeoff between central and
side distortion. The proposed structure is shown in Figure 5 where the encoder works in the
same fashion as in Section 3 with the additional feature that it also decodes the coded data to
get x̂ based on i1 and i2, that is the estimate produced when none of the descriptors are lost.
This estimate is now compared to the original vector x to create the error ε = x − x̂. The
N/2 first samples of this error vector create a sequence ε1 which is block quantized using a
permutation code. This second permutation code will be designed using ε as training data.
In the case that both descriptors are received we get x̂ = 0.5E[x|i1] + 0.5E[x|i2] + ε̂. If
only one descriptor is received, for instance i1, we use x̂ = E[x|i1] + ε̂1. Using the rate
Rε to quantize ε leaves the rate Rx = R − Rε for quantizing x. By increasing the value of
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Rε the performance in terms of D0 will be improved. In fact, setting Rε = R will divide x

into two blocks which are permutation coded and transmitted over one channel each.
In Figure 4(b) the result of simulating the modified system is shown when R = 2

bits/symbol/channel. The proposed method (pentagrams) outperforms MDSQ but does not
beat ECMDSQ, except at the leftmost pentagram which corresponds the the case Rε = 0,
that is, when only the the approach of Section 3 is used. We consider this to indicate that the
basic approach proposed in this paper is sound, while there may be further improvements
possible upon the modified system in Figure 5 to introduce the desired flexibility. It is
therefore our intention for further work to investigate alternative approaches to achieve
efficient tradeoff between side and central distortion.

5 Conclusions
A new method for multiple description coding has been introduced and analyzed. The new
approach was compared to two other well known techniques, and simulations indicated
that for certain regions in the tradeoff between central distortion and side distortion the
performance of the new scheme is comparable to the best of the benchmarks methods.
However, in other regions the performance degrades slightly and as a topic for future work
we intend to improve the new method in these regions.

Appendix
We will here derive an upper and lower bound on r∗ for the example illustrated in Figure
2, hence N = 2, J = 2, n1 = n2 = 1. Finally, we will also discuss the lower and upper
bounds for the general case. When doing so we will use hyperspherical coordinates such
that

xk = r cos θk

k−16
l=1

sin θl ∀k = 1, · · · , N − 1

xN = r

N−16
l=1

sin θl (12)

and the Jacobian determinant for this transformation is

J = rN−1
N−16
p=1

(sin θp)N−p−1. (13)

As can be seen in Figure 2 the resulting intersection created by the received descriptions
i1 and i2 can be described as V∩ = V1 ∩ V2 = {x : 0 ≤ r, α1 ≤ θ ≤ α2}, when
using polar coordinates. When deriving r∗ we can instead consider the area V ′∩ = {x :
0 ≤ r, 0 ≤ θ ≤ α}, with α = α2 − α1, since f(x) is rotation invariant. Hence,

E[x1|x ∈ V ′∩] =

V′
∩

x1f(x)dx
V′
∩

f(x)dx
= 
 ∞0 
 α

0
r cos θe

− r2

2σ2 rdθdr
 ∞0 
 α

0
e
− r2

2σ2 rdθdr
=

sin α

α

√
2σΓ( 3

2
)

Γ( 2
2
)

(14)
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and similar equations gives

E[x2|x ∈ V ′∩] =
1 − cos α

α

√
2σΓ( 3

2
)

Γ( 2
2
)

(15)

where Γ(·) is the Gamma function. From this we get r∗ as

‖E[x|x ∈ V∩]‖ =

√
2 − 2 cos α

α

√
2σΓ( 3

2
)

Γ( 2
2
)

(16)

which is a strictly decreasing function for α ∈ (0, π]. Hence, the smaller intersection, the
larger value of r∗. The upper bound on r∗ is therefore given in the limit when α → 0. The
lower bound is given from the case when the intersection is as large as possible, that is when
V1 = V2, corresponding to the case when only one description is received. This gives� µ2

1 + µ2
2 ≤ r∗ ≤

√
2σΓ( 3

2
)

Γ( 2
2
)

. (17)

In general we have shown that the upper bound on r∗ is created by the smallest possible
intersection, Vε = {x : 0 ≤ r, 0 ≤ θi ≤ ε ∀i = 1..N − 1} when ε → 0. Using (12)–(13)
this length is calculated below:

lim
ε→0

‖E[x|x ∈ Vε]‖ =

= lim
ε→0

∞
0 ε
0 · · ·
ε
0r cos θ1e

− r2

2σ2 rN−1
N−1;
p=1

(sin θp)N−p−1dθ1 · · · dθN−1dr

∞
0 ε
0 · · ·
ε
0e
− r2

2σ2 rN−1
N−1;
p=1

(sin θp)N−p−1dθ1 · · · dθN−1dr

=

= lim
ε→0


 ∞0 rNe
− r2

2σ2 dr
 ∞0 rN−1e
− r2

2σ2 dr

 ε

0
cos θ1(sin θ1)

