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Abstract

This thesis studies cooperative sensing and transmission in the context of
wireless sensor networks (WSNs). We especially focus on two means of
cooperative sensing and transmission, namely, distributed source coding
and relaying. We consider systems where the usefulness of the measured
data is dependent on how old the data is and we therefore need low-delay
transmission schemes. At first sight, the low-delay criterion may seem to be
of little relevance, but it is this aspect in particular that distinguishes this
thesis from many of the existing communication theoretic results, which
often are asymptotic in the block lengths. The thesis is composed of an
introductory part, discussing the fundamentals of communication theory
and how these are related to the requirements of WSNs, followed by a part
where the results of the thesis are reported in Papers A–H.

Papers A–D study different scenarios for distributed source–channel cod-
ing. In Paper A, we consider transmission of correlated continuous sources
and propose an iterative algorithm for designing simple and energy-efficient
sensor nodes. In particular the cases of the binary symmetric channel as
well as the additive white Gaussian noise channel are studied. In Paper B,
the work is extended to channels with interference and it is shown that also
in this case there can be significant power savings by performing a joint op-
timization of the system. Papers C and D use a more structured approach
and propose side-information-aware source–channel coding strategies using
lattices and sinusoids.

In Paper E, we apply the methods we have used in joint source–channel
coding to the famous Witsenhausen counterexample. By using a relatively
simple iterative algorithm, we are able to demonstrate the best numerical
performance known to date.

For the case of systems with relays, we study the transmission of a
continuous Gaussian source and the transmission of an uniformly distributed
discrete source. In both situations, we propose algorithms to design low-
delay source–channel and relay mappings. By studying the structure of the
optimized source–channel and relay mappings, we provide useful insights
into how the optimized systems work. These results are reported in Papers
F and G.
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In Paper H, we finally consider sum-MSE minimization for the Gaussian
multiple-input, multiple-output broadcast channel. By using recently dis-
covered properties of this problem, we derive a closed-form expression for
the optimal power allocation in the two-user scenario and propose a con-
ceptually simple and efficient algorithm that handles an arbitrary number
of users.

Throughout the thesis we show that there are significant gains if the
parts of the system are jointly optimized for the source and channel statis-
tics. All methods that are considered in this thesis yield very low coding
and decoding delays. In general, nonlinear mappings outperform linear
mappings for problems where there is side-information available. Another
contribution of this thesis is visualization of numerically optimized systems
that can be used as inspiration when structured low-delay systems are de-
signed.

Keywords: Cooperative communication, wireless sensor networks, low-
delay transmission, joint source–channel coding, distributed source coding,
estimation, quantization.
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Introduction

We are living in a time of information. Not many of us could have foreseen
the rapid progress during the last 20–30 years. Using today’s smartphones
we have the collected information of the world at arm’s length. A strongly
contributing cause of this development is the birth of information theory [1]
with the advances in telecommunications that have followed. In the begin-
ning of this revolution, much of the research was on point-to-point com-
munication systems. However, in the last years the focus has shifted more
and more towards networked systems. In this thesis we are particularly in-
terested in one kind of networks, namely, wireless sensor networks (WSNs)
that are expected to play an important role in the future society.

Two important concepts in our analysis of communication strategies
for WSNs are source coding and channel coding. Source coding concerns
finding good representations for the information that is to be transmitted
and channel coding is used to protect the data during the transmission.
Source codes often remove redundancy from the source signal, such that
it can be represented with less amount of data; an excellent example of
an efficient source code is mp3, which is used to represent audio signals.
In contrast, channel codes add redundancy to the signal such that if an
error occurs, it can either be detected or corrected; an example of this
can be found on CDs (in this case the CD can be seen as the channel),
which in many cases can be played without any audible errors even if there
are scratches on the surface. Source and channel coding are often treated
independently and a fundamental result in information theory states that
there is no loss of optimality in doing so. But there is a snag in this result:
the source and channel codes are assumed to be of infinite lengths. Codes
of infinite lengths also give infinite coding and decoding delays. In this
thesis we are interested in communication subject to low-delay constraints
and the assumptions of infinite lengths are clearly infeasible. Therefore, we
exclusively study joint source–channel coding schemes, which give extremely
low delays and in many cases a significant gain over a separate design. It
is the low-dimensional and joint treatment of source and channel coding
that differentiate the results in this thesis from many of the already existing
results in communication theory.



2 Introduction

Outline

During the years as a PhD student, I have been involved in the work with
the following papers1 [2–16] of which [2–9] are formally included in the the-
sis in Part II (labeled Paper A–H). The remaining of Part I is organized
as follows: In Section 1, we introduce the concept of WSNs and give ex-
amples of some applications. In Section 2–5, we look at the fundamentals
of communication theory and relate these to the requirements of WSNs.
This leads to Section 6, where we present the contributions of the thesis,
and Section 7, where we draw conclusions and present directions for future
work.

1 Wireless Sensor Networks

The emerging technological field of WSNs is a multidisciplinary area in-
volving several research fields, such as electrical circuits design, computer
science, signal processing, and communication theory [17–19]. It is the joint
advances in these areas that have made the progress in WSNs possible.

A WSN typically consist of small, inexpensive, battery-powered nodes
with sensing and communication capabilities. Due to the excessive number
of sensors and their sometimes inaccessible locations, it is often desirable
that the battery lasts for the entire lifetime of the sensor node, which ranges
from a couple of days to several years depending on the specific application.
This puts high demands on the design of WSNs in the sense that the nodes
need to be highly energy efficient and spend as little energy as possible on
signal processing and communication. The sensor nodes are usually spatially
distributed and observe some physical phenomenon that evolves over time.
One key idea in the design of WSNs is that even though each sensor has
limited sensing and communication capabilities on its own, the joint effort
of the WSN should provide reliable sensing. This is accomplished by the
means of distributed estimation, which takes the tempo-spatial correlation
of the observed phenomenon into account, and multi-hop communication
schemes that extend the otherwise limited communication ranges.

One can consider two potential scenarios for WSNs. In this thesis, we
consider a system that continuously makes decisions and acts based on the
measured data. In this scenario, the usefulness of the measured data is
dependent on how old the data is and we therefore need low-delay trans-
mission schemes. What is to be considered as low delay is relative to the
dynamical nature of the physical process that is being observed and the
sample rate at which the process is sampled. For example, let us assume
that we observe a slowly varying process and take measurements at a sam-
ple rate of 0.01 Hz; a low-delay constraint in this example simply means

1The author was formerly known as Johannes Karlsson.
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that we cannot collect several measurements and transmit these jointly, but
we must transmit each single measurement one at a time. The contrasting
scenario is a passive system where the data is collected and purely used
for offline analysis with no strict delay requirements. In this case we can
collect several measurements and transmit blocks of measurements rather
than single measurements. The distinction between these two scenarios is
necessary because many of the results in information and communication
theory rely on coding schemes with infinite delays, which of course is in-
feasible in the low-delay scenario that we focus on in this thesis. Whether
there is a low-delay constraint or not depends on the specific application.
Even though the application does not require low-delay transmission, it is
sometimes useful to consider low-dimensional systems anyhow due to their
low computational complexity.

Applications

WSNs have been proposed to be used in many applications, such as envi-
ronmental monitoring, industrial automation, intelligent building control,
localization, structural health monitoring, surveillance, vehicle-to-vehicle
communication, and so on [18, 19]. Since this is a new and emerging field,
new applications are continuously being discovered as the technology de-
velops. In the following, we shall elaborate a bit more on a few selected
applications.

Intelligent Building Control

Buildings are responsible for 20–40 % of the total energy consumption in de-
veloped countries [20]. To meet the high climate goals that are set in terms
of reduced carbon dioxide emissions, it is clear that the energy consumption
in buildings must be reduced. Some scientists even go further and suggest
zero net energy buildings [21], that is, buildings that produce energy (in a
sustainable way) according to their own needs and in this way consume zero
net energy from the public power plants. One important contributing ele-
ment for this to become reality is to reduce the overall energy consumption
of the building such that the amount of energy that needs to be locally pro-
duced is minimized. ABB, a global power and automation company, states
the following natural design rules [22]: (1) only use energy when it is really
required, (2) only use the amount of energy actually required, and (3) apply
the energy that is used with the highest possible efficiency. To accomplish
these goals it is crucial to monitor the building and keep track of tempera-
ture, oxygen level, number of people, and so on, in each room. WSNs are
expected to have a key role in this evolving progress. Other examples of
uses for WSNs in buildings are access control and intrusion detection.
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Industrial Automation

Industrial automation systems is another application where WSNs are ex-
pected to have a big influence [23]. Traditionally, industrial automation
systems are realized through wired communications. Sensors are used in in-
dustrial processes to monitor critical parameters such that proper counterac-
tions can be initiated immediately when any deviation from the normal state
is observed. Some of the benefits of WSNs are ease of installation, main-
tenance, and service. On the other hand, there are several technical chal-
lenges involved in designing a WSN for industrial automation; for example,
the environment is harsh with fading, metal obstacles, and radio-frequency
interference from machines. There are also strict quality-of-service require-
ments in terms of accuracy and low communication delays. If the low-delay
constraints are not fulfilled, it may even happen that a process becomes
unstable.

Structural Health Monitoring

Bridges and other big structures are regularly inspected due to governmental
safety regulations. The inspections are time consuming and require sophis-
ticated tools, which are usually expensive and bulky [19]. The idea behind
structural health monitoring using WSNs is to deploy a large number of sen-
sor nodes on the structure and measure the response to external excitations.
The excitation could either be ambient, due to earthquakes or strong wind,
or forced, due to an impact hammer. By analyzing the correlations between
the different sensors’ measurements it is possible to identify damages such
as corrosion and cracks. In [24], it is reported about a prototype that was
deployed at the Golden Bridge in San Francisco.

2 Channel Coding

The nodes in a WSN communicate with each other over wireless channels.
Before we look at some of the special properties of wireless channels, we
will look at some simpler channels. A point-to-point communication chan-
nel (see Figure 1) can be described by a conditional probability density
function (pdf) of the form p(y|x), where x = (x1, . . . , xN ) is the transmit-
ted signal vector and y = (y1, . . . , yN) is the received signal vector at the
destination. A channel is memoryless and time invariant if the conditional
pdf can be factorized according to p(y|x) =

∏N
i=1 p(yi|xi). All channels

that are considered in this thesis are assumed to be memoryless and time
invariant.

Two simple models for communication channels are the binary symmet-
ric channel (BSC) and the additive white Gaussian noise channel (AWGN).
The BSC is a discrete-amplitude (or digital) channel, where the signals that
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X Y
p(y|x)

Figure 1: A point-to-point communication channel.

are transmitted and received are binary, that is, x, y ∈ {0, 1}. The condi-
tional probability mass function2 (pmf) that describes the relation between
the input and the output is given by

PBSC(y|x) =

{
1− ǫ, if y = x,
ǫ, if y 6= x. (1)

The channel can be modeled as someone rolling a dice for each transmitted
symbol and depending on the outcome, the transmitted signal reaches the
destination unchanged or with an error. For example, the bit could be
changed if the outcome is one and unchanged for all other outcomes. In
this example, the probability of a bit error is ǫ = 1/6. For the AWGN
channel, the input and output symbols are real numbers, x, y ∈ R, it is
therefore referred to as a continuous-amplitude (or analog) channel. The
relation between x and y is such that y = x+n, where n is white Gaussian
noise with variance σ2

N . The channel’s conditional pdf is given by

pAWGN(y|x) =
1

√

2πσ2
N

exp
(

− (y − x)2

2σ2
N

)

. (2)

As can be seen from (1) and (2), there is some uncertainty about what
was transmitted when using these channels. For example, if we receive 1 on
the BSC we cannot be sure if 0 or 1 was transmitted. Channel coding is
what makes it possible to reliably transmit important information, such as
phone calls, text messages, business documents, measurements, and so on,
over channels that, by themselves, are unreliable. The basic idea of channel
coding is to transmit blocks of data rather than single symbols. This is
done by taking k information symbols and mapping them to a vector x of
length N , which we transmit on the channel. The rate at which we transmit
information is defined as R , k/N . Shannon showed [1] that, if the block
length N approaches infinity and as long as R is less than a number denoted
C, it is possible to transmit reliably without any errors. He further showed
that, if the rate is higher than C, the probability of error is bounded away
from zero. The number C is called the capacity of the channel. For discrete
memoryless channels, the capacity is given by [25, Ch. 7]

C = max
P (x)
I(X ;Y ), (3)

2The pdf is denoted with p(x) and used for continuous random variables, whereas the
pmf is denoted P (x) and used for discrete random variables.
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where I(X ;Y ) is the mutual information between X and Y , and the maxi-
mum is taken over all possible input distributions P (x). The capacity of a
continuous channel can be computed in a similar way, but in this case we
need a constraint on the transmission power. The capacities of the BSC
and the AWGN channel are given by [25, Chs. 7 & 9]

CBSC = 1 + ǫ log2(ǫ) + (1− ǫ) log2(1− ǫ) bits per channel use, (4)

CAWGN =
1

2
log2

(

1 +
P

σ2
N

)

bits per channel use, (5)

respectively, where P is the transmission power in the case of the AWGN
channel. The signal-to-noise ratio (SNR) of the AWGN channel is defined
by SNR = P/σ2

N .
If it is possible to get arbitrarily low error probability at a certain rate

R, via coding, that rate is said to be achievable. Shannon’s proof that rates
below C, but not above, are achievable was theoretical and did not include
any practical guidelines on how to construct a channel code that achieves
the capacity. It is not until much later, with the advent of turbo codes [26]
and the rediscovery of LDPC codes [27, 28], that communication close to
the capacity has been made possible. A channel code enforces a structure
on the transmitted data, making the data robust against the channel noise.
Returning to the dice example, if you roll a dice one time, you cannot be
sure of the outcome. However, if you roll the dice 6000000 times, the number
of ones will approximately be 1000000. In a similar way, the effect of the
channel noise becomes predictable for codes with long block lengths.

Wireless Channels

Two characteristic properties of a wireless channel are its broadcasting na-
ture and interference between users. In the most general form, if K users
are transmitting and receiving at the same time, this can be modeled by a
conditional pdf like p(y1, . . . ,yK |x1, . . . ,xK), where user i transmits xi and
receives yi. A special case would be if only one user transmits, in which case
we have a broadcast channel, or if only one user receives, in which case we
a multiple-access channel. These two cases correspond to p(y1, . . . ,yK |x)
and p(y|x1, . . . ,xK), respectively. There are different ways to deal with in-
terference. The simplest way is by using orthogonal access techniques, such
as time-division multiple access (TDMA) and frequency-division multiple
access (FDMA), where the users transmit in different time slots or frequen-
cies, respectively. In general, there can be some loss in using orthogonal
techniques in the sense that the entire capacity region3 cannot be achieved.

3The multi-user equivalence of capacity as discussed earlier is a capacity region C,
where for example in a two-user scenario, a rate pair (R1, R2) is achievable if and only if
(R1, R2) ∈ C.
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Despite this, the simplicity of the orthogonal techniques makes them useful
in practical systems [25, Ch. 15].

Another fundamental property of wireless channels is fading [29]. Fading
is a way to describe how the quality of the channel varies with time and
frequency. There are two kinds of fading, large-scale fading and small-scale
fading. Large-scale fading is due to path loss as a function of distance and
shadowing by large objects. Small-scale fading is due to constructive and
destructive interference caused by multi-path propagation. Throughout this
thesis, we assume that the variations are slow enough so that the channel
quality remains constant for the entire transmission. In most cases where
we optimize the transmission scheme, we assume the instantaneous channel
quality to be known by all nodes. If the channel quality deviates from the
assumed channel quality, we have a mismatch condition in which there is
some loss in terms of performance.

3 Source Coding

The sensor nodes measure physical quantities, such as temperature, oxy-
gen level, humidity, pressure, vibrations, etc. In communication theory,
this measured quantity is referred to as the source. In this thesis, we are
interested in discrete-time sources. A discrete-time source {Xi}∞i=−∞ can
be viewed as an indexed sequence of random variables (RVs). The depen-
dencies between the RVs could be arbitrary and is specified by a joint pdf,
p(. . . , xi−1, xi, xi+1, . . .). An important special case is when the RVs are
independent and identically distributed (i.i.d.), in which case the pdf can
be factorized as

p(xk, . . . , xk+K) =

k+K∏

i=k

p(xi), (6)

for all k,K ∈ Z. For i.i.d. sources we sometimes use a simplified nota-
tion and let the RV (without indices) denote the source, that is, the i.i.d.
source {Xi}∞i=−∞ is denoted simply by X . A RV could either be discrete
amplitude, which means that it can take a finite number of possible values,
or continuous amplitude, in which case it could take any value out of an
infinite set of values. Source coding deals with finding a good representa-
tion (typically binary) for all these sources so that they can be stored or
transmitted. There is a distinction between two kinds of source coding —
lossless and lossy.

3.1 Lossless Source Coding

In lossless source coding, the representation is such that the source can
be perfectly reconstructed. This is, for example, the way source coding of
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text is done. The efficiency of a source code is measured by the number
of bits/sample needed to represent a source. The same source can have
different representations, where the most efficient representation is the one
that uses the least number of bits. Shannon showed [1] that there exists a
lower bound on the number of bits/sample needed to represent a specific
source, so that it can be reconstructed without any errors. The lower bound
is called the entropy rate of the source and measures the uncertainty of the
source. If the source is i.i.d., the entropy rate of the source is the same as
the entropy of the RVs that constitute the source. The entropy of a discrete
RV is denoted H(X) and defined by [25, Ch. 2]

H(X) , −
∑

x

P (x) log2(P (x)), (7)

where P (x) is the pmf of X . To achieve the entropy rate when coding a
source, it is generally required that the source is encoded in blocks of length
that tends to infinity. Two entropy-achieving coding strategies are Huff-
man [30] and Lempel–Ziv [31,32] coding. Huffman coding has the advantage
of working for short blocks of data but requires the probability distribution
to be known, whereas Lempel–Ziv coding makes no assumption other than
that the source is stationary and ergodic.

3.2 Lossy Source Coding

For continuous sources, such as measurements in WSNs or audio signals, it
is not possible to find a representation such that perfect reconstruction is
possible; an infinite number of bits would be needed for this to be possible.
This problem is solved by introducing lossy source coding. In this case we do
not require the reconstruction {X̂i} to be perfect but we are satisfied as long
as the reconstruction is close to the original source signal {Xi}. Two lossy
source codes that are widely used are JPEG for digital images and MPEG-1
layer 3 (mp3 in short) for audio signals. A measure of the closeness to the
original signal is needed in order to evaluate the performance of different
lossy source coding schemes. It is common to use a measure that works on a
symbol-by-symbol basis. The measure, denoted d(x, x̂), should be such that
d(x, x̂) ≥ 0, with equality if and only if x = x̂. One measure that satisfies
this general condition is the squared-error distortion, where

d(x, x̂) = (x− x̂)2. (8)

The measure can be generalized to sequences by averaging over the sequence
in the following way:

d
(
{xi}Ni=1, {x̂i}Ni=1

)
=

1

N

N∑

i=1

d(xi, x̂i). (9)
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By taking the expected value of d
(

{Xi}Ni=1, {X̂i}Ni=1

)

we get the mean

squared error (MSE), which is by far the most widely used distortion mea-
sure. One explanation for this is that it makes the analysis tractable in
many situations. Further motivation for using the MSE can be found in
estimation theory, where the minimum MSE estimate minimizes the distor-
tion among a large class of distortion measures [33].

In the lossless case, we saw how the entropy rate determined a lower
bound on how many bits that are needed to represent a source. For the
lossy case, Shannon (once again) showed [1] that there is a minimum rate
R(D) (bits/sample) that is required to achieve a certain distortion D. This
relationship is characterized in rate distortion theory [25, Ch. 10]; the rate
distortion function for an i.i.d. source X is given by

R(D) = min
p(x̂|x):E[d(X,X̂)]≤D

I(X ; X̂), (10)

where I(X ;Y ) denotes the mutual information between the RVs X and Y .
Evaluated for a memoryless Gaussian source with variance σ2

X and MSE as
distortion measure, the rate distortion function is given by

R(D) =







1

2
log2

σ2
X

D
, if D < σ2

X ,

0, if D ≥ σ2
X .

(11)

Alternatively, we can rewrite this expression to obtain the distortion as a
function of the rate R ≥ 0:

D(R) = σ2
X2−2R. (12)

For correlated sources it is possible to achieve an even lower distortion. For
example, the distortion rate function for an i.i.d. Gaussian source X =
(X1, X2)T with covariance matrix

E[XXT ] =

(
σ2
X ρσ2

X

ρσ2
X σ2

X

)

, (13)

where ρ denotes the correlation coefficient, is given by [34, Ch. 4]

D(R) =







σ2
X

1− |ρ|+ (1 + |ρ|)2−4R

2
, if R ≤ 1

4
log2

1 + |ρ|
1− |ρ| ,

σ2
X

√

1− ρ22−2R, if R >
1

4
log2

1 + |ρ|
1− |ρ| .

(14)

The interpretation of the expression in (14) is that if the source X =
(X1, X2)T is encoded with R bits/sample, then D(R) is a lower bound
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X I X̂
α(x) β(i)

source encoder source decoder

Figure 2: Source coding by scalar quantization.

on the distortion, that is, 1
2 E[‖X − X̂‖2] ≥ D(R) for any source code. By

comparing (12) and (14) and assuming that the correlation |ρ| < 1, we can

see that gain from the correlation is
√

1− ρ2 at high rates. Once again, the
bounds given by (12) and (14) are asymptotic, meaning that they are in
general achievable only if an infinite number of source samples are encoded
jointly.

3.3 Quantization

A simple and practical lossy source coding method is scalar quantization
(SQ), see Figure 2. In this method, a continuous-amplitude variable x ∈ R

is first mapped to an index i ∈ {1, . . . ,M} by a source encoder α according
to

i = α(x) if x ∈ Ωi. (15)

The mapping is determined by the sets {Ωi}Mi=1, which partition the real
line into disjoint quantization regions; the numberM is typically a power of
two, M = 2b, which means that the index can be represented by a sequence
of b bits that could be stored or transmitted. The source decoder β uses a
reconstruction codebook W = {w1, . . . , wM} to form an estimate of x from
the index,

x̂ = β(i) = wi. (16)

The simplest form of SQ is uniform quantization, where all quantization
regions Ωi (except the endpoints) are intervals of the same length. For
low bit rates, it is generally beneficial to optimize the quantization regions
for the source distribution. Lloyd [35,36] and Max [37] have independently
developed similar algorithms for designing a scalar quantizer that minimizes
the MSE for a given source, the optimized quantizer is commonly known as a
Lloyd–Max quantizer. The optimization algorithm consists of the following
steps: First choose some initial reconstruction points wi, i = 1, . . . ,M .
Given the reconstruction points it will be possible to find the sets {Ωi}Mi=1

that partition the real line such that the MSE is minimized. The condition
for optimality can be expressed as

Ωi = {x : (x− wi)2 < (x− wk)2, ∀k 6= i}. (17)
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Figure 3: Performance comparison of the distortion rate curve, VQ
(n = {2, 3}), and SQ, for a memoryless Gaussian source.

In a similar fashion, given the sets {Ωi}Mi=1 we can find the reconstruction
points that minimize the MSE by

wi = E[X |X ∈ Ωi]. (18)

The idea is now to iterate between (17) and (18) until the expressions con-
verge. One drawback of this method is that the final solution will depend
on the initial choice of reconstruction points — the algorithm can only be
assured to converge to a local minimum.

A straightforward generalization of SQ is vector quantization (VQ). In
VQ, instead of mapping a scalar to an index, α operates on a vector x ∈
Rn, which is mapped to an index i. The Lloyd–Max algorithm can be
extended to VQ and is then referred to as the generalized Lloyd algorithm.
An important contribution can be found in [38], where the LBG algorithm,
which partly solves the initialization problem, is proposed.

One important property of VQ is that it asymptotically (in n) reaches
the lower bound on the distortion given by the rate distortion theory. For
high rate, the advantages of VQ over SQ can be divided into the following
three contributions [39]. When the dimension n increases, the shape of the
quantization regions (given by {Ωi}Mi=1) will be more and more spherical,
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which (if possible) would be their optimal shape — this is called the space-
filling advantage. If there is correlation between the components in the
vector, a VQ can focus on the differences among these, whereas an SQ
cannot do this distinction since it operates on each component individually
— this is called the memory advantage. Even if there is no correlation
between the components, there is a shape advantage of VQ unless each
component is uniformly distributed. For example, samples from a two-
dimensional Gaussian source will be spread in a circular pattern around the
mean. Hence, there is no need to spend bits on the corner points like a
SQ would do. If a memoryless Gaussian source is encoded at high rate, the
asymptotic gain (in n) of using VQ over SQ is 4.34 dB — 1.53 dB due to
the space-filling advantage and 2.81 dB due to the shape advantage (there
is no memory advantage in this case). In Figure 3, the distortion rate curve
is plotted together with the performance of VQs of different dimensions.
However, there is one major concern with VQ — the complexity grows
exponentially with the dimension.

Lattice Quantization

The complexity of VQ can be reduced by enforcing a structure on the quanti-
zation regions. Lattice quantization is one example of how this can be done.
An N -dimensional lattice Λ is defined by the generator matrix G ∈ RN×N .
A point l ∈ RN belongs to the lattice if and only if it can be written as
l = Gi, where i ∈ ZN and Z = {0,±1,±2, . . .}. The nearest neighbor
quantizer of a lattice Λ is defined by

QΛ(x) , arg min
l∈Λ
‖x− l‖. (19)

For many widely used lattices, there exist highly efficient algorithms that
perform the operation in (19) without the need of an exhaustive search.
For lattices where such methods are not available, there exist closest-point
search methods that make use of the lattice structure to significantly im-
prove the performance compared to exhaustive search methods, see for ex-
ample [40]. However, these methods still have exponential complexity. A
comprehensive study of lattices and lattice quantization can be found in [41].

4 Joint Source–Channel Coding

In Section 2 we saw how a given channel was associated with a capacity
that defined an upper bound on the rate at which reliable communication is
possible. The results in Section 3 further showed that there is a minimum
rate needed to represent a source. A fundamental result in information
theory states that there is no loss of optimality in doing the source and
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channel coding separately, this is called the source–channel separation the-
orem [25, Ch. 7]. However, this theorem heavily rests on the assumptions
of infinite block lengths in the source and channel codes. In situations with
low-delay constraints, the use of long block lengths is not feasible. Because
of this the source–channel separation theorem does not hold anymore and
a joint source–channel code can give better performance. One situation
where a low delay is crucial is in closed-loop control over wireless channels.
In this case a wireless sensor measures some quantity (e.g., temperature)
that should be transmitted over a wireless channel to a control system. In
the following subsections, different joint source–channel coding strategies
that can be used in scenarios like this will be discussed.

