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Abstract

The topic of this thesis is signaling design for data transmission through
wireless channels between a transmitter and a receiver that can both
be equipped with one or more antennas. In particular, the focus is on
channels where the propagation coefficients between each transmitter–
receiver antenna pair are only partially known or completetly unknown
to the receiver and unknown to the transmitter.

A standard signal design approach for this scenario is based on sepa-
rate training for the acquisition of channel knowledge at the receiver and
subsequent error-control coding for data detection over channels that are
known or at least approximately known at the receiver. If the number
of parameters to estimate in the acquisition phase is high as, e.g., in a
frequency-selective multiple-input multiple-output channel, the required
amount of training symbols can be substantial. It is therefore of inter-
est to study signaling schemes that minimize the overhead of training or
avoid a training sequence altogether.

Several approaches for the design of such schemes are considered in
this thesis. Two different design methods are investigated based on a sig-
nal representation in the time domain. In the first approach, the symbol
alphabet is preselected, the design problem is formulated as an integer
optimization problem and solutions are found using simulated annealing.
The second design method is targeted towards general complex-valued
signaling and applies a constrained gradient-search algorithm. Both ap-
proaches result in signaling schemes with excellent detection performance,
albeit at the cost of significant complexity requirements.

A third approach is based on a signal representation in the fre-
quency domain. A low-complexity signaling scheme performing differ-
ential space–frequency modulation and detection is described, analyzed
in detail and evaluated by simulation examples.

The mentioned design approaches assumed that the receiver has no
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knowledge about the value of the channel coefficients. However, we also
investigate a scenario where the receiver has access to an estimate of
the channel coefficients with known error statistics. In the case of a
frequency-flat fading channel, a design criterion allowing for a smooth
transition between the corresponding criteria for known and unknown
channel is derived and used to design signaling schemes matched to the
quality of the channel estimate. In particular, a constellation design is
proposed that offers a high level of flexibility to accomodate various levels
of channel knowledge at the receiver.
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Chapter 1

Introduction

The presence of telecommunication services in every day life has seen an
enormous growth during the last ten to 15 years. The Internet, originally
conceived as a military computer network allowing data communication
even in the case of a nuclear attack, has by now grown to a world-wide
network allowing such diverse services as personal communication, in-
formation retrieval, financial services (e.g., banking), shopping, gaming,
video-on-demand, TV and radio, flirting and dating, interaction with
public authorities (e.g., tax declarations) and many more.

The amazing expansion of the Internet was paralleled in the 1990’s by
a massive growth of the market for wireless telecommunication services.
Caused by sharply decreasing consumer cost, the global system for mobile
communication (GSM), the dominating standard for second generation
mobile telephony in Europe, was no longer considered a luxury for the
general population but became a part of everyday life. By 2004, user
penetration in terms of assigned mobile phone numbers per inhabitant
has surpassed 100% in Sweden [WÖst05].

The convergence of these two developments, i.e., the combination of
wireless reachability with Internet data services “anytime anywhere” is no
longer in its infancy. Huge efforts were made to develop modern wireless
telecommunication systems such as the universal mobile telecommuni-
cation system (UMTS) or various wireless local area network (WLAN)
standards which support higher data rates than the GSM system and
thereby allow more advanced multimedia communication services. It is
a common belief that this trend to ever increasing data rates in mo-
bile communication prevails. Thus, the enabling technologies allowing
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this development continue to be the subject of intensive research efforts.
This thesis constitutes a contribution to this field, more specifically in
the area of signal design for wireless communication. In this introduc-
tory chapter, the challenges imposed by the physical reality in wireless
communication are summarized in Section 1.1 and a potential technique
for increasing data rates is introduced in Section 1.2. A categorization
of existing works relating to this technique in Section 1.3 then leads in
Section 1.4 to the description of the research problem discussed in this
thesis. The contributions and possible solution approaches are then out-
lined in Section 1.5 followed by a summary of the notation and acronyms
used throughout this text.

1.1 The Wireless Radio Channel

In a wireless radio communication system, the transmitter maps the data
to be transmitted onto electromagnetic waves that propagate through the
space between the transmitter and the receiver. The wave propagation
is affected in a number of ways [PP97] imposed by the physical condi-
tions of transmission, or, in more technical terms, the channel between
the transmitter and the receiver. A communication system designed to
recover the data at the receiver therefore requires a sufficiently accurate
description of the channel properties.

One main characteristic of wireless communication channels is the
possibility of multipath, i.e., the signal can propagate from the transmit-
ter to the receiver along a number of different paths. These different
paths are caused by signal reflection or refraction of the radio wave by
objects in the environment, usually causing time and phase shifts be-
tween the waves propagating along different paths. The incoming signals
can thus interfere constructively (the different signal powers add up) or
destructively (the incoming waves cancel each other). When the environ-
ment changes or the transmitter or the receiver are mobile, the multipath
environment changes, leading to a change of the shift pattern between
different paths. This in turn causes a variation in received signal power
called fading. Moreover, the channels can become frequency-selective if
the spread of time shifts between incoming waves is significant in relation
to the received signal bandwidth and the receiver may be able to resolve
several distinct copies of the incoming signals with different time shifts.
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bits TX
...

... RX bits

Figure 1.1: Diversity in MIMO systems

1.2 Multiple Antennas

Because of the difficult transmission conditions in the wireless radio com-
munication channel, the supported data rates for reliable communication
are rather low in standard single-input single-output (SISO) systems. An
immediate conclusion in Shannon’s pioneering work on information the-
ory [Sha48] is that reliable communication at higher rates can be possible
at the cost of higher signal bandwidth or power. Unfortunately, these two
options do not have the potential to meet the need for cheap and easy-
to-use mobile communication services. Radio wave spectrum has become
an extremely expensive resource. The radio wave spectrum licenses for
UMTS covering about 85MHz of bandwidth were sold in Germany for
more than e 50 billion [Age00]. Transmitter power radiation is limited
by the battery life in mobile terminals; moreover, regulatory authorities
impose strict rules for power emission that must not be violated.

A potential way out of this dilemma was illustrated by, e.g., Foschini
and Gans [FG98], Telatar [Tel99] and earlier by Winters et al. [WSG94].
They showed that the use of multiple antennas at the transmitter and
the receiver side allows for a potential increase in data rates for reli-
able communication without requiring more spectrum or larger output
power. Exploiting the potential of “the spatial dimension” in so-called
multiple-input multiple-output (MIMO) systems is still a topic for exten-
sive research.

One of the reasons for the capability to support much higher data
rates compared to a single antenna system is diversity, see Figure 1.1. A
signal transmitted via several antennas reaches the receiver antennas via
a number of different propagation paths. Each receiver antenna thereby
picks up the signal transmitted by each transmitter antenna. If the an-
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tennas are located sufficiently far apart from each other such that the
corresponding propagation coefficients are independent, the probability
that all paths are bad is significantly reduced. In other words, the prob-
ability of having a useless channel is much smaller, which in turn leads
to a lower probability of error at the receiver compared to the case with
only a single antenna at both the transmitter and the receiver.

Whereas the diversity benefit leading to higher robustness against
channel fading is available in systems with multiple antennas at either
the transmitter or the receiver (or both, of course), the advantage of
spatial multiplexing requires multiple antennas on both sides of the com-
munication link. In essence, the multiple antenna channel can then be
viewed as a set of parallel single-input single-output spatial channels,
that together support a much higher data rate compared to single chan-
nel. An information-theoretic discussion concerning the exploitation of
both spatial multiplexing and diversity and the tradeoff between these
effects is available in [ZT03].

1.3 Signaling Schemes for Multiple Anten-

nas

In order to realize the mentioned performance gains of multiple trans-
mitter antennas, a definition of the signaling scheme is required, i.e., a
description of the mapping of data bits to time-continuous waveforms
that can be radiated via the antennas as well as a description of the
receiver structure based on the received waveforms.

This definition is usually done with the help of a time-discrete channel
model that summarizes the impact of the analog frontend at the transmit-
ter (i.e., pulse-shaping, upconversion to radio frequency and radiation),
wave propagation through the wireless radio channel and the analog fron-
tend at the receiver (reception, downconversion to baseband and filtering
together with sampling), see Figure 1.2. The remaining part in the def-
inition of a MIMO communication system is then the description of the
encoder, i.e., the mapping between data bits and symbols appropriate
for the transmission via the time-discrete channel, and the decoder, i.e.,
the mapping between outputs of the discrete channel and bits that were
transmitted.