N−2dθ1
 ε

0
(sin θ1)N−2dθ1

=

=

√
2σΓ " N+1

2
#

Γ " N
2 # (18)

where l’Hospital’s rule is used in the final step on the second part of the expression. For the
lower bound we conject that it corresponds to the vector length when only one description
is received, hence � K�

i=1

niµ
2
i � 1

2

≤ r∗. (19)

(18)–(19) gives (9).
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Improved Quantization in Multiple Description
Coding by Correlating Transforms

Niklas Wernersson, Tomas Sköllermo and Mikael Skoglund

Abstract

The objective with Multiple Description Coding (MDC) is to code one source of data
into multiple bitstreams. The coding is done in such a way that multiple levels of quality is
achieved. This means that even if one or a few of the bitstreams are lost, the received bits
should make it possible to get an approximated version of the original data. One way to
do this is to use pairwise correlating transforms which will introduce correlation between
the bitstreams. This correlation can be used in order to get an estimate of a lost stream.
In this paper a new approach for MDC using pairwise correlating transforms is presented.
In this approach, contrary to previous work, quantization of the source data is performed
after the data has been transformed. This makes it possible to improve the shape of the
quantization cells and to tailor these to the employed transform. We demonstrate that this
offers a substantial performance gain compared with previous approaches to MDC using
pairwise correlating transforms.

1 Introduction
Packet networks have gained in importance in recent years, for instance by the wide-spread
use of the Internet. By using these networks large amounts of data can be transmitted. When
transmitting for instance an image a current network system typically uses the TCP protocol
to control the transmission as well as the retransmission of lost packages. Unfortunately,
packet losses can in general not be neglected and this problem therefore has to be considered
when constructing a communication system. The compression algorithms in conventional
systems quite often put quite a lot of faith into the delivery system which gives rise to some
unwanted effects.

Suppose that N packets are used to transmit a compressed image and the receiver recon-
structs the image as the packets arrive. A problem would arise if the receiver is dependent
on receiving all the previous packets in order to reconstruct the data. For instance if pack-
ets {1, 3, 4...N} are received it would be an undesirable property if only the information
in packet 1 could be used until packet 2 eventually arrives. This would produce delays in
the system and great dependency on the retransmission process. In the case of a real time
system the use of the received packets may have been in vain because of a lost packet. One
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Â

Â
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Figure 1: The basic structure of MDC using pairwise correlating transforms as
presented in [1].

way to deal with this is to use Multiple Description Coding (MDC) where each received
packet will increase the quality of the image no matter which other packets that have been
received, see e.g [1–8]. MDC will therefore enhance the reliability of the communication
system.

In this paper a new approach for MDC using pairwise correlating transform is presented.
In previous work, e.g. [1], the data is first quantized and then transformed. We suggest to
reverse the order of these operations, leading to performance gains. The optimal cell shape
of the transformed data relates to the optimal cell shape of the original data through some
basic equations which makes it possible to perform quantization and designing the code-
words after the data is transformed. Only the case with two descriptors will be considered
but the theory can easily be extended to handle more descriptors. It is assumed that only one
descriptor can be lost at a time (not both) and that the receiver knows when a descriptor is
lost. The two channels are also assumed to have equal failure probability, perror , and MSE
is used as a distortion measure. The source signal is modelled as uncorrelated Gaussian
distributed.

This paper is organized as follows. In Section 2 some preliminary theory of MDC
using pairwise correlating transforms is discussed. In Section 3 the new approach for MDC
using pairwise correlating transforms is presented. In Sections 4 and 5 some results and
conclusions will be presented.

2 Preliminaries
Generally the objective with transform coding is to remove redundancy in the data in order
to decrease the entropy. The goal of MDC is the opposite, namely to introduce redundancy
in the data but in a controlled fashion. A quite natural approach for this is to first remove
possible redundancy in the data by for instance using the Karhunen-Loeve transform. After
this MDC is used in order to introduce redundancy again, but this time in selected amounts.
In this paper it is assumed that the original data is uncorrelated Gaussian distributed so the
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problem of removing initial redundancy will not be considered.
In Figure 1 the basic structure of the MDC described in [1] is shown. The data variables

A and B are to be transmitted and are quantized into A and B. These values are then
transformed using the transform 0 C

D 2 = T 0 A

B 2 , (1)

where T is a 2 × 2 matrix. This transform is invertible so that0 A

B 2 = T
−1 0 C

D 2 . (2)

Once the data have been transformed C and D are transmitted over two different chan-
nels. If both the descriptors are received the inverse transform from (2) is used in order to
produce Â and B̂. However, if one of the descriptors is lost, Â and B̂ can be estimated from
the other descriptor. This comes from the fact the the transform matrix T is nonorthogonal
and introduces redundancy in the transmitted data. For instance, if the receiver receives
only the descriptor C, (Â, B̂) is estimated to E[(A, B)|C].