4.1 Channel-Optimized Quantization

If the source coding system in Figure 2 is combined with a channel, we
get a system as the one shown in Figure 4. In this figure, the sensor node
produces an index I for each source sample X . The index is transmitted
over the channel and affected by the channel’s noise characteristics; because
of this the performance will be affected by the index assignment that is
used. The index assignment is the way that different quantization regions
are assigned to their corresponding indices. In the following, we will focus
on discrete channels, where there is a straightforward connection between
the quantization indices and the channel input4. Different channel symbols
will in general have different distance properties. If we, for example, take
the BSC with 4 bits per source symbol, the indices 0 and 15 have the binary
representations 0000 and 1111, respectively, and can be seen as far apart in
the channel space, whereas the index 1, with binary representation 0001, is
close to index 0 since only one bit differs. A good index assignment should
preserve distance properties, that is, source symbols that are close should be
mapped to indices that are close in the channel space and source symbols
that are far apart should be mapped to indices that are far apart in the
channel space [42]. To find the optimal index assignment, one would have
to do an exhaustive search among the M ! possible combinations, which is
infeasible in most cases. Despite the fact that the optimal index assignment
is hard to find, a random index assignment should be avoided. It can even
be shown that a random index assignment is asymptotically bad for uni-
form sources [43]. The performance of different index assignments has been
studied in [44].

An alternative approach, to optimizing the index assignment, is to take
the channel into consideration in the design algorithm when determining
the quantization regions as well as the reconstruction points. This is the

4The same reasoning applies to continuous-alphabet channels, but only after a mod-
ulation from the discrete indices to the channel space has been defined.
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X I J X̂
α(x) p(j|i) β(j)

source node destination nodechannel

Figure 4: Scalar joint source–channel coding over a digital channel.

strategy of [45], where a generalization of the Lloyd–Max algorithm is used
to find channel-optimized quantizers. By taking the effect of the channel
into account, the equations corresponding to (17) and (18) are given by

Ωi = {x : E[(x − X̂)2|I = i] < E[(x− X̂)2|I = k], ∀k 6= i} (20)

and

cj = E[X |J = j], (21)

respectively. Similarly to the Lloyd–Max algorithm, the optimized quantizer
is found by iterating between applying (20) and (21), updating the quanti-
zation regions and the reconstruction points, respectively. By expanding the
squares in (20) and rearranging the expression, this update can be done in a
very efficient manner [45]. An important observation in [45] is that some Ωi
may be empty, that is, the indices corresponding to these sets will never be
transmitted. This will make the system more robust against channel noise
at the cost of increasing the quantization distortion. This phenomenon is
also observed in Paper A, where a generalization of the design algorithm
in [45] is used for distributed source coding. As in the case of SQ, presented
in Section 3.3, the optimization algorithm can be generalized to the design
of VQs for noisy channels [46–49].

4.2 Bandwidth Compression–Expansion

The physical channels that we use for transmission are analog and not dig-
ital. When we talk about digital channels, we implicitly assume that a
mapping from our digital channel to the analog physical channel has been
provided. The energy efficiency of the communication system could be in-
creased — allowing us to save valuable energy in the sensor nodes — if we
mapped source symbols directly to the analog channel. In this section, we
will therefore look at analog source–channel mappings, that is, mappings
that take a vector of analog values as input and produce a vector of analog
values at the output.

Assume that a K-dimensional continuous-amplitude source is to be
transmitted over an L-dimensional continuous channel. One could define
a modulation from the discrete indices to the continuous channel space,
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X ∈ RK Y ∈ RL R ∈ RL X̂ ∈ R
K

α(x) p(r|y) β(r)

source node destination nodechannel

Figure 5: Joint source–channel coding over an analog channel.

and use the strategies that are described in Section 4.1. A more general
approach is to let the source encoder map the source symbols directly to
the channel space by a mapping α : RK 7→ RL. At the destination, the de-
coder estimates the transmitted source symbol by a mapping β : RL 7→ RK .
Depending on the ratio K/L, this can be seen as either bandwidth compres-
sion, for K/L > 1, or bandwidth expansion, for K/L < 1. A system where
this approach is employed can be seen in Figure 5. It should be empha-
sized that, if the jointly optimal pair of α and β can be found, this is the
optimal strategy for any choice of K and L. This is clear since all other
structured communication schemes can be seen as special cases of these
arbitrarily mappings (including schemes that use a source code in cascade
with a channel code). However, the problem is to find the jointly optimal
pair of α and β, which is not known except for some special cases. One
such case is if we have a matched bandwidth between the source and the
channel (i.e., K = L), the source is memoryless Gaussian, and the channel
is an AWGN channel. In this case the optimal strategy is to let α and β be
linear functions, that is, to use uncoded transmission. Necessary and suf-
ficient conditions for uncoded transmission to be optimal are given in [50].

The idea of this kind of analog codes was mentioned already by Shan-
non in [51]. Theoretical characterization of optimal analog communication
systems can be found in [52–54]. One important observation is that a linear
system is not optimal in general. In the case of bandwidth compression, a
linear system would need to discard some of the dimensions of the source.
On the other hand for bandwidth expansion, a linear system would only
use a K-dimensional subspace of the L-dimensional channel space, which
means that it does not use all the available degrees of freedom. For prac-
tical results and numerical optimization of α and β, see [55–62] for the
case of bandwidth compression and [57,59–64] for the bandwidth expansion
case. An example of a 2:1-bandwidth-compression curve (i.e., α) can be
seen in Figure 6. The curve has been optimized for a Gaussian source and
an AWGN channel using an algorithm similar to the one described in [56].
The two-dimensional Gaussian source samples, x = (x1, x2), are mapped to
the closest point on the curve that represents the one-dimensional channel
space. The upper left end of the curve corresponds to α(x) = −4 and the
lower right end corresponds to α(x) = 4. It is often very hard to find good
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pairs of numerically optimized α and β, unless the dimensions are rather
low. A solution to this problem is to enforce a structure on α, this is done
for the bandwidth expansion case in [65–67]. It is also possible to design
hybrid digital and analog systems as done in [68, 69].

5 Cooperative Transmission

In the past years, communication schemes for cooperative transmission have
received a lot of attention from the research community. With the increasing
popularity and relevance of ad-hoc WSNs, cooperative transmission is more
relevant than ever. In the following, we will discuss two important fields in
cooperative transmission, namely distributed source coding and relaying.

5.1 Distributed Source Coding

In WSNs, there may be a high correlation between different sensor mea-
surements due to high spatial density of the sensor nodes. This motivates
distributed source coding of correlated sources.

Lossless Distributed Source Coding

In Section 3, we saw how the entropy of a discrete source determined the
minimum number of bits needed to represent the source without any loss
of information. This concept can be generalized to the joint entropy of any
number of sources. The joint entropy of the discrete sources X and Y is
denoted H(X,Y ) and determines the minimum number of bits needed to
represent the two sources jointly [25, Ch. 2]. The joint entropy can be
divided into two parts,

H(X,Y ) = H(Y ) +H(X |Y ), (22)

where H(X |Y ) is the conditional entropy of X given Y . The conditional
entropy determines the minimum number of bits needed to represent X if
Y is known to both the encoder and the decoder. A fundamental property
of the conditional entropy is H(X |Y ) ≤ H(X), with equality if and only
if X and Y are independent. This means that the number of bits needed
to represent the source can be reduced if there is a dependency between
X and Y . One remarkable result is the Slepian–Wolf theorem [70], which
states that even if only the decoder has access to the side information Y ,
it is still possible to encode X with only H(X |Y ) bits and get a perfect
reconstruction at the decoder.
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dimensional Gaussian source and a one-dimensional AWGN channel
with SNR = 30 dB, that is, K = 2 and L = 1. The two-dimensional
Gaussian source samples, x = (x1, x2), are mapped to the closest point
on the curve that represents the one-dimensional channel space.



18 Introduction

Lossy Distributed Source Coding

The results for discrete sources were later extended to the case of lossy
source coding of continuous sources in [71] and is then referred to as Wyner–
Ziv coding. The distortion rate function in (12) provided the minimum
achievable distortion for a memoryless Gaussian source X , encoded with R
bits/sample. If we now assume that the decoder has access to side infor-
mation in terms of another Gaussian source Y that is correlated with X
according to

ρ =
E[XY ]

√

E[X2]E[Y 2]
, (23)

Wyner–Ziv’s results state that the distortion rate function with side infor-
mation at the decoder is given by

D∗(R) = DX|Y (R) = σ2
X|Y 2−2R = σ2

X(1− ρ2)2−2R. (24)

Distributed source coding is important in WSNs because it allows us
to save energy and bandwidth by reducing the amount of information that
needs to be transmitted. However, the results in [70,71] are nonconstructive
in the sense that they rely on random codes of infinite block lengths. Ideas
on how to construct practical Slepian–Wolf coding schemes using channel
codes are presented in [72–75]. Schemes for lossy distributed source coding
can be found in [76, 77]. These schemes are based on long block codes,
which introduces a delay in the system. In situations where long delays are a
concern, an alternative approach is to look at the problem as a quantization
problem; see, for example, [78–81]. In WSNs, the sensor nodes usually run
on batteries and operate under strict power constraints. It is therefore
relevant to include a noisy channel over which the source coded symbols are
to be transmitted. This problem is studied in [82–84].

5.2 Relay Channel

Assume that one node in a wireless network has a message for a distant node.
One way to reduce the energy consumption is to let an intermediate node
act as a relay and in this way increase the reach of the source node. The
three-node relay channel that was introduced in [85] is an example of such
scenario. All nodes could in principle act both as transmitting and receiving
nodes simultaneously. In this thesis we are interested in the scenario where
one node acts as a source node that wants to communicate a message to a
destination node. Besides the direct path from the source to the destination,
a relay node, with no objectives of its own, assists the communication and
creates an alternative path. In theory, the source and the relay may transmit
simultaneously for the whole duration of the transmission, but a common
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Figure 7: Half-duplex orthogonal AWGN relay channel. Transmissions
are subject to the power constraints E[α(W )] ≤ Pα and E[β(Y2)] ≤ Pβ
at the source and relay nodes, respectively.

assumption is that practical limitations of the relay make it unable to receive
and transmit simultaneously on the same frequency [86]. Therefore the
time is divided into two phases, the first phase in which only the source
node transmits and the second phase in which both the source and the
relay nodes transmit. Another common assumption, which we adopt in
this thesis, is that the source and relay nodes communicate over orthogonal
channels (see Figure 7). All in all, this is usually referred to as a half-duplex
orthogonal relay channel.

Even though the relay channel has been extensively studied, its capacity
is not known in the general case. Some early theoretical results on the relay
channel with an upper bound on the capacity and explicit formulas for some
degraded cases can be found in [87]. The main problem is to determine how
the source and relay nodes should operate. For a fixed strategy it is usually
possible to determine achievable rates [88,89]. Some relaying strategies that
have been proposed include amplify-and-forward (AF), decode-and-forward
(DF), estimate-and-forward (EF), and compress-and-forward (CF). In AF,
the relay transmits a linear amplification of what it receives. This works
well if the SNR of the channel from the relay to the destination is high. DF
requires somewhat more processing by the relay, which in this case decodes
the received message and encodes it again before it is transmitted to the
destination. In EF, the relay outputs an estimate of the signal that was
transmitted from the source, and in CF, the relay uses Wyner–Ziv lossy
source coding on the received signal. In some cases, there may be a low-
delay constraint on the transmission or a low-complexity operation at the
relay may be desirable. One approach in these situations is to let the relay
perform a memoryless operation, where the current output only depends on
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the current input. This is commonly referred to as instantaneous relaying.

6 Contributions of the Thesis

This thesis studies cooperative sensing and transmission in the context of
WSNs. By that we mean, using the terminology that was introduced in
Sections 2–5, distributed source and channel coding subject to low-delay
constraints. At first sight, the low-delay criterion may seem to be of little
relevance, but it is this aspect in particular that distinguishes this thesis
from many of the existing communication theoretic results, which often are
asymptotic in, for example, the block lengths.

In Figure 8, the relation of the included papers are shown in a schematic
overview. Papers A–D study different scenarios of distributed source–
channel coding. In Paper A and Paper B we use a generalization of the
Lloyd–Max algorithm to find optimized systems, whereas in Paper C and
Paper D we use a more structured approach by using sinusoids and lattice
quantization. In Paper E, we apply the methods that we have found suc-
cessful in joint source–channel coding to an open problem in the automatic
control discipline, namely, Witsenhausen’s counterexample. By doing this
we are able to demonstrate the best numerical performance known to date.
In Paper F and Paper G we turn our attention to the relay channel; new
schemes for lossy source–channel coding are considered in Paper F, whereas
Paper G deals with designing optimized source–channel mappings for loss-
less transmission of a discrete source. The optimizations in Papers E–G are
also based on a generalization of the Lloyd–Max algorithm. Paper H is an
outlier in that it studies how to perform the optimal power allocation for
linear transmission in a MIMO broadcast channel. In the same way that
this is the only paper where we study linear transmission it is also our only
result that provides the optimal solution in closed form.

We have almost exclusively looked at analog sources and consistently
used the MSE distortion measure. This is true for all papers except Paper
G, where the source is an information symbol and we use the symbol-error
rate as distortion measure. The recurring strategy that we use to accom-
plish low-delay sensing and transmission is to merge the source and channel
coding operations into one single operation as discussed in Section 4. Even
though the information theoretic upper bounds on the performance of source
and channel coding are often too optimistic when studying low-delay sys-
tems, we use these as references since they provide the optimal performance
theoretically attainable (OPTA).
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Figure 8: Schematic overview of the included papers.

Summary of Papers A–H56

Paper A: Distributed Quantization over Noisy Channels [2]

We consider the problem of designing simple and energy-efficient sensor
nodes in a WSN. An algorithm for designing distributed scalar quantizers
for orthogonal channels is proposed and evaluated. In particular the cases
of the BSC as well as the AWGN channel are studied. The system works on
a sample by sample basis yielding a very low encoding complexity, at an in-
significant delay. Due to the source correlation, the resulting quantizers use
the same indices for several separated intervals in order to reduce the quan-
tization distortion. The proposed quantizers can be used in low-complexity
transmission schemes for wireless sensor nodes and allow for valuable energy
savings.

5I changed my name from Johannes Karlsson to Johannes Kron in January 2011.
6In Paper A, where I am the second author, I have primarily done the preparations

and writing of the part concerning the BSC. In Papers B–H, where I am the first author,
I have done the majority of both the preparations and writing.
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Paper B: Low-Delay Joint Source–Channel Mappings for the
Gaussian MAC [3]

Similarly to Paper A we design simple and energy-efficient sensor nodes.
The difference is that we study transmission over an interfering channel
instead of orthogonal channels. We propose the use of low-delay joint
source–channel mappings and show for the matched bandwidth case how
performance saturation, which is unavoidable with linear transmission, can
be overcome by optimizing the mappings. To gain deeper understanding
of how the optimized systems work, the resulting mappings and their cor-
responding joint decoders are visualized. The optimized mappings are in
general nonlinear and perform a combination of signaling and transmission
of analog data. We next look at bandwidth expansion based on 16-QAM
and BPSK modulation and show that it is possible to have large perfor-
mance gains by optimizing the mappings. The implementation aspects of
the design algorithm are also discussed in detail.

Paper C: Lattice-Based Source–Channel Coding in WSNs [4]

We consider the problem of gathering measurements in a WSN consisting
of a large number of sensor nodes. A practical joint source–channel coding
scheme is proposed and evaluated. The scheme uses lattices to extend a
previously proposed scheme to higher dimensions. The key idea is to use
conventional point-to-point communication for a subset of the sensor nodes
and side-information aware transmission for the remaining sensor nodes.
We show that, by expanding from one to eight dimensions, a gain of about
1 dB is achievable. The overall transmission delay of the scheme is still very
low and it is therefore suitable to use in delay-sensitive applications.

Paper D: Analog Distributed Source–Channel Coding Using Si-
nusoids [5]

Distributed source coding can be used to reduce transmission rate or, in
the case of analog transmission, mitigate the effects of the channel noise.
Similarly to Paper C, we look at side-information aware transmission based
on analog mappings. In particular, we assume that an analog source is to
be transmitted to a receiver that has access to correlated side information,
as in the Wyner–Ziv problem. From the Cramér–Rao lower bound, we
observe general properties of analog distributed source–channel mappings.
It is especially clear how the stretch factor influences the performance and
we use this insight to propose two different mappings based on sinusoidal
waveforms. The proposed transmission scheme is numerically evaluated and
shown to perform well, particularly in the low-SNR regime.
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Paper E: Iterative Source–Channel Coding Approach to Witsen-
hausen’s Counterexample [6]

In this paper, we make a detour to the area of automatic control and apply
the methods we have used in joint source–channel coding to Witsenhausen’s
famous counterexample. In 1968, Witsenhausen showed that even in the
simple linear quadratic static team decision problem, nonlinear decisions
could outperform any given linear decision. This problem has served as a
benchmark problem for decades where researchers try to achieve the optimal
solution. The iterative source–channel coding approach we apply to this
problem makes no assumptions of the shape of the mappings but still results
in the lowest cost known to date.

Paper F: Optimized Low-Delay Source–Channel–Relay Map-
pings [7]

The three-node relay channel with a Gaussian source is studied for transmis-
sion subject to a low-delay constraint. We propose a joint source–channel
coding design algorithm and evaluate the performance numerically. The
designed systems are compared with reference systems, based on modular
source and channel coding, and the distortion rate function for the Gaussian
source using known achievable rates for the relay channel. The numerical
comparisons show that the joint design works well and gives significantly
better performance than the reference systems. By studying the struc-
ture of the optimized source–channel and relay mappings, we provide useful
insights on how the optimized systems work. Interestingly, the design al-
gorithm generally produces relay mappings with a structure that resembles
Wyner–Ziv compression.

Paper G: Design and Performance of Optimized Relay Map-
pings [8]

Similarly to Paper F, we consider the three-node relay channel but now we
study the transmission of a discrete information symbol. We let the relay be
a memoryless function and formulate necessary conditions for the optimality
of the relay mapping and the detector. Based on these, we propose a design
algorithm to find relay mappings such that the symbol error rate at the des-
tination is minimized. At virtually no extra complexity, the optimized relay
mappings give remarkable power gains compared to the existing schemes
detect-and-forward, amplify-and-forward, and estimate-and-forward. The
proposed system is more flexible than all of the reference systems, since it
finds a good tradeoff between soft and hard decisions depending on all link
qualities. The optimized relay mappings are illustrated for different scenar-
ios and the dependency between the relay mapping and the link qualities is
discussed in detail.
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Paper H: Closed-Form Sum-MSE Minimization for the Two-User
Gaussian MIMO Broadcast Channel [9]

We consider sum-MSE minimization for the Gaussian multiple-input,
multiple-output broadcast channel. Motivated by low-delay and low-
complexity constraints, we turn to analog transmission using linear pre-
coding, where the problem is to determine the optimal beamforming vector
and power allocation to use for each user’s message. By using recently dis-
covered properties of this problem, we derive a closed-form expression for
the optimal power allocation in the two-user scenario and propose a con-
ceptually simple and efficient algorithm that handles an arbitrary number
of users.

7 Conclusions and Future Work

In this thesis, methods for optimization of cooperative communication sys-
tems subject to very low delays have been considered. The principal con-
tributions of this thesis can be summarized as follows

• Nonlinear is better than linear. Throughout the thesis, we show how
nonlinear mappings outperform linear mappings for problems where
there is side-information available. (Papers A–G)

• Practical optimized low-delay mappings for distributed source–
channel coding are designed. (Papers A–D)

• A framework for optimization of otherwise difficult problems is devel-
oped. It is shown that it is possible to obtain good solutions by using
relatively simple algorithms. (Papers A, B, E–G)

• Visualization of numerically optimized mappings. The visualization
provides inspiration and insights into how to design structured low-
delay systems. (Papers A, B, E–G)

The optimized systems that are produced in this thesis have good per-
formance when compared to other systems of the same dimensionality, but
the gap to OPTA is in many cases significant. Directions for future work
include investigating how better bounds can be derived, that is, bounds
that take the low-dimensionality of the system into account. The results
in [90, 91] can potentially provide an opening in this direction. A tighter
bound on OPTA for low-dimensional systems would strengthen the results
in this thesis further.
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Distributed Quantization over Noisy Channels

Niklas Wernersson, Johannes Karlsson, and Mikael Skoglund

Abstract

The problem of designing simple and energy-efficient sensor nodes in a
wireless sensor network is considered from a joint source–channel coding
perspective. An algorithm for designing distributed scalar quantizers for
orthogonal channels is proposed and evaluated. In particular the cases of
the binary symmetric channel as well as the additive white Gaussian noise
channel are studied. It is demonstrated that correlation between sources can
be useful in order to reduce quantization distortion as well as protecting data
when being transmitted over non-ideal channels. It is also demonstrated that
the obtained system is robust against channel SNR mismatch.

Index Terms–Source coding, quantization, channel coding, correlation.

1 Introduction

Wireless sensor networks are expected to play an important role in tomor-
row’s sensing systems. One important property in these networks is that
there may be a high correlation between different sensor measurements due
to high spatial density of sensor nodes. This motivates source coding of
correlated sources, which has been analyzed in for instance [1] where the
well known Slepian–Wolf theorem is stated. Ideas on how to perform prac-
tical Slepian–Wolf coding are presented in [2,3], allowing the use of powerful
channel codes such as LDPC and Turbo codes in the context of distributed
source coding, see e.g. [4,5]. For the case with continuous sources, i.e. lossy
coding, relevant references include [6, 7]. In general, these methods require
the use of long codes and the encoding complexity will require some data
processing in the sensor nodes. This will therefore counteract one of the
desired design criteria in sensor network design, namely low cost and en-
ergy efficient sensor nodes. In addition, in many applications for example in
networked control, a low delay is essential, preventing the use of long codes.
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Figure 1: Structure of the system.

An alternative is therefore to design sensor nodes of very low complex-
ity and low delay. This can be accomplished by interpreting the distributed
source coding problem as a quantization problem. Previously, quantization
of correlated sources has been studied in [8–13]. Our work is however tar-
geted towards wireless sensor networks and introducing noisy channels is
necessary in order to make the system more realistic. For non-ideal chan-
nels related previous work includes [14] which considers the problem of
distributed detection over non-ideal channels. In [15] quantization of corre-
lated sources in a packet network is studied, resulting in a general problem
including multiple description coding as well as distributed source coding
as special cases.

We will in this paper summarize and continue the work carried out
in [16, 17] where distributed scalar quantizers were designed for different
channel models. In what follows, we propose a design algorithm that results
in sensor nodes operating on a sample by sample basis in a similar fashion
as a channel optimized scalar quantizer (COSQ) [18].

2 Problem Formulation

We consider the problem of distributed joint source–channel coding illus-
trated in Figure 1. Two correlated random variables X1 and X2 are to be
encoded by two encoders separated in space preventing cooperation between
the encoders. To achieve low-complexity and low-delay encoding, the map-
pings f1 and f2 work in the following manner: f1 and f2 will first scalar
quantize X1 and X2 to indexes i1 and i2 according to

qk : Xk → Ik ∈ {0, 1, ..., N − 1} ∀k ∈ {1, 2}. (1)
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and these indexes are then transmitted over an additive white Gaussian
noise (AWGN) channel. Two different transmission methods will be studied
resulting in two different channel models. The first model is created by using
BPSK on the AWGN channel in conjunction with hard decision decoding.
This results in a binary symmetric channel (BSC) with some given bit error
probability. Hence, in the first model each index is transmitted using the
BSC R , log2N times. In the second model we will transmit each index
by mapping the quantization index to a symbol in an N pulse amplitude
modulated (N–PAM) signal. We will refer to this case as the ’Gaussian
channel’. We explain these two cases in greater detail below.

2.1 Binary Symmetric Channel

For the case of the BSC the quantization index ik from (1) will be mapped
to its binary representation as

fk : Xk qk→ Ik → {−1, 1}R ∀k ∈ {1, 2}. (2)

Hence, fk will use qk to create the index ik which is then represented binary.
These bits are transmitted over a Gaussian channel using BPSK resulting
in

rk = fk(xk) + wk ∀k ∈ {1, 2} (3)

where w is zero mean i.i.d. Gaussian noise with covariance matrix σ2
wI. For

each of these R received values a hard decision decoding rule is applied such
that

jk(m) = sign(rk(m)) m = 1, 2, · · · , R (4)

where

sign(x) =

{
1, x ≥ 0
−1, x < 0.

(5)

Given that −1 was transmitted, and letting Q(·) denote the Q-function, this
will result in a bit error probability

ǫ =

∫ ∞

0

1
√

2πσ2
w

e
−

(r+1)2

2σ2
w dr = Q

(
1

σw

)

, (6)

which is also, due to the symmetry, the total bit error probability.
Denoting the decimal representation of jk as jk the decoding will be

performed as
x̂k = gk(j1, j2) ∀k ∈ {1, 2}. (7)

Hence, the decoding is based on both j1 and j2.
Given this system, we define the mean squared error (MSE) as

D =
1

2
(D1 +D2) =

1

2

(

E[(X1 − X̂1)2] + E[(X2 − X̂2)2]
)

(8)
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and our objective is to design the encoders and the decoder in order to
minimize the MSE.1

2.2 Gaussian Channel

For the Gaussian channel each of the indexes (i1, i2) are mapped to an N
pulse amplitude modulated (N–PAM) signal such that

fk(xk) = α(2qk(xk)−N + 1) ∀k ∈ {1, 2}. (9)

Here α is a constant such that the power constraints

E[fk(Xk)
2] ≤ P ∀k ∈ {1, 2} (10)

are satisfied. The two PAM signals are then transmitted over two orthogonal
channels, created by using e.g. TDMA or FDMA, resulting in the received
values

rk = fk(xk) + wk ∀k ∈ {1, 2} (11)

where the noise terms wk are independent zero-mean Gaussian distributed
with variance σ2

w . The decoder will have access to both r1 and r2 and forms
its estimate of the original source data as

x̂k = gk(r1, r2) ∀k ∈ {1, 2}. (12)

Here the objective is to design the encoders and the decoder in order to
minimize the (MSE) from (8) under the power constraints given in (10).

3 Analysis

As in traditional Lloyd-Max training [19] we will optimize each part in the
system in an iterative fashion keeping the other parts fixed. Note that the
system contains three parts: two encoders and one decoder, although the
decoder contains two decoding functions. We will in this section consider
the design of these parts under the assumption that

Xk = Y + Zk ∀k ∈ {1, 2} (13)

where Y , Z1 and Z2 are independent zero-mean Gaussian distributed ran-
dom variables with variances σ2

Y , σ2
Z1

= σ2
Z2

= σ2
Z . Hence, X1 and X2 are

correlated which can be exploited in the encoding as well as the decoding.