In the following, we present two ways of categorizing existing work
about encoder and decoder design for MIMO communication systems
and introduce some terminology that will be used throughout this thesis.
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bits

wireless
radio
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Figure 1.2: Schematic View of Multiple Antenna Communication Sys-
tem

The first way is oriented towards some typical subblocks of the encoder
and the second categorization is based on the assumptions concerning
the channel model.

1.3.1 Encoder Blocks

The design of the encoder / decoder pair involves trading off a multitude
of different requirements that cannot be optimized independently, e.g.,
the support of high bit rates at very low or vanishing probability of bit
error with small decoding delay, low transmission power, small bandwidth
and low implementation cost. Defining this tradeoff for a large variety
of different application scenarios is in general a tremendous task (see,
e.g., the the WINNER project [D2.05,IR204]) and it is by far beyond the
scope of this thesis in its totality.

Therefore, the study of the design of the encoder and decoder is usu-
ally partitioned into subblocks that are easier to characterize and design.
Any such partitioning implies assumptions about the system design and
restricts the generality of possible design approaches. Therefore, regroup-
ing separate subblocks together and optimizing them jointly can be ben-
eficial from a performance point of view. As an example, consider the
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partitioning of an encoder design in shown in Figure 1.3. In this exam-

binary
error

control

symbol
mapper

antenna
mapping

multi-antenna constellations

combined coding/modulation

discrete
MIMO
channel

data
bits

...

Encoder

Figure 1.3: An example of encoder design that is split up into three
subblocks

ple, the bits that are to be transmitted are first encoded using a binary
error-control code. The result is a redundant representation of the data
bits, i.e., a representation of the input data with an increased number
of bits. The symbol mapper then maps blocks of bits to complex-valued
symbols. These symbols are then transmitted via one or more antennas
using design rules defining the mapping from complex symbols to several
antennas.

The first two parts can also be found in a traditional system with a
single transmitter antenna. Frequently, they are designed and optimized
jointly, which is sometimes described as a combination of coding and
modulation [Ung82, FGL+84,Bos98,CHIW98] leading in general to sig-
nificant improvements in error protection compared to separate designs.
The third block can then be understood as extension of a single-antenna
design to a system accommodating multiple transmitter antennas. Often,
this mapping is also described using a compound of “coding” as in “space-
time coding” [Ala98,TJC99, LS03], “linear dispersion codes” [HH02] or
“space-frequency coding” [BP00].

The symbol mapper and the antenna mapping can also be designed
jointly. The resulting symbol sequences for each antenna as a direct func-
tion of the input bits are termed “constellations” [ARU01,HMR+00] or
“codes” as in [JSO02,GS02c] for multiple antennas. The word “coding”
is here understood in the general sense of mapping a set of input sym-
bols (bits) to output symbols similar as in the general scheme of Figure
1.2. Depending on the dimensionality of the resulting output symbols in
comparison with the input symbols, these multiple antenna constellations
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contain significant redundancy for error protection and can therefore also
be considered as codes for error protection, taking the output bits of the
first block in Figure 1.3 as input bits. Still, these constellations resp.
codes are usually designed for transmission during a single fading inter-
val of the channel, i.e., during a period where the characteristics of the
channel are (at least approximately) constant. Then, an outer coder as
the first block in Figure 1.3 can still be beneficial in the communication
system by spreading the data to be transmitted over several fading in-
tervals. We will throughout this thesis consider the general mapping of
some input symbols or bits to output symbols as a “code”. If this map-
ping is restricted to symbol sequences transmitted over the time-discrete
MIMO channel in a single fading interval, the signal mapping is also re-
ferred to as a “constellation” as in Fig. 1.3. We emphasize here that
this term refers to a mapping of bits to a potentially large number of
symbols. Each of them can itself be restricted to a finite alphabet (as,
e.g., the BPSK “constellation”) and compared to schemes traditionally
termed with “coding,” albeit in a single fading interval, see Section 3.2.

1.3.2 Assumptions on the Channel

The second way of categorizing existing literature on MIMO communi-
cation systems is related to the assumptions on the underlying channel
model and the knowledge both the transmitter and the receiver have
about the parameters describing this model. Knowledge about the values
of these parameters is frequently termed channel state information (CSI).
Standard examples for these parameters are e.g., propagation coefficients
associated with the signal electromagnetic wave propagation between
each transmitter and receiver antenna pair.

In general, obtaining accurate CSI is more difficult at the transmit-
ter than at the receiver because some kind of data feedback from the
receiver to the transmitter is required to obtain CSI at the transmitter.
This feedback can be transmitted either over a dedicated control channel
or in the form of data transmission in duplex mode. However, this is not
always possible. If such a feedback is available, it is usually assumed that
the receiver has accurate CSI. Therefore, methods exploiting CSI at the
transmitter usually expect some CSI at the receiver. Two possibilities
of exploiting perfect transmitter CSI are beamforming and spatial mul-
tiplexing. These methods have also been adjusted to the case that the
available CSI is imperfect (or “partial”), possibly caused by a feedback
link from the receiver with very tight throughput constraints [JS04]. If
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no CSI is available at the transmitter, traditional space-time code de-
sign methods (see, e.g., the work by Guey et al. [GFBK99], the popular
Alamouti scheme described in [Ala98] and the space-time coding papers
by Tarokh et al., see e.g., [TSC98,TJC99]) can be used. In these standard
references, frequency-flat fading MIMO channels with perfect CSI at the
receiver are assumed. Generalizations to frequency-selective channels can
be found in, e.g., [LP00,ZG03,LS03] using a single-carrier approach and
for designs based on orthogonal frequency division multiplexing (OFDM)
in [BP00,LW00,ATNS98].

It is apparent that with an increasing number of antennas, the num-
ber of parameters describing the current channel state grows accordingly
(see Figure 1.1). This number grows even further if a frequency-selective
channel requiring distinct parameters in different frequency bands is used.
The high number of parameters then leads to an increased effort in es-
timating the CSI, which possibly reduces system throughput. Moreover,
in a communication system with fast moving mobile users, the coherence
time of the channel might be so short that it becomes impractical to
acquire CSI [HM00]. Therefore, communication schemes not relying on
the assumption of perfect CSI have been of interest in the research on
wireless communication systems and they are also the topic of this thesis.

1.4 Signal Design for Receivers without Ac-

curate CSI

Many coding approaches, such as, e.g., Turbo coding [BGT93, BG96]
were originally conceived with a frequency-flat additive white Gaussian
noise (AWGN) SISO channel in mind. Such a channel can be charac-
terized by a single parameter, the signal to noise ratio (SNR). If such a
coding scheme has to work over frequency-selective channels with possi-
bly multiple antennas where the individual path gains for the different
antenna pairs are unknown to the receiver over the entire frequency band,
the much more complicated nature of the channel has to be taken into
account. An immediate conceptual approach to do so is to try to esti-
mate the characteristics of the channel (i.e., the CSI) by means of pilot
sequences [ATV02] and then to cancel the effects of the channel using an
equalizer [And99] such that the channel behaves similarly to an AWGN
channel from the encoder and decoder point of view. A schematic view
of such a system is given in Figure 1.4.

With the switch in position 1, a sequence of symbols known to trans-
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channel equalizer

parameter
estimator

data
decoder

detected
data

data

data
encoder

training
sequence
generator

1

2

combined encoder combined decoder

Figure 1.4: Separate coding and detection for channel estimation and
data transmission vs. combined coding and decoding

mitter and receiver (training symbols) is transmitted to the receiver
via the channel. The receiver then performs an estimation of the un-
known channel parameters (resulting phase and amplitude of the incom-
ing waves). Those coefficients are then used in the data transmission
phase (switch in position 2) when standard error-control coding is applied
on the transmitter side. The receiver uses the knowledge of the channel
coefficients in the decoder, possibly by means of an equalizer [Pro95] or
directly in the decoding phase [CAC01]. Alternatives to the use of pilot
sequences are blind approaches [TP98] for unknown-input-known-output
system identification or semi-blind methods [GL97] which use a combi-
nation of pilot symbols and data in order to produce channel estimates.