For the two descriptors case the transform matrix T, optimized according to [1], can be
written as

T = 0 cos θ/
√

sin 2θ sin θ/
√

sin 2θ

− cos θ/
√

sin 2θ sin θ/
√

sin 2θ 2 = 0 a b
c d 2 . (3)

where θ will control the amount of introduced redundancy.
The values C and D that are to be transmitted should be integers which is not necessar-

ily the case in (1). Therefore the transform is implemented as follows (a, b, c and d are the
values from (3) and [·] denotes rounding).

A = 0 A

Amax

qA + 0.5 2 , B = 0 B

Bmax

qB + 0.5 2 , (4)

W = B + 0 1 + c

d
A 2 , (5)

D = [dW ] − A, (6)

C = W − 0 1 − b

d
D 2 . (7)

It is assumed that A ∈ [0, Amax] and B ∈ [0, Bmax]. qA and qB are integers deciding
how many quantization levels there are for A and B respectively. It is also assumed, for the
extremes, that 3 0

Amax
qA + 0.5

4
is rounded to 1 and 3 Amax

Amax
qA + 0.5

4
is rounded to qA.

Assuming that both descriptors are received in the decoder the corresponding inverse
transform is performed as

W = C + 0 1 − b

d
D 2 , (8)

A = [dW ] − D, (9)

B = W − 0 1 + c

d
A 2 , (10)
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Â =
(A − 0.5)Amax

qA

, B̂ =
(B − 0.5)Bmax

qB

. (11)

As mentioned before, if one of the descriptors is lost Â and B̂ are, depending on which
descriptor that was lost, estimated to E[(A, B)|C] or E[(A, B)|D].

Note here that the number of quantization levels for A and B, qA and qB , will in general
not equal the ones for C and D, qC and qD . (qA, qB) are however mapped to (qC , qD) by
a function ϕ according to

ϕ : N2 −→ N2,
ϕ(qA, qB) = (qC , qD).

(12)

Hence, if we want to transmit C and D using, e.g., 3 bits each we need to find qA and qB

so that ϕ(qA, qB) = (23, 23).
From (4) it is seen that the described MDC system in (4)–(11) uses uniform quantiza-

tion. The system could easily be improved by introducing two nonuniform scalar quantizers,
one for the A-values and one for the B-values. This improved system is what will be used
and considered further on in this paper. This leads to modifications of (4) and hence also
(11). Using the MSE as a distortion measure a codebook could be designed by using for
instance the generalized Lloyd algorithm briefly explained in Section 3.

3 Improving the Quantization
In brief the algorithm in Section 2 can be summarized as

1. Train encoder/decoder and quantize data. The encoder uses two scalar quantizers in
order to decrease the entropy of the data. This means that the data values are mapped
onto a set of codevectors.

2. Transform the quantized data. Redundancy is introduced into the data by using (5)–
(7).

3. Transmit data. The data is transmitted and packet or bit losses may occur, which
means that some descriptors may be lost.

4. Estimate lost data and do the inverse transform. This is done using (8)–(10).

In this paper we suggest to do this algorithm in a different order. Changing the order of Steps
1 and 2 would mean that the transformation is done directly and training and quantization is
done on the transformed values. Naturally, also the order in the receiver has to be reversed
appropriately.

Using MSE as the distortion measure a point in the data is quantized to the K:th code-
vector according to

K = arg min
k

�<0 A
B 2 − 0 Ãk

B̃k 2 
 T �<0 A
B 2 − 0 Ãk

B̃k 2 

= arg min

k � 0 ∆Ak

∆Bk 2 T 0 ∆Ak

∆Bk 2 � , (13)
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where Ãk and B̃k are the coordinates of the different codewords. Using (2) this can also be
written

K = arg min
k

� T−1 �=0 C
D 2 − 0 C̃k

D̃k 2 
>
 T � T−1 �<0 C
D 2 − 0 C̃k

D̃k 2 
>

= arg min

k

� T−1 0 ∆Ck

∆Dk 2 
 T � T−1 0 ∆Ck

∆Dk 2 

= arg min

k � 0 ∆Ck

∆Dk 2 T

T
−1T

T
−1 0 ∆Ck

∆Dk 2 � . (14)

According to the discussion in Section 2 there should be qC quantization levels for C and
qD quantization levels for D. Introducing this restriction in (14) and using (3) gives

(I, J) = arg min
i,j

(∆C2
i + 2 cos(2θ)∆Ci∆Dj + ∆D2

j ), (15)

where i ∈ {1, 2, . . . , qC} and j ∈ {1, 2, . . . , qD}. This equation will allow us to design
a codebook for the transformed values instead of the original data. The generalized Lloyd
algorithm can be used for this purpose. This algorithm is briefly summarized below.