1As pointed out by one of the reviewers one could also define a weighted MSE as
D(ρ) = ρD1+(1−ρ)D2 and adopt our derived equations accordingly. One interesting case
would be D(1) meaning that the second observation x2 only serves as side information
when estimating x1. However, we will only study the case D(0.5), i.e. as in (8).
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For this jointly Gaussian distribution we get the conditional pdf

p(x2|x1) =
1√

2πσ2
exp




−

(

x2 − σ2
Y

σ2
Y

+σ2
Z

x1

)2

2σ2




 (14)

where

σ2 =
σ4
Z + 2σ2

Y σ
2
Z

σ2
Y + σ2

Z

. (15)

Without loss of generality we will further assume that E[X2
1 ] = E[X2

2 ] = 1,
hence σ2

Y + σ2
Z = 1.

3.1 Encoder for BSC

Only the design of f1 will be considered since f2 can be designed in the same
fashion. Given that the encoder f1 observes x1 and produces index i1 it can
derive the expected distortions for D1 and D2 as

D1(x1, i1) =
∑

j1

∑

j2

P (j1|i1)P (j2|x1) [x1 − g1(j1, j2)]
2

(16)

D2(x1, i1) =

∫
∑

j1

∑

j2

P (j1|i1)p(x2|x1)P (j2|q2(x2)) [x2 − g2(j1, j2)]
2

dx2,

(17)

where the integral is taken from −∞ to ∞ and

P (j2|x1) =
∑

i2

P (j2|i2)P (i2|x1) (18)

where

P (i2|x1) =

∫

x2:q2(x2)=i2

p(x2|x1)dx2. (19)

The other transition probabilities P (·|·) are straightforward to derive, see
e.g. [20]. In order to minimize the distortion (8) the quantizer q1(x1) should
be designed according to

q1(x1) = arg min
i1

(D1(x1, i1) +D2(x1, i1)). (20)

In [18] the case of a single source was studied. In this case, the solution
resulted in encoder regions which were intervals, and analytical expressions
for finding the endpoints of these intervals were derived. However, (20) does
in general not result in a similar solution and the encoder regions will in
general not be intervals, but rather unions of separated intervals (this will
be illustrated in Section 4).
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3.2 Encoder for Gaussian Channel

For the Gaussian channel D1 and D2 can be expressed as

D1(x1, i1) =

∫∫

p(r1|i1)p(r2|x1) [x1 − g1(r1, r2)]2 dr2dr1 (21)

D2(x1, i1) =

∫∫∫

p(r1|i1)p(x2|x1)p(r2|q2(x2)) [x2 − g2(r1, r2)]
2

dr2dx2dr1,

(22)

where the integrals are taken from −∞ to ∞. In order to minimize the
distortion (8) under the power constraint (10) the quantizer q1(x1) should
be designed according to

q1(x1) = arg min
i1

(D1(x1, i1) +D2(x1, i1) + λ(2i1 −N + 1)2). (23)

Here, the first two terms aim at minimizing the distortion introduced by
the quantizer whereas the third term will allow us to control the power con-
sumption by choosing a value for the Lagrangian multiplier λ, see e.g. [21].
Unfortunately the integrals in (21)–(22) are difficult to evaluate since they
contain g1(r1, r2) and g2(r1, r2) which vary with r1 and r2. In order to
get around this problem we use the technique of prequantizing r1 and r2
according to

h : (R1,R2)→ (J1,J2) ∈ {1, 2, ...,M}2 (24)

which will produce the decoding functions

x̂k = gk(h(r1, r2)) = gk(j1, j2) ∀k ∈ {1, 2}. (25)

Furthermore, in this work we choose M = N and let h(r1, r2) simply
map (r1, r2) to the closest possible output from the encoders defined by
(f1(x1), f2(x2)). Hence

h(r1, r2) = arg min
(j1,j2)

((r1 − α(2j1 −N + 1))2 + (r2 − α(2j2 −N + 1))2).

(26)

The decoding functions will now be piecewise linear over r1 and r2 which
greatly simplifies the derivation of (21–22) and we get the same equations as
in (16–17) (although the transition probabilities are different). Using (23)
together with (16–17) will therefore define the optimal quantizer q1(x1)
under the assumption that the decoder and the second encoder are fixed.

3.3 Decoder

Assuming fixed encoders it is a well known fact from estimation theory that
the optimal, in minimum MSE sense, estimates of x1 and x2 are given as

x̂k = gk(j1, j2) = E[xk | j1, j2] ∀k ∈ {1, 2}. (27)
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Hence, (27) is used to derive the decoders for both considered transmission
methods.

3.4 Design algorithm

Based on the developed equations (20), (23) and (27) it will be possible to
optimize the encoders and the decoder. A natural order to optimize these is:
1) the first encoder, 2) the decoder, 3) the second encoder, 4) the decoder.
Each step in the iteration will guarantee the distortion to decrease and the
training is repeated until the solution converges. Just as in the case of the
Lloyd-Max algorithm this will result in a locally optimal system which is
not necessarily the global optimum.

One problem with the suggested training above is that the obtained local
optimum produced will depend greatly on the initialization of the decoder
and encoders. In fact, in our simulations we experienced that very poor
local optima were often found using the approach suggested above. This
problem has also been encountered in [18,22–24] where the method of noisy
channel relaxation was introduced. The idea is essentially that it is easier
to find a good local optimum for channels with high noise energy than for
channels with low noise energy. Therefore a system is first designed for a
very bad channel. Next, the channel quality is gradually improved and a
new system is designed in each step. For each design, a full iterative training
algorithm is executed using the reconstruction codebook from the previous
design as initialization for the current design. We incorporate this idea by
starting designing a system for a noise variance σ′2w ≫ σ2

w. When this is
completed σ′2w is decreased with a stepsize σ2

∆ and a new system is designed.
This is repeated L times. The algorithm is summarized below.

1. Initialize encoders and optimize the decoder by using (27).

2. Set values for L and σ2
∆. Create σ′2w = σ2

w + Lσ2
∆.

3. Design a system for the channel noise σ′2w according to:

(a) Set the iteration index k = 0 and D(0) =∞.

(b) Set k = k + 1.

(c) Find the optimal quantizer q1 by using (20) (or (23)).

(d) Find the optimal decoder by using (27).

(e) Find the optimal quantizer q2 by using q2(x2)’s equivalence to
(20) (or (23)).

(f) Find the optimal decoder by using (27).

(g) Evaluate the distortion D(k) for the system. If the relative im-
provement of D(k) compared to D(k−1) is less than some thresh-
old δ > 0 go to Step 4. Otherwise go to Step (b).
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4. If σ′2w = σ2
w stop the iteration. Otherwise create σ′2w = σ′2w − σ2

∆ and
go to Step 3 using the current encoders and decoder when initializing
the next iteration.

We also experienced that when searching for a good local optima a small
improvement was sometimes obtained by also performing a noise relaxation
procedure for the correlation, i.e. varying σ2

z . However, the main improve-
ment was obtained by the algorithm above.

3.5 Optimal Performance Theoretically Attainable

Recently the rate region for the quadratic two-terminal source coding prob-
lem has been completely characterized in [25]. Furthermore, in [26] it is
shown that separating the source and channel code design, when the block
lengths are approaching infinity, will be asymptotically optimal for the prob-
lem we are considering. Hence, by simply studying the channel capacity of
the different orthogonal channels we get rate constraints, R1 and R2, on the
source code since these rates can be safely communicated to the decoder.
Assuming that we have access to a capacity achieving channel code for the
BSC we can transmit

βBSC = R1 = R2 = RCBSC = R(1 + ǫ log2 ǫ+ (1− ǫ) log2(1− ǫ)) (28)

on each channel, here CBSC is the capacity of the BSC [27]. For the Gaussian
channel we note that both encoders have the same power constraint (10)
and that both channels have the same noise power. This gives

βAWGN = R1 = R2 = CAWGN =
1

2
log2

(

1 +
P

σ2
w

)

(29)

where CAWGN is the capacity of the AWGN channel [27]. Using the appro-
priate β, from (28) or (29), and simplifying the expressions in [25] (remember
the assumption σ2

Y + σ2
Z = 1) gives

D1D2 ≥ 2−4β(1− σ4
Y ) + σ4

Y 2−8β. (30)

Since D1 is inversely proportional to D2 the total distortion in (8) will be
minimized by setting D = D1 = D2. This gives the optimal performance
theoretically attainable (OPTA) according to

D =
√

2−4β(1− σ4
Y ) + σ4

Y 2−8β. (31)

That is, D in (31) is the lowest possible achievable distortion for this prob-
lem.
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4 Simulations

We will here visualize the structure of the encoders obtained when using the
design algorithm presented in Section 3.4. The performance of a designed
system is also compared to the OPTA derived in Section 3.5. In order to
do so we measure the signal-to-distortion ratio (SDR) defined as

SDR = 10 log10

(
E[X2

1 ] + E[X2
2 ]

E[(X1 − X̂1)2] + E[(X2 − X̂2)2]

)

(32)

and we also define the correlation SNR as

CSNR = 10 log10

(
σ2
Y

σ2
Z

)

. (33)

Hence, CSNR = −∞ dB means that X1 and X2 are uncorrelated and
CSNR =∞ dB means that they are fully correlated. We use the term SNR
when referring to the channel SNR defined as 10 log10(P/σ2

w). As initial
encoders we used uniform quantizers and for the case of BSC the folded
binary code [28] was used as initial codeword assignment.

4.1 Structure of the Codebook - BSC

In Figure 2 systems have been designed for CSNR = 20 dB and the resulting
encoders are illustrated for different bit error probabilities. Starting with
Figure 2(a), where ǫ = 0 and R = 2 bits per sample and source, a num-
ber of source data samples are marked by the grayish distribution. These
samples are spread out along the diagonal due to the correlation between
x1 and x2. In the plot the different quantization intervals for q1 and q2
are marked by the dashed lines. The representation of codewords produced
by the quantizers in the different intervals are also marked. It is here in-
teresting to note that many of the codewords are used for more than one
quantization region. For example the codeword i2 = 1 is used for 3 sepa-
rated intervals such that q2(x2) = 1 when x2 belongs (approximately) to the
set {(−1.7,−1.0) ∪ (0.4, 0.6) ∪ (1.5, 1.9)}. With information from only one
of the channels it is not possible to identify which of these different intervals
x2 belongs to. However, with help from i1 (or rather j1) this can be accom-
plished since i1 = 0 or 1 is highly likely when x2 ∈ (−1.7,−1.0), i1 = 3 is
highly likely when x2 ∈ (0.4, 0.6), and so on. Hence, i1 will indicate which
of the separated intervals x2 belongs to. In this way the distributed coding
is used to decrease the quantization distortion. It is noteworthy that the
sets of separated intervals are created by the design algorithm despite the
fact that the initial encoders are regular quantizers where all quantization
regions are single intervals.

When the bit error probability increases the encoders will be more re-
strictive in using all possible codewords since they will be more likely to be
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Figure 2: Encoder structures for systems with CSNR = 20 dB and R =
2 bits/sample, ǫ = 0 in (a) and R = 3 bits/sample, ǫ = 0.05 in (b). The
small dots in the background show a sample distribution of (X1,X2)
and the dashed lines show the boundaries for the quantization regions.
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decoded incorrectly. In Figure 2(b) a system has been designed for ǫ = 0.05
and R = 3 bits per sample and source. As can be seen only a subset of the
codewords are now used by the encoders and these codewords have been
placed with an appropriate index assignment.

4.2 Structure of the Codebook - Gaussian Channel

In order to illustrate the characteristics of the resulting system for the Gaus-
sian channel a simple system with N = 8 has been designed and used for
SNR = 10 dB and CSNR = 20 dB. The resulting quantizers are shown in
Figure 3(a) and in Figure 3(b) it is illustrated how the quantization indexes
are mapped to the channel space.

Starting with Figure 3(a) we once again see that the codewords will be
reused as discussed in the previous section. See for instance the codeword
i1 = 5 which is used both when x1 belongs (approximately) to the set
(−0.8,−0.3) ∪ (1.7, 2.1). With help from i2 (or rather r2) the decoder will
be able to distinguish between these two intervals since i2 = 2 or 3 is highly
likely if x1 belongs to the first interval and otherwise i2 = 5 or 6 will be
highly likely.

Let us now consider what will happen when the source data is quantized
by q1 and q2 and mapped to the signal space by f1 and f2 as described by
(9). Both f1 and f2 uses 8–PAM, resulting in 64 possible combinations at
the encoder output. However, many of these combinations are very unlikely
to occur and for the simulation conducted the occurred outputs are marked
by circles in Figure 3(b). Furthermore, when transmitting these output
values the channels will add noise to the outputs creating a distribution of
(r1, r2) which is indicated by the grayish distribution in Figure 3(b).

Finally, some extra source data values were created in Figure 3(a) where
x1 = x2 = x, hence σ2

Z = 0, and we let x increase from −∞ to ∞. These
values are marked by the line along the diagonal. The reason for adding
these extra fully correlated values is that studying how this line is mapped
to the channel signal space will give insight in the mapping procedure. By
connecting the outputs created, when encoding this extra source data, we
see how the line is mapped to the channel signal space (marked by a dashed
line in Figure 3(b)). From this we note that, in general, samples far apart
in the source signal space are also far apart in the channel signal space and
vice versa. The power constraint will also focus the outputs in the area
around the origin as much as possible in order to keep down the power
consumption.

In Figures 4(a)–4(b) we present two other illustrations of the channel
space, this time for N = 32. Figure 4(a) represents the case of high CSNR
whereas Figure 4(b) represents low CSNR. From, for instance, Figure 4(a)
we can imagine an underlying continuous curve (f ′1(x), f ′2(x)) which would
be a good choice if we let N → ∞. Furthermore, the curves created by
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Figure 3: (a) Quantizers and (b) the corresponding mapping to the
channel space for a system designed and used for N = 8, SNR = 10 dB
and CSNR = 20 dB.
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Figure 4: Other mappings to the channel space are illustrated for (a)
N = 32, SNR = 7.2 dB and CSNR = 30 dB and (b) N = 32, SNR =
10 dB and CSNR = 13 dB.
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(f1(x), f2(x)) appear to, especially for the high CSNR case, relate to what
is often referred to as the bandwidth expansion problem mentioned already
in one of Shannon’s first papers [29]. This is the resulting problem when
CSNR = ∞ dB, i.e. x1 = x2, meaning that one is allowed to use a channel
twice in order to transmit one source sample. It is well know that optimal
encoding functions f1 and f2 will be nonlinear for this case, see e.g. [30,31]
and the references therein.

The connection between the bandwidth expansion problem and dis-
tributed source coding is an interesting insight and we draw the conclu-
sion that if an analog system is to be used for distributed source coding
linear operations for f1 and f2 are not necessarily appropriate. We have
elaborated on this further in [32]. It is interesting to note that the curves
(f1(x), f2(x)) are not necessarily continuous when N →∞ which also seems
to be indicated by Figure 4(b).

Finally we comment on the fact that the number of used encoder outputs
from f1 and f2 are not the same. For instance, in Figure 3(b) f1 uses 8
encoder outputs whereas f2 only uses 6. The curves (f1(x), f2(x)) created
will have two properties, the first is that the distance between different
folds of the curve will be high enough to combat the channel noise. The
second property is that the created curves will place the most commonly
occurring encoder outputs in the center where the power consumption is
low. Less common encoder outputs will be placed further out and the
curves will therefore grow outwards. However, due to the power constraint
the power consumption will at some stage become to high and the algorithm
will prevent the curve to grow any further. This will therefore cause the
encoders to use different numbers of outputs.

4.3 Performance Evaluation

We begin with evaluating a system designed for the BSC with R = 3 bits
per source sample, ǫ = 0.01 which is equivalent to a channel with SNR
= 7.3 dB (using the inverse of (6)) and CSNR = 13 dB. In Figure 5 we
study the performance of the system (dashed line) when the SNR is varied.
We have also included the OPTA (solid line) as well as a reference method
(dotted line) in the plot. The reference method is traditional COSQ [18]
where two independent COSQ’s are designed for R = 3 bits per sample and
SNR = 7.3 dB, hence the correlation is not taken into consideration in the
design. At the design SNR the gap to the OPTA curve is about 8 dB. Here
it should be emphasized that achieving the OPTA requires infinite block-
lengths, while our system works without delay on a sample by sample basis.
Also, achieving OPTA will require that the system is optimized for each
specific SNR whereas our simulated system is designed for one particular
SNR but used for all simulated SNR’s. By comparing to the reference
method we can see that the gain of utilizing the source correlation in the
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Figure 5: Evaluating the effect of varying the SNR when CSNR = 13
dB for a system designed for R = 3 bits per sample, SNR = 7.3 dB and
CSNR = 13 dB.
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dB for a system designed for R = 3 bits per sample, SNR = 7.3 dB and
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encoders and the decoder is about 3 dB at the design SNR. When the SNR
is increased above 10 dB the main contribution to the distortion comes from
quantization which is limited by R = 3 bits per source sample, increasing
the SNR above this point will therefore only have a small influence on the
performance.

Next we keep the SNR fixed at 7.3 dB and look at the effect of a CSNR
mismatch. That is, we evaluate the performance of the same system as
above, which is designed for CSNR = 13 dB, when the true source corre-
lation is varied. The result is shown in Figure 6 where we can see that
the system is quite sensitive to a too low CSNR whereas a higher CSNR
only gives a slight improvement in the performance. The designed system is
however better than the reference method as long as the CSNR is above 7
dB. The reference method will not depend on the correlation and therefore
has a constant performance.

In Figures 7–8 we present similar simulation results for the Gaussian
channel. The simulated system is the same system as shown in Figure 4(b)
designed for N = 32, SNR = 10 dB, CSNR = 13 dB and λ = 0.01. We
have also here included the OPTA as well as a reference method, traditional
COSQ, in the plot. In Figure 7 we let the CSNR equal 13 dB, hence what the
system is designed for, but we vary the true SNR in order to study the effects
of SNR mismatch. From the figure we see that in the area around SNR =
10 dB we are about 4 dB away from the OPTA (the additional figure is a
magnification of the region around SNR = 10 dB). Increasing the SNR from
this point will naturally increase the performance of OPTA and lowering the
SNR will decrease the performance. It is therefore interesting to note that
the designed system is able to follow the OPTA curve with essentially a
constant 4 dB distance in the interval SNR ∈ [5 dB, 15 dB]. The system is
hence robust to a too low SNR and at the same time it is able to exploit a
high SNR in order to increase the performance. Comparing the system to
the reference method we see that there is about a 1 dB performance gain
when the SNR is above 5 dB.

In Figure 8 we instead let SNR=10 dB and study the effect of a mis-
match in CSNR. Here it appears as the system is, just as in the BSC case,
more sensitive to a too low CSNR. It can tolerate some mismatch but the
performance will quite soon start decreasing rapidly. A too high CSNR only
gives a slight improvement in performance and a saturation level is reached
after only a few dB increase. Hence, for a high CSNR the proposed method
has the better performance and vice versa.

5 Conclusions

A design algorithm for joint source–channel optimized distributed scalar
quantizers is presented and evaluated. The resulting system works on a



5 Conclusions A17

−20 −10 0 10 20 30 40
−10

0

10

20

30

40

50

 

 

9 10 11
8

16

12

Design

OPTA

COSQ

SNR [dB]

S
D

R
[d

B
]

Figure 7: Evaluating the effect of varying the SNR when CSNR = 13
dB for a system designed for SNR = 10 dB and CSNR = 13 dB. The
upper left plot shows a magnification of the area around SNR = 10 dB.
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Figure 8: Evaluating the effect of varying the CSNR when SNR = 10
dB for a system designed for SNR = 10 dB and CSNR = 13 dB.
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sample by sample basis yielding a very low encoding complexity, at an in-
significant delay. Due to the source correlation, the resulting quantizers use
the same codeword for several separated intervals in order to reduce the
quantization distortion. Furthermore, the resulting quantization indexes
are mapped to the channel signal space in such a way that source samples
far from each other in the source signal space are well separated also in the
channel signal space, and vice versa. This gives systems robust against chan-
nel SNR mismatch which was shown when comparing designed systems to
the optimal performance theoretically attainable. The proposed main appli-
cation of these quantizers is in low-complexity and energy-efficient wireless
sensor nodes.
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for the Gaussian MAC
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Abstract

In this paper, the bivariate Gaussian multiterminal source coding prob-
lem with transmission over the Gaussian multiple-access channel is studied.
We propose the use of low-delay joint source–channel mappings and show for
the matched bandwidth case how performance saturation, which is unavoid-
able with linear transmission, can be overcome by optimizing the mappings.
To gain deeper understanding, the resulting mappings and their correspond-
ing joint decoders are visualized. The optimized mappings are in general
nonlinear and perform a combination of signaling and transmission of ana-
log data. We next look at bandwidth expansion and optimize mappings based
on M-ary modulation. The implementation aspects of the design algorithm
are also discussed in detail.

1 Introduction

For the well-known CEO problem [1, 2] and the Gaussian multiple-access
channel (MAC) with matched bandwidth, it is known that uncoded, or
linear, transmission is optimal [3]. Based on this conclusion, it is some-
times wrongly assumed that linear transmission is a good choice in other
similar cases, especially if there are low-delay constraints. However, if the
CEO problem is modified slightly such that the transmissions are made
over orthogonal1 channels (e.g., orthogonal in time or frequency), linear
transmission is no longer optimal because not all of the available channel
space is used. In this case, linear transmission is often suboptimal even if
one only considers low-delay systems that are uncoded in the sense that

1By orthogonal we mean that the channels are such that there is no interference
between them and that their noise terms are independent.



B2 Low-Delay Joint Source–Channel Mappings for the GMAC

transmissions are made on a sample-by-sample basis. In general, there exist
nonlinear mappings that outperform linear transmission [4].

In this paper we study the bivariate Gaussian multiterminal source cod-
ing problem with transmission over the Gaussian MAC. In the CEO prob-
lem, the terminals have access to noisy observations of a single underlying
source variable that should be estimated. The multiterminal source cod-
ing problem differs from the CEO problem in that, here, the source vari-
able at each terminal should be estimated. In this scenario with matched
bandwidth, it has been shown that linear transmission is optimal only for
signal-to-noise ratios (SNRs) below a certain threshold determined by the
correlation between the sources [5]. In [5], a joint source–channel code was
proposed that is shown to outperform separation-based schemes [5,6]. How-
ever, the results are asymptotic in the sense that infinite block lengths are
assumed. Motivated by low-delay constraints, in for example sensor net-
works or closed-loop control applications, we look at low-dimensional joint
source–channel mappings.

Low-dimensional joint source–channel coding is a well-studied topic for
point-to-point communication systems. Scalar quantization with transmis-
sion over noisy channels was studied in [7], where different index assign-
ments were compared. An alternative approach to optimizing the index
assignment is to take the channel into consideration when the quantization
regions are designed. This is the strategy of [8], where a generalization of the
Lloyd–Max algorithm is used to find channel-optimized quantizers. Gener-
alizations to vector sources were done in [9–12]. The physical channels that
we use for transmission are analog and not digital. When we talk about dig-
ital channels, we implicitly assume that a mapping from our digital channel
to the analog physical channel has been provided. The energy efficiency
of the communication system could be increased if the source symbols are
mapped directly to the analog channel. The idea of this kind of analog
codes was mentioned already by Shannon in [13]. Theoretical characteriza-
tion of optimal analog communication systems can be found in [14–16]. If
there is a mismatch between the channel and source dimensions, such that
their ratio is greater than or less than one, the system is usually referred
to as bandwidth expansion or bandwidth compression, respectively. If the
ratio is exactly one, we refer to the system as matched bandwidth. One
important observation is that a linear system is not optimal in general. In
the case of bandwidth compression, a linear system would need to discard
some of the dimensions of the source. On the other hand for bandwidth
expansion, a linear system would only use a subspace of the channel space,
which means that it does not use all of the available degrees of freedom.
Practical results of point-to-point communication with this kind of analog
source–channel mappings can be found in [17–24] for the case of bandwidth
compression and [19, 21–28] for the bandwidth expansion case. There are
not as many results for multi-user scenarios as considered in this paper;



2 Problem Formulation B3

see [4, 29–32] for a few of the existing multi-user results.

In what follows, we explicitly design optimized, low-delay transmission
schemes for the Gaussian multiterminal source coding problem and the
Gaussian MAC. This problem was also considered recently in [32], how-
ever using parametrized mappings, and in [29, 31], assuming orthogonal
channels. The novel contribution of this paper is to consider numerically
optimized mappings for the interfering Gaussian MAC. The outline of the
paper is as follows: In Section 2, we introduce the problem and define the
constraints on the system. In Section 3, we propose an iterative design algo-
rithm that can be used to find numerically optimized solutions. We present
lower bounds and the performance of linear transmission in Section 4. Sec-
tion 5 deals with implementation aspects and in Section 6, we present our
numerical results from using the design algorithm. Finally, we conclude the
paper in Section 7.

2 Problem Formulation

We consider a scenario where two spatially separated sensor nodes, each
measure a Gaussian random variable Xi, which is to be transmitted to a
joint receiver. The Gaussian random variables, X1 and X2, are identically
distributed and have zero mean and variance σ2

X . Furthermore, they are
correlated with a correlation coefficient defined by

ρ ,
E[X1X2]

σ2
X

. (1)

Due to low-delay constraints, we consider transmission on a sample-by-
sample basis where sensor i maps its measurement directly to the channel
space by the mapping αi and transmits Si = αi(Xi) ∈ SN ⊆ RN . The set
S consists of all possible modulation points that can be used by the sensor
nodes in each channel use; it is given by

S =

{

−∆
M − 1

2
,−∆
M − 3

2
, . . . ,∆

M − 3

2
,∆
M − 1

2

}

, (2)

where ∆ determines the resolution of the modulation points and M is the
number of points, or the cardinality, of S. For finite values of M , this is
the same as pulse-amplitude modulation (PAM) and asM and ∆ approach
infinity and zero, respectively, we have analog modulation2. N is a band-
width expansion factor, if N = 1 we have a matched bandwidth between
the source and channel, whereas if N > 1 we have bandwidth expansion.

2Of course one has to make sure that 1/∆ does not grow faster than M in which case
the product ∆M → 0.
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V ∈ R
N

X1 ∈ R

X2 ∈ R

S1 ∈ SN

S2 ∈ SN

(X̂1, X̂2)

α1(·)

α2(·)

Y ∈ R
N

β(·)

Figure 1: Overview of the joint source–channel coding scheme for the
Gaussian MAC with correlated sources.

The transmissions are made over the Gaussian MAC with average power
constraint P and the signal received at the receiver is given by

Y = α1(X1) +α2(X2) + V , (3)

as shown in Fig. 1, where V is additive white Gaussian noise, independent
of X1 and X2, with covariance matrix σ2

V I. At the receiver, the source vari-
ables (X1, X2) are reconstructed by the mapping β(Y ) = (β1(Y ), β2(Y )),
where

X̂i = βi(Y ), i = 1, 2. (4)

The overall objective is to find the combination of (α1,α2, β1, β2) that min-
imizes the average mean squared error, defined according to

MSE ,
1

2

2∑

i=1

E[(Xi − X̂i)2]. (5)

The minimization should be done under the following transmission power
constraint:

1

2

2∑

i=1

E[‖αi(Xi)‖2] ≤ P. (6)

3 Analysis

Using the Lagrange multiplier method [33], we turn the constrained opti-
mization problem of minimizing (5) subject to (6) into an unconstrained
problem by first forming the Lagrange cost function

J(α1,α2, β1, β2) =

2∑

i=1

{1

2
E[(Xi − X̂i)2] + λE[‖αi(Xi)‖2]

}

(7)
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and next expressing the problem as

min
α1,α2,β1,β2

J(α1,α2, β1, β2). (8)

Here λ is a Lagrange multiplier that is used to control the average power.
If for a given λ, we solve the unconstrained problem in (8) and find that
the power constraint in (6) is fulfilled with equality, the solution we have
obtained is also a solution to the constrained optimization problem [33].
Another way of putting it is that we pick a λ and solve (8). For a particular
choice of P , the inequality in (6) will be tight, consequently, this is the
corresponding constrained optimization problem that was solved with our
choice of λ.