The previous approaches are based on the assumption that the signal
design to transmit data is fixed and channel estimation is a necessary
step to allow the adaption of existing schemes to the more complicated
communication channel. In sharp contrast, the approach pursued in this
thesis is to consider the combination of training data (i.e., pure redun-
dancy) and error-control coded data (i.e., data and redundancy) as one
joint signal set which is optimized for communication over an unknown
channel. In other words, the redundancy for error protection is not se-
lected independently of the training redundancy, but both are optimized
jointly for the problem at hand. The training sequence design and the
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error control code in Figure 1.4 thus joined in a combined encoder. Sim-
ilarly, the different steps in standard decoder design, namely channel es-
timation, equalization and decoding are joined into a combined decoder.

We note here that information-theoretic justification for the system
design based on training sequences has been provided recently by [ATV02]
with similar results in [VHHK01,MGO02,HH03] where it is stated that
the usage of optimized pilot sequences implies no or only small loss in
channel capacity, at least in the high signal-to-noise ratio (SNR) domain.
It should be emphasized, however, that an argument based on capacity
results essentially requires that no delay constraints are imposed on the
system, because infinite block-lengths are needed to achieve capacity.
Thus, in real-time applications with strict delay constraints, the use of
separate coding and training is not necessarily optimal in a general sense.
It is therefore of interest to investigate communication systems that take
the uncertain nature of the channel characteristics into account without
restricting the design to the transmission of training sequences.

For frequency-flat fading MIMO channels, constellation design where
the need for explicit CSI at the receiver is removed has been investigated
in a line of papers [MH99, HM00, HMR+00]. Extensions to frequency-
selective channels are part of this thesis and were also considered in con-
current work [BB04].

1.5 Outline of the Thesis and Contributions

The areas to which this thesis contributes are illustrated in Figure 1.5.
On the horizontal axis, we roughly characterize the assumptions on the
channel model as either frequency-flat or frequency-selective (even though
the former could be understood as a special case of the latter). On the
vertical axis, we categorize the assumption on available receiver CSI, with
the extreme cases of perfectly known and unknown channel. In between
these extremes is the case of partial CSI, i.e., when the receiver has access
to an estimate of the channel together with its error statistics. The case
of zero-error thereby corresponds to perfect receiver CSI and a useless
estimate to unknown CSI.

After a description and analysis of our applied system model in Chap-
ter 2, we consider in Chapters 3 and 4 signaling design approaches for
receivers that have no access to CSI prior to data transmission. These
schemes are explicitly developed for the frequency-selective channel where
uncertainty about the level of CSI is even more relevant than in the
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Figure 1.5: An overview of the contributions of this thesis

frequency-flat fading case because even more parameters are unknown.

In Chapter 5, we generalize from the assumption that the decoder has
no knowledge about the channel realization and assume that an estimate
(possibly due to a training sequence) is available together with informa-
tion about its quality. This assumption includes the case of no CSI if the
quality of the estimate is poor and therefore useless. We derive a design
criterion for constellations that encompasses standard criteria used for a
perfectly known channel and unknown channel at the receiver, thereby
allowing a smooth transition between these two extreme cases. Exam-
ple applications of the design criterion illustrate the value of a design
matched to partial CSI at the receiver.

The order of the Chapters 3 through 5 reflects the chronological devel-
opment of this thesis. Several different design approaches are described
which depend on analytical results presented in Chapter 2. These results
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were not all available from the start of the work leading to this thesis but
they are anyhow summarized in Chapter 2 for better reference.

In more detail, the outline of this thesis is as follows.

1.5.1 Chapter 2, System Model and Analysis

This chapter describes some of the fundamental problems in detection
over continuous-time channels that are unknown to the receiver. Several
modeling assumptions as well as approaches to approximately optimal
front-end processing in continuous time are presented. A detailed de-
scription of the data models that will be used in the remaining parts
of the thesis along with two possible receiver architectures is presented.
Moreover, the performance of these receiver operations is analyzed in
various ways. The results of this chapter form the basis for the analysis
and design of signaling schemes in Chapters 3, 4 and 5.

1.5.2 Chapter 3, Design in the Time Domain

Based on the work [SP00], a constellation design using signaling from a
preselected discrete symbol alphabet was extended to longer codes that
allow comparison with a larger variety of relevant benchmark codes. This
work was targeted towards SISO systems and was published in

[SGP02] M. Skoglund, J. Giese, and S. Parkvall. Code design for com-
bined channel estimation and error protection. IEEE Transactions
on Information Theory, 48(5):1162–1171, May 2002.

Moreover, the above work was extended to MIMO systems and published
in

[GS02c] J. Giese and M. Skoglund. Space–time code design for un-
known frequency-selective channels. In Proc. IEEE International
Conference on Acoustics, Speech, and Signal Processing, Orlando,
Florida, USA, May 2002.

[GS02a] J. Giese and M. Skoglund. Space–time code design for com-
bined channel estimation and error protection. In Proc. IEEE In-
ternational Symposium on Information Theory, Lausanne, Switzer-
land, June 2002.

[GS02b] J. Giese and M. Skoglund. Space-time code design for
combined channel estimation and error protection. In Proc.
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RadioVetenskap och Kommunikation (RVK), Stockholm, Sweden,
June 2002.

The work using binary signaling relied on the optimization of a cri-
terion based on exact pairwise error probabilities. During the final
stages of this work, the paper [BV01] was published, providing a frame-
work for detailed analysis of approximating the exact formulas used
in [SGP02, GS02c, GS02b, GS02a] by asymptotic expressions that were
much easier to analyze. Extending the results of [BV01] to the assump-
tions in our setup, it was now possible to formulate and solve the op-
timization problem on a parameter space in continuous variables and
thus codes corresponding to general complex-valued signaling could be
obtained. The results of this work were published in

[GS03a] J. Giese and M. Skoglund. Combined coding and modula-
tion design for unknown frequency-selective channels. In Proc.
IEEE International Symposium on Information Theory, Yokohama,
Japan, 2003.

for SISO systems and in

[GS03c] J. Giese and M. Skoglund. Space–time constellations for un-
known frequency-selective channels. In Proc. IEEE International
Conference on Communications, Anchorage, AK, USA, 2003.

for MIMO systems. In addition, a journal paper extending the results
in [GS03a] and [GS03c] was submitted as

[GS03b] J. Giese and M. Skoglund. Single and multi-antenna constel-
lations for communication over unknown frequency-selective fading
channels. Submitted to IEEE Transactions on Information Theory,
May 2003. Revised October 2005.

The chapter concludes with a summary of both design approaches.

1.5.3 Chapter 4, Design in the Frequency Domain

The orthogonality of the subcarriers in an OFDM system simplifies the
formulation of two signal designs for unknown channel operating in the
frequency domain. In the first part of Chapter 4, a simple formulation of
differential space-frequency modulation in analogy to space-time differ-
ential modulation is described. Using an analysis similar to the method
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described in Chapter 2, a criterion is derived which guarantees the ex-
ploitation of full space-frequency diversity for a class of diagonal codes
which were conceived for space-time differential transmission. Simula-
tion results illustrate the application of this criterion. The results of this
section were published in

[GS04] J. Giese and M. Skoglund. Performance of unitary differential
space-frequency modulation. In International Symposium on In-
formation Theory and its Applications, Parma, Italy, October 2004.

The signal model used in this chapter was also extended to a multiuser
uplink scenario and investigated in

[D2.05] WINNER D2.7. Assessment of advanced beamform-
ing and MIMO technologies. Technical report, Wire-
less World Initiative New Radio, February 2005. Avail-
able online (October 2005) at https://www.ist-winner.org

/DeliverableDocuments/D2-7.pdf.

1.5.4 Chapter 5, Design for Partial CSI at the Re-

ceiver

A framework for the analysis of signaling schemes designed for the op-
eration over frequency-flat fading channels is developed where it is as-
sumed that the receiver has access to a channel estimate with known
error statistics. The framework thereby includes the extreme cases of
perfectly known or completely unknown channel at the receiver. Design
examples illustrate the value of the proposed framework. The content of
this chapter appears in

[GS05a] J. Giese and M. Skoglund. Space–time constellation design
for partial CSI at the receiver. In Proc. IEEE International
Symposium on Information Theory, Adelaide, Australia, September
2005.