1. Define initial codebook.

2. Quantize each data point to that codeword that minimizes the contribution to the
distortion.

3. For each codeword (if it is possible), find a new optimal codeword for all the values
that have been quantized to this particular codeword and update the codebook.

4. Until the algorithm converges go to Step 2.

For Step 2, (15) is used to quantize the data. In Step 3 we want to find an optimal codeword
for those values that have been quantized to a particular codeword. Calculating the partial
derivative of the total distortion as

∂

∂C̃I

�
(C,D)

(∆C2
i + 2 cos(2θ)∆Ci∆Dj + ∆D2

j ) (16)

and minimizing by setting (16) equal to zero will give an equation for updating the code-
vectors, namely

C̃I =
1

NI

�
∀(C,D):Q(C,D)=(C̃I ,D̃j)

(C + cos(2θ)∆Dj). (17)

The sum is taken over all those points (C, D) which will be quantized to (C̃I , D̃j) for a
given I and an arbitrary j. NI is the number of points within this set. In a similar manner
we get

D̃J =
1

NJ

�
∀(C,D):Q(C,D)=(C̃i,D̃J )

(D + cos(2θ)∆Ci) (18)

and this is done for I = 1, 2, . . . , qC and J = 1, 2, . . . , qD . Once the codebook has
been generated the encoder and decoder are ready to use. The data to be transmitted is
then transformed by the matrix T, quantized and transmitted. In the decoder the reverse
procedure is done. This is illustrated in Figure 2.
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Figure 2: In the left plot the original set of data is shown. These values are first
transformed and then quantized as shown in the middle plot. In the
receiver the inverse transform is used as shown in the right plot. In
this plot also the corresponding quantization cells are illustrated.

4 Simulation Results
In order to compare the system explained in Section 2 and [1] with the new system intro-
duced in Section 3 these were implemented and simulated. Uncorrelated zero mean Gaus-
sian data was generated and used to train the encoders/decoders and then to simulate the
systems. In the simulations presented here the source data A and B have equal variances.
Similar results have however been obtained also for the case of nonequal variances. As
mentioned in Section 1 it is assumed that only one descriptor can be lost at a time and that
the receiver knows when a descriptor is lost. The angle for the transform matrix T used in
the simulations was θ = π

5
. The result is presented in Figure 3. perror shows the proba-

bility that one of the descriptors is lost and the y-axis shows the signal–to–distortion ratio,
defined as 10 log E[x2]

E[(x−x̂)2]
, where x is the data signal and x̂ is the reconstructed signal. In

Figure 3(a) both C and D were transmitted using 3 bits each which gives qC = qD = 23.
In order to accomplish this (qA, qB) had to be identified so that ϕ(qA, qB) = (23, 23). This
was found to be true for qA = 5 and qB = 7. Similar results are shown in Figures 3(b) and
3(c) when using 4 and 8 bits.

As can be observed in Figure 3 the new system outperforms the original system for
all investigated values of perror . In the case of 3 bits per description, as shown in Figure
3(a), the advantage of the new scheme is more noticeable at low packet loss rates. In
particular we see that as perror → 0 the new system outperforms the original scheme by
about 2 dB. When using 4 bits per description, as in Figure 3(b), we notice that the gain
of the new approach is more-or-less constant over the range of different packet loss rates.
Finally, studying Figure 3(c), we can observe that in the case of 8 bits per description the
situation has changed and the gain is now more prominent at high packet error rates. In
summary we see that in all cases considered there is a constant gain at medium to high
packet loss rates and this gain increases with the transmission rate of the system, while at
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Figure 3: The solid line shows the performance of the original system [1] and
the dashed line shows that of the new system, in terms of signal-to-
distortion ratio versus packet loss rate, perror . C and D are transmit-
ted using (a) 3, (b) 4 and (c) 8 bits each and θ = π

5
.

low packet loss rates there is an additional gain at low rates (as in Figure 3(a)) and hardly
no gain at high rates (as in Figure 3(c)). One possible explanation for this behavior is that
the new approach in particular improves the performance at low transmission and packet
loss rates due to the improved optimization of the individual quantizers. At high loss rates
this gain is less pronounced, since when packet losses occur the redundancy introduced by
the linear transform has an equal or higher influence on the total performance than has the
performance of the individual quantizers.