The minimization problem in (8) is still very hard to solve due to in-
terdependencies between the components that are optimized and since the
problem is nonconvex. To get around these difficulties we proceed as in vec-
tor quantization (VQ) optimization [34, 35] and state necessary conditions
for the optimality of each component. Based on these necessary conditions,
we optimize the system iteratively, one component at a time while keeping
the other components fixed.

3.1 Necessary Conditions for Optimality

Beginning with α1, if we assume that (α2, β1, β2) are fixed, the optimal α1

is given by

α1 = arg min
α1

J(α1,α2, β1, β2)

= arg min
α1

{ 2∑

i=1

(1

2
E[(Xi − X̂i)2]
︸ ︷︷ ︸

MSEi

)

+ λE[‖α1(X1)‖2]
︸ ︷︷ ︸

P1

}

. (9)

Using Bayes’ rule, the MSE of user i can be expressed as

MSEi =

∫

p(x1)

∫

p(x2|x1)×
∫

p(y|α1(x1),α2(x2))(xi − βi(y))2dydx2dx1, (10)

where p(·) and p(·|·) denote probability densities and conditional densities,
respectively. The average power of user i is given by

Pi =

∫

p(xi)‖αi(xi)‖2dxi. (11)

Looking at (10) and (11), we can see that the objective function in (9)
can be expressed as an integration over x1 with an integrand of the form
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p(x1)f(x1). Since p(x1) by definition is nonnegative for all x1, we can find
the optimal α1 by minimizing f(x1) for each value of x1 in the following
way:

α1(x1) = arg min
s1∈SN

{∫

p(x2|x1)

∫

p(y|s1,α2(x2))×

1

2

(

(x1 − β1(y))2 + (x2 − β2(y))2
)

dydx2 + λ‖s1‖2
}

. (12)

The condition as given in (12) is a necessary condition for α1 to be part
of the optimal solution and if (α2, β1, β2) are given beforehand it provides
the optimal mapping α1. Obviously, α2 can be found in a similar way by
assuming that (α1, β1, β2) are fixed.

If we move on to the receiving side and assume that α1 and α2 are given,
we can find the optimal estimators. Since we are using the MSE as our cost
function, βi is given by the conditional expected mean

x̂i = βi(y) = E[Xi|y]. (13)

3.2 Design Algorithm

Based on the necessary conditions for optimality, we now propose a de-
sign algorithm that iterates between optimizing the mappings at the sensor
nodes and the receiver. This kind of iterative optimization does not in
general guarantee convergence to the global optimum. Nevertheless, it has
successfully been used in many applications such as VQ design [34, 35] and
design of joint source–channel mappings for different scenarios, see for ex-
ample [8,18,30]. For a fixed SNR , P/(Nσ2

V ) and correlation ρ, the design
procedure is stated in Algorithm 1.

In our simulations we have used δ = 10−4 to determine when to stop the
iteration. It is clear that the algorithm will converge since the cost function
is bounded from below and reduced by each iteration. The question is how
to avoid poor local minimums. In this paper we use a combination of two
methods. We first choose a good initialization in the first step of the design
algorithm, see Section 6.1. We also use a post-processing step similar to
noisy channel relaxation [36]. Assume that we have designed systems for
a range of SNR points, for example {10, 15, 20, 25} dB. We now initialize
the algorithm with the system designed for the smallest SNR and optimize
for the second smallest SNR. If the new system performs better than the
system that was previously optimized for this SNR point we keep it. This
process is repeated for each SNR point. Once we reach the largest SNR
point we repeat the process backwards until we reach the smallest SNR. By
stepping back and forward a couple of times, we can avoid that a system
designed for a particular SNR performs much worse than any other system.
This process was also used in [8].
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Algorithm 1 Design Algorithm

Require: Initial mappings ofα1 andα2, the SNR and correlation for which
the system should be optimized and the threshold δ that determines
when to stop the iterations.

Ensure: Locally optimized (α1,α2, β1, β2).

1: Find the optimal receivers (β1, β2) by using (13).
2: Set the iteration index k = 0 and J (0) =∞.
3: repeat
4: Set k = k + 1
5: Find the optimal source mapping α1 by using (12).
6: Find the optimal receivers (β1, β2) by using (13).
7: Find the optimal source mapping α2 by using (12).
8: Find the optimal receivers (β1, β2) by using (13).
9: Evaluate the cost function J (i) according to (7).

10: until (J (k−1) − J (k))/J (k−1) < δ

4 Lower Bounds and Linear Transmission

The distortion region of this problem is in general unknown. Since the
sources are correlated and the communication is over the GMAC, the
source–channel separation theorem does not hold. We can lower bound
the distortion by considering collaboration between the sensor nodes such
that blocks of source samples X1 and X2 are encoded jointly. By letting the
block length tend to infinity, we have a point-to-point communications prob-
lem where the source–channel separation theorem does hold. Consequently,
we can find a lower bound on the distortion by evaluating the distortion-rate
function of an i.i.d. Gaussian source X = (X1, X2)T at a rate R equal to
N times the capacity of the channel at hand. The general distortion-rate
function in [37, Ch. 4] can be specialized to our two-dimensional source X
and is then given by

D(R) =







σ2
X

1− |ρ|+ (1 + |ρ|)2−2R

2
, if R ≤ 1

2
log2

1 + |ρ|
1− |ρ| ,

σ2
X

√

1− ρ22−R, if R >
1

2
log2

1 + |ρ|
1− |ρ| .

(14)

Here D(R) is a lower bound on the average MSE, as defined in (5), if
the source is encoded with R bits per source vector X. For the matched
bandwidth case where we have S ≈ R, we setR to the capacity of the AWGN
channel. In the cases where we have bandwidth expansion and S consists
of a small number of constellation points, we set R to N times the capacity
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of the constellation-constrained AWGN channel3. It is also important to
realize that since the output of the virtual joint encoder comes from two
sensor nodes that combine their outputs coherently, we have a 3 dB power
gain in our point-to-point channel in comparison to an ordinary channel. To
compensate for this, the capacity of the point-to-point channel is evaluated
at an equivalent SNR of 2P/(Nσ2

V ).

Analog Modulation and Matched Bandwidth

In the special case of S = R and N = 1, we can compare the performance of
our optimized systems to linear transmission and the lower bound from [5].
For the reader’s convenience we include the result for the symmetric case,
that is, MSE1 = MSE2. Linear transmission is one of the most simple
transmission schemes, where the outputs of α1 and α2 are scaled versions
of their inputs. Given the power constraint in (6), the optimal scaling is
such that the average power of each transmitter is P . The MSE of linear
transmission is given by

MSElinear = σ2
X

P (1− ρ2) + σ2
V

2P (1 + ρ) + σ2
V

(15)

and a lower bound on the MSE is given by

MSElower =







σ2
X
P (1−ρ2)+σ2

V

2P (1+ρ)+σ2
V

for P/σ2
V ≤ ρ/(1− ρ2)

σ2
X

√

(1−ρ2)σ2
V

2P (1+ρ)+σ2
V

for P/σ2
V > ρ/(1− ρ2).

(16)

As can be seen by comparing (15) and (16), the lower bound is tight for
SNR = P/σ2

V ≤ ρ/(1 − ρ2) in which case linear transmission is optimal.
The intuition why linear transmission is optimal only below this threshold,
is that for low SNRs the power of the two sensor nodes combine coherently
to combat the channel noise, but as the SNR increases, the difference be-
tween the two signals will instead cause interference that is greater than the
channel noise itself. In [5], a joint source–channel code is constructed that
performs close to the lower bound for high SNRs. However, both the lower
bound and the joint source–channel code rely on infinite block lengths. Note
that schemes based on source–channel separation are in general suboptimal
if the source samples are correlated.

5 Implementation Aspects

With no loss of generality we assume that the transmit power P is always one
and that the SNR = P/(Nσ2

V ) is varied by changing the noise variance σ2
V .

3In general, there are no closed-form expressions in this case and one has to find the
capacity by means of numerical integrations.
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For the actual implementation of the formulas in (12) and (13), we need
to make some modifications and approximations. First of all, we cannot
evaluate the formulas for all (x1, x2) in the real domain. Instead we generate
Monte-Carlo samples from the distribution of X1 and assign them to the
set X . The basic idea is to let the samples in this set represent both X1 and
X2 by associating each element x1 ∈ X with a new set X2|x1

⊆ X , where
each element is “typically” correlated with x1. The elements in X2|x1

are
randomly chosen among the samples in the set

Xγ,x1 = {x2 : x2 ∈ X , p(x2|x1) > γ}, (17)

where

p(x2|x1) =
1

√

2π(1− ρ2)σ2
X

exp
(

− (x2 − ρx1)2

2(1− ρ2)σ2
X

)

, (18)

which are those samples in X whose conditional probability density function
given x1 are higher than the threshold γ. In our simulations we have used
5000 samples to define X and γ = 0.001 as a tradeoff between complexity
and accuracy. The idea of choosing samples randomly and not including all
samples from this set is to further reduce the complexity. The acceptance
ratio has been set so that the cardinality of X2|x1

is around 400. We need
to shape p(x2|x1) slightly to compensate for the fact that the samples are
drawn from an already Gaussian distribution instead of a uniform distri-
bution and also since we have cut off the tails of the distribution with our
threshold γ. This is done by letting

P (x2|x1) =
p(x2|x1)

κx1p(x2)
, (19)

where κx1 is a normalization constant such that

∑

x2∈X2|x1

P (x2|x1) = 1, ∀x1 ∈ X . (20)

Our second problem is that the received signal still is real-valued. To get
around this, the input to the receiver is pre-quantized by a nearest neighbor
quantizer to a finite set Y defined by

Y =

{

−∆

η

M̃ − 1

2
,−∆

η

M̃ − 3

2
, . . . ,

∆

η

M̃ − 3

2
,

∆

η

M̃ − 1

2

}

, (21)

where η ∈ N is a nesting factor and M̃ is chosen such that y = s1 + s2 ∈ Y
for all s1, s2 ∈ S. By using a nesting factor η > 1, the quantization at
the receiver has a finer resolution and thus provides soft information of the
transmitted symbols instead of making hard decisions.
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We are now in position to state the discretized versions of (12) and (13),
which are used in the actual implementation of the design algorithm. They
are given by

α1(x1) = arg min
s1∈SN

{ 2∑

i=1

∑

x2∈X2|x1

P (x2|x1)×

∑

y∈YN

P (y|s1,α2(x2))(xi − βi(y))2 + λ‖s1‖2
}

(22)

and

β1(y) =

∑

x1∈X

x1

∑

x2∈X2|x1

P (x2|x1)P (y|α1(x1),α2(x2))

∑

x1∈X

∑

x2∈X2|x1

P (x2|x1)P (y|α1(x1),α2(x2))
. (23)

The expressions for α2 and β2 follow by straightforward modifications of
the above formulas.

6 Performance Evaluation

We consider three different sets of modulation points, which we denote by
analog, 16-QAM, and BPSK modulation. In the first case we let N = 1
and approximate analog modulation by letting ∆ be small in relation to the
standard deviation of the channel noise and M large (i.e., S ≈ R). To be
more specific, we have kept ∆(M − 1)/2 = 4 and used an M in the range
[321, 1281] depending on the SNR. For the 16-QAM case we let N = 2 and
useM = 4 modulation points per channel dimension and for the BPSK case
we let N = 4 and use M = 2 modulation points per channel dimension. In
the latter two cases, we have used a ∆ such that (6) is fulfilled with equality
if all modulation points are equiprobable. The nesting factor η that is used
on the receiving side to have a finer resolution of the constellations points is
set to 1 in the analog scenario and 2 in the 16-QAM and BPSK scenarios.

6.1 Initialization

Each scenario requires its own initialization; below we describe the initial-
izations that have been used in the design algorithm for each scenario.

Analog (N = 1)

After running the design algorithm a couple of times, it became clear that
staircase functions are good starting points for the iterative design procedure
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in the analog case. We therefore initialize α1 with a staircase function with
L steps. Mathematically, this can be expressed as

α1(x1) =

⌊

Q(x1)
2 max
s1∈S
s1

L− 1

⌉

S

, (24)

where

Q(x1) =




x1

L− 1

2 max
x1∈X
|x1|
− even(L)

2







Z

+
even(L)

2
, (25)

even(L) =

{
1 if L is even
0 otherwise,

(26)

and ⌊·⌉S returns the closest point (in terms of Euclidean distance) in the
set S. The best choice of L typically depends on both the correlation and
the SNR. In our simulations we have used L in the range from 2 to 20. The
mapping α2 has been initialized identical to zero for all inputs.

16-QAM (N = 2,M = 4)

For 16-QAM, we consider two different initializations based on Lloyd–Max
quantization [34, 35]. The first strategy is based on quantization with 4
levels at each source node and a mapping of the quantization indices to
modulation points using time-division multiple access (TDMA). That is,
each source node only uses one dimension of the channel and there is there-
fore no interference. The second strategy uses identical mappings at the
source nodes (i.e., α1 = α2) and is based on quantization with 16 levels,
where the indices are mapped to the channel space in a spiral-like way such
that neighboring quantization levels correspond to neighboring modulation
points [38].

BPSK (N = 4,M = 2)

For BPSK, we initialize in two different ways similarly as in the 16-QAM
case. For the TDMA initialization we first quantize with 4 levels and map
the quantization indices to modulation points such that there is no inter-
ference between the two source encoders. For the second strategy we once
again use identical mappings at the source nodes based on quantization
with 16 levels. For the mapping of quantization indices to binary modula-
tion points we use the folded binary code [7], which is known to perform
well for Gaussian sources over noisy channels.



B12 Low-Delay Joint Source–Channel Mappings for the GMAC

6.2 Numerical Results

In Figs. 2–4, we plot the results for each set of modulation points and two
different source correlations, namely, ρ = 0.5 and ρ = 0.9. The results are
plotted as SDR , 10 log10 σ

2
X/MSE versus SNR. The curves show practical

systems where the encoders have been optimized for certain SNR points
that are marked by circles in the figures. We assume that the true SNR is
known by the receiver and that the decoder is updated accordingly.

Analog (N = 1)

Starting with the results of analog modulation in Fig. 2, we can see that the
optimized systems perform very well and overcome the saturation that is
unavoidable with linear transmission. The systems are robust against SNR
mismatch on the transmitting side. Looking, for example, at the system
optimized for SNR = 15 dB and ρ = 0.5 in Fig. 2(a), we can see that it
performs very well in the range from 10 dB to 20 dB. In a real system
where there are time variations, a feedback link could be utilized to ensure
that the best performing encoders are always used. Since we are plotting the
results as SDR, the distortion lower bounds in Section 4 become SDR upper
bounds. It should be emphasized that the upper bounds are asymptotic
results in the sense of infinite block lengths of the source samples as well
as in the channel coding part. The gap between the upper bounds and our
low-delay system is therefore not surprising. As can be seen, there is a gap
between the two upper bounds in the medium correlation case (ρ = 0.5) but
as the correlation increases, the two bounds coincide. This is because the
upper bound based on joint encoding always has a 3 dB power gain due to
coherent combining of the signals regardless of the correlation. Intuitively,
this is too optimistic since, for example, if the source correlation would be
zero there would be no power gain at all due to coherent combining. The
upper bound in [5] takes this dependency into account and is therefore a
tighter bound. Nevertheless, the upper bound based on joint encoding is
useful in the bandwidth expansion scenarios (i.e., N > 1) that are evaluated
next.

16-QAM and BPSK modulation

Looking at the performance of the 16-QAM and BPSK systems in Figs. 3–4,
the gap to the upper bound seems to increase as the bandwidth expansion
factor (i.e., N) increases. The same phenomenon has been observed in
other cases where low-delay joint source–channel mappings for bandwidth
expansion have been studied [22, 30]. As methods of reference, we have
used the initialization systems based on TDMA and identical mappings,
as described in Section 6.1, with the corresponding optimal receiver based
on full channel-state information. Using identical mappings is comparable
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Figure 2: Simulation results for analog modulation with matched band-
width. Circles mark the points where the mappings are optimized.
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Figure 3: Simulation results for 16-QAM with bandwidth expansion.
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T and I, corresponding to TDMA and identical, are used to indicate
which initialization that was used for each optimized system.
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to linear transmission in the analog case, which is one of the reasons this
is a suitable reference for the bandwidth expansion cases. In comparison
to these systems that have the same complexity and delay, the optimized
mappings perform very well and give large performance gains. It is worth
to mention that also the upper bound saturates eventually due to the finite
number of modulation points

The two different methods of initialization (i.e., TDMA and identical)
give similar results after the design algorithm and the post-processing step
have been executed. In Figs. 3–4, we show the results of the methods
that have the best performance at the SNR points where the systems are
optimized. Which initialization that was used for each particular system
is indicated by T for TDMA and I for identical in the legends. It is hard
to make any general recommendations for which initialization to use; it all
depends on the modulation scheme, SNR, and the source correlation.

6.3 Encoders and Decoders

We shall now take a closer look at the encoder–decoder structure in the
analog scenario. In Fig. 5, we show encoders (left) and decoders (right) for
different correlations and SNRs. The interaction between the two encoders
is easiest understood by looking at the corresponding joint decoders to the
right in Fig. 5. The staircase-like behavior of the encoder mappings performs
a combination of signaling and transmission of analog data, which makes
the reconstruction points fill the source space in an efficient way. This is the
reason why the optimized mappings perform better than linear transmission
where the decoder would be the straight line X̂2 ≡ X̂1 regardless of the SNR
and correlation.

It is a bit harder to visualize the encoders for the bandwidth expansion
cases because the outputs are two- and four-dimensional. To give some
insights into how the mappings perform, we show decoders for two cases
with BPSK modulation in Fig. 6; the mappings are optimized for an SNR
of 10 dB and correlations ρ = 0.5 and ρ = 0.9. We can see that the
reconstruction points does not follow a line anymore as in the analog case,
the same is also true for the 16-QAM mappings. This is simply because the
input to the decoder is a multi-dimensional vector. Both of the mappings
in Fig. 6 were initialized using identical mappings.

7 Conclusions

We have proposed the use of optimized source–channel mappings for the
bivariate Gaussian multiterminal source coding problem with transmission
over the Gaussian MAC. For analog modulation and matched bandwidth,
the optimized nonlinear mappings fill the gap between linear transmission
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Figure 5: Analog modulation with matched bandwidth: Encoders
(left) and their corresponding decoders (right) optimized for different
SNRs and correlations. In the figures to the right, the dotted lines show
reconstruction points (x̂1, x̂2) and the small dots are samples from the
distribution of (X1,X2).
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Figure 6: BPSK modulation with bandwidth expansion (N = 4): De-
coders optimized for an SNR of 10 dB and correlation ρ = 0.5 (left) and
ρ = 0.9 (right). The larger dots show reconstruction points (x̂1, x̂2) and
the small dots are samples from the distribution of (X1,X2).

and existing upper bounds. Also in the case of 16-QAM and BPSK modu-
lation with bandwidth expansion, we have shown that it is possible to have
large performance gains by optimizing the mappings. The main advantage
of the optimized mappings is their low-delay properties, due to their oper-
ation on a sample-by-samples basis.
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Abstract

We consider the problem of gathering measurements in a wireless sen-
sor network consisting of a large number of sensor nodes. A practical joint
source–channel coding scheme is proposed and evaluated. The scheme uses
lattices to extend a previously proposed scheme to higher dimensions. The
key idea is to use conventional point-to-point communication for a subset of
the sensor nodes and side-information aware transmission for the remain-
ing sensor nodes. The selection of sensors is based on their instantaneous
channel quality. It is shown that by expanding from one to eight dimensions,
a gain of about 1 dB is achievable. The overall transmission delay of the
scheme is still very low and it is therefore suitable to use in delay-sensitive
applications.

1 Introduction

We consider the important task of communicating correlated sensor mea-
surements to a fusion center over noisy channels. We will assume that
the sensor measurements are real and thus take values from an infinite al-
phabet. This is a lossy distributed source–channel coding problem. Lossy
source coding with side-information was first studied by Wyner and Ziv
in [1], where they characterize the rate–distortion region when side infor-
mation is available at the decoder. This problem has been extended to
other scenarios of lossy distributed source coding, such as multi-terminal
source coding [2, 3] and the Chief Executive Officer (CEO) problem [4]. In
multi-terminal source coding in general, the objective is to estimate an en-
tire field at the fusion center, where each sensor can measure only a part of
the field. Whereas in the CEO problem, all sensors have noisy observations
of the same source and the objective is to estimate this single underlying
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source at the fusion center. In the following we will consider the first of
these problems, namely, to estimate an entire field.

The rate–distortion region of this problem is only known in a few special
cases, such as the quadratic Gaussian two-encoder problem [5]. It is, in
general, very difficult to find the rate-distortion region for larger networks.
Nevertheless, there are numerous upper and lower bounds, see [2, 3, 5–7].

In this paper, we will assume that the communication channels are made
orthogonal by either frequency- or time-division multiple access techniques.
It was recently proved [8] that the separation of source and channel coding,
which is optimal in point-to-point communication, also is optimal in this
scenario. However, the focus of our work is on delay-sensitive applications,
such as networked control systems. In these applications the measurements
are used in active decisions and there is a penalty involved in receiving de-
layed measurements; the system might even become unstable in the worst
case. The information theoretic arguments for optimal source and channel
coding and the separation principle, are all based on block lengths that
asymptotically tend to infinity. It is clear that long block lengths, which
would lead to significant decoding delays, does not fulfill our low-delay con-
straints. Therefore, we propose the use of a joint source–channel code,
operating on short blocks of only a few samples, which gives virtually no
transmission delay at all.

Uncoded linear transmission has been shown to outperform schemes
based on separate source and channel codes if specific conditions are ful-
filled [9]. Because of this, linear transmission may seem to be a good can-
didate of a joint source–channel code for the problem at hand, see [10–12]
for examples where this is used. However, since the channels are orthogonal
and the measurements are correlated (as in [10–12]), a linear transmission
scheme will only use a subspace of the channel; in the limit of high cor-
relation, the subspace will be one-dimensional, which clearly is a waste of
energy.

In [13], we considered a pair of sensors and proposed a design algorithm
that jointly, in an iterative manner, optimized the operation at each sensor
node as well as the decoder at the fusion center. This resulted in highly
optimized systems that, in general, were nonlinear. The nonlinearities were
such that all dimensions of the channel space were utilized. However, al-
though straightforward in theory, the generalization to more than a couple
of sensor nodes or vector measurements is infeasible due to high computa-
tional complexity. To reduce the complexity, we need some structure. A
practical analog scheme that uses piecewise linear mappings was presented
in [14]. The simple encoding and decoding structure made it possible to
handle an arbitrary number of sensor nodes.

We generalize the ideas of piecewise linear mappings to higher dimen-
sions by using modulo-lattice modulation (MLM). In addition, we also in-
clude fading channels in our model and present an idea for scheduling of
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the sensor nodes. Lattices have been proposed and analyzed as a tool
to do structured distributed source coding in WSNs before, see for ex-
ample [15–18]. However, most results are theoretical and asymptotic in
some sense. The idea of MLM originates from nested lattice codes in dig-
ital systems [17, 18] and was mentioned in [15] as a means of performing
analog communication with side information. The idea is analyzed in [16]
in a point-to-point scenario, where it is shown that MLM asymptotically
reaches the Wyner–Ziv bound as the lattice dimension goes to infinity. An-
other motivation for MLM in situations where side information is available
at the decoder can be found in [19]. In this case a scalar relay mapping was
numerically optimized and the resulting mapping is very similar to a saw-
tooth curve, which is the one-dimensional equivalence of MLM. Motivated
by low-delay constraints, we will look at finite-dimensional systems and es-
pecially investigate the gains in a practical system when the dimensions are
increased. In what follows, we propose a practical and scalable lattice-based
strategy for collecting sensor measurements in a WSN consisting of a few
to hundreds of sensors.

2 Problem Formulation

We study a complete WSN with K sensor nodes as illustrated in Figure 1.
Each sensor measures an N -dimensional quantity

Y i =X +W i ∈ R
N i = 1, . . . ,K, (1)

where X and W i are independent Gaussian random variables with covari-
ance matrices σ2

XI and σ2
Wi
I, respectively. Hence, the samples are spatially

correlated but temporally uncorrelated. We would like to emphasize that
we are considering the multi-terminal source coding problem of estimating a
random field, which is modeled by Y i, i = 1, . . . ,K. That is, the objective
is to estimate each sensor’s observation at the fusion center and we are not
interested in X, except to the extent it can be helpful in estimating Y i,
i = 1, . . . ,K. Each sensor encodes its measurement independently in blocks
of length N according to the function

si(yi) : R
N 7→ R

N i = 1, . . . ,K, (2)

which is then transmitted to the fusion center over a Rayleigh block fading
channel with additive white Gaussian noise (AWGN). The received value
from each sensor is denoted by Ri and can be expressed as

Ri = Hisi(Y i) + V i i = 1, . . . ,K, (3)

where Hi is the real-valued Rayleigh fading coefficient with E[|Hi|2] = 1
and V i is Gaussian noise with covariance matrix σ2

V I. At this point, we as-
sume for simplicity that perfect channel-state information (CSI) is globally
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Figure 1: Overview of the WSN. K sensor nodes that should commu-
nicate their measurements to a fusion center.

available. The fusion center estimates each Y i from all received values as,

Ŷ i = gi(R1,R2, . . . ,RK) i = 1, . . . ,K. (4)

To have a low-delay system we want the block length N to be small.
Typically, this will affect the performance and there is a tradeoff between
delay and performance. As performance measure we use the mean squared
error (MSE) per sample, defined as

MSE ,
1

KN

K∑

i=1

E[‖Y i − Ŷ i‖2]. (5)

The objective is to minimize the MSE by a proper choice of encoding and
decoding functions {si, gi}Ki=1, where si should satisfy an average power
constraint

1

N
E[‖si(yi)‖2] ≤ P i = 1, . . . ,K. (6)

3 Proposed Scheme

Due to fading, the signal-to-noise ratio (SNR) of the different channels to
the fusion center will be different. Some sensors will have a high SNR,
which could correspond to the sensor being close to the fusion center, line-
of-sight transmission or constructive multipath propagation; whereas others
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have a low SNR, which could correspond to the sensors being further away,
something blocking their transmission or destructive multipath propaga-
tion. Distributed source coding is mainly a way to reduce transmission rate
or equivalently, in analog transmission as studied in this paper, a way to
mitigate the effects of the channel noise. Because of this and since we are
interested in each sensor’s measurement, there is little gain in using dis-
tributed source coding for the sensors that already have a high SNR. We
therefore propose the following scheduling and transmission strategy:

1. Transmit the measurements from the M sensors having highest SNR
with conventional point-to-point source–channel coding techniques. In
this scenario we use linear transmission.