[GS05b] J. Giese and M. Skoglund. Space–time constellation design for
partial CSI based on code combination. In Proc. Asilomar Con-
ference on Signals, Systems, and Computers, Pacific Grove, CA,
USA, October 2005.

as well as in the form of a journal paper in

[GS05c] J. Giese and M. Skoglund. Space–time constellation design for
partial CSI at the receiver. October 2005. In Preparation.
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1.5.5 Chapter 6, Summary and Future Work

This chapter summarizes the results of this thesis and concludes about
the possible improvements obtained by using joint code design. Several
open questions that could not yet be answered are outlined as a proposal
for future work.

1.5.6 Appendix A, Some Useful Lemmas and Rules

Some standard results of linear algebra together with a useful lemma on
the multivariate complex Gaussian probability density is presented for
easier reference to the reader.

1.6 Acronyms

Some of the acronyms used in this thesis are explained below.

AWGN additive white Gaussian noise

BER bit error rate

BPSK binary phase shift keying

CSI channel state information

CT continuous time

GLRT generalized likelihood-ratio test

GSM global system for mobile communication, earlier: group spéciale
mobile

ISI intersymbol interference

LLR log-likelihood ratio

LOS line of sight

MIMO multiple-input multiple-output

MISO multiple-input single-output

ML maximum-likelihood

MMSE minimum mean square error
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OFDM orthogonal frequency division multiplexing

PAM pulse amplitude modulation

PEP pairwise error probability

PSK phase-shift keying

PSWF prolate spheroidal wave function

QAM quadrature amplitude modulation

QPSK quaternary phase shift keying

RX receiver

SIMO single-input multiple-output

SISO single-input single-output

SNR signal to noise ratio

TDL tapped delay line

TX transmitter

UMTS universal mobile telecommunication system

WER word error rate

WINNER Wireless Initiative New Radio

WLAN wireless local area network

w.l.o.g. without loss of generality

w.r.t. with respect to
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1.7 Notation

Symbol meaning
v, {v}k a column vector and its k.th element

A, {A}kl a matrix and its element in row k and column l
IM the M ×M identity matrix

I the identity matrix. The dimension is clear
from the context and the dimension index is
omitted to simplify notation.

AH ,AT Hermitian transpose and transpose of A
tr (A) the trace of a square matrix A

‖A‖ =
√

tr (AHA) the Frobenius norm of A
‖A‖S spectral norm of A, i.e.,

square root of the largest eigenvalue of AHA
|A| the determinant of a square matrix A
A† the Moore-Penrose pseudo inverse of A. If A

is full column rank, then A† = (AHA)−1AH

PA the projection matrix on the column space of A.
It holds that PA = AA†.

P⊥
A the projection matrix on the orthogonal

complement of the column space of A.
It holds that P⊥

A = I − PA.
A ⊗ B the Kronecker product of matrices A and B

S a set
A \ B set of all elements that are in A but not in B

a ∼ CN (µ,C) the elements of a are circular symmetric complex
Gaussian random variables with mean µ
and covariance matrix C

diag {d1, . . . , dD} a diagonal D ×D matrix with elements
d1, . . . , dD on the main diagonal

[x]+ the positive part of the real number x, i.e.,
[x]+ = x if x > 0 and
[x]+ = 0 if x ≤ 0

(
n
k

)

binomial coefficient, i.e.

(
n
k

)

, n!
k!(n−k)!

y(t) = f(t) ⋆ x(t) continuous-time convolution of
x(t) and f(t), i.e.
y(t) =

∫∞
−∞ x(τ)y(t− τ)dτ

ℜ(z) real part of the complex scalar z
ℑ(z) imaginary part of the complex scalar z
z∗ complex conjugate of the complex scalar z

a . b b is an approximation of an upper bound on a
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1.8 Common Identifiers

quantity meaning
j imaginary unit, j2 = −1

j is sometimes also used as index. The distinction between
these two meanings is clear from the context.

MT number of transmitter antennas
MR number of receiver antennas
K number of different users
L number of resolvable paths
Z size of the signal set
T number of symbols transmitted experiencing the same

channel realization
C,R the set of complex and real numbers





Chapter 2

System Model and

Analysis

This thesis deals with the transmission of digital data (usually in the
form of bits) between a transmitter and a receiver. The bits signifying
the message to be transmitted determine the way in which the transmitter
manipulates a physical medium which is accessible to both transmitter
and receiver. In other words, the bits determine the signal transmitted
to the receiver. The fundamental problem in data communication is the
fact that the receiver in general does not have access to the exact signal
that the transmitter has sent but rather to a signal which is a (more or
less accurate) representation of the transmitted signal. The impact of
this modification of the transmitted signal is modeled and summarized
as the impact of the so-called “channel” in between transmitter and re-
ceiver, see Figure 2.1. A large variety of example channels with different

bits Transmitter Channel Receiver detected
bits

Figure 2.1: A schematic view of the data transmission problem

characterizations exist, among others underwater, data storage, wire line
and and wireless communication channels [Pro95].

In order to design a communication system transmitting data through
the channel, it is of utmost importance to characterize the channel’s be-
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havior and impact. This characterization is usually done by means of
a mathematical model that describes the essential features of the un-
derlying physical medium while still being simple enough to allow for
mathematical analysis. It is not uncommon that a compromise between
realism and mathematical tractability is necessary to arrive at a useful
channel model. The considerations in this chapter are an example of this
tradeoff.

We review in Section 2.1 the general concept of linear time-time wave-
form channels. Two alternatives for the conception of a data communica-
tion system and in particular for the design of signals used for transmis-
sion over such channels are within the focus of this thesis: single carrier
systems and multicarrier systems. We first comment on a typical compar-
ison between these two approaches in Section 2.2 and discuss our models
of a single carrier system and of a multicarrier system in Sections 2.3 and
2.4, respectively. Both models lead to similar mathematical formulations
which allow a unified discussion of receiver strategies and performance
analysis in Sections 2.5 and 2.6, respectively. Section 2.7 concludes this
chapter.

2.1 Linear Waveform Channels in Radio

Communications

An important class of channels are so-called linear waveform channels:
The continuous time (CT) transmitted signal s(t) is distorted by a linear
system with impulse response f(t). Moreover, the signal is disturbed
by additive noise w(t) which is usually assumed to be white (caused by,
e.g., thermal agitation of electrons in a conductor), see Figure 2.2. This
results in the model

y(t) = s(t) ⋆ f(t) + w(t) =

∫ ∞

−∞
s(t− τ)f(τ)dτ + w(t) (2.1)

where y(t) is the signal at the receiver. Depending on the physical layer
conditions, different characterizations of f(t) exist which are reflected in
various ways to model f(t). Usually, the model summarizes upconversion
to radio frequency, radio transmission, reception and downconversion in
the so-called complex baseband model of f , which can therefore be a
complex-valued function. In radio communication channels with mobile
transmitter or receiver, f can be a time-varying function f = f(t, τ)
where f(t, τ) represents the response of the channel at time t when an
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s(t) f(t) + y(t)

Channel

w(t)

Figure 2.2: A channel with linear distortion

impulse enters the system at time t−τ . This dependency on time reflects
the possibility that the propagation conditions are subject to change, in
particular in radio communication channels between mobile transmitters
and/or receivers.

In general, radio waves do not necessarily reach the transmitter in
the direct line of sight (LOS) between transmitter and receiver. Due to
scattering, reflection, refraction or diffraction [PP97] in the propagation
medium, the outgoing wave can reach the receiver via a number of differ-
ent paths. When a large number of different rays with negligible time but
significant phase shifts arrive at the receiver, the resulting wave is the sum
of all impinging waves. If their number is large, a statistical modeling
of the incoming waves appears favorable and the central limit theorem
can be applied. f(t; τ) can then often be considered a complex-valued
Gaussian random process [Pro95]. If f(t; τ) is zero-mean, its envelope
|f(t; τ)| is Rayleigh distributed and therefore the fading is said to be
Rayleigh fading. If the mean of f(t; τ) is non-zero (i.e. there are some
fixed scatterers or there is a LOS component), the fading is called Rician.

An important special case is the frequency-nonselective channel in
slow fading. The channel gain is constant over the relevant signal band-
width and constant during the transmission of the complete signaling
interval. This can be modeled as f(t; τ) = f0δ(τ) leading to

y(t) = f0s(t) + w(t). (2.2)

which is a significant simplification compared to the more general model
in (2.1).

The goal of transmitter design is to find a function s(t) dependent
on the data bits. The goal of receiver design is to be able to detect the
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information embedded in s(t) by observing y(t).