5 Conclusions
A new MDC method has been introduced. The method is developed from an extended
version of the MDC using pairwise correlating transforms described in [1]. Using the orig-
inal method the data is quantized and then transformed by a matrix operator in order to
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increase the redundancy between descriptors. In the new suggested method the data is first
transformed and then quantized. In Section 3 it is shown that this transform leads to a mod-
ification of the distortion measure. Using the generalized Lloyd algorithm when designing
the quantization codebook also leads to a new way to update the codevectors. In section
4 simulations were done that shows that the new method performs better than the original
one when smaller amounts of redundancy are introduced into the transmitted data. For the
simulations conducted in Section 4, using θ = π

5
, the new method gave 2 dB gain compared

to the original system when no descriptors were lost. The gain decreased to about 0.5-1 dB
when the probability of lost descriptors was increased.
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Abstract

Designing a communication system using joint source–channel coding in general makes
it possible to achieve a better performance than when the source and channel codes are de-
signed separately, especially under strict delay-constraints. The majority of work done in
joint source-channel coding uses a discrete channel model, corresponding to an analog
channel in conjunction with a hard decision modulation scheme. The performance of such
a system can however be improved by using soft decision modulation. The main cost is a
higher decoding complexity. An alternative is to quantize the soft information and store the
pre-calculated soft decision values in a lookup table. In this paper we propose new meth-
ods for quantizing soft channel information, to be used in conjunction with soft-decision
source decoding. We achieve a performance close to that of a system using unquantized soft
information.

1 Introduction
Wireless distribution of multimedia has gained in importance in recent years. This has led to
a number of different methods and standards, suitable for transmission, when representing
audio, video, speech and images. A question of great interest is how to make the tradeoff
between designing efficient source codes and designing channel codes robust toward trans-
mission errors. This has made the area of joint source–channel coding of particular interest
since it in general makes it possible to get a higher performance than if the source and chan-
nel codes are designed separately. Most of the work done in joint source-channel coding
uses a discrete channel model, that is an analog channel in conjunction with a hard decision
modulation scheme. Using soft decision modulation can however improve the performance
of such a system.

There are several previous works that investigate source coding with decoding based on
different kinds of soft decision modulation, e.g. [1–5]. While [1–3] assumed unquantized
soft channel output-values, the work in [4, 5] was based on quantized soft information.
More precisely, [4, 5] presented a scheme based on channel optimized vector quantization
(COVQ), see e.g. [6–8], over a binary-input Gaussian channel and using uniform scalar
quantization to quantize the soft channel outputs, resulting in a discrete memoryless channel
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with two inputs and 2q outputs. The main motivation in [4, 5] for working with quantized
soft information was to reduce the decoding complexity compared e.g. with the decoder
presented in [2], since over a discrete channel decoding can be based on a look-up table.

The present work is partly an extension of [4, 5] to using non-uniform quantization
and vector quantization (VQ) to represented soft channel information. Our main motivation
is however a scenario where the soft channel output information has to be bandlimited in
order to be further conveyed to a node where it is used in soft source decoding. Consider, for
example, applications where the transmitting node connects to a wired network via wireless
access to a basestation, and where the receiving entity is connected to the wired network.
The basestation will then have to limit the resolution of the received soft information in
order to transport it to the receiving node. In practice the wired part of the network can
often be assumed to be error-free, since it is implemented using high-reliability copper
cables or optical fiber. Still, the receiving node may use soft information transported from
the receiving basestation to counteract the effects of noise and signal fading in the wireless
part of the connection.

Referring to a generic scenario similar to the one described above, we discuss two main
issues: a) How to represent the soft information available at the basestation, the main al-
ternatives being to re-quantize soft source estimates or to quantize the soft channel outputs
directly, and; b) In the case of quantized soft channel values, different means of quantiza-
tion, including non-uniform scalar quantization and vector quantization.

The paper is organized as follows. In Section 2 the problem is illustrated and explained.
Three different approaches for transmitting bandlimited soft information is suggested. In
Section 3 these three approaches are analyzed. An expression for scalar quantization of soft
channel values is also derived. In Sections 4 and 5 some results and conclusions will be
presented.

2 Problem formulation
We are considering the problem illustrated in Figure 1. A random vector X ∈ R

d is vec-
tor quantized and transmitted over a wireless channel denoted Channel 1. The channel is
modeled as a Gaussian channel and the transmission is done using BPSK. The m output
bits from the encoder, represented by i ∈ {−1, +1}m, are corrupted by the noise n ∈ R

m.
Hence, Receiver 1 measures r ∈ R

m according to

r = i + n (1)

where n is zero mean white Gaussian noise with covariance matrix Cn = σ2In, where In

is the n-unity matrix.
Receiver 1 wishes to pass on the data represented by r to an other unit, Receiver 2,

and this is assumed done over an error-free connection, e.g. via optical fiber. The link from
Receiver 1 to 2 is assumed to be of high but finite bandwidth, and the transmission needs
therefore to be limited to qm bits per received r. This means that a vector j ∈ {0, 1}qm

will be transmitted and finally received by Receiver 2. In Receiver 2 j is used in order to
get X̃ = X̃j which is an estimate of X.