2. Estimate X and Y i, i = 1, . . . ,M , from these transmissions.

3. Transmit the measurements from the remaining sensors using MLM,
assuming that the estimate of X is available as side information at
the receiver.

3.1 Phase 1: Linear Transmission

Without loss of generality, let the sensors be in such way that linear trans-
mission is used for the M first sensor nodes, that is,

si(yi) =

√

P

σ2
X + σ2

Wi

yi i = 1, . . . ,M. (7)

The optimal receiver given theM linear transmissions is obtained by solving
the Wiener–Hopf equations [20]. Let the elements of a vectorAi be denoted
by Aij , j = 1, . . . , N (e.g., Ri = [Ri1, Ri2, . . . , RiN ]T ). Each component of
Yi can now be estimated by

Ŷij = t(i)
T
R(j) i = 1, . . . ,M, j = 1, . . . , N, (8)

where

R(j) = [R1j , R2j , . . . , RKj ] j = 1, . . . , N (9)

t(i) =
(

E[R(j)R(j)T ]
)−1

E[YijR
(j)] i = 1, . . . ,M. (10)

In a similar manner, the optimal estimate of X is given by

X̂j = t(0)TR(j) j = 1, . . . , N, (11)

where

t(0) =
(

E[R(j)R(j)T ]
)−1

E[XjR
(j)]. (12)
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Figure 2: Transmission from one isolated sensor node using MLM with
side information at the receiver.

3.2 Phase 2: Modulo-Lattice Modulation

We need some basic terminology for lattices before we can proceed and look
at the modulo-lattice modulation. An N -dimensional lattice Λ is defined
by the generator matrix G ∈ RN×N . A point l ∈ RN belongs to the
lattice if and only if it can be written as l = Gi, where i ∈ ZN and Z =
{0,±1,±2, . . .}. We define the nearest neighbor quantizer of a lattice Λ by

QΛ∆
(x) , arg min

l∈Λ∆

‖x− l‖, (13)

where ∆ is used to explicitly specify the minimum distance between lattice
points (which is the same as two times the packing radius of the lattice). For
a particular lattice Λ, any ∆ can be achieved by a proper scaling of G. For
the lattices considered in this paper, there exist highly efficient algorithms
that perform the operation in (13) without the need of an exhaustive search.
The modulo-lattice operation that will be used in the rest of the paper is
defined by

x mod Λ∆ , x−QΛ∆
(x). (14)

A comprehensive study of lattices and lattice quantization can be found
in [21]. See also [16], where the MLM scheme is presented and analyzed in
detail.

We will now present how we will use MLM in our scenario. Given the
M linear transmissions, we will isolate each of the remaining K−M sensors
and treat them individually as shown in Figure 2. The motivation for the
individual treatment of the remaining sensors is the fact that Y i and Y j are
conditionally independent given X for all j 6= i. The side-information from
the linear transmissions is modeled by Ỹ =X + W̃ , where W̃ is Gaussian
noise with covariance matrix σ2

W̃
I1. We use the correlation coefficients ρXY

1Ỹ can be obtained by a proper scaling of X̂ in (11).
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and ρXỸ to quantify the quality of the side-information,

ρXY ,
E[XjYij ]

σXσYi
, ρXỸ ,

E[Xj Ỹj ]

σXσỸ
. (15)

Since side-information is available at the fusion center, we can use the
following nonreversible modulo-operation at the source nodes

si(yi) = βi(αiyi mod Λ∆i) i =M + 1, . . . ,K. (16)

There are three scaling parameters involved — αi, βi, and ∆i. αi is chosen
such that the variance of each component of αiY i equals unity. In a similar
way, βi is used to make sure that the power constraint in (6) is fulfilled.
The parameter ∆i specifies the minimum distance of lattice points and
determines the amount of information that is removed prior to transmission.
If ∆i is large no information is removed and the sensor operates in a linear
mode. On the other hand, if ∆i is small, more information is removed and
the fusion center would have to rely on the side-information to estimate the
removed part and be able to decode.

The decoder is divided into three steps. First, the output of the sen-
sor node, si(yi), is estimated from Ri by using the linear minimum MSE
(MMSE) estimator,

ŝi|R =
Phi

Ph2
i + σ2

Vi

Ri i =M + 1, . . . ,K. (17)

Next, the part that is removed during the modulo operation is estimated
from X̂ and ŝi|R,

Q̂Λi = QΛ∆i
(αiX̂ −

ŝi|R

βi
) i =M + 1, . . . ,K. (18)

Finally, Y i is estimated as

Ŷ i =
1

αi
(Q̂Λi +

ŝi|R

βi
) i =M + 1, . . . ,K. (19)

Provided that the side-information is sufficiently good such that Q̂Λi =
QΛ∆i

(αiY i) with high probability, decreasing ∆i would allow the sensor
to increase βi without violating the power constraint. This can be seen as
a virtual power gain and decreases the MSE. However, if ∆i is decreased
below some threshold such that decoding errors become dominant in (18),
the MSE will increase. The optimal ∆i will depend both on ρXY and ρXỸ
as well as the instantaneous SNR, Ph2

i /σ
2
Vi

. We have performed a numerical
grid search to find the optimal ∆i for a large range of these parameters and
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Figure 3: Numerical results of single-link MLM using the lattices E8,
D4 and Z1. Linear transmission and the Wyner–Ziv bound are shown
for comparison. ρXY = ρXỸ = 0.99
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the lattices E8, D4, Z1, where the subindices in this case denote the lattice
dimension. The resulting performance for ρXY = ρXỸ = 0.99 can be seen
in Figure 3, where we also compare the results to linear transmission and
the Wyner–Ziv bound. The lattices we use — Z1, D4, and E8 — are well
known for their excellent properties. All of them are the densest lattice
packings in their respective dimension and it is “a reasonable guess” [21]
that they are also the best uniform quantizers among lattices. See [21] for
details about their definitions and properties.

By looking at Figure 3 we can see that linear transmission is slightly
better than MLM for SNR points less than 7–8 dB. Because of this we make
a small modification to the selection of sensors that use linear transmission
and include also those sensors with low SNR, where linear transmission is
superior. As the SNR increases we see that the curves are more or less
parallel. For the specified correlation, MLM with the lattice E8 is 7–8 dB
better than linear transmission. The gain of increasing the dimensions from
1 to 4 and from 4 to 8 is roughly 1 dB. The gap to the Wyner–Ziv bound
is 6–7 dB, however, it is worth to stress that this bound assumes infinite
dimensions in both the source and channel coding. In [16] it is in fact shown
that MLM can reach the Wyner–Ziv bound as the lattice dimension goes to
infinity.

4 Numerical Results

To evaluate the proposed method we will consider two scenarios — a WSN
with 20 sensors and a WSN with 100 sensors. For each of these scenarios
we let σ2

Wi
= σ2

W and simulate the system for two different correlation
coefficients, namely ρXY = 0.99 and ρXY = 0.995. For the Rayleigh fading,
we have assumed that the channel coefficients stay constant for 100 channel
uses. The parameter M , which determines the number of sensors using
linear transmission, has been optimized numerically for each SNR point.
The results of the simulations for the two scenarios are presented in Figure 4
and Figure 5. It is evident that our proposed method clearly outperforms
transmission using linear modulation. As soon as the SNR exceeds a certain
threshold, the gains are significant. This is despite the fact that the optimal
receiver is used for the linear scheme whereas for the MLM scheme we have
resorted to a suboptimal ad-hoc receiver. The limitation of the linear system
is on the transmitting side. In the limit of a correlation coefficient ρXY = 1,
for each sample, linear transmission only uses a one-dimensional subspace
of the K-dimensional channel space. This is the explanation why the linear
system is not able to take advantage of the increased correlation as the
SNR increases; the curves for ρXY = 0.99 and ρXY = 0.995 asymptotically
converge to the curve ρXY = 0. This is in contrast to the proposed system
with MLM, where the advantage of a higher correlation is maintained as
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Figure 4: WSN consisting of 20 sensor nodes. MLM in comparison to
Linear transmission for ρXY = 0.99 and ρXY = 0.995.

the SNR is increased. This is achieved by a decrease of ∆ which makes sure
that all dimensions of the channel space are used.

The Wyner–Ziv bound is obtained from Theorem 3 in [5], where the
minimum MSE given a sum-rate constraint is stated. The bound is used
by taking the sum of each link’s ergodic channel capacity as the sum rate.
In general, this bound is too optimistic and is not achievable with short
block lengths since it relies on infinite block lengths in several senses. For
example, there is no outage since we use the ergodic channel capacity, the
effects of the channel noise is cancelled out by an optimal channel code, and
the correlation behaves exactly as the correlation coefficient predicts.

Another observation is that the threshold where MLM performs better
than linear transmission is shifted towards a lower SNR for the scenario with
100 sensors. This is explained by looking at Figure 6, where the number of
linear sensors are plotted as a function of the SNR. At an SNR of 7.5 dB all
sensors use linear transmission in the WSN with 20 sensors, while around
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Figure 5: WSN consisting of 100 sensor nodes. MLM in comparison
to Linear transmission for ρXY = 0.99 and ρXY = 0.995.

40 sensors use MLM in the WSN consisting of 100 sensor nodes. To put it
in another way, as the number of sensor nodes increases, a smaller amount
of sensors are needed to provide sufficiently good side information which is
necessary for MLM to work.

5 Conclusions

We have proposed a joint source–channel coding scheme for WSNs based
on MLM. The scheme is practical and has a low complexity that makes
it suitable for WSNs consisting of a large number of sensors nodes. The
use of very short block lengths is favorable in delay-sensitive applications
such as control systems. We have investigated the gains of increasing the
dimensions and shown that an 8-dimensional system performs about 1 dB
better than a scalar system; linear transmission is clearly outperformed in
all cases. The assumption of globally available CSI can easily be relaxed
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Figure 6: Number of sensors that use linear transmission as a function
of average channel SNR for MLM with E8. ρXY = 0.99 and ρXY =
0.995.

to a more realistic assumption of local CSI. The fusion center could then
broadcast a threshold that determines if MLM or linear transmission should
be used.
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Using Sinusoids

Johannes Karlsson and Mikael Skoglund

Abstract

In a wireless sensor network, it is likely that the measurements of the
sensors are correlated. Distributed source coding can be used to reduce trans-
mission rate or mitigate the effects of the channel noise in the case of analog
transmission. In this paper, we propose a novel scheme for implementing
distributed source–channel coding based on analog mappings. We assume
that an analog source is to be transmitted to a receiver that has access to cor-
related side information, as in the Wyner–Ziv problem. From the Cramér–
Rao lower bound, we observe general properties of analog distributed source–
channel mappings. It is especially clear how the stretch factor influences the
performance. From this observation we propose two different mappings based
on sinusoidal waveforms. The proposed transmission scheme is numerically
evaluated and shown to perform well, particularly in the low-SNR regime.
Furthermore, it requires no encoding or decoding delay, making it suitable
for delay-critical applications in wireless sensor networks.

1 Introduction

Over the last decade, wireless sensor networks (WSNs) have received consid-
erable attention. A WSN should consist of small, cheap, and energy-efficient
devices which measure relevant quantities. Due to high spatial density of
the sensors, the measurements are likely to be correlated. One important
task is to find an efficient way of communicating all sensor measurements
to a fusion center.

Ever since the work by Wyner and Ziv [1], different ways of implement-
ing lossy distributed source coding have been proposed. The most common
approach is to do quantization followed by Slepian–Wolf coding [2]. The
Slepian–Wolf code is often implemented using long block codes which in-
troduces significant delays in the decoding process. In situations, such as
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control applications, where a low delay is of interest, there is much to gain
by using a joint source–channel code, where the operations at the sensor
node are merged to one single operation — a mapping from the source
space directly to the channel space. In what follows, we propose a novel
scheme for distributed source–channel coding based on analog mappings,
which results in very low transmission delays.

2 Problem Formulation

Consider a wireless sensor network with K sensors, where the measurements
of each sensor are correlated according to

Xi = Y +Ni i = 1, . . . ,K, (1)

where Y and Ni are independent Gaussian random variables with variances
σY and σNi , respectively. The objective is to transmit each sensors’ indi-
vidual reading (i.e., Xi) to a fusion center. The variables Y and Ni are only
used to describe the correlation structure. Due to the physical placement of
the different sensors, the signal-to-noise ratio (SNR) of their channels to the
fusion center will be different. Some sensors will be close to the fusion center
and hence have a high SNR, whereas others are further away or for some
other reason have a low SNR. Distributed source coding is mainly a way to
reduce transmission rate or equivalently, in analog transmission as studied
in this paper, a way to mitigate the effects of the channel noise. Because
of this there is not much gain in using distributed source coding for the
sensors that already have a high SNR. We therefore propose the following
transmission strategy: 1. Transmit the measurements from the sensors with
an SNR higher than some threshold with conventional source–channel cod-
ing techniques. 2. Estimate Y from these measurements. 3. Transmit the
measurements from the remaining sensors using distributed source–channel
coding, assuming that the estimate of Y is available as side information at
the receiver.

In this paper, we will only consider the third step and assume that Y
has been perfectly estimated1 and is available at the receiver. From now
on we study the transmission and estimation of the measurement of the ith
sensor. To simplify the notation we drop the index specifying the sensor
and consequently have a situation where the sensor measures

X = Y +N. (2)

1This is a slight simplification since the estimate of Y will not be perfect. However,
this could be compensated by letting σN be slightly larger than σNi in the following
discussion.
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Figure 1: Analog transmission from a sensor node with side informa-
tion at the receiver. The dashed line shows the structure of the corre-
lation.

The correlation between X and Y is specified by the correlation coefficient
ρ,

ρ =
E[XY ]

σXσY
=
σY
σX
. (3)

The channel from the sensor to the fusion center is modeled as a memoryless
additive white Gaussian noise (AWGN) channel which can be used L times
for each measurement. The sensor encodes X using a mapping s(X) : R 7→
RL. The mapping s(X) should be chosen such that the average power
constraint

E[‖s(X)‖2] ≤ LP (4)

is satisfied. The fusion center receives

R = s(X) + V , (5)

where V is zero-mean Gaussian noise with covariance matrix E[V TV ] =
σ2
V I. X is finally estimated from R and the side information Y by a map-

ping X̂ = g(R, Y ) : RL × R 7→ R. The system is shown in Figure 1. As
performance measure we use the mean squared error

D = E[(X − X̂)2]. (6)

The objective now is to find a mapping s(X), satisfying (4), and its cor-
responding receiver mapping, g(R, Y ), such that the distortion D is mini-
mized. In the following sections, we will discuss general properties of such
mappings and evaluate some mappings that are based on sinusoidal wave-
forms.



D4 Analog Distr. Source–Channel Coding Using Sinusoids

3 Analysis

The Cramér–Rao lower bound (CRLB) [3] gives a lower bound on the dis-
tortion for any unbiased receiver mapping. Evaluated for our problem, the
CRLB states that (see Appendix A)

D ≥ 1
1
σ2
V

E[‖s′(X)‖2] + 1
σ2
N

, (7)

where

‖s′(X)‖ =

√
√
√
√

L∑

i=1

{dsi(X)

dX

}2

(8)

is the stretch factor [4]. From (7), it can be seen how the stretch factor
determines how much the channel noise is attenuated; the stretch factor
should be as high as possible to limit the effect of the channel noise. One
obvious way to accommodate this is by increasing the transmit power but
this would violate the power constraint in (4). Another option is to let s(X)
be a mapping that twists and bends as much as possible, which means that
its derivatives and, consequently, also the stretch factor are high. There is a
limit to how much the curve can be stretched by twisting and bending. At
some point, different folds of the curve will come too close to each other such
that a small channel noise may cause a large decoding error. In conventional
source–channel coding, the curve should be stretched as much as possible,
keeping different folds of the curve at a maximum distance to avoid large
decoding errors [4, 5]. In the case of distributed source coding, the side
information adds an extra dimension making it possible to have mappings
that repeat themselves.

3.1 Optimal Receiver

The receiver should form an estimate of x based on the received vector r
and the side information y. It is well-known that the optimal estimate, in
minimum MSE sense, is given by the conditional expected value

x̂ = E[X |r, y]. (9)

It should be noted that the conditional expected value in general is biased.
Nevertheless, the CRLB can still give useful insights into the design of good
encoder mappings.

4 Proposed Schemes

In this section, we propose two analog distributed source–channel mappings
for the case L = 2. Our proposed mappings are based on sinusoidal wave-
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forms that thanks to their periodic nature stretch the curve by reusing
output symbols. Sinusoids have previously been used for bandwidth ex-
pansion of a uniform source with no side information in [7]. In that case
the periodic nature of the sinusoids caused some problems and the system
had to be designed with a safe margin such that the output symbols does
not repeat. However, in our scenario the side information adds an extra
dimension making the reuse of output symbols possible.

Mapping 1 is given by

s(x) = A

[
cos(kx)
sin(kx)

]

(10)

‖s′(x)‖ = Ak (11)

where we have also included its stretch factor. The mapping has two pa-
rameters, k and A, where k is used to control the periodicity and A is
determined by the power constraint in (4). Two examples of this mapping
are shown in Figure 2(a) and (b). The mapping in (b), with k = 5.5, would
be preferable to the one in (a), with k = 1.8, due to its higher stretch factor.
A direct implication of the higher value of k is that the different turns of
the spiral are packed more closely, meaning that the receiver would have to
put more trust in the side information. If the correlation is high, this would
work well but if the correlation is low, there is a risk for large decoding
errors and the mapping in (a) would be more suitable to use.

During simulations we noted that Mapping 1 suffered from performance
saturation as the SNR increased. This is because the distortion in the case
of a high SNR is dominated by errors that occur due to errors in the side
information. That is, the transmitted value is estimated as coming from
the wrong turn on the spiral. To avoid this behavior, we propose a second
mapping, which is a generalization of Mapping 1 with a radius that varies
with x. Mapping 2 is given by

s(x) = A(1 + r cos(mkx))

[
cos(kx)
sin(kx)

]

(12)

‖s′(x)‖ = Ak
√

(1 + r cos(mkx))2 + (rm sin(mkx))2. (13)

As can be seen, the mapping has two additional parameters, r andm, where
r determines how much the radius should vary from unity andm determines
the frequency in relation to k at which the radius vary. By letting m be
a noninteger, the mapping is repeated less frequently which gives better
performance. An example of this mapping can be seen in Figure 3. In this
figure m = 4.5, meaning that the mapping is repeated every second turn
(this is due to the decimal part being .5). One drawback with Mapping 2 is
the extra number of parameters, which makes it more complicated to find
the optimal combination of parameters.
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Figure 2: (a) Mapping 1: k = 1.8 (b) Mapping 1: k = 5.5
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5 Numerical Results

The first step in evaluating our proposed mappings is to determine the
optimal parameters to use. For Mapping 1 there is only one parameter to
determine and we have used a grid search to find good values of k (See
Table 1 in Appendix B). For Mapping 2 it is a bit more cumbersome to find
the optimal parameters since the search space now is three dimensional. In
this case we have constrained the search to the sets m ∈ {2.5, 3.5, . . . , 16.5}
and r ∈ {0.2, 0.25, . . . , 0.45} (See Table 2 in Appendix Appendix B). We
consider two different correlation coefficients in our simulations — ρ = 0.9
and ρ = 0.99. In the case of Mapping 2, we observe that the parameters m
and r seem to only be dependent on the channel SNR and independent of
ρ. The mappings in Figure 4(a) and Figure 4(b) are optimized for an SNR
of 5 dB and 15 dB, respectively. We assume that the receiver knows the
SNR and therefore adapts to the current channel conditions.

The mappings are evaluated against the 1:2-bandwidth-expansion map-
pings in [6] and also a linear scheme where

s(x) = A

[
x
x

]

. (14)

The mappings in [6] does not utilize any side information but on the other
hand they have a higher degree of freedom and have been optimized for
each channel-SNR point. They therefore serve as a reference and are used
to show the performance gains that come from using side information at the
receiver. The linear system uses the optimal receiver, which makes use of
the side information, and serves as a reference for the gains that come from
a better use and reuse of the available output symbols.

It is expected that the performance improves as the correlation coef-
ficient increases. Interestingly, the proposed mappings manage to keep an
approximately constant distance between the curves at ρ = 0.9 and ρ = 0.99;
whereas for the linear system, the advantage of a higher correlation coeffi-
cient disappears as the SNR increases. We can also clearly see that Mapping
1 saturates earlier than Mapping 2 when the SNR increases.

6 Conclusions

We have proposed the use of analog source–channel mappings, based on si-
nusoidal waveforms, for implementing distributed source coding. The map-
pings have been numerically evaluated and are shown to perform well, es-
pecially in the case of high correlation and low channel SNR. The proposed
transmission scheme requires no encoding or decoding delay, making it suit-
able for delay-critical applications. Possible directions for further work is
to increase L and also investigate other mappings that can be used.
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D10 Analog Distr. Source–Channel Coding Using Sinusoids

Appendix A Cramér–Rao Lower Bound

The Cramér–Rao Lower Bound [3] is given by

D ≥
{

−E

[
∂2 ln p(R, Y,X)

∂X2

]}−1

=

{

−E

[
∂2 ln p(R|X)

∂X2
+
∂2 ln p(Y |X)

∂X2
+
∂2 ln p(X)

∂X2

]}−1

, (15)

where the equality follows from the factorization of p(R, Y,X), using the
fact that R and Y are conditionally independent given X . The probability
densities are given by

p(R|X) =
1

(2π)L/2σLV
exp

{

− 1

2σ2
V

L∑

i=1

[si(X)−Ri]2
}

(16)

p(Y |X) =
σX√

2πσNσY
exp

{

− σ2
X

2σ2
Nσ

2
Y

[

Y − σ
2
Y

σ2
X

X

]2
}

(17)

p(X) =
1

(2π)1/2σX
exp

{

− 1

2σ2
X

X2

}

. (18)

By taking the logarithm and thereafter deriving the second derivative with
respect to X , (16)–(18) are transformed to

∂2 ln p(R|X)

∂X2
= − 1

σ2
V

L∑

i=1

(
[s′i(X)]2 − [Ri − si(X)]s′′i (X)

)
(19)

∂2 ln p(Y |X)

∂X2
= − σ2

Y

σ2
Nσ

2
X

(20)

∂2 ln p(X)

∂X2
= − 1

σ2
X

. (21)
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Only (19) is stochastic, the expected value with respect to R, Y , and X
can be evaluated as follows

ERYX

[
∂2 ln p(R|X)

∂X2

]

=− 1

σ2
V

L∑

i=1

(
EX [(s′i(X))2]−ERX [(Ri − si(X))s′′i (X)]

)

=− 1

σ2
V

L∑

i=1

(
EX [(s′i(X))2]−EViX [Vis

′′
i (X)]

)

=− 1

σ2
V

L∑

i=1

(
EX [(s′i(X))2]−EVi [Vi]EX [s′′i (X)]

)

=− 1

σ2
V

L∑

i=1

EX [(s′i(X))2]. (22)

(15) together with (20)–(22) finally give the expression for the CRLB as
stated in (7).

Appendix B Optimized Parameters

Tables 1 and 2 show some good choices of parameters for the different
mappings. The values have been found by a numerical grid search.

Table 1: Parameters for Mapping 1

k SNR = 5 dB SNR = 15 dB SNR = 25 dB
ρ = 0.9 2.1 1.8 1.6
ρ = 0.99 6.3 5.5 4.9

Table 2: Parameters for Mapping 2

(k,m, r) SNR = 5 dB SNR = 15 dB SNR = 25 dB
ρ = 0.9 (2.0, 2.5, 0.2) (1.8, 4.5, 0.35) (1.6, 10.5, 0.4)
ρ = 0.99 (6.3, 2.5, 0.2) (5.6, 4.5, 0.35) (4.8, 10.5, 0.4)
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Abstract

In 1968, Witsenhausen introduced his famous counterexample where he
showed that even in the simple linear quadratic static team decision prob-
lem, complex nonlinear decisions could outperform any given linear deci-
sion. This problem has served as a benchmark problem for decades where
researchers try to achieve the optimal solution. This paper introduces a sys-
tematic iterative source–channel coding approach to solve problems of the
Witsenhausen Counterexample-character. The advantage of the presented
approach is its simplicity. Also, no assumptions are made about the shape
of the space of policies. The minimal cost obtained using the introduced
method is 0.16692462, which is the lowest known thus far.

1 Introduction

The most fundamental problem in control theory, namely the static output
feedback problem has been open since the birth of control theory. The ques-
tion is whether there is an efficient algorithm that can decide existence and
find stabilizing controllers, linear or nonlinear, based on imperfect measure-
ments and given memory. The static output feedback problem is just an in-
stance of the problem of control with information structures imposed on the
controllers, which has been very challenging for decision theory researchers.
In 1968, Witsenhausen [21] introduced his famous counterexample:

inf
γ1(·),γ2(·)

E [k2γ2
1(X0) +X2

2 ] (1)



E2 SCC Approach to Witsenhausen’s Counterexample

X0

W

X1 Y2
γ1 γ2

Figure 1: Schematic view of the system.

where

X1 = γ1(X0) +X0, (2)

X2 = X1 − γ2(Y2), (3)

Y1 = X0, (4)

Y2 = X1 +W, (5)

X0 ∼ N(0, σ2), and W ∼ N(0, 1). Here we have two decision makers, one
corresponding to γ1 and the other to γ2. The problem is a two-stage linear
quadratic Gaussian control problem, where the cost at the first time-step is
E[k2γ2

1(X0)] and EX2
2 at the second one. At the first time-step, the con-

troller has full state measurement, Y1 = X0. At the second time-step, it has
imperfect state measurement, Y2 = X1 +W . What is different to the classi-
cal output feedback problem, is that the controller at the second stage does
not have information from the past since it has no information about the
output Y1. Thus, the controller is restricted to be a static output feedback
controller. Witsenhausen showed that even in the simple linear quadratic
Gaussian control problem above, complex nonlinear decisions could outper-
form any given linear decision. This problem has served as a benchmark
problem for decades where researchers try to achieve the optimal solution.
It has been pointed out that the problem is complicated due to a so called
“signaling-incentive”, where decisions are not only chosen to minimize a
given cost, but also to encode information in the decisions in order to signal
information to other decision makers in the team. In the example above,
decision maker 2 measures Y2 = X0 + γ1(X0) +W , so its measurement is
affected by decision maker 1 through γ1. Hence, decision maker 1 not only
tries to optimize the quadratic cost in (1), but also signal information about
X0 to decision maker 2 through its decision, γ1(X0).