2.2 Single Carrier vs. Multicarrier

The design of a data communication system and in particular the de-
sign of s(t) is in general a highly complex task involving a multitude of
parameters that have to be compared and traded off under the design
assumptions as, e.g., data and error rate, delay or implementation cost.
The assumptions required for a deliberate judgment of this tradeoff are
the properties of the communication channel that the system is oper-
ating on. If the available frequency band is sufficiently large such that
the channel can no longer be modeled as narrow-band (see (2.2)), the
system design should take this into account. Two design alternatives for
this kind of channel are considered in this thesis: Single carrier systems
and multicarrier systems [Bin90], the latter in the form of orthogonal
frequency division multiplexing (OFDM). Whereas a single carrier sys-
tem employs only a single carrier frequency and takes the character of
the channel explicitly into account in receiver or transmitter design (or
both), a multicarrier system can be understood as subdividing the avail-
able frequency band into smaller frequency bands where the channel is
(at least approximately) constant, thus leading to a similar setup as a for
frequency-nonselective channel.

There is a vast number of different studies concerning the benefits
of these design approaches [TdPE+04]. OFDM systems are in general
attractive due to low-complexity channel equalization but can have prob-
lematic requirements concerning the linearity of the employed amplifiers
because the time-domain signal that is radiated over the channel can have
large variations in output power. Single carrier systems are more robust
to synchronization errors in the receiver but require more complex chan-
nel equalization methods. These characteristics are just examples and
in general several additional properties have to be taken into account
related to the implementation of a complete communication system

In this thesis, we do not attempt to contribute in detail to this dis-
cussion and focus our attention to a particular difference between single
carrier and multicarrier systems. Whereas in OFDM, due to orthogonal-
ity of the carriers, we obtain observables which are a priori independent of
symbols transmitted on other carriers, such a separation of observables
is a priori not available for a single carrier system. The orthogonality
property of OFDM requires however the transmission of a cyclic prefix,
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i.e., a short signal carrying redundant data which reduces the available
power per data symbol.

Both system and data models will be described in turn, leaving out
all implementation aspects mentioned before and using idealized system
components. We will however comment in detail on the orthogonality
property available in OFDM in contrast to a single carrier system.

2.3 Single Carrier Systems

We describe here our model for the transmitter and receiver front-end
in a single carrier system for a single antenna at both transmitter and
receiver. The generalization to multiple antennas is then straightforward.

A typical transmitter design using an encoder and memoryless linear
modulation is depicted in Figure 2.3. We refer throughout this thesis to
the equivalent complex baseband description. The incoming bits bν ∈

bits
k T

S/P Encoder P/S g(t) s(t)

Figure 2.3: Typical transmitter design

{0, 1}, ν = 0, 1, 2, . . . are grouped into disjoint blocks of k bits. In the
encoder, these k bits determine a sequence of T complex symbols sn ∈
A ⊂ C, n = 0, ..., T − 1 where A is the set of possible symbols (also
called the symbol alphabet). The symbol sequence is then fed into a
pulse-shaper with waveform g(t) to result in the transmitted signal

s(t) =
T−1∑

n=0

sng(t− nTs) (2.3)

where 1/Ts is the symbol rate. Standard choices for the symbols sn that
are based on a fixed alphabet A include

pulse amplitude modulation (PAM), where

A = {s|s = (2m− 1 −M)d, m = 1, . . . ,M}
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where M is the number of symbols and d the distance between
adjacent symbols. An important special case is binary phase shift
keying (BPSK) for M = 2 and d = 0.5 leading to A = {−1, 1},

phase-shift keying (PSK), where

A = {s|s = ej2π(m−1)/M , m = 1, . . . ,M}

with the important special case M = 4 known as quaternary phase
shift keying (QPSK), and

quadrature amplitude modulation (QAM), where both quadra-
ture carriers (real and imaginary part of sn) are modulated, possibly
using a combination of PAM and PSK [Pro95].

The format of the symbols used for transmission is subject to discussion
in Chapter 3. In particular, we will investigate two cases:

1. As an example of a preselected alphabet, we will restrict our code
search to codes with BPSK symbols.

2. We will not use any preselected symbol alphabet and design val-
ues sn that can take on any complex number (subject to a power
constraint) as an example for a general form of QAM.

It is the topic of this thesis to determine for both cases good (in a sense
to be described later) mappings from the source bits to the symbols
s0, . . . , sT−1, or, in other words, to determine the encoder. In order to
assess the characteristics and performances of different codes, the receiver
operation must be known during the design. This is the topic of the
following sections.

2.3.1 Known Channel at the Receiver

Given the received time time signal y(t) in (2.1), the receiver has to decide
which sequence s0, . . . , sT−1 has been transmitted. If the channel f(t) is
perfectly known at the receiver and of finite length and energy, Forney
[For72] showed that the complex baseband model in (2.1) is statistically
equivalent to the discrete-time model

yn =

L−1∑

m=0

sn−mhm + wn, n = 0, . . . , T + L− 2 (2.4)
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where the discrete-time channel coefficients hm are related to the overall
channel response c(t) = f(t) ⋆ g(t) by

∫ ∞

−∞
c(θ)c∗(θ − kTs)dθ =

L−1∑

ν=0

hνh
∗
ν−k

(see also [CP96]) and the noise wk is white. Statistical equivalence means
here that no information relevant to maximum likelihood sequence detec-
tion on s0, . . . , sT−1 based on a limited time-interval is lost when reduc-
ing a continuous-time observation of y(t) to the set of observables {yn}.
A subsequent decoder algorithm can thus operate on a finite number
of observables {yn} with independent noise which is a great simplifi-
cation in comparison to any potential decoding algorithm operating on
the continuous-time observation. The model (2.4) results from filtering
matched to c(t) and subsequent noise-whitening along with symbol-rate
sampling. An alternative receiver without noise-whitening was described
by Ungerboeck [Ung74] taking into account colored noise in the data
detection algorithm.

The model (2.4) has the nice property that it is analogous to (2.1) in
discrete time. The intuitive appeal of this solution might be the reason
that the necessary assumptions for (2.4) to result from an optimal front-
end processing are sometimes neglected. In particular, it is imperative
that the overall channel response c(t) and therefore the channel response
f(t) are perfectly known at the receiver. If f(t) is unknown, the model in
(2.4) cannot be applied without modification, additional assumptions or
further justification.

2.3.2 Unknown Channel at the Receiver

Chugg et al. presented in [CP96] detailed considerations of the front-end
processing for joint maximum likelihood sequence estimation and data
detection when f(t) is unknown to the receiver. Under the assumption
that the channel can be modeled as a tapped delay line (TDL), i.e.,

f(t) =

NrLc∑

l=0

flδ(t− lTr) (2.5)

corresponding to NrLc + 1 equispaced “taps” (or resolvable paths at the
receiver) and under the assumption that Ts = NrTr, i.e., the symbol
time Ts is an integer multiple of the channel resolution time Tr, a set
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of sufficient statistics for the proposed sequence detection of sk can be
obtained using pulse-matched filtering and subsequent sampling at rate
1/Tr, possibly followed by a discrete-time whitening filter 1/V ∗(z), see
Figure 2.4. In the case of a general continuous-time channel model, i.e.,

y(t) g∗(−t) 1/V ∗(z) zk

Tr

Figure 2.4: Optimal front-end processing for the channel model in (2.5)

without imposing any further structure on f apart from being of finite
length and energy, it is shown in [CP96] that there is no counterpart
to the model in [For72] that does not imply a loss of information with
respect to ML sequence detection of the symbols when f in unknown at
the receiver. The corresponding metric based on the received waveform
for the detection of the sequence of symbols sn does in general not ex-
ist in the mean-square sense. Thus, the standard approach of deriving
a finite set of discrete observables that form a sufficient statistic breaks
down. Several suboptimal front-ends have been proposed which are ei-
ther based on approximating the continuous-time channel response f(t)
using a TDL model or based on approximating the detection metric.
Hansson [Han03] proposed an alternative approximation by representing
the received waveform y(t) by a finite number of projections onto pro-
late spheroidal wave function (PSWF)s [SP61a,SP61b,SP62] which have
the appealing property that the representation error is minimized in the
least square sense. Moreover, the number of necessary distinct base func-
tions can be quantified for a given allowable error threshold. Still, an
approximation is made which is in principle information lossy.