The encoder can be designed using source optimized vector quantization (SOVQ) where
the mean-square error (MSE) between the source data X and the quantized source data
represented by i is minimized, based e.g. on the generalized Lloyd algorithm [9]. However,
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Figure 1: X is transmitted to Receiver 1 using m bits. The bits are corrupted
by the noise n. In Receiver 1 the soft information contained in r has
to be bandlimited to qm bits, represented by j, which are transmitted
to Receiver 2. Finally X̃ is estimated from j.

since the transmission will constitute a random Markov-chain, the overall performance can
be improved using COVQ. In the COVQ approach, we know from e.g. [6–8] that for a fixed
encoder, represented by the encoder regions {Si}, such that X ∈ Si =⇒ transmit index i,
the optimal reconstruction value when j is received is

X̃j = E[X|j]. (2)

That is, for a fixed encoder these vectors should be used for decoding. Furthermore, when
the decoder is known and fixed the encoder regions that minimize the overall distortion are

Si = {x :
�
j

P (j|i)‖X − X̃j‖2 ≤
�
j

P (j|i′)‖X − X̃j‖2, ∀i′}. (3)

The expressions (2) and (3) together specify local optimality of a COVQ and by training
the system in an iterative fashion using these equations the encoder and decoder can be
designed [6–8]. Both SOVQ and COVQ will be investigated for the system described in
Figure 1.

Our main interest in this paper concerns how to best make use of the soft informa-
tion contained in r, under the constraint that Receiver 1 has to compress r into the finite-
bandwidth representation j. Three different approaches are suggested and explained in the
following subsections.

2.1 Re-Quantization of a Soft Source Estimate
From estimation theory it is a well known fact that the optimal decoder that minimizes
the MSE distortion between the decoded value X̂, estimated from the unquantized soft
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information in r, and the original data X is given as

X̂ = E[X|r] =

�
xfx|r(x|r)dx. (4)

Based on this, one way to implement the system in Figure 1 is as shown in Figure 2.PSfrag replacements
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d

Figure 2: Structure of the first approach. All the soft information is used when
calculating E[X|r]. This value is then vector quantized in order to
meet with the condition of limited bandwidth at Channel 2.

In this approach all the soft information in r is used in order to calculate the soft value
E[X|r]. This value is then vector quantized, in order to meet with the condition of a limited
bandwidth, in such a way that the distortion of the reconstructed value is minimized. Addi-
tional distortion will hence be introduced in the final reconstructed value X̃, compared with
X̂.

2.2 Vector Quantization of the Soft Channel Values

Here we propose to quantize the “soft bits” represented by the components of r, in such
a way that the distortion between X and X̃ is minimized. The basic structure is shown in
Figure 3. This leads to that r is quantized into one of 2qm quantization cells. The index
of this quantization cell is transmitted over Channel 2 and in Receiver 2 the reconstruction
value X̃ is computed.PSfrag replacements
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Figure 3: Structure of the second approach. The soft information in r is vector
quantized and transmitted over Channel 2. In the final receiver X̃ is
calculated as X̃ = E[X|j].
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2.3 Scalar Quantization of Soft Channel Values

Finally, a less complex approach than the one in Section 2.2 is suggested and illustrated in
Figure 4. This is basically a simplified version of the previous method with the difference
being the use of m scalar quantizers instead of an m-dimensional vector quantizer. We
can expect this structure to have a lower performance then the previous one, since scalar
quantization gives a lower freedom than vector quantization in designing the quantization
cells. However, as it turns out, the complexity is substantially lower. Scalar quantization of
soft channel outputs has previously been proposed in [4, 5].
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Figure 4: Structure of the third approach. The soft information in r is quantized
using m scalar quantizers. In the final receiver X̃ is calculated as
X̃ = E[X|jm . . . j1].