The problem also has a nice communication theoretic analogue. First,
write Witsenhausen’s counterexample as minimizing the cost

E
[
k2γ2

1(X0) + (X0 + γ1(X0)− γ2(X0 + γ1(X0) +W ))2
]
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with respect to γ1(·) and γ2(·). Now consider the slightly modified problem

minimize E (X0 − γ2(γ1(X0) +W ))2

subject to E γ2
1 ≤ p

The modification made is that we removed X0 term from the measurement
of γ2, and removed γ1 from the objective function, and instead added a
constraint E γ2

1 ≤ p to make sure that it has a limited variance (of course
we could set an arbitrary power limitation on the variance). The modified
problem is exactly the Gaussian channel coding/decoding problem!

Previous work has been pursued on understanding the Witsenhausen
Counterexample. Suboptimal solutions where found in [13] studied varia-
tions of the problem when the signaling incentive was eliminated. In [12,14],
connections to information theory where studied. An extensive study of the
information theoretic connection was made in [3], where it was shown that
coupling between decision makers in the cost function introduced the non-
linear behavior of the optimal strategies. An ordinal optimization approach
was introduced in [5] and a hierarchical search approach was introduced
in [16], where both rely on a given structure of the decisions. The first
method that showed that optimal strategies may have “slopes” to the quan-
tizations was given in [2]. Solutions with bounds are studied in [11]. A
potential games approach in the paper by [17] found the best known value
to the date of its publication, namely 0.1670790.

In this paper, we will introduce a generic method of iterative optimiza-
tion based on ideas from source–channel coding [8, 9, 15, 20], that could be
used to solve problems of the Witsenhausen Counterexample character. The
numerical solution we obtain for the benchmark problem is of high accuracy
and renders the lowest value known thus far, 0.16692462.

2 Notation

p(·) and p(·|·) denote probability density functions (pdfs) and conditional
pdfs, respectively.

3 Iterative Optimization

We will now present an iterative design algorithm, based on person-by-
person optimality, for solving the minimization in equation (1). The method
we propose is related to the Lloyd–Max algorithm [10,18,19] that is success-
fully used when designing quantizers. A quantizer can be described by its
partition cells and their corresponding reproduction value. The partition
cells define to which codeword analog values are encoded and the reproduc-
tion values define how the analog value is reproduced from the codeword.
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In general, there is no explicit, closed-form solution to the problem of find-
ing the optimal quantizer [10]. The idea of the Lloyd–Max algorithm is to
assume that either the partition cells or the reproduction values are fixed;
with one part fixed, it is straightforward to derive an optimal expression for
its counterpart. By optimizing one part at a time in an iterative fashion,
the quantizer will converge to a local optimum. The Lloyd–Max algorithm
has been generalized and used in various joint source–channel coding appli-
cations, for example, [6–8, 15, 20, 22]. The generalization of the Lloyd–Max
algorithm that will be used in this paper involves four key elements:

1. Formulation of necessary conditions on γ1 and γ2 such that they are
individually optimal given that γ2 and γ1, respectively, are fixed.

2. Discretization of the “channel” space between γ1 and γ2 such that X1

and the input to γ2 are restricted to belong to a finite set SL.

3. Iterative optimization of γ1 and γ2 to make sure that they, one at a
time, fulfill their corresponding necessary conditions.

4. Use of a technique called noisy “channel” relaxation that makes the
solution less sensitive to the initialization.

3.1 Necessary Conditions on γ1

Let us first define the function γ̃1 as

γ̃1(x0) , γ1(x0) + x0 = x1. (6)

Without loss of generality, we will optimize with respect to γ̃1. The cost we
want to minimize is given by

J , E[k2γ2
1(X0) + (X1 − γ2(Y2))2]. (7)

Using Bayes’ rule, the expected cost function can now be expressed as

J =

∫

p(x0, y2|γ̃1) F (x0, γ̃1(x0), γ2(y2)) dx0dy2

=

∫

p(x0)p(y2|x0, γ̃1) F (x0, γ̃1(x0), γ2(y2)) dx0dy2

=

∫

p(x0)p(y2|γ̃1(x0)) F (x0, γ̃1(x0), γ2(y2)) dx0dy2, (8)

where

F (x0, x1, γ2(y2)) =
(

k2(x1 − x0)2 + (x1 − γ2(y2))2
)

. (9)
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Since the integrand in (8) is positive for all values of x0, it is clear that the
optimization of γ̃1 (assuming γ2 is fixed) can be done individually for each
x0. A necessary condition for γ̃1 to be optimal is given by

γ̃1(x0) = arg min
x1∈R

(∫

p(y2|x1) F (x0, x1, γ2(y2)) dy2

)

(10)

for all x0 ∈ R.

3.2 Necessary Conditions on γ2

If we now assume that γ1 is fixed, we see that the the first term in (7) is a
constant. The minimization of J with respect to γ2 is therefore equivalent
to

min
γ2(·)

E[(X1 − γ2(Y2))2], (11)

which is the mean-squared error (MSE). It is well known that the MSE is
minimized by the conditional expected value; hence,

γ2(y2) = E[X1|y2] (12)

for all y2 ∈ R, is a necessary condition for γ2(y2) to be optimal.

3.3 Discretization

Although (10) and (12) would be possible to numerically evaluate for a par-
ticular x0 and y2, respectively, they are impractical since the full represen-
tation of the functions is infinite-dimensional. To get around this problem
we introduce the set

SL =
{

−∆
L− 1

2
,−∆
L− 3

2
, . . . ,∆

L− 3

2
,∆
L− 1

2

}

, (13)

where L ∈ N and ∆ ∈ R+ are two parameters that determine the number
of points and the spacing between the points, respectively. Next, we impose
the constraint x1 ∈ SL, that is, the output of γ̃1 can only take one out of a
finite number of values. In a similar way, the input to γ2 is discretized such
that,

γ2(y2) = γ̃2(ỹ2), ỹ2 = QSL(y2) ∈ SL, (14)

where QSL(y2) maps y2 to the closest point in the set SL. γ2 can now be
stored in the form of a lookup table where each point in SL is associated
with an output value. The approximation of the real space with SL can be
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made more and more accurate by decreasing ∆ and increasing L.1 Finally,
since X0 is still infinite-dimensional, we use Monte-Carlo samples of X0 to
represent the input to γ̃1. γ̃1 is now specified by evaluating

γ̃1(x0) = arg min
x1∈SL

∑

ỹ2∈SL

p(ỹ2|x1) F (x0, x1, γ̃2(ỹ2)) (15)

for each of the Monte-Carlo samples that represent X0. In a similar way,
γ̃2 can be expressed as

γ̃2(ỹ2) = E[X1|ỹ2], (16)

for all ỹ2 ∈ SL, where the expectation with respect to X0 is evaluated by
using the Monte-Carlo samples.

3.4 Design Algorithm

Given the above expressions for γ̃1 and γ̃2 it will be possible to optimize the
system iteratively. We do this by keeping one part of the system fixed while
we optimize the other part. One common problem with iterative techniques
like the one suggested here is that the final solution will depend on the
initialization of the algorithm. If the initialization is bad we are likely to
end up in a poor local minimum.

In joint source–channel coding, one method that has proven to be helpful
in counteracting this is noisy channel relaxation (NCR) [8, 9, 15, 20]. The
idea of NCR is to change some parameter and first design a system for a
completely different scenario with a simpler solution. The solution that is
obtained is then used as initialization when designing for a scenario that
is a bit closer to the true scenario. In joint source–channel coding, this is
done by first designing a system for a channel with a lower signal-to-noise
ratio (SNR) than the target SNR, which explains the name of the method.
In the Witsenhausen setup, we have found that the ideas from NCR can
be used as follows. Design a system for a high value of k first and then
gradually decrease k until the desired value of k is reached. The reason to
start with a high value of k is that the design algorithm will find a solution
where γ̃1(x0) ≈ x0 in this case (i.e., γ1(x0) ≈ 0) independently of γ2. The
design procedure including the NCR part is given in Algorithm 1.

Each update on line 7 and 8 in Algorithm 1 will decrease the cost. Since
the cost is lower bounded, it is clear that the algorithm will converge. It
may happen that the algorithm converges to a local optimum, however, as
will be seen in the following section the local optima we obtain are still
better than any previously reported results.

1While decreasing ∆, one has to increase L to make sure that max(x ∈ SL) = ∆(L−
1)/2 does not decrease.
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Algorithm 1 Design Algorithm

Require: Initial mapping of γ̃2, the value k for which the system should
be optimized and the threshold δ that determines when to stop the
iterations.

Ensure: Locally optimized γ̃1 and γ̃2 .

1: Let k′ > k.
2: while k′ > k do
3: Decrease k′ according to some scheme (e.g., linearly).
4: Set the iteration index i = 0 and J (0) =∞.
5: repeat
6: Set i = i+ 1
7: Find the optimal γ̃1 by using (15).
8: Find the optimal γ̃2 by using (16).
9: Evaluate the cost function J (i) according to (7).

10: until (J (i−1) − J (i))/J (i−1) < δ
11: end while

4 Results

4.1 Implementation Aspects

For the evaluation of the design algorithm we have initially used L = 201
levels and chosen ∆(L) = 10σ/(L− 1). We have used 400000 Monte-Carlo
samples in the final optimizations to representX0. Since it is known that the
optimal γ1 is symmetric about origin [21], we have restricted γ̃1 to have this
symmetry by generating only positive Monte-Carlo samples and thereafter
reflecting the resulting γ̃1-function for negative values of x0.

To be able to compare our results to previously reported results, we
have set σ = 5 and k = 0.2. However, since we are using the NCR idea,
we have initially used the value k′ = 3 and decreased it according to the
series {3, 2, 1.5, 1, 0.6, 0.4, 0.3, 0.2}. Before running the design algorithm, we
require γ̃2 to be initialized. However, due to the NCR this has little impact
on the final solution and we have used the initialization γ̃2 ≡ 0.

Once we have obtained the solution for k′ = 0.2, we have increased the
precision by expanding the number of points in the discrete set from L to
L′ and updated γ̃2 according to

γ̃
(L′)
2 (ỹ2) = γ̃

(L)
2 (QSL(ỹ2)) (17)

for all ỹ2 ∈ SL′ . Thereafter the inner part of the design algorithm, that
is, lines 4–10, have been run again to obtain a system optimized for the
increased number of points L′. By repeating this refinement, the precision
increases and the cost decreases as will be shown later. This method of
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Table 1: Final cost for different solutions (L = 12801)

Steps Stage-1 Cost Stage-2 Cost Total Cost
Witsenhausen [21]a 0.40423088 0.00002232 0.40425320

Bansal and Bansar [3]a 0.36338023 0.00163460 0.36501483
Deng and Ho [5]a 0.13948840 0.05307290 0.19256130
Baglietto et al. [2] 0.1701

Lee et al. [16] 0.13188408 0.03542912 0.16731321
Li et al. [17] 0.1670790

This paper, 3-step 0.13493778 0.03201113 0.16694891
This paper, 3.5-step 0.13462186 0.03230369 0.16692555

This paper, 4-step 0.13484828 0.03207634 0.16692462

a Costs obtained from [16].

refining the precision is similar to the one-way multigrid algorithm that is
analyzed in [4]. The evaluations of (15) and (16) have been done using an
exhaustive search, therefore, the run time is exponential in the number of
levels L. An example of the number of iterations that are required and the
total computation time can be found in Appendix B.

4.2 Numerical Results

During the first steps of the NCR k′ is high. This means that the output of
γ̃1 should follow the input closely to avoid large costs in the first stage. If
continuous outputs were allowed, the output would be identical to the input.
However, since we are working with a discretized system, only outputs from
the set SL are possible. As k′ reaches 0.4–0.6 the step behavior of the
output appears. Depending on the realization of the Monte-Carlo samples
we get either a 3.5-step mapping as shown in Figure 2 or a 4-step mapping
as shown in Figure 3 (occasionally, a 3-step solution has occurred). The
total costs for these solutions are stated in Table 1. For ease of comparison,
we have also included the costs of previously reported results. As can be
seen, all our mappings have similar performance and all of them give lower
costs than the previously reported lowest cost — 0.1670790 [17].

In Table 2 we show how the cost decreases as the number of points
L is increased. The method we use to calculate the total cost as well as
some notes on the accuracy can be found in Appendix A. The lowest cost
we have achieved with our algorithm is 0.16692462. The mapping that
achieves this cost is the 4-step mapping shown in Figure 3 with L = 12801
points. Although the mapping contains four clear output levels it should be
emphasized that each level is slightly sloped; this can be seen in Figure 4,
where the first step has been zoomed in. It is reasonable to assume that
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Table 2: Costs for different precisions for the 4-step solution

L M Stage-1 Cost Stage-2 Cost Total Cost
201 16 0.12104248 0.05764052 0.17868301
401 22 0.13015033 0.03883388 0.16898421
801 30 0.13530785 0.03200857 0.16731642

1601 56 0.13496610 0.03206243 0.16702853
3201 110 0.13486814 0.03208140 0.16694954
6401 210 0.13485895 0.03207070 0.16692966

12801 396 0.13484828 0.03207634 0.16692462

as the precision (i.e., L) increases further, each step of the mapping will
converge to a straight line that is slightly sloped.

5 Comparison to Previous Results

In this section, we will compare the presented method with the previous
methods. Besides the fact that the new method improves the optimized
cost, there are further advantages compared to previous work:

• No structure is assumed for the decision functions. In [5] and [16],
monotonicity of the decisions was assumed. The space of decisions is
assumed to be a normed linear space in [2].

• A significant analytic/modeling work was performed before posing the
optimization problem to be solved in [5], [16], and [2]. The first two
require manual adjustments for the proper choice of interval values and
signal levels, and the third requires some prior analysis to determine
a constant “c”. In [17], modeling work is needed in converting the
problem into a potential game.

The method presented in this paper is fully automated and its advan-
tages rely on the following:

• Discretization of the decision space.

• Iterative optimization between the different decision functions.

• A noisy channel relaxation technique that makes the solution insensi-
tive to the initialization.

6 Conclusions

In this paper, we introduced a generic method of iterative optimization
based on ideas from Source–Channel coding, that could be used to solve
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problems of the Witsenhausen Counterexample character. The numerical
solution we obtain for the benchmark problem is of high accuracy and ren-
ders the lowest value known thus far, 0.16692462.

Also, the design algorithm does not make any assumption on the struc-
ture of the policies — the solutions are allowed to have arbitrary shapes
(within the restrictions imposed by the discretization). The results can
therefore be seen as a confirmation that the step-shaped behavior is bene-
ficial.

Appendix A Calculation of the Total Cost

In the design algorithm, γ̃1 is specified implicitly by, for each Monte-Carlo
sample, storing the output symbol to which it is mapped. This represen-
tation is used when evaluating the cost during the iterations in the design
algorithm. However, to evaluate the final total cost we need higher numer-
ical accuracy. Therefore, the first step in calculating the total cost is to use
the sample-based representation to find an explicit specification of γ̃1 given
by

γ̃1(x0) = αi ∈ SL if Ai ≤ x0 < Ai+1, (18)

for i ∈ {0, . . . ,M−1}, with A0 = −∞ and AM =∞. That is, we transform
the sample-based representation of γ̃1, which is explicitly defined only for
the Monte-Carlo samples, to a function which is defined for all real numbers.
This representation makes it possible to numerically evaluate the integrals
that are needed to find the total cost

J = E[k2γ2
1(X0) + (X1 − γ2(Y2))2]

= E[k2(γ̃1(X0)−X0)2]
︸ ︷︷ ︸

=J1

+ E[(γ̃1(X0)− γ̃2(Ỹ2))2]
︸ ︷︷ ︸

=J2

, (19)
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where

J1 =

∫

x0

p(x0)k2(γ̃1(x0)− x0)2dx0

= k2
M−1∑

i=0

∫ Ai+1

Ai

p(x0)(αi − x0)2dx0, (20)

J2 =

∫

x0

∑

ỹ2∈SL

p(x0, ỹ2)(γ̃1(x0)− γ̃2(ỹ2))2dx0

=

∫

x0

∑

ỹ2∈SL

p(x0)P (ỹ2|x0)(γ̃1(x0)− γ̃2(ỹ2))2dx0

=

M−1∑

i=0

∫ Ai+1

Ai

p(x0)
∑

ỹ2∈SL

P (ỹ2|αi)(αi − γ̃2(ỹ2))2dx0

=
M−1∑

i=0

{∑

ỹ2∈SL

P (ỹ2|αi)(αi − γ̃2(ỹ2))2
}∫ Ai+1

Ai

p(x0)dx0, (21)

and

P (ỹ2|αi) =







∫ ỹ2+∆/2

−∞

p(w = y2 − αi)dy2 if ỹ2 = −∆L−1
2

∫ ∞

ỹ2−∆/2

p(w = y2 − αi)dy2 if ỹ2 = ∆L−1
2

∫ ỹ2+∆/2

ỹ2−∆/2

p(w = y2 − αi)dy2 otherwise

(22)

All integrals have been calculated numerically using the Matlab function
quadl with the tolerance specified to be t = 10−18, which means that the
absolute error of the result from quadl is not greater than t. All integrands
are continuous and have a smooth behavior that should cause no problem
for quadl. To upper bound the total cost, we have upper bounded each
integral by adding t to each individual result from quadl and reevaluated
the total cost. In this way we have estimated the absolute error to be in the
order of (or less than) 10−11. Matlab code for our calculations of the total
cost, including our decision functions can be found in [1].

Appendix B Computation time

Table 3 and 4 show the computation times for the design algorithm and the
refinement process, respectively. The algorithms were implemented in C++
on a computer with an Intel Core2 Quad CPU running at 2.66 GHz.
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Table 3: Computation time — Algorithm 1 (L = 201)

k′ # Iterations Time
3 4 32 s
2 2 13 s

1.5 2 14 s
1 2 13 s

0.6 2 13 s
0.4 100 11 min
0.3 36 4 min
0.2 30 3 min

Total 178 20 min

Table 4: Computation time — Refinement

L # Iterations Time
401 44 15 min
801 83 98 min
1601 12 52 min
3201 3 49 min
6401 2 126 min
12801 2 501 min
Total 14 h
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Optimized Low-Delay

Source–Channel–Relay Mappings

Johannes Karlsson and Mikael Skoglund

Abstract

The three-node relay channel with a Gaussian source is studied for trans-
mission subject to a low-delay constraint. A design algorithm for joint
source–channel mappings is proposed and numerically evaluated. The de-
signed system is compared with reference systems, based on modular source
and channel coding, and the distortion-rate function for the Gaussian source
using known achievable rates for the relay channel. There is a significant
gain, in terms of decreased power, in using the (locally) optimized systems
compared with the reference systems. The structure of the resulting source
mapping and the relay mapping is visualized and discussed in order to gain
understanding of fundamental properties of optimized systems. Interest-
ingly, the design algorithm generally produces relay mappings with a struc-
ture that resembles Wyner–Ziv compression.

1 Introduction

The relay channel has been studied extensively since its introduction [1].
With the increasing popularity and relevance of ad-hoc wireless sensor net-
works, cooperative transmission is more relevant than ever. In this paper,
we focus on relaying in the context of source transmission over a sensor
network. A sensor node encodes measurements and communicates these to
a sink node, with another node acting as a relay in the transmission. We fo-
cus on low-delay memoryless source–channel and relay mappings, subject to
power constraints at the source and relay nodes. Hence, the proposed tech-
nique is a suitable candidate in applications with strict delay and energy
constraints, such as in wireless sensor networking for closed-loop control
over wireless channels [2, 3].

Existing work on source and channel coding over the relay channel in-
cludes [4,5]. However, whereas [4] looks at asymptotic high-SNR properties
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Figure 1: Structure of the system.

the present work is design oriented. Also, although [5] includes some practi-
cal results it relies on powerful channel codes. Because of this, the decoding
is not instantaneous but a significant delay is needed for the message to be
decoded. Another recent study is the one presented in [6]. This work also
focuses on characterizing the achievable high-SNR performance, however,
in the presence of partial channel-state feedback.

The source–channel separation theorem [7] states that source and chan-
nel coding can be treated separately. However, in the case of low-delay con-
straints this is no longer true. We therefore propose a joint source–channel
coding solution where at the source node, the source and channel codes are
merged into one single operation — a mapping from the source space to the
channel space. In a similar way, the operation at the relay is a mapping
from its input channel space to its output channel space. We investigate
how to optimize1 both the source–channel mapping at the source as well as
the channel–channel mapping at the relay. To our knowledge, there are no
similar existing results in this direction. Our approach is however related
to the ones being used for bandwidth compression–expansion in [8–10] and
distributed source–channel coding in [11].

2 Problem Formulation

We will study the three-node system depicted in Figure 1. Our goal is to
transmit information about the Gaussian random variable X with variance
σ2
X = 1 from the source node to the destination node so that it can be

reconstructed with the smallest possible distortion. Besides the direct link

1We use the term optimized, in contrast to optimal, to refer to a system which is
locally optimal but not necessarily globally optimal.
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we also have a path from the source to the destination via the relay node.
The rules for the communication are the following. For each source sample
X we have T channel uses at hand. The source and the relay do not transmit
at the same time but must share these channel uses. We therefore use K
channel uses for the transmission from the source and the remaining L = T−
K channel uses for the transmission from the relay. The scenario is in other
words that of a half-duplex orthogonal relay channel. All transmissions are
disturbed by additive white Gaussian noise; the received symbols on each
channel can therefore be expressed as

yi = si + ni i = 1, 2, 3, (1)

where si is the transmitted symbol and ni is independent white Gaussian
noise with E[nin

T
i ] = σ2

i I, i = 1, 2, 3. The transmitted symbols are given
by the functions α and β according to

s1 = s2 = α(x) ∈ R
K , (2)

s3 = β(y2) ∈ R
L. (3)

The equality s1 = s2 is due to the broadcast nature of a wireless chan-
nel. The source and the relay node operate under average transmit power
constraints given by

1

K
E[‖α(X)‖2] ≤ Pα, (4)

1

L
E[‖β(Y 2)‖2] ≤ Pβ . (5)

For notational convenience we define the channel power gain of each channel
as ai = 1/σ2

i . Assuming (4) is fulfilled with equality, the total signal-to-noise
ratio (SNR) of the transmission from the source node to the destination
node is hence given by Pαa1. We further assume that the total SNR of all
channels is known by all involved parts. The destination node receives two
symbols — y1 from the direct link and y3 from the relay. Based on these
the transmitted value is estimated as

x̂ = γ(y1,y3). (6)

Given this system we want to find the optimal source mapping, relay
mapping, and receiver — denoted α, β, and γ. To have a low-delay system
we want the source and the relay nodes to work on a sample-by-sample
basis restricting K and L to be integers. If K > 1, α will in general
be a nonlinear mapping from the one-dimensional source space to the K-
dimensional channel space. In a similar way β will be a nonlinear mapping
from the K-dimensional input of the relay to its L-dimensional output. As
distortion measure we use the mean squared error (MSE), E[(X − X̂)2],
“optimal” therefore refers to optimal in the minimum MSE (MMSE) sense.
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3 Optimized Mappings

The expected distortion for a given system can be written as

D = E[(X − X̂)2] =

∫∫∫∫

p(x)p(y1|α(x))p(y2|α(x))×

p(y3|β(y2))(x − γ(y1,y3))2dxdy1dy2dy3, (7)

where p(·) and p(·|·) denote probability density functions (pdfs) and condi-
tional pdfs, respectively. The factorization of p(x,y1,y2,y3) in (7) follows
from the fact that all channels are orthogonal with independent noises.
What we would like is to find α, β, and γ such that D is minimized given
the power constraints in (4) and (5). There are two problems with this
direct approach. First, it is very hard to optimize all parts of the system
simultaneously; second, the optimal mappings could be arbitrary nonlinear
mappings with no closed form expressions. To make the problem feasible
we take the following suboptimal approach. Instead of optimizing all parts
of the system simultaneously we use the common strategy of optimizing
one part at a time keeping the others fixed. The second problem is solved
by discretizing each dimension of the channel space into M equally spaced
points with spacing ∆ according to

S = {−∆
M − 1

2
,−∆
M − 3

2
, . . . ,∆

M − 3

2
,∆
M − 1

2
} (8)

and restricting the outputs of the source and the relay node to satisfy s1 ∈
SK and s3 ∈ SL, respectively. At the receiving side the same approximation
is made using a hard decision decoding rule — for instance, y1 is decoded
according to

ŷ1 = arg min
y′1∈S

K
‖y1 − y′1‖2, (9)

where “ ˆ ” will be used to indicate that the value has been discretized. This
approximation is expected to be good as long as M is sufficiently large and
∆ is small in relation to the standard deviation of the channel noise, σi. In
the following analysis P (·|·) will be used for conditional probabilities — for
example, P (ŷ3|s1) denotes the probability that the relay receives ŷ3 given
that s1 is transmitted from the source.

3.1 Optimal Source Mapping

The problem of finding the optimal source mapping α (assuming β and γ are
fixed) is a constrained optimization problem, which can be turned into the
following unconstrained problem using the Lagrange multiplier method [12,
13]

min
α

(

E[(X − X̂)2] + λE[‖α(X)‖2]
)

, (10)
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where

E[(X − X̂)2] =

∫

p(x)E[(x − X̂)2|α(x)]dx, (11)

E[‖α(X)‖2] =

∫

p(x)‖α(x)‖2dx. (12)

Since p(x) in (11)–(12) is nonnegative, it is clear that the operation of the
source mapping, α, can be optimized for each x individually according to

α(x) = arg min
s1∈SK

(

E[(x − X̂)2|s1] + λ‖s1‖2
)

(13)

where

E[(x− X̂)2|s1] =
∑

ŷ1,ŷ2,ŷ3
P (ŷ1|s1)P (ŷ2|s1)×

P (ŷ3|β(ŷ2))(x − γ(ŷ1, ŷ3))2. (14)

The intuition behind the Lagrange term λ‖s1‖2 is the following: ‖s1‖2 is
a measure of the power that is needed to transmit the signal s1, the term
λ‖s1‖2 can therefore be used to control the transmit power of the source
node by penalizing signals that would use too much power. When λ ≥ 0
is set to the “correct” value, the source node will not map x to the signal
that gives the lowest distortion but rather to the signal that gives the lowest
distortion conditioned that the power constraint in (4) is fulfilled.

3.2 Optimal Relay Mapping

In a similar way, the minimization to find the optimal relay mapping β
(assuming α and γ are fixed), can be turned into the following unconstrained
minimization problem

min
β

(

E[(X − X̂)2] + ηE[‖β(Ŷ 2)‖2]
)

, (15)

where

E[(X − X̂)2] =
∑

ŷ2

P (ŷ2)E[(X − X̂)2|ŷ2, β(ŷ2)], (16)

E[‖β(Ŷ 2)‖2] =
∑

ŷ2

P (ŷ2)‖β(ŷ2)‖2. (17)

Equations (11) and (16) are two different ways of expanding the MSE us-
ing Bayes’ rule. Looking at (16) and (17), it is once again clear that the
minimization can be done individually for each ŷ2 ∈ SK , which gives

β(ŷ2) = arg min
s3∈SL

(

E[(X − X̂)2|ŷ2, s3] + η‖s3‖2
)

(18)
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where

E[(X − X̂)2|ŷ2, s3] =
∑

ŷ1,ŷ3
P (ŷ3|s3)×

∫

x p(x|ŷ2)P (ŷ1|α(x))(x − γ(ŷ1, ŷ3))2dx. (19)

In (18), η ≥ 0 is the Lagrange multiplier which — when chosen correctly —
makes sure that the power constraint (5) is satisfied.