We can therefore conclude that under the assumptions made we do
not know of any description of the transition from continuous time into
a finite discrete-time representation which is optimal in the sense that
no information is lost in the general case. We therefore have to accept
a suboptimal approach. Partly for the sake of mathematical tractability
in subsequent derivations on the discrete-time model, we follow the ap-
proach proposed by Chugg [CP96] (see also Figure 2.4) with symbol-based
sampling, taking into account that the generalization to an oversampled
description is possible within the framework we are deriving in the next
section. A similar approach was used in [CC00].
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2.3.3 Single Carrier Data Model

Motivated by the previous section, we introduce now a discrete-time data
model for a single carrier system operating over a frequency-selective
channel. The model is first derived for a single-antenna system. The
generalization to a system using MT transmitter and MR receiver anten-
nas is then straightforward.

We consider the transmission of T symbols {st}, t = 0, . . . , T − 1,
st ∈ C through a frequency-selective channel described by the channel
coefficients {hl}, l = 0, . . . , L − 1, hl ∈ C with additive white complex
Gaussian noise of variance σ2 denoted by wt. Motivated by our discussion
of the continuous-time front-end in Section 2.3.2, we model the received
complex baseband discrete time signal yt as

yt =

L−1∑

l=0

hlst−l + wt, t = 0, . . . , T + L− 2 (2.6)

where we define st , 0 for t < 0 and t > T − 1.

A generalization to multiple antennas at transmitter and receiver
leads to

yt,n =

MT∑

m=1

L−1∑

l=0

hl,m,nst−l,m + wt,n

where {hl,m,n}L−1
l=0 , hl,m,n ∈ C describes the frequency-selective channel

from transmitter antenna m to receiver antenna n, st,m ∈ C is the t-th
symbol transmitted on antenna m, yt,n is the t-th received symbol on
antenna n and wt,n is zero-mean circular symmetric complex Gaussian
noise with variance σ2.

In order to simplify notation, we summarize the transmitted symbols
in the T × MT matrix S with elements {S}ij = si−1,j and write the
received symbols on antenna n as

yn = S̄hn + wn,
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where S̄ is a (T +L− 1)×LMT matrix that contains L copies of S as in

S̄ ,


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

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
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

S

S

S

S

. . .

. . .
0

0


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







, (2.7)

wn is the vector of stacked noise components w0,n, . . . , wT+L−1,n and we
define

hn , [h0,1,n . . . h0,MT ,n h1,1,n . . . h1,MT ,n . . . hL−1,1,n . . . hL−1,MT ,n]
T
.

Rearranging the vectors y1, . . . ,yMR
and h1, . . . ,hMR

into the matri-
ces Y and H, respectively, we obtain

[y1 . . . yMR
]

︸ ︷︷ ︸

Y

= S̄ [h1 . . . hMR
]

︸ ︷︷ ︸

H

+ [w1 . . . wMR
]

︸ ︷︷ ︸

W

. (2.8)

The extension from S to S̄ in (2.7) represents an extension from a system
with frequency-flat to frequency-selective fading where the description of
the transmitted symbols is given in both S̄ as well as S. For L = 1, i.e.,
for a frequency-flat channel, we have S = S̄.

We note here also that the system model with MT transmitter anten-
nas and a channel of length L is equivalent to a model with MTL anten-
nas over a frequency-flat fading channel where the signals on MT (L− 1)
antennas are constrained to be temporally shifted copies of the signals
transmitted on the remaining MT antennas. This observation is some-
times explained using the term “virtual antennas” [LFT01]. We can
therefore consider the given setup to be equivalent to a scenario in flat
fading with the additional constraint that (2.7) holds. This mathemat-
ical equivalence is further investigated in Chapter 3 where we compare
constellations optimized based on constraint (2.7) with design rules op-
timized without (2.7).
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2.4 Orthogonal Frequency Division Multi-

plexing

In this section we will introduce our system model for a multicarrier
modulation system when OFDM is applied. In a similar format as in
the previous section, we will first discuss a continuous time model and
describe then the reduction to a finite set of observables. The derivation
is mainly inspired by [San96].

2.4.1 Continuous-Time Model

In contrast to forming the transmitted signal as a sequence of elementary
pulses, we assume here that the signal is constructed as linear combina-
tion of waveforms φn(t) in

s(t) =
N−1∑

n=0

snφn(t), 0 ≤ t ≤ T

where the design of these waveforms is largely motivated by the desire
to transform the frequency-selective channel f(t) into a frequency-flat
channel such that the receiver can compute observables yn that depend
only on sn and not on other symbols sk, k 6= n. One set of suitable
waveforms for transmission through a channel of finite support of length
TL

φk(t) =

{
1√

T−TL
exp

(

jk 2π
T−TL

(t− TL)
)

if 0 ≤ t ≤ T

0 elsewhere

which are truncated harmonic oscillations of frequency k/(T −TL) in the
interval [TL, T ]. These functions satisfy the orthonormality condition

∫ T

TL

φk(t)φ∗n(t)dt =

{
1 if k = n
0 otherwise.

The interval [0, TL] is the so-called cyclic prefix which assures orthogo-
nality of the waveforms φk even in the presence of a temporal shift τ ,
0 ≤ τ < TL because
∫ T

TL

φk(t− τ)φ∗n(t)dt =
1

T − TL

∫ T

TL

e
j 2π

T−TL
(k−n)(t−TL)

e
−j 2π

T−TL
kτ
dt

=

{
exp(−j 2π

T−TL
kτ) if k = n

0 if k 6= n
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The benefit of this orthogonality is a simplification of the receiver. After
filtering the received signal y(t) with the pulse ψn(t) = φ∗n(T − t), 0 ≤
t ≤ T − TL and subsequent sampling at time instant T we obtain

yk =

∫ ∞

−∞
y(t)ψk(T − t)dt

=

∫ T

TL

∫ TL

0

(

f(τ)

N−1∑

n=0

snφn(t− τ) + w(t)

)

dτφ∗k(t)dt

=

∫ TL

0

f(τ)

N−1∑

n=0

sn

∫ T

TL

φn(t− τ)φ∗k(t)dtdτ +

∫ T

TL

w(t)φ∗k(t)dt

= sk

∫ TL

0

f(τ)e
−j 2π

T−TL
kτ
dτ +

∫ T

TL

w(t)φk(t)

= skfk + wk

where fk ,
∫ TL

0
f(τ) exp(−j 2π

T−TL
kτ) is the Fourier transform of f(t)

evaluated at the frequency k/(T − Tl) and the wk are Gaussian random
variables which are independent in k because the applied function φ(t)
are orthogonal.

This simplicity in the dependence of the observables yk on the trans-
mitted symbols sk is an important feature of an OFDM system, effectively
removing interference between symbols on different carriers. However,
similar to the single carrier system, the receiver front-end cannot be con-
sidered optimal in the general sense of providing sufficient statistics in
the discrete variables yk for detecting of the entire sequence sk. A simple
intuitive reason for this is the fact that the cyclic prefix which contains
information about the transmitted symbols is effectively discarded at the
receiver (the receiver filter ψk has an impulse response of length T − TL

(not T ) which is required to assure orthogonality). We can therefore
conclude that also for an OFDM system, we do not know of any simple
front-end which is not information lossy and therefore we must accept
suboptimal approaches.

2.4.2 Discrete-Time OFDM Data Model

The data model in the previous subsection yk = skhk + wk also results
from a discrete-time model [San96] of the OFDM system which assumes
the data symbols to be defined in the frequency domain. Before trans-
mission through a discrete-time channel, the symbols are transformed to
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the time domain using inverse discrete time Fourier transformation and a
cyclic prefix is prepended in the time domain. The channel is then mod-
eled as a discrete-time convolution similar to (2.4). The receiver discards
the cyclic prefix and computes the received symbols in the frequency
domain using a discrete Fourier transformation. This model implies N
symbols during a time interval T − TL which corresponds to a sampling
time Ts = (T − TL)/N .

If the channel is modeled as before with a tapped delay line in

f(t) =

L−1∑

l=0

hlδ(t− lTs)

we obtain

fk =
L−1∑

l=0

∫ TL

0

hlδ(t− lTs)e
−j 2π

T−TL
kτ
dτ

=
L−1∑

l=0

hle
−j 2π

T−TL
klTs

=

L−1∑

l=0

hle
−j 2π

N
kl

Using the matrix

DN , diag{e−j 2π
N

0, e−j 2π
N

1, . . . , e−j 2π
N

(N−1)}

and the vector s = [s0, . . . , sN−1]
T we can now write

y = [s DNs . . . DL−1
N s]






h0

...
hL−1




+






w0

...
wN−1




 .