3 Implementation of the Different Approaches

In order to optimize the performance of the system introduced in Figure 1 we want to
minimize the MSE between X and X̃. By also using X̂ from (4) we get

min
X̃

E‖X − X̃‖2 = min
X̃

E‖X − X̂ + X̂ − X̃‖2

= min
X̃

(E‖X − X̂‖2 + 2E[(X − X̂)T (X̂ − X̃)] + E‖X̂ − X̃‖2)

= min
X̃

E‖X̂ − X̃‖2 (5)

where the minimum is over all parameters in the system that determine how X̃ depends on
X. In the final step in (5), the first term disappeared since it does not depend on X̃. The
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second term equals zero since

E[(X − X̂)T (X̂ − X̃)] = E ? E[(X − X̂)T (X̂ − X̃) | r ] @
= E ? (X̂ − X̃)T E[(X − X̂)|r] @
= E[(X̂ − X̃)T

0] = 0 (6)

Note that (5) implies that minimizing the MSE between X and X̃ is actually equivalent
to minimizing the MSE between X̂ and X̃.

3.1 Re-Quantization of a Soft Source Estimate
Based on (5) we see that the quantizer in Figure 2 should be constructed in such a way that
E[‖X̂− X̃‖2] is minimized. This means that the quantizer can be trained just as in regular
VQ training where E[‖X̂ − X̃‖2], with X̂ = X̂(r) = E[X|r], is the distortion measure
and X̂ is encoded as

J = arg min
j

(E[‖X̂ − X̃j‖2|r]) (7)

where J denotes the (random) integer representation of the binary index j. When imple-
menting (7) it is assumed that a decoder X̃ = X̃j , when J = j, is fixed. For a fixed
encoder, represented by (7), optimal decoding is done according to

X̃j = E[X̂|J = j]. (8)

From these equations it is seen that any given distribution of X together with a given σ2

will generate a distribution of X̂ witch will decide how the quantizer should be designed.

3.2 Vector Quantization of the Soft Channel Values
In this approach we want to vector quantize the received r into one of 2qm different rep-
resentations rj . After the quantization the index J is transmitted over the channel and the
reconstruction value X̂(rj) = E[X|rj ] is calculated. The problem is to find the different
rj’s such that E[‖X̂− X̃‖2], with X̃ = X̃j = X̂(rj), is minimized. For an observed value
of r, the encoding should hence be done according to

J = arg min
j

E ? ‖X̂(r) − X̂(rj)‖2 | r @ = arg min
j

E ? ‖X̂(r) − X̃j‖2 | r @ . (9)

This is the same encoder as in (7), which means that the two approaches, in this sense, are
equivalent. That is, it does not matter whether we consider encoding r into j as a problem
in the “X̂ domain” or in the “r domain.” This further means that the third approach, defined
in Figure 4, can not have a better performance than the system in Figure 2.

The structure of the quantization cells obtained based on (9) is illustrated in Figure 5 for
a simple example with m = 2, q = 2 and d = 1. For demonstration purposes, the example
assumes that X is discrete and uniformly distributed over {1, 2, 3, 4}, and these four values
are transmitted as i ∈ {(±1,±1)}. The noise variance is σ2 = 0.5. As can be seen in
this figure the shape of the quantization cells is quite complex. It is interesting to note that
different r’s can be quantized to the same cell although they are quite far from each other.
For instance we see that (r1, r2) = (0,−1.5) and (r1, r2) = (−1, 1) will be quantized to
the same cell. This effect comes from the soft decoding. Since (r1, r2) = (0,−1.5) lies
just between two possible codewords the reconstruction value is essentially chosen as the
mean of these.
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Figure 5: The shape of quantization cells obtained based on (9) when m = 2,
q = 2 and d = 1. The different X-values are {1, 2, 3, 4}, with equal
probabilities, and the noise variance σ2 = 0.5.

3.3 Scalar Quantization of Soft Channel Values
As previously stated this method will have a lower performance than the ones suggested in
Sections 2.1 and 2.2. However, the complexity is substantially lower which still makes the
method interesting. In order to minimize E[‖X̂ − X̃‖2], in Figure 4, when quantizing rk

to jk the encoding should be done according to

Jk = arg min
jk

E ? ‖X̂(rm, . . . , r1) − X̃(jm, . . . , j1)‖2 | rk, jk @ (11)

Also, for fixed encoders the optimal reconstructed value X̃(jm, . . . , j1) is obtained as

X̃(jm, . . . , j1) = E[X|jm, . . . , j1]. (12)

The expressions in (11)–(12) make it possible to train the quantizers in an iterative
fashion. It is readily seen that implementing (11) requires knowledge of the pdf for X̂.
Otherwise the expected value needs to be estimated from a training set of data. This problem
is also encountered when calculating (12).

In the next section optimal design of the scalar quantizers will be compared to the
following alternatives:

• Hard decision. This is the classical hard-decision source decoding approach, where
a hard decision is made on all ri’s such that a negative ri gives −1 and vice versa.