Sawtooth Mappings (K = L = 1): As we will see in Section 4, all of
the optimized relay mappings have a similar shape in the one-dimensional
case (i.e., K = L = 1). Based on this observation we propose to use a
sawtooth mapping as shown in Figure 2. This mapping has previously been
proposed for distributed source–channel coding [14] and also for the relay
channel in the context of maximum achievable rates [15].

The sawtooth mapping can be parametrized by the two parameters b
and c and is defined as

β(y2) =

{
cy2 if y2 ∈ [−b, b)
β(y2 − 2bm) if y2 − 2bm ∈ [−b, b), m ∈ Z,

(20)

where, for a given b, the parameter c must be chosen so that the power
constraint in (5) is satisfied, that is, E[β2(Y2)] = Pβ . The optimal value of
b will depend on the channel gains and is easiest found by performing a grid
search.

3.3 Optimal Receiver

Since we use the MSE as a distortion measure, it is a well known fact from
estimation theory that the optimal receiver (assuming α and β are fixed) is
the expected value of X given the received symbols,

x̂ = γ(ŷ1, ŷ3) = E[X |ŷ1, ŷ3] =
∫

x

xp(x)P (ŷ1|α(x))
∑

ŷ2

P (ŷ2|α(x))P (ŷ3|β(ŷ2))dx

∫

x′
p(x′)P (ŷ1|α(x′))

∑

ŷ2

P (ŷ2|α(x′))P (ŷ3|β(ŷ2))dx′
. (21)

As an alternative receiver for the sawtooth mappings, we will also im-
plement the maximum likelihood (ML) decoder given by

x̂ = γML(y1, y3) = arg max
x
p(y1, y3|x). (22)

The ML decoder is suboptimal in the sense that it does not minimize the
MSE.
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3.4 Design Algorithm

Given the above expressions for the source mapping, the relay mapping, and
the receiver it will be possible to optimize the system iteratively. We do this
by keeping two parts of the system fixed while we optimize the third part.
One common problem with an iterative technique like the one suggested here
is that the final solution will depend on the initialization of the algorithm,
if the initialization is bad we are likely to end up in a poor local minimum.
One method that has proven to be helpful in counteracting this is noisy
channel relaxation [9, 16] which works in the following way. A system is
first designed for a noisy channel, the solution obtained is then used as an
initialization when designing a system for a less noisy channel. The noise is
reduced and the process is repeated until the desired noise level is reached.
The intuition behind this method is that an optimal system for a noisy
channel has a simple structure and is easy to find, as the channel noise is
decreased more structure is gradually added to form the final system. Given
a scenario where K and L are specified, the design procedure is formally
stated in Algorithm 1.
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Algorithm 1 Design Algorithm

Require: Initial mappings for β and γ, the channel power gains A =
(a1, a2, a3) for which the system should be optimized and the threshold
δ that determines when to stop the iterations.

Ensure: Locally optimized α, β, and γ.

1: Let A′ = (a′1, a
′
2, a
′
3), where a′1 ≤ a1, a

′
2 ≤ a2, a

′
3 ≤ a3 (i.e., A′ corre-

sponds to a channel which is more noisy than A), be the channel power
gains for which the system is being optimized.

2: while A′ 6= A do
3: Increase A′ according to some scheme (e.g., linearly).
4: Set the iteration index k = 0 and D(0) =∞.
5: repeat
6: Set k = k + 1
7: Find the optimal source mapping α by using (13).
8: Find the optimal receiver γ by using (21).
9: Find the optimal relay mapping β by using (18).

10: Find the optimal receiver γ by using (21).
11: Evaluate the distortion D(k) for the system.
12: until (D(k−1) −D(k))/D(k−1) < δ
13: end while

4 Simulation Results

To evaluate the algorithm we have designed systems for different combina-
tions of K and L. We will compare the performance against some reference
systems, given below, and the distortion-rate function for a memoryless
Gaussian source [7] using the achievable rate of the compress-and-forward
(CF) scheme [17] (assuming orthogonal transmissions).

4.1 Reference Systems

K = L = 1 : For the one-dimensional case we use linear transmission at
the source node in conjunction with estimate-and-forward (EF) at the relay
as our reference system. For EF, the relay function β is given by β(y2) =
cE[s2|y2]. It should be noted that in the case of a Gaussian source and
linear transmission at the source node, amplify-and-forward is equivalent to
estimate-and-forward.
K = 2, L = 1 : In this case, we compare our optimized system with

two different reference systems. The first system operates by transmitting
the source sample X directly on the channel for both channel uses (scaled to
fulfill the power constraint), that is, repetition coding, and uses EF at the
relay. This system will be denoted Linear. One disadvantage of this scheme
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is the repetition coding in the transmission from the source node. To better
fill the two-dimensional channel space we propose the following alternative
system, denoted Digital, where we have taken off-the-shelf components and
put them together in a modular fashion. Instead of the source mapping
α(·) we use a 16-level Lloyd–Max quantizer [18, 19] followed by a 16-QAM
mapping to the channel space. The relay node makes a hard decision on
the received signal and modulates the decoded symbol with 16-PAM. At the
destination node the received signals are once again decoded with a hard
decision and finally x is reconstructed as the expected value of x given the
decoded symbols. This system is optimized in the sense that we use a source-
optimized quantizer, a good choice of the mapping to QAM symbols (i.e., a
mapping that corresponds to a good index assignment, so that neighboring
quantization levels correspond to neighboring QAM symbols [20]), and an
optimal receiver (given the hard decoded received symbols).
K = 1, L = 2 : As in the one-dimensional case, we use linear trans-

mission at the source node and study two different relay mappings — a
linear repetition code and a digital system, denoted Linear and Digital, re-
spectively. The Linear relay mapping scales the input to satisfy the power
constraint and transmits the same symbol two times. The source sym-
bol, x, is then estimated as the expected value given the received signals.
The Digital system performs a 16-level quantization (optimized for the in-
put distribution) and transmits the quantization index using 16-QAM. At
the receiver, the quantization index is decoded using a hard decision ML-
decoding rule. Finally, the hard decoded index is used in conjunction with
the value received on the direct link to find the expected value of the source
symbol given these values.

4.2 Implementation Aspects

Before running the design algorithm, β was initialized as a linear mapping
and γ was randomly initialized. However, it is important to understand
that the use of noisy channel relaxation makes the solution less sensitive
to the initialization. In the case of the relay channel, with three different
channels, the problem is instead that of choosing a starting point and a
path for the noisy channel relaxation. For the case K = L = 1, we started
at A′1 = (a1,−5,−5) dB and linearly increased the second and third com-
ponents one at a time until they reached their corresponding final values.
For the other two cases, we started at A′2 = (−5,−5,−5) dB and linearly
increased all components simultaneously until they reached A. To reduce
the complexity of the design algorithm in the case K = 1, we fixed α to
be a linear scaling (fulfilling the power constraint) followed by a mapping
to the closest point in the set S. Lines 7 and 8 were omitted in the design
algorithm for these systems. Although there are no proofs that this is the
jointly optimal strategy, it can be justified by the fact that linear scaling
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is individually optimal for each point-to-point link from the source node in
the case K = 1. A final note regarding the Lagrange multipliers λ and η.
After each iteration in the design algorithm, they were either increased or
decreased in small steps depending on whether the used power was too high
or too low.

Another important aspect is the number of points, M , in the discretiza-
tion of the channel space given by (8). In our implementation we have varied
M with the total channel SNR, using a lower resolution for low SNRs and a
higher resolution for high SNRs. For example, at an SNR of 5 dB we have
used M = 64 and at 25 dB we have used M = 512. ∆ has been varied
along with M according to ∆ = 8/(M − 1); meaning that we have a good
approximation of the channel in the interval [−4, 4]. There is a tradeoff in
the choice ofM and ∆, increasingM increases the complexity of the design
algorithm. If on the other hand M is too small, the distortion created by
the discrete approximation is significant.

Finally, we will give some details of the actual implementation
of (13), (18), and (21). All integrals with respect to x and also the source
mapping α, have been calculated using a set of training samples which turns
the integrals into sums. The size of this set has been 200000 in the case
of a K = 1 and 10000 in the case of K = 2. Since the channel space is
approximated by the finite set S, the relay mapping and the receiver can
be stored as lookup tables.

4.3 Numerical Results

In the following simulations, we assume that the source mapping and relay
mapping are optimized for certain signal-to-noise ratios (SNRs), marked
with circles in the figures, but that the receiver has perfect channel state
information and therefore adapts to the current channel state using (21).
We will mainly study the power efficiency of the relay node, that is, how
much power the relay needs to achieve a certain performance. For the one-
dimensional case, which we study more extensively, we have also included
results showing the power efficiency of the source node for different relay
mappings.

K = L = 1 : If the quality of the link to the relay is better than the
direct link, as in Figure 3, the relay can improve the performance signifi-
cantly. The horizontal power gain2 of using the optimized system over the
linear system is as much as 7–8 dB in the entire region shown. It should be
noted that this increase is only due to utilizing the power in a more efficient
way and comes at virtually no extra complexity in the relay. The gap to
the achievable rate is quite significant, around 6.5–8 dB for the optimized
points. This gap will be discussed later on. It is also evident that the op-

2We will only consider this gain.
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Figure 3: K = L = 1 Simulation results when Pβ is varied while Pα = 0
dB and a1 = 15 dB, a2 = 25 dB, and a3 = 0 dB. The circles mark the
points for which the system is optimized.

timized mappings and the sawtooth mappings with MMSE receiver (given
by (21)) perform almost the same (the optimized mappings are about 0.1
dB better than the sawtooth mappings at the design points), making them
practically impossible to distinguish. It also turns out that the ML de-
tector (given by (22)) performs very close to the optimal MMSE detector,
which is encouraging due to its simplicity. It should be emphasized that
the sawtooth mappings have been optimized for each SNR point and each
detector. A sawtooth mapping which is optimal for the MMSE detector
is not necessarily optimal for the ML detector. In Figure 4, we vary the
power of the source node. In this case the optimized system manages to
follow the achievable curve closely — the gap is only 0.1 dB at Pα = 5 dB
and increases slightly with the SNR to 0.7 dB at Pα = 25 dB. This can
be explained as follows, up to some point, say Pα = 10 dB, the channel
from the relay to the destination is much better than the channels from the
source. This implies that all relay mappings perform basically the same as
long as they are nondestructive and do not discard any information (c.f.
Pβ → inf). For this reason, also the linear mapping performs very well.
The fact that we are close to the achievable curve strengthens our previous
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Figure 4: K = L = 1 Simulation results when Pα is varied while Pβ = 0
dB and a1 = 0 dB, a2 = 5 dB, and a3 = 20 dB. The circles mark the
points for which the system is optimized.

intuitive suggestion that linear transmission at the source node works well
for K = 1. As the power of the source node increases further, we see that
the linear relay mapping approaches the same performance as not using the
relay at all. The relatively high noise power on the channel from the relay
to the destination makes the information from a linear relay unusable. It
is therefore interesting to note how well the optimized mappings follow the
achievable curve. As the power of the source node increases, the correla-
tion between y1 and y2 will also increase. The optimized mappings take
advantage of this increasing correlation and perform a kind of Wyner–Ziv
compression where y2 is used as side information when decoding the infor-
mation from the relay. An example of how this is done will be given in
Section 4.4.

K = 2, L = 1 : In this case (Figure 5), we have the additional problem
of designing a good source mapping, α. The optimized system still has a
significant gain over the linear system, ranging from 5 dB at Pβ = 5 dB
to 10 dB at Pβ = 15 dB. The digital system performs slightly worse than
the linear system. From the figure, the different systems does not seem
to reach the same performance as the power of the relay increases. This
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Figure 5: K = 2, L = 1 Simulation results when Pβ is varied while
Pα = 0 dB and a1 = 5 dB, a2 = 15 dB, and a3 = 0 dB. The circles
mark the points for which the system is optimized.

is in fact true, the achievable curve reaches a limit of 31 dB whereas the
performance of the linear system is limited to 18.5 dB. This gap is due
to the linear system’s inability to produce a two-dimensional distribution
that matches the Gaussian channel from the source. The source mapping
used in the optimized systems (see Section 4.4) does a better job, but does
clearly not achieve the capacity on the two-dimensional channel from the
source node either. Similar results for bandwidth expansion curves can be
observed in [10].

K = 1, L = 2 : Changing the situation, having one channel use for the
source transmission and two channel uses for the relay transmission, the
results are similar to the one-dimensional case as can be seen in Figure 6.
The gap to the linear system is around 3 dB and the gap to the achievable
curve is ranging from 4.5 dB at Pβ = 5 dB to 8 dB at Pβ = 15 dB.

The significant gap to the achievable curve in most cases can to a large
extent be explained by our low-delay one-dimensional approach where we
transmit one sample at a time, in contrast to the infinite dimensions used
in the proofs for both the distortion-rate function and the achievable rate.
An exception to this is when there is no side information available and the
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Figure 6: K = 1, L = 2 Simulation results when Pβ is varied while
Pα = 0 dB and a1 = 5 dB, a2 = 15 dB, and a3 = 0 dB. The circles
mark the points for which the system is optimized.

distribution of the source matches the channel, in which case uncoded trans-
mission is optimal (e.g., transmitting a one-dimensional Gaussian variable
on a Gaussian channel).

4.4 Structure of β

K = L = 1 : Figure 7 shows an example of a typical relay mapping in the
one-dimensional case. It is clear that the proposal of sawtooth mappings in
Section 3.2 is well motivated. The main reason why this optimized mapping
performs better than a linear mapping is the steeper slope, which effectively
decreases the impact of the channel noise. Looking at the sawtooth mapping
in Figure 2, one could say that decreasing b allows us to increase c (without
violating the power constraint) and therefore get lower distortion. It is
apparent that the relay mapping is not injective since several input values
are mapped to the same output value; this way of reusing output values
can be seen as Wyner–Ziv compression3. The reuse of output values is

3The Wyner-Ziv scheme saves rate by sending an ambiguous “bin-index” rather than a
codeword index. The ambiguity is resolved at the decoder by using the side information to
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Figure 7: Relay mapping (K = L = 1) optimized for Pα = Pβ = 0 dB
and a1 = 15 dB, a2 = 15 dB, and a3 = 20 dB.

only possible due to the side information from the direct link. Returning
to Figure 2 and assuming that the output of the relay is 0, in this case
the side information will provide the necessary information to determine
whether y2 was, for example, −2b, 0, or 2b. However, if b is decreased below
a certain threshold (dependent on a1, a2, and a3), the probability of making
the wrong decision based on the side information will be significant and the
decoder will therefore make large estimation errors. It is in particular the
values near the discontinuities that are sensitive to large estimation errors.
Looking at the optimized mapping again, one can see that the slope is
slightly steeper near the discontinuities. The extra energy spent for these
values increases the distance between points in the safe region (far away
from the discontinuities) and the critical points (near the discontinuities).
This could be the explanation of the slightly better performance of the
optimized mappings compared with that of the sawtooth mappings. It
is quite remarkable that the design algorithm produces the sawtooth-like
mappings despite the fact that the initial relay mapping is linear. We believe
that this is a consequence of the channel relaxation, especially the fact that
a3 is the last component that is increased, and the Lagrange multipliers and

identify the correct codeword in the bin. In our case, the relay saves power by informing
the receiver about a set (a “bin”) of possible values, rather than a specific value.
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Figure 8: Structure of α (to the left) and β (to the right) (K = 2, L =
1) optimized for Pα = Pβ = 0 dB and a1 = 5 dB, a2 = 15 dB, and
a3 = 10 dB. In the left part, it is shown how the interval [3, 3] of
the one-dimensional input is mapped to the two-dimensional output
s1 = (s11, s12). In the right part, the color in the figure together with
the colorbar shows how the two-dimensional input, ŷ2 = (ŷ21, ŷ22), is
mapped to the one-dimensional output s3.

how these are updated in small steps.

K = 2, L = 1 : The source mapping α is now a mapping from the one-
dimensional source space to the two-dimensional channel space. An example
of such a mapping is shown in the left part of Figure 8, where the curve shows
how input symbols in the interval [−3, 3] are mapped to two-dimensional
output symbols. The mapping is such that small negative values of x are
mapped to one end of the curve and as x is increased the mapping follows
the curve to the other end. Values around zero — which are the most likely
values for a Gaussian source — are mapped to the center of the curve which
lies close to the origin where ‖s1‖2 is small. The transmission power for
these values is hence minimized. In contrast, values that are less probable
are instead mapped to points in the channel space that use more energy.
This structure is due to the Lagrange term in (18); similar results have
been been obtained in [9–11]. Due to the high noise level on the direct
link, the destination cannot distinguish between different parts of the curve
by only looking at the direct link. For example, the receiver will not be
able to determine whether 1 or −3 was transmitted since they are mapped
to symbols that are close in the channel space. The relay node needs to
help the receiver to distinguish which point, or at least which region, of the
curve that was transmitted. Looking at the right part of Figure 8, which
shows the relay mapping, we can see that this is exactly what the relay does.
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ŷ 2

Figure 9: Relay mapping (K = 1, L = 2) optimized for Pα = Pβ = 0
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input, shown on the z-axis. In other words s3 = β(ŷ2), where s3 =
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Something that is interesting to notice is that the relay is not the inverse of
the source mapping which it would be if the relay tried to estimate x and
send the estimate to the receiver. This is easiest seen by the fact that for
some of the outer parts of the curve, the relay uses the same output symbol
for large regions (e.g., s3 ≈ 1.4 for the upper part of the curve) which means
that the relay does not send an estimate of what was received but rather
just tells the receiver that the transmitted point was on the upper part of
the curve. Using this information the receiver estimates x based on the
value received from the direct link conditioned that the transmitted point
was on the upper part of the curve.

K = 1, L = 2 : In Figure 9, we finally show an example of a mapping
where the relay performs an expansion — from its one-dimensional input
to its two-dimensional output. Once again, there is a reuse of the output
symbols which is only possible due to the side information from the direct
link. Looking at the spiral from above, a similarity to the polynomial based
source–channel codes proposed in [21] can be seen.
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5 Conclusions

We have proposed a low-delay scheme for joint source–channel coding over
the relay channel. The design also includes optimizing the relay itself. The
numerical results show that the joint design works well and gives better per-
formance than the reference systems. We have also provided useful insight
into the structure of the (locally) optimized source–channel and relay map-
pings, and how these mappings together make it possible for the receiver to
output a good estimate of the source. The mapping at the relay reuses out-
put symbols and is clearly reminiscent of Wyner–Ziv compression. Based
on observing the structure of our optimized systems, we proposed the use of
sawtooth mappings for the case of one-dimensional relaying. The sawtooth
mappings can in many cases be used instead of the optimized mappings
without any performance degradation.
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Abstract

We look at the three-node relay channel and the transmission of an in-
formation symbol from the source node to the destination node. We let the
relay be a memoryless function and formulate necessary conditions for the
optimality of the relay mapping and the detector. Based on these, we propose
a design algorithm to find relay mappings such that the symbol error rate at
the destination is minimized. The optimized relay mappings are illustrated
for different scenarios and the dependency between the relay mapping and
the link qualities is discussed in detail. Furthermore, the performance is
compared with existing schemes, such as decode-and-forward, amplify-and-
forward, and estimate-and-forward. It is shown that there is a significant
gain in terms of decreased symbol error rate if the optimized relay mappings
are used.

1 Introduction

Numerous relay strategies have been proposed for the relay channel, with the
two most well-known schemes being amplify-and-forward (AF) and decode-
and-forward (DF). In this paper, we propose a design of memoryless relay
mappings that are optimized1 for minimum symbol error probability at the
destination. Related work of finding optimal memoryless relay mappings in-
cludes [1–4]. Reference [1] studies uncoded transmission with BPSK modu-
lation and proves that the probability of error is minimized if the operation
at the relay is a Lambert W function. In [2], it is shown that estimate-
and-forward maximizes the capacity of the relay channel for a BPSK input

1We distinguish between optimal which we use to refer to a globally optimal system
and optimized which potentially is only locally optimal.
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Figure 1: Structure of the system.

signal. The work is carried on in [3], where it is shown that estimate-and-
forward also maximizes the signal-to-noise ratio (SNR) at the destination.
A related problem, considered in [4], is to find relay mappings that mini-
mize the probability of error for the two-way relay channel. In [4], two nodes
communicate with each other via a relay node. During the first phase the
two nodes transmit their messages to the relay node over a multiple access
channel. In the second phase, the relay transmits to both nodes simulta-
neously over a broadcast channel. Common to [1–4] is transmission over
additive white Gaussian noise (AWGN) channels and that there is no direct
link from the source to the destination. If a direct link is available, the op-
eration at the relay can be made more energy efficient by utilizing the side
information which is provided by the direct link. One scheme where this is
done is constellation-rearrangement [5]. In this scheme the relay first makes
a hard decision on the received symbol and then transmits the symbol using
a rearranged order of the modulation symbols. Due to the side information,
this rearrangement of the symbols is shown to decrease the probability of
bit error.

We study uncoded transmission and let the relay be a memoryless map-
ping such that, at each time instant, it maps its received symbol to an
output symbol. In the following sections, we first state the problem more
formally and formulate necessary conditions for the optimality of the relay
mapping. These conditions are then used to find optimized relay mappings,
which are evaluated against the existing schemes DF, AF, EF, and CR in
Section 4.
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2 Problem Formulation

We consider the three-node relay channel shown in Figure 1. The goal is to
transmit an information symbol Ω from the source node to the destination
node as reliably as possible. Ω is modelled as an M -ary discrete random
variable, uniformly distributed over the set {ω1, . . . , ωM}. At the source
node, the function α : {ω1, . . . , ωM} 7→ R modulates an information symbol
to a channel symbol s1 = α(ω), which is transmitted to the destination
node. The transmission is overheard by the relay node which uses the
function β : R 7→ R to map its observation of the transmission, y2, to a
new channel symbol s3 = β(y2), which is transmitted to the destination
node via a channel that is orthogonal (in time or frequency) to the one
used by the source node. We emphasize that we study the transmission of
independent uncoded symbols and that the relay is memoryless — meaning
that its output only depends on the current input, sometimes referred to as
instantaneous relaying.

All transmissions are corrupted by additive white Gaussian noise, the
received symbols on each channel can therefore be expressed as

yi = si + ni i = 1, 2, 3, (1)

where si is the transmitted symbol and ni is independent white Gaussian
noise with variance σ2

i . The “gain” of each link will in the following be
expressed in terms of the reciprocal of the noise variance, ai = 1/σ2

i . Since
the relay listens to the same channel as the destination we have the equality
s2 = s1. Both the source and the relay are constrained in the sense that
they must satisfy an average transmit power constraint

E[S2
1 ] ≤ Pα, (2)

E[S2
3 ] ≤ Pβ . (3)

At the destination node the received symbols are used to make a decision
on the transmitted symbol

ω̂ = γ(y1, y3) ∈ {ω1, . . . , ωM}. (4)

γ is fully specified by the decision regions Aωi and their complementary
regions ACωi , i ∈ {1, . . . ,M}, which are defined as

Aωi = {(y1, y3) : γ(y1, y3) = ωi} (5)

ACωi =
⋃

j 6=i

Aωj (6)

As performance measure we use the uncoded symbol error rate (SER),

Pe = Pr(Ω̂ 6= Ω). (7)
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With “optimal,” we therefore refer to a system such that Pe is minimized
given the power constraints in (2) and (3). For a fixed modulator, relay
mapping, and detector, the whole system can be seen as one equivalent
discrete-time channel with certain symbol transition probabilities. The error
probability can therefore be further decreased by implementing a powerful
channel code, such as an LDPC or turbo code, on top of this effective
channel. In this case, a more appropriate design criterion would be to
maximize the mutual information between the transmitted and received
symbols. However, a simple suboptimal approach is to change our detector,
which is optimized for minimum SER, such that it provides soft information
instead of hard decisions.

3 Design

With the notation introduced in Section 2 we can write Pe as

Pe =
∑

ω∈{ω1,...,ωM}

P (ω)

∫∫

(y1,y3)∈ACω

p(y1|α(ω))×

∫ ∞

−∞

p(y2|α(ω))p(y3|β(y2))dy2 dy1dy3, (8)

where P (·) and p(·|·) denote probability mass functions (pmf:s) and con-
ditional probability density functions (pdf:s), respectively. We let α be
represented by any existing modulation scheme, satisfying the power con-
straint in (2), and now pay attention to finding the relay mapping β and the
corresponding detector γ such that Pe is minimized. This design problem
is nonconvex and we therefore take the same approach as in [6], where we
first discretized the channel space into N equally spaced points according
to

S =
{

− ∆

2
(N − 1),−∆

2
(N − 3), . . . ,

∆

2
(N − 3),

∆

2
(N − 1)

}

, (9)

restricting the output from the relay to satisfy s3 ∈ S. All received symbols
are then quantized back to S by the following hard decision decoding rule

ŷi = arg min
y′
i
∈S
|yi − y′i| i = 1, 2, 3, (10)

where the hat will be used to indicate that the value has been discretized.
This approximation is expected to be good if N is sufficiently large and ∆
is small in relation to the standard deviation of the channel noise, σi. Next,
we formulate necessary conditions for the optimality of β given α and γ and
the corresponding necessary conditions on γ given α and β. Having done
this, we propose an iterative design algorithm in Section 3.3 for finding an
optimized system.
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3.1 Optimal Relay Mapping

With the discretized channel space, the optimal relay mapping β, given a
fixed α and γ, is given by (see Appendix A)

β(ŷ2) = arg min
s3∈S

(

Pr(Ω̂ 6= Ω|ŷ2, s3) + λs23

)

(11)

where

Pr(Ω̂ 6= Ω|ŷ2, s3)

=
∑

ω∈{ω1,...,ωM}

P (ω|ŷ2)
∑

(ŷ1,ŷ3)∈ACω

P (ŷ1|α(ω))P (ŷ3|s3) (12)

The Lagrange multiplier λ in (11), is used to turn the constrained optimiza-
tion problem into an unconstrained problem [7, 8]. The term λs23 penalizes
channel symbols that use high power in favor of channel symbols using low
power. λ > 0 should be chosen such that the power constraint in (3) is
fulfilled.