The generalization to multiple transmitter antennas is straightforward.
Let S be an N ×MT matrix with element {S}nm being the symbol using
waveform n on transmitter antenna m. We can then write

Y = [y1 . . . yMT
] = [S DS . . . DL−1S]H + W (2.9)

where column r of H contains the weights of the (L − 1)MT taps from
the transmitter to receiver antenna r and yr are the symbols received on
antenna r.
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2.4.3 Comparison of Data Models

It is apparent that the models in (2.8) and (2.9) are similar. Both the
data models in (2.9) and (2.8) with the constraint (2.7) essentially repre-
sent a discrete-time convolution. A significant difference however is the
substructure imposed on the signaling matrix in (2.7) and (2.9). Whereas
in the single carrier model, the symbols are shifted through the rows, they
are multiplied in the OFDM model using the matrix D reflecting a cyclic
shift of symbols in the time domain. Moreover, a cyclic prefix is needed
in the OFDM model which is not required in the single carrier model.

Moreover, the structure of S̄ in (2.7) implies non-overlapping recep-
tion of symbol blocks. One example where this assumption holds is in a
frequency-hopping system where each block is transmitted in a different
frequency range with independent channel realizations. In the completely
general case, the assumption of non-overlapping received blocks may re-
quire some kind of “guard intervals” before and after the transmission
of each block. In this general case, we assume that the guard intervals
consist of zero-valued symbols but we could consider alternative solu-
tions such as the cyclic prefix as well (see, e.g., [TdPE+04]). In that
sense, the single carrier model has a higher degree of design freedom,
which is achieved at the cost of non-orthogonality of the observables at
the receiver. Since we are investigating mostly sequence detection over
the entire block, i.e., we consider all symbols on all carriers jointly, this
disadvantage is not of major importance. A notable exception here is
differential space-frequency coding, see Section 4.

2.5 Receiver Design

The data models in Sections 2.3.3 and 2.4.2 can be summarized in the
following linear model

y = Xh + w

where the signaling matrix X is of dimension T ′ ×M , the channel h is
of dimension M × 1 and noise vector w as well as the received vector
y are of dimension T ′ × 1. For the single carrier system of (2.8), this
reformulation can be obtained by stacking the columns of Y, H and
W into y, h and w, respectively as well as replacing X with IMR

⊗ S̄.
Similarly, the reformulation for the multicarrier system in (2.9) replaces
X with IMR

⊗ [S DS . . . DL−1S] and the other matrices as before.
The dimension M of the vector h therefore is MTMRL.
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The task of the receiver is to form a decision on the transmitted signal
matrix X which was chosen from a predetermined set {X0, . . . ,XZ−1}.
The formulation of a rule to make this decision requires a consideration
of the involved quantities. Apart from noise, the channel vector h is
unknown. Whereas the noise is usually modeled as a stochastic quantity
described by a probability density, different approaches on the modeling
of h exist. We will discuss and compare two of these approaches.

2.5.1 ML

Usually, the noise vector w is modeled as a random variable implying
that the vector of observables y is also random. The receiver can then be
defined as the mapping from the received signal y to the detected signal
X̂ = X̂(y). The objective thereby is to choose this mapping such that
the probability of false detection

Pr(X̂(y) 6= X|y) = 1 − Pr(X̂(y) = X|y)

is minimized. Thus, we should choose

X̂(y) = arg max
X

Pr(X|y).

Using Bayes theorem, we can reformulate this to

X̂ = arg max
X

p(y|X) Pr(X)

p(y)

= arg max
X

p(y|X) Pr(X)

If the signals X are equally likely (as we assume throughout this thesis),
we obtain the maximum-likelihood (ML) detector

X̂ = arg max
X

p(y|X). (2.10)

This detector obviously requires knowledge of the density of the received
signal conditioned on an assumed transmitted signal X. This density
depends on the model used for the noise w and the channel h. For
Gaussian noise w with variance σ2I and deterministic h, we have the
density as function of h in

p(y|X;h) =
1

|πσ2I| exp(−σ−2‖y − Xh‖2)



36 2 System Model and Analysis

which leads to useful detectors if h is perfectly known. If h is unknown, it
is frequently modeled as a Gaussian random variable with h ∼ CN (0,Ch)
which is independent of the receiver noise. Conditioned on X, the re-
ceived vector y is then also Gaussian with density

p(y|X) =
1

|π(σ2I + XChXH)| exp(−yH(σ2I + XChX
H)−1y) (2.11)

which can then be inserted into (2.10).

2.5.2 GLRT

If the channel h is unknown and deterministic, i.e., h is not character-
ized by a given probability density function, a general optimal receiver
architecture in the sense of minimizing the detection error probability for
arbitrary h is unknown. The procedure of the generalized likelihood-ratio
test (GLRT) is then applicable [LS03]. For each hypothesis, i.e., for each
signal that could possibly have been transmitted, we estimate the channel
assuming the hypothesis is correct and use this estimate in the computa-
tion of a likelihood value. Thus, assuming X had been transmitted, we
can compute the estimate

ĥ = arg max
h

p(y|X;h) (2.12)

= (XHX)−1XHy = X†y

and detect X using

X̂ = arg max
X

p(y|X; ĥ(X)) (2.13)

= arg max
X

1

|πσ2I| exp(−σ−2‖y − Xh‖2)
∣
∣
h=ĥ

= arg max
X

exp(−‖y − XX†y‖2)

= arg max
X

exp(−‖P⊥
Xy‖2)

= arg max
X

exp(yHPXy)

where the idempotent matrices PX = XX† and P⊥
X = I − PX are the

projection matrix on the column space of X and on its orthogonal com-
plement, respectively. The two maximizations in (2.12) and (2.13) can of
course also be considered as a joint maximization in

(X̂,h) = arg max
X,h

p(y|X;h).
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2.5.3 Comparison

Both the GLRT and the ML detector can be summarized as

X̂ = arg max l(y,X)

where the function l(y,X) for the ML receiver is set to

l(y,X) ,
1

|π(σ2I + XChXH)| exp(−yH(σ2I + XChX
H)−1y)

and for the GLRT receiver to

l , exp(yHPXy).

Frequently, these functions can be simplified if additional assumptions
such as orthogonal signal matrices or i.i.d. fading are made. We will
consider these assumptions later and keep the general form for now to
apply it in the performance analysis.

A comparison between both detectors involves the comparison be-
tween two different modeling assumptions: Assuming that the unknown
channel h is random with a known probability density (ML) or it is deter-
ministic without further information (GLRT). Clearly, the ML receiver
makes use of additional knowledge concerning the received signal: Apart
from the channel distribution, the noise variance is required to be known.
If the wireless channel is properly modeled using random h and the ML
receiver has accurate information concerning its statistical parameters,
it will outperform the GLRT receiver in terms of error probability. The
validity of this assumption however is not necessarily always guaranteed.
The GLRT receiver that makes no use of this information is apparently
robust with respect to variations in these parameters.

We also want to point out that both the GLRT and the ML receiver
can coincide, i.e., produce equivalent results. If the channel is i.i.d. fad-
ing, i.e., the channel covariance matrix is a scaled identity matrix, and
the signals have orthonormal columns, the ML and GLRT receiver pro-
duce equivalent decisions. Such design assumptions are not uncommon
in the literature on constellation design and therefore the distinction be-
tween ML and GLRT receiver is not always apparent. However, the
different philosophies behind the two receiver strategies are important
if these design assumptions cannot be met. We will come back to this
point in our performance comparison of both the GLRT and ML receiver
in Section 2.6.4.



38 2 System Model and Analysis

2.6 Performance Analysis

A common criterion to assess the performance of different constellation
designs is the pairwise error probability (PEP)

Pr(Xi → Xj) , Pr (l(y,Xi) < l(y,Xj) |Xi) (2.14)

i.e., the probability that a binary test between two signaling matrices
Xj and Xi decides in favor of Xj when Xi was transmitted. For future
reference, we define

Λ(y,Xi,Xj) , ln
l(y,Xj)

l(y,Xi)

and reformulate (2.14) as

Pr (Λ(y,Xi,Xj) > 0 | Xi) . (2.15)

Whereas for the ML receiver the evaluation of (2.15) involves averaging
over the Gaussian distribution assumed for the noise and the channel,
the corresponding calculation for the GLRT receiver is less obvious. The
probability in (2.14) can be computed for any given channel h, thereby
averaging over the noise distribution only. Since our ultimate goal is the
design of signal matrices X that work for an unknown channel, a depen-
dency on the specific channel vector is clearly undesirable. Therefore,
we assume a distribution for h also in the case of the GLRT receiver in
order to determine average performance. In that sense, the evaluation of
(2.15) is similar for both ML and GLRT with the difference being in the
computation of Λ, but not in the assumptions on channel and noise.