• The Lloyd approach. A quite intuitive way to quantize the data is to minimize
the MSE of the reconstructed ri. That is, to design ri such that E[‖r − ri‖2] is
minimized. However, when discussing Figure 5 it was concluded that the nearest
neighbor criterion is not necessarily suitable, due to the complex shape of the cells
based on (7). In the Lloyd approach, we base the decoding on (12), meaning that
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Figure 6: Results of the SOVQ system when X is 2-dimensional Gaussian un-

correlated, m = 4 and q = 2. As can be seen the performance gain
from using the optimal scalar quantizers over the uniform quantizers
is minor.

knowledge about the pdf or, otherwise, a training set is required in order to estimate
X̃(jm . . . j1).

• Uniform quantizer. Soft-decision source decoding based on uniform quantizers was
proposed in [4, 5], and the idea is to construct uniform quantizers such that the mu-
tual information between ri and ji is maximized. This is done for a few differ-
ent channel models in [5] and some tables containing optimal stepsizes of uniform
quantizers using this approach are presented for the AWGN case which will be used
for comparison in our simulations. Then (12) is used for calculating X̃(jm . . . j1).
Hence, also this approach requires knowledge about the pdf.

4 Simulation results
Different approaches for implementing the system in Figure 1 were introduced and analyzed
in Sections 2–3. The system was implemented both for the SOVQ and the COVQ case in
order to study the relation between channel SNR, defined as E[iT i]/E[nT n] = 1/σ2,
and signal-to-distortion-ratio (SDR) defined as E‖X‖2/E‖X − X̃‖2. The results of these
simulations are presented below.

4.1 SOVQ
By using a training set of 2-dimensional Gaussian uncorrelated vectors, the encoder was
designed such that X is quantized using m = 4 bits. The soft channel values were quan-
tized using q = 2 bits. In this case, the corresponding encoder output distribution is close
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Figure 7: Results of the SOVQ system when X is constructed as a 2-
dimensional Gaussian Mixture model, m = 4 and q = 2. As can
be seen the performance gain from using the optimal scalar quantiz-
ers over the uniform quantizers is now substantial, especially for high
SNR’s.

to uniform. Our simulations indicate that when i is close-to uniformly distributed, the per-
formance gain from using the optimal scalar quantizers over the uniform quantizers used
in [5] is minor. Part of the explanation is that a uniform distribution will give a symmetric
shape of the quantization cells resulting from (9).

Both these methods however have a significant performance gain compared to the Lloyd
approach, and both methods have a quite small performance loss compared to ’Approach
A’ suggested in Section 2.1 (which was shown to be superior to all the other methods).
These results are shown in Figure 6 where also the results for hard decisions and using the
complete soft information (q = ∞) are shown.

In Figure 7 a similar simulation is conducted, however with the distribution of X con-
structed as a Gaussian Mixture Model, that is the pdf is formed from a sum of different
2-dimensional Gaussian distributions. This results in a nonuniform distribution for i which
makes it more beneficial to use the optimal scalar quantizer design, which is clearly indi-
cated in the plot. This comes from the fact that the unequal probabilities of i now will create
a less symmetric pdf of the received data r. Hence, the choice of using a symmetric uniform
quantizer centered around ri = 0 is no longer as appropriate as in the previous case.

4.2 COVQ
We also wanted to see how the new methods perform when being used in a COVQ system
matched to the present SNR. The authors suspected that due to COVQ’s ability to insert
extra error protection, especially at low SNR’s, by creating a nonuniform distribution of i

would result in a gain for the optimized quantizers when compared to the uniform. However,
our results so far indicate that there is no substantial difference in performance between the
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Figure 8: Results of the COVQ system when X is 2-dimensional Gaussian un-

correlated vectors, m = 4 and q = 2. As can be seen the performance
gain from using the optimal scalar quantizers over the uniform quan-
tizers is insignificant.

optimal scalar quantizers and the uniform quantizers. This is demonstrated in Figure 8
where X is 2-dimensional Gaussian uncorrelated vectors, using m = 4 and q = 2. One
possible explanation to this result is that COVQ’s property to remove codewords is most
prominent at low SNR’s. But in this region we see from Figures 6–7 that the gain of using
the optimal quantizers is quite small. For higher SNR’s the gain for the optimal quantizer is
greater but at the same time the COVQ also makes the distribution of i more uniform which
removes this effect.

5 Conclusions
The issue on how to best construct finite-bandwidth representations of soft information
has been studied. We studied three main approaches: 1) re-quantization of the soft source
estimate; 2) vector quantization of the soft channel values, and; 3) scalar quantization of
soft channel values. We showed analytically that 1) and 2) are essentially equivalent. Also,
since 3) is a special case of 2) it can only yield similar or worse performance. However, we
derived expressions that specify the optimal scalar quantizers, and when using designs based
on these a performance close to that of approaches 1) and 2) was achieved. The gain of this
suboptimality is a substantially lower complexity which makes the method interesting.
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