3.2 Optimal Detector

The optimal detector γ, given a fixed α and β, is simply the maximum-
a-posteriori (MAP) detector. Consequently, the decision regions are given
by

Aωi = {(ŷ1, ŷ3) : Pr(Ω = ωi|ŷ1, ŷ3)

> Pr(Ω = ωj |ŷ1, ŷ3), ∀j 6= i}, (13)

where

Pr(Ω = ω|ŷ1, ŷ3)

= kP (Ω = ω)P (ŷ1, ŷ3|Ω = ω)

= kP (Ω = ω)P (ŷ1|α(ω))
∑

ŷ2∈S

P (ŷ2|α(ω))P (ŷ3|ŷ2), (14)

with k being a constant that is independent of ω.

3.3 Design Algorithm

It is in general hard to optimize β and γ simultaneously since the problem
is nonconvex. We therefore propose a design algorithm where we iterate be-
tween finding the optimal relay mapping for a fixed detector and vice versa.
A common problem with an iterative technique like the one suggested here
is that the final solution will depend on the initialization of the algorithm,
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if the initialization is bad we are likely to end up in a poor local minimum.
One method that has proven to be helpful in counteracting this is noisy
channel relaxation [6, 9, 10], which works in the following way. A system is
first designed for a noisy channel, the solution obtained is then used as an
initialization when designing a system for a less noisy channel. The noise is
reduced and the process is repeated until the desired noise level is reached.
The intuition behind this method is that an optimal system for a noisy
channel has a simple structure and is easy to find, as the channel noise is
decreased more structure is gradually added to form the final system. As-
suming the source modulation α is given, the design procedure for β and γ
is formally stated in Algorithm 1.

Algorithm 1 Design Algorithm

Require: Fixed mapping α as well as an initial mapping for β, the channel
power gains A = (a1, a2, a3) for which the system should be optimized
and the threshold δ that determines when to stop the iterations.

Ensure: Locally optimized β and γ given α.

1: Let A′ = (a′1, a
′
2, a
′
3), where a′1 ≤ a1, a

′
2 ≤ a2, a

′
3 ≤ a3 (i.e., A′ corre-

sponds to a channel which is more noisy than A), be the channel power
gains for which the system is being optimized.

2: Find the optimal detector γ by using (13).
3: while A′ 6= A do
4: Increase A′ according to some scheme (e.g., linearly).

5: Set the iteration index k = 0 and P
(0)
e = 1.

6: repeat
7: Set k = k + 1
8: Find the optimal relay mapping β by using (11).
9: Find the optimal detector γ by using (13).

10: Evaluate the SER P
(k)
e for the system.

11: until (P (k−1) − P (k))/P (k−1) < δ
12: end while

4 Simulation Results

To evaluate the performance of our optimized mappings produced by the
design algorithm, the first thing we need to do is to fix M (the size of the
information symbol set) and the modulation scheme α. In the following
simulations we let M = 4 and use pulse amplitude modulation (PAM) at
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Figure 2: Relay mappings for (a) DF, AF, CR and (b) EF. The vertical
lines mark the transmitted PAM points.

the source node, that is,

α(ωi) = i∆α −
(M + 1)

2
∆α i = 1, . . . ,M, (15)

where ∆α is chosen such that (2) is fulfilled. We repeat that the information
symbols are assumed to be uniformly distributed so that all symbols are
equally likely.

In the implementation of the design algorithm the following choices were
made. As initial mapping for the relay, we used a linear mapping. In line 1,
assuming we would like to design a system for A = (a1, a2, a3) dB, we set
A′ = (a1, 5, 5) dB. The noisy channel relaxation on line 4 was done in two
phases: In the initial phase, for each iteration, the second component of A′

was gradually increased until A′ = (a1, a2, 5) dB. In the second phase, for
each iteration, the third component ofA′ was gradually increased untilA′ =
A dB. It was observed that a better mapping could sometimes be found by
increasingA′ slightly aboveA during the noisy channel relaxation and then
reducing it to A. The channel space was discretized into N = 256 different
points according to (9) with ∆ ≈ 8/(N − 1). The discrete approximation
allows us to find the relay and detector by an exhaustive search.

4.1 Reference Systems

The performance of our optimized mappings will be compared to the fol-
lowing four existing schemes:

• Decode-and-forward (DF) — the relay makes a hard decision on which
symbol that was transmitted and transmits the decoded symbol using
the same modulation scheme as the source node, see Figure 2(a).
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• Amplify-and-forward (AF) — the relay transmits a scaled version of
its input, see Figure 2(a).

• Constellation-rearrangement (CR) [5] — similar to DF, the relay
makes a hard decision on the received symbol, but instead of using
the same modulation scheme as the source the relay uses a rearranged
order of the modulation symbols, see Figure 2(a).

• Estimate-and-forward (EF) — the relay transmits kE[S2|y2], where
k is a constant such that the power constraint in (3) is satisfied, see
Figure 2(b). Something worth noting is that the relay mapping in this
case will depend on a2.

4.2 Numerical Results

The results will be presented for two types of scenarios, in the first scenario
(Figure 3) we vary Pβ keeping Pα fixed and in the second scenario (Figure
4) we vary Pα keeping Pβ fixed. The destination node has perfect channel
state information and therefore adapts the detector to the current channel
state using (13). Starting with Figure 3(a) with a1 = 10 dB, a2 = 10 dB,
and a3 = 0 dB, we can see that the optimized mapping is 3.5–4.5 dB better
than EF, which is the best of the conventional methods. CR turns out to
work really well in this scenario and closely follows the optimized mapping
with a gap of about 0.8–1 dB when Pβ < 5 dB. After this point the CR
scheme saturates due to the hard decision inherited from DF. All schemes
eventually saturate because of the link to the relay (a2), which becomes
the bottleneck when Pβ increases. In Figure 3(b), a2 has been increased to
20 dB with everything else the same as in the previous case. The gap to
EF (and DF) is in this case even bigger — at most 7 dB. In this case the
optimized system almost looks identical to the CR scheme, which therefore
follows even closer than before. On the other hand, when Pβ is increased,
the optimized relay mapping is able to utilize the extra power in a more
efficient way than CR by providing some soft information on the borders
of the PAM points. This will be discussed more in Section 4.3. Moving
on to the second scenario, where Pα is varied with a1 = a2 = 0 dB and
a3 = 15 dB in Figure 4(a), we can see that the gain is relatively small in
this case — around 0.5–1.5 dB compared to EF and 0.5 dB compared to
CR. That all schemes perform almost the same is simply because the role
of the relay is minor in this setup since the effective signal-to-noise ratio of
the direct link is increasing but the link from the relay to the destination
is fixed. However, if we increase a2 to 5 dB — so that the relay has better
knowledge of the transmitted value than the destination — the difference
among the schemes becomes more evident as seen in Figure 4(b). EF and
DF again have similar shape and performance with a gap to the optimized
system of about 1 dB at Pα = 10 dB and a gap of 4 dB at Pα = 14 dB.
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Figure 3: Simulation results when the relay power, Pβ , is varied while
the source power is fixed, Pα = 1. The circles mark the SNR points for
which the relay mapping has been optimized. A selection of optimized
relay mappings are shown below each figure.
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Figure 4: Simulation results when the source power, Pα, is varied while
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which the relay mapping has been optimized. A selection of optimized
relay mappings are shown below each figure.
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Figure 5: A system designed for a1 = 5 dB, a2 = 15 dB, and a3 = 5
dB with the relay mapping, β(ŷ2), superimposed on the joint probabil-
ity mass function of the received symbols at the destination node, i.e.
P (ŷ1, ŷ3). The crosses mark the positions of the received symbols if all
links were noiseless.

Again, CR performs quite well with a gap to the optimized system of about
0.6 dB, which is due to the soft information provided by the optimized relay
mapping.

4.3 Interpretation and Discussion of β

As seen in the previous section, there is a large gain in terms of decreased Pe
by using the optimized relay mapping compared to the otherwise commonly
referred AF and DF schemes. In this section, we discuss and explain prop-
erties of optimized relay mapping based on our numerical optimizations. In
the following discussion, we let Pα = Pβ = 1. One of the most evident
characteristics of the optimized relay mappings is that they, in most cases,
are not monotonically increasing but instead alternate between positive and
negative values. This behavior spreads the symbols in channel space and
is due to the side information which the direct link provides. As soon as
a2 reaches a level of approximately 10 dB and above, the non-monotonic
mapping is beneficial in comparison to a monotonically increasing mapping
— this is true even for as low values of a1 as 2.5 dB. The explanation to
this is that these mappings better fill the channel space at the destination
and increase the minimum distance of the transmitted symbols. This can
be understood by thinking of the limit as a2 goes to infinity. In this case,
the relay function can be seen as a part of the source node and we can think
of it as having two orthogonal channels from the source to the destination,
with the constraint that the modulation on the first channel is PAM. If we
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(ŷ
2
)

y

Figure 6: Comparison of optimized relay mappings for a system with
a1 = 10 dB, a3 = 5 dB, and a2 = 10 dB (solid) versus a2 = 20 dB
(dashed). The vertical lines mark the transmitted PAM points.

assume that a1 = a3, we would like to use a modulation scheme on the
second channel such that the resulting joint modulation is QPSK, which
(for a fixed transmit power) maximizes the minimum distance between all
transmitted symbols by placing them uniformly spread on a circle. Looking
at Figure 5, we notice that this is exactly what the optimized mapping does.
The output values from the relay are essentially just a rearrangement of the
hard decoded PAM symbols from the source node (c.f. CR).

As a2 increases for fixed a1 and a3, the relay converges into a hard deci-
sion device. That is, for low values of a2 the relay provides soft information
of the received symbol (c.f. AF) and for higher values the relay itself makes
hard decisions (c.f. DF). However, by using the design algorithm, we can
also find relay mappings that work well for intermediate values of a2 and
are not limited to these extremes. The effect of a2 on the relay mapping is
shown in Figure 6.

Another property that is evident appears when a3 is increased for fixed
a1 and a2. The relay now starts to transmit soft information that indicates
that it is uncertain of its decision at the boundaries of the detection regions.
This tells the destination that it should put more trust on the received
symbol from the direct link. Observe first in Figure 7, how the relay maps
input values close to zero to output values of large amplitude. Looking next
at the decision regions, we can see that when the destination receives a value
of large amplitude from the relay (i.e. |ŷ3| is large), the border between the
two decision regions is close to ŷ1 = 0. In other words, the relay tells the
destination that the information symbol is either ω2 or ω3, but the decision
on which of these symbols that was transmitted is left to the direct link.

Finally, we show how the quality of the direct link (i.e. a1) affects the
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Figure 7: A system designed for a1 = 7.5 dB, a2 = 12.5 dB, and
a3 = 15 dB. The relay mapping, β(ŷ2), is superimposed on the decision
regions at the destination. Note how the relay encodes information
about the uncertainty of the information symbol for input values close
to zero. This tells the destination to put more trust into the value
received from the direct link. The crosses mark the positions, (ŷ1, ŷ3),
of the received symbols if all links were noiseless.

relay mapping. If the direct link is weak, the relay tends to make more hard
decisions, whereas if the link is strong the amount of soft information from
the relay is increased, an example of this is shown in Figure 8. We conclude
that the optimal relay mapping should not only depend on the link quality
to the relay (c.f. EF), but on all link qualities.

5 Conclusions

We have looked at the three-node relay channel and proposed an algorithm
for designing locally optimal relay mappings and the corresponding detector
at the destination.

It was shown that the symbol error rate can be significantly decreased
by using the optimized relay mapping instead of the otherwise commonly
referred schemes AF, DF, or EF. The biggest performance gain stems from
the non-monotonic property of the relay mapping, which increases the min-
imum distance of the transmitted symbols and better fills the channel space
at the destination. The proposed system is more flexible than all of the
reference systems, since it finds a good tradeoff between soft and hard de-
cisions depending on all link qualities. In the simulations, the optimized
systems always perform at least as well as the best of the reference systems
and in many cases substantially better.
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Figure 8: Comparison of optimized relay mappings for a system with
a2 = 17.5 dB, a3 = 15 dB, and a1 = 5 dB (solid) versus a1 = 15 dB
(dashed). The vertical lines mark the transmitted PAM points.

If used with a channel code, the optimized detector could easily be
changed to provide soft information in terms of conditional probabilities
instead of hard decisions. One drawback which is unavoidable due to the
nature of the problem is that as soon as the quality of one channel changes,
the relay mapping and the detector have to be updated. However, the sim-
ilarity of systems that are optimized for closely related channel qualities
suggests that there is some robustness to channel mismatch built in to the
system.

Appendix A Optimal Relay Mapping

The optimal relay mapping should minimize Pe given the power constraint
in (3). As a first step we turn the constrained optimization problem into an
unconstrained problem by using the Lagrange multiplier method [7, 8]

min
β(·):S7→S

(

Pe + λE[β2(Ŷ2)]
)

, (16)
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where Pe and E[β2(Ŷ2)] can be written as

Pe =
∑

ŷ2∈S

∑

ω∈{ω1,...,ωM}

P (ω)P (ŷ2|α(ω))×

∑

(ŷ1,ŷ3)∈ACω

P (ŷ1|α(ω))P (ŷ3|β(ŷ2))

=
∑

ŷ2∈S

P (ŷ2)
{ ∑

ω∈{ω1,...,ωM}

P (ω|ŷ2)×

∑

(ŷ1,ŷ3)∈ACω

P (ŷ1|α(ω))P (ŷ3|β(ŷ2))
}

(17)

and

E[β2(Ŷ2)] =
∑

ŷ2∈S

P (ŷ2)β2(ŷ2), (18)

respectively. The sums in (17) and (18) have P (ŷ2) as weights and run
over all ŷ2 ∈ S. Since the weights are nonnegative it is clear that the
minimization in (16) can be done individually for each relay input, ŷ2 ∈ S,
which gives the expressions in (11) and (12).
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Abstract

We study the Gaussian multiple-input, multiple-output broadcast chan-
nel, where a base station with NT antennas transmits K independent mes-
sages to K users, each having a single receive antenna. The messages con-
sist of independent, identically distributed Gaussian random variables and
we study linear transmission with an end-to-end distortion criterion. By
using an already established uplink/downlink duality and a recently discov-
ered special relation between beamforming vectors and channel vectors, we
present a closed-form expression for the optimal power allocation in the
two-user case. We also outline an iterative algorithm that finds the optimal
power allocation for an arbitrary number of users.

1 Introduction

We consider the Gaussian multiple-input, multiple-output (MIMO) broad-
cast channel, where a base station with NT antennas transmits K inde-
pendent messages to K users, each having a single receive antenna. The
messages consist of independent, identically distributed (i.i.d.) complex
Gaussian random variables and we study transmission with an end-to-end
distortion criterion. The capacity region of the Gaussian MIMO broadcast
channel is achievable with dirty-paper precoding (DPC) [1]. Since the mes-
sages are independent, we could combine an optimal source code with DPC,
achieving the distortion-rate bound for each message, to yield an optimal
scheme. However, for the source code and DPC to be optimal, it is in general
required that infinite block lengths are used. Motivated by low-delay and
low-complexity constraints, we instead turn to analog transmission using lin-
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ear precoding, where the problem is to determine the optimal beamforming
vector and power allocation to use for each user’s message.

Linear precoding is a well-studied topic. The difficulty in solving the
problem lies in the fact that the optimal beamforming vector to each user
is dependent both on the power allocation and also on the beamforming
vectors used to all other users. Especially interesting to us are the results
on signal-to-interference-and-noise ratio (SINR) balancing [2], where an up-
link/downlink duality is shown to exist. By using this duality, it is shown
that one can determine the optimal beamforming vectors by first solving the
much simpler dual uplink problem, which includes uplink power allocation
and receive beamforming vectors. The uplink problem is simpler because
the beamforming vector for each user is independent of the beamforming
vectors for the other users. The optimal downlink solution is obtained by
using the dual uplink receive beamforming vectors as transmit beamform-
ing vectors and next finding the optimal downlink power allocation. The
distortion criterion we will use is the mean-squared error (MSE), which has
a close relation to the SINR. The uplink/downlink duality has been shown
to also apply to the MSE region [3].

Algorithms based on convex optimization and iterative techniques for
determining optimal power allocation and beamforming vectors were pro-
posed in [2] and [3, 4] for the case of SINR and MSE, respectively. The
main contribution of this letter is a closed-form solution for the optimal
uplink/downlink MSE power allocation in the case of two users. In the case
of more than two users, we outline an iterative algorithm that is of the same
complexity order as [4] but conceptually simpler.

2 Problem Formulation

The linear downlink problem is illustrated in Figure 1 and can be formu-
lated as follows: The source variables Xi, i = 1, . . . ,K, are to be con-
veyed to the corresponding ith receiver, where K is the number of users.
The encoder multiplies each source variable with a beamforming vector,
ui ∈ CNT , and a power scaling variable,

√
Pi, and transmits the sum

α(X) =
∑K
i=1

√
PiuiXi. The source variables, Xi, are i.i.d. circularly-

symmetric complex Gaussian random variables with unit variance and zero
mean, that is, Xi ∼ CN (0, 1). The beamforming vectors are of unit norm
and the power scaling variables fulfill the relation

∑
Pi ≤ P, where P is the

total average power that can be used by the base station. The conjugated
channel to user i is described by the vector hi ∈ CNT such that the received
signal can be written as

Yi =
K∑

j=1

√

Pjh
H
i ujXj +Ni, (1)
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Figure 1: Downlink transmission. The source xi is transmitted to user
i, where the vector hi models the channel from the base station to the
user. The transmission is disturbed by the additive noise ni.

where Ni ∼ CN (0, 1) is additive white Gaussian noise (AWGN). The signal-
to-interference-and-noise ratio (SINR) can now be expressed as

SINRi =
Pih

H
i uiu

H
i hi

∑

j 6=i Pjh
H
i uju

H
j hi + 1

and the MSE of the linear minimum MSE (MMSE) estimator X̂i = E[Xi|Yi],
expressed in terms of the SINR [5], becomes

MSEi = E[|Xi − X̂i|2] =
E[|Xi|2]

1 + SINRi

= 1− Pih
H
i uiu

H
i hi

∑K
j=1 Pjh

H
i uju

H
j hi + 1

. (2)

We would like to find the jointly optimal beamforming vectors {ui} and
power allocation variables {Pi} such that the following sum-MSE is mini-
mized

MSE =
K∑

i=1

MSEi. (3)

This is a very hard problem due to the fact that even though the power
allocation is fixed, the optimal beamforming vector for user i depends on
the beamforming vectors to all other users in a complicated manner, as seen
from (2) and (3).

3 Dual Uplink Formulation

In [2], it was shown that the problem of SINR balancing can be solved by
first solving a dual uplink problem. In the uplink formulation, each optimal
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{x̂i}K

i=1
MMSE

est.

√
Q1

√
QK

h1

hK

n
y

x1

xK

Figure 2: Dual uplink problem. The source variable xi is transmitted
from user i over a MAC, where the vector hi models the channel from the
user to the base station. The transmission is disturbed by the additive
noise n.

receive beamforming vector is independent of the other beamforming vectors
and can therefore easily be found for a given power allocation. Due to the
close relationship between SINR and MSE, the duality naturally extends to
MSE minimization [3].

The dual uplink problem can be formulated as follows: Each user has
a source variable Xi ∼ CN (0, 1), i = 1, . . . ,K, that is to be conveyed to
the base station. At the user node, the source variable is multiplied by a
power scaling variable,

√
Qi, and transmitted to the base station over a

multiple-access channel (MAC) as seen in Figure 2. In this formulation, the
entries in the channel vector hi ∈ CNT model the paths from the ith user
to each of the NT antennas at the base station. As before, the transmission
is disturbed by an AWGN term N ∼ CN (0, I). The received signal at the
base station can be expressed as

Y =

K∑

i=1

√

QihiXi +N , (4)

where the power scaling variables should fulfill the constraint
∑
Qi ≤ P .

Each transmitted source variable is now estimated by using the linear beam-
forming vectors ui ∈ C

NT , ‖ui‖ = 1, and a scalar scaling γi such that
X̂i = E[Xi|Y ] = γiu

H
i Y . Thus, the SINR of the ith source variable is

SINRi =
Qiu

H
i hih

H
i ui

uHi

(
∑

j 6=iQjhjh
H
j + I

)

ui

(5)

and the MSE can be obtained in a similar manner as in (2).
Assuming that an arbitrary power allocationQ = (Q1, . . . , QK) (i.e., not

necessarily fulfilling the power constraint) is given, the uplink formulation
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makes it possible to minimize the sum-MSE by individually maximizing
each user’s SINR. This is done by either of the following two equivalent
choices of beamforming vectors [6, Ch. 3]

u
opt
i (Q) =

(
∑

j 6=iQjhjh
H
j + I

)−1

hi
∥
∥
∥

(
∑

j 6=iQjhjh
H
j + I

)−1

hi

∥
∥
∥

(6)

=

(
∑K
j=1Qjhjh

H
j + I

)−1

hi
∥
∥
∥

(
∑K
j=1Qjhjh

H
j + I

)−1

hi

∥
∥
∥

. (7)

By inserting the optimal beamforming vector from (6) into (5) and using
the relation between SINR and MSE, we obtain

MSEopt
i (Q)=

1

1 +Qih
H
i

(
∑

j 6=iQjhjh
H
j + I

)−1

hi

. (8)

3.1 Properties of Sum-MSE Minimization

The duality relation is such that an MSE point which is achievable in the
uplink can also be achieved in the downlink by using the same beamforming
vectors [3]. The uplink/downlink power allocations are in general not equal.
Yet, in the special case of sum-MSE minimization, it turns out that also
the optimal power allocations are equal, that is,

P opt
i = Qopt

i i = 1, . . . ,K. (9)

This relation stems from the fact that the optimal solution is characterized
by the relation

hHi u
opt
j (Qopt) =

(

hHj u
opt
i (Qopt)

)∗

∀i, j. (10)

A proof of (9) and (10) was recently presented in [7], where the Karush–
Kuhn–Tucker conditions are used to prove the relations. Although (9)
and (10) involvesQopt, it is not explicit how to find the actual value ofQopt

without the use of numerical methods. The operational meaning of (10) is
that the uplink problem not only is dual to the downlink problem, but at
the optimal solutions, the problems are identical.

4 Two-user closed-form solution

We will now use (9) and (10) to derive a closed-form expression for the
optimal power allocation in the two-user case. The solution is divided into
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three cases depending on whether the channels have the same norm and if
they are parallel.

Proposition 1 Without loss of generality, let ‖h1‖ ≥ ‖h2‖ > 0. The
optimal uplink/downlink power allocation in the two-user sum-MSE case is
given by

P opt
1 =







P if a3 = 0,
P/2 if a2 = 0,

min
(

P̃1, P
)

otherwise,
(11)

where

a1 = 2 + P‖h2‖2, (12)

a2 = ‖h1‖2 − ‖h2‖2 ≥ 0, (13)

a3 = ‖h1‖2‖h2‖2 − |hH1 h2|2 ≥ 0, (14)

P̃1 =
−a1 +

√

a2
1 + Pa1a2 + a2

2/a3

a2
. (15)

Proof: Starting with the inner product in (10), we have

hH2 u
opt
1 (P opt)

(a)
=
hH2

(

P opt
2 h2h

H
2 + I

)−1

h1

∥
∥
∥

(

P opt
2 h2h

H
2 + I

)−1

h1

∥
∥
∥

(b)
=

hH2

(

I − P opt
2 h2h

H
1

1 + P opt
2 h

H
2 h2

)

h1

∥
∥
∥

(

I − P opt
2 h2h

H
2

1 + P opt
2 h

H
2 h2

)

h1

∥
∥
∥

(c)
=
hH2

(

(1 + P opt
2 h

H
2 h2)I − P opt

2 h2h
H
2

)

h1
∥
∥
∥

(

(1 + P opt
2 h

H
2 h2)I − P opt

2 h2h
H
2

)

h1

∥
∥
∥

(d)
=

hH2 h1
∥
∥
∥

(

(1 + P opt
2 h

H
2 h2)I − P opt

2 h2h
H
2

)

h1

∥
∥
∥

(16)

(e)
=

(hH1 h2)∗
∥
∥
∥

(

(1 + P opt
1 h

H
1 h1)I − P opt

1 h1h
H
1

)

h2

∥
∥
∥

, (17)

where (a) follows from the definition of uopt
1 in (6), (b) from using the matrix

inversion lemma, (c)–(d) are basic manipulations, and (e) follows from the
symmetry in (10). Since the numerators in (16) and (17) are equal we must
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have that also the denominators are equal. By using this equality, squaring
both sides and using the relation P = P opt

1 + P opt
2 , we get a second-order

equation, which when solved gives the expression in (15). Since the solution
to a second-order equation in general is unbounded, we need min(P̃1, P ) to
make sure that the power usage does not exceed the power limit. In the
final expression in (11), we also have to consider the cases when a2 or a3 are
equal to zero. a3 = 0 corresponds to the channels being parallel, in which
case the optimal (linear) strategy is to allocate all power to the user with
the strongest channel. a2 = 0 on the other hand corresponds to the case
where the two channels have the same norm, in which case the power should
be divided equally among the users. P opt

1 is continuous in the special cases
mentioned above and can also be found by taking the limit of P̃1 as a2 or a3

approaches zero. If we have a2 = a3 = 0, it can be shown by inserting (2)
into (3) that the sum-MSE is invariant to the power allocation and only
dependent on the sum.

The power allocation for the second user is easily found since P = P opt
1 +

P opt
2 . Once the optimal power allocation has been determined, the optimal

beamforming vectors can be calculated using (6) or (7). For users that are
assigned zero power, the beamforming vectors can be arbitrarily chosen.
The relation in (10) is therefore not necessarily fulfilled for these users.

5 K > 2 Users

A generalization to K > 2 users is not straightforward and finding a closed-
form solution for this case is still an open problem. We briefly outline an
efficient iterative algorithm that takes advantage of the relation in (10). By

inserting (7) into (10) and defining A ,
∑K
i=1 Pihih

H
i + I, it can be shown

that, for the optimal power allocation, Cj = ‖A−1hj‖ = C is constant
for all j. Given an initial power allocation (e.g., uniform), we propose
an algorithm that is based on evaluating Cj for all users and calculating
the arithmetic mean C̄ for users with positive power allocation. Next, the
power allocation Pj is increased proportionally to Cj − C̄ for all users.
By updating the powers iteratively, we have been able to find the optimal
power allocation for systems with hundreds of users. In each step, one has
to take care so that no user has negative power, in which case the power
is set to zero, and that the power constraint is fulfilled. The complexity
of the algorithm is of the same order as the iterative algorithm presented
in [4], that is, O

(
L(N3

T +KN2
T )
)
, where L is the number of iterations. In

comparison, algorithms based on convex optimization have a complexity of
O
(
K6.5N6.5

T

)
[3].
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6 Conclusions

We have considered sum-MSE minimization for the Gaussian MIMO broad-
cast channel. By using recently discovered properties of this problem, we
have derived a closed-form expression for the optimal power allocation in
the two-user scenario and proposed a conceptually simple and efficient al-
gorithm that handles an arbitrary number of users. It is not clear how or
whether the closed-form solution can be generalized to more than two users.
Our hope is that the solution we present can inspire future research on the
more general case.
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