In the following, we will discuss three approaches to compute the
PEP. The first approach based on numerical integration provides the
exact solution. The second approach computes an approximation of the
PEP if the SNR becomes large (σ2 → 0). The third approach is an
upper bound on the PEP using the Chernoff bound which in turn can be
approximated for high SNR. The discussion of these analysis approaches
involves some derivations with technical detail. A summary is provided
in Section 2.6.4.

2.6.1 Numerical Integration

A numerical solution to compute (2.15) has a common structure for both
ML and GLRT receiver. We will discuss both receiver types in turn.
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• ML receiver. Defining

Ci , σ2I + XiChX
H
i

Cj , σ2I + XjChX
H
j

we obtain

Λ(y,Xi,Xj) = yH(C−1
i − C−1

j )y − ln
|Cj |
|Ci|

(2.16)

where conditioned on the transmission of Xi the received vector y
is Gaussian with zero mean and covariance Ci. Since Ci is positive

definite, it can be factorized into C
1
2
i C

1
2
i with Hermitian invertible

C
1
2
i . The vector η , C

− 1
2

i y has elements ηk which are i.i.d. complex
Gaussian variables with variance 1. We can then rewrite

Λ(y,Xi,Xj) = yHC
− 1

2 H
i

︸ ︷︷ ︸

ηH

C
1
2
i (C−1

i − C−1
j )C

1
2
i C

− 1
2

i y
︸ ︷︷ ︸

η

− ln
|Cj |
|Ci|

=
∑

k

λML
k ‖ηk‖2 − cij

where λML
k are the eigenvalues of the matrix C

1
2
i (C−1

i − C−1
j )C

1
2
i

and cij , ln
|Cj |
|Ci| .

Thus, the PEP can be reformulated as the probability that a
weighted sum of independent central χ2 variables with two degrees
of freedom is larger than a given constant. The same structure
(even simpler) results for the

• GLRT receiver. We obtain

Λ(y,Xi,Xj) = yH(PXj
− PXi

)y

= η
HC

1
2
i (PXj

− PXi
)C

1
2
i η

=
∑

k

λGLRT
k ‖ηk‖2

where λGLRT
k are the eigenvalues of the matrix C

1
2
i (PXj

−PXi
)C

1
2
i .

Thus, for both the GLRT and ML receiver, we have to solve a problem
of the type

Pr

(
∑

k

λkχ
2
k > x

)
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where the λk and x are known (x = 0 for the GLRT and x = cij for the
ML receiver) and the central χ2

k variables have two degrees of freedom.
This is a recurring problem in the literature on error analysis for digital
communication systems with both known and unknown channel at the
receiver, see, e.g., [TB02,SFG02,Pro95]. We focus here on the numerical
solution to the generic problem which is mentioned in [MP92] pointing
to [Imh61] where

Pr

(
∑

k

χ2
k‖ηk‖2 > x

)

=
1

2
+

1

π

∫ ∞

0

sin θ(u)

uρ(u)
du (2.17)

with

θ(u) ,
1

2



2
T ′

∑

k=1

tan−1(λku)



− 1

2
xu

ρ(u) ,
T ′

∏

k=1

(1 + λ2
ku

2)
1
2

and the integrand in (2.17) is well defined for u → 0. The advantage of
this result is that it is exact and numerically stable for computation of
the PEP for SNR values of 1/σ2 as high as 30dB. Moreover, it can easily
be extended for the case that h ∼ N (µh,Ch), i.e., a situation where
the channel realization has a non-zero mean which is a standard way
of modeling line-of-sight components. However, it does not allow much
insight into the behavior of the PEP dependent on the structure of the
signals. Therefore, approximations and bounds are useful.

2.6.2 Asymptotic Analysis

The behavior of the PEP in the case of high SNR, i.e. σ2 → 0 is of
particular interest because design criteria based on the PEP such as the
union bound on the error probability lead to meaningful results for high
SNR. Moreover, a communication system should perform well in favor-
able conditions, i.e., high SNR, and therefore consideration of this area
is important. Brehler and Varanasi investigated in [BV01] the limiting
behavior of the PEP for both the ML and the GLRT receiver. Their
approach is based on an approximation of the non-zero eigenvalues λk in
the case σ2 → 0. The results are cited here in the notation of this thesis.
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• ML receiver. Assuming full rank of the matrix
[Xi Xj ]

H [Xi Xj ], it is shown in [BV01, Proposition 4]
that

lim
σ2→0

(σ2)−M Pr(Xi → Xj) =
Kij

|Ch||XH
i P⊥

Xj
Xi|

where Kij is

Kij =
|XH

i Xi|
|XH

j Xj |

M−1∑

k=0

(
2M − 1 − k

M

)
1

k!

(

ln
|XH

j Xj |
|XH

i Xi|

)k

(2.18)

if |XH
i Xi| ≤ |XH

j Xj |. Otherwise we have

Kij =
M∑

k=0

(
2M − 1 − k
M − 1

)
1

k!

(

ln
|XH

i Xi|
|XH

j Xj |

)k

. (2.19)

If |XH
i Xi| = |XH

j Xj |, the convention 00 = 1 is used and the sums
in (2.18) and (2.19) reduce to a single term.

• GLRT receiver. From [BV01, Proposition 6], we obtain

lim
σ2→0

(σ2)−M Pr(Xi → Xj) =

(
2M − 1
M

)

|Ch||XH
i P⊥

Xj
Xi|

. (2.20)

2.6.3 Chernoff Bound

The third method of analyzing the PEP is based on the Chernoff bound.
In the case for signal matrices with orthogonal columns, a Chernoff bound
for ML detection was presented in [HM00]. Later, Dogandzic published
much more general results avoiding this restriction in [Dog03]. A bound
for the GLRT receiver was also presented in [LS03]. In the following
derivations, we present the general bound for the ML and GLRT re-
ceiver, approximate this bound for high SNR and optimize a remaining
parameter to minimize the high SNR approximation.

The quantity

Λ(y) = ln
l(y,Xj)

l(y,Xi)
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is a random variable because it is a function of the random variable y.
The PEP can then be expressed as

Pr(Xi → Xj) = Pr(Λ(y) > 0 | Xi transmitted)

=

∫

Λ(y)>0

py|Xi
(y|Xi)dy

Now for s ≥ 0 we can upperbound the PEP as

Pr(Xi → Xj) ≤
∫

Λ(y)>0

esΛ(y)py,Xi
(y|Xi)dy

≤
∫

esΛ(y)py|Xi
(y|Xi)dy (2.21)

where the last integral is over the entire definition space of y.

• ML receiver. The expression for ΛML was given in (2.16). Insert-
ing this result into (2.21) and using py|Xi

from (2.11), we obtain
the upper bound

Pr(Xi → Xj) (2.22)

≤
∫ |πCi|s

|πCj |s
1

|πCi|
exp

(
−yH(sC−1

j − sC−1
i + C−1

i )y
)
dy

=
1

|πCj |s|πCi|1−s

∫

exp
(
−yH(sC−1

j + (1 − s)C−1
i )y

)
dy

Since integrating the multivariate Gaussian density over the entire
definition space results in unity, it is known that for any positive
definite matrix B it holds that

∫

exp
(
−yHBy

)
dy = |πB−1| (2.23)

Now since Cj and Ci are positive definite, it holds that the matrix
sC−1

j + (1 − s)C−1
i is positive definite for 0 ≤ s ≤ 1 and thus we

obtain by using (2.23) in (2.22)

Pr(Xi → Xj) ≤
|π(sC−1

j + (1 − s)C−1
i )−1|

|πCj |s|πCi|1−s
(2.24)

After some algebraic manipulations (see Appendix 2.A), we obtain

Pr(Xi → Xj) ≤ σ2MQ(Xi,Xj , s, σ
2)



2.6 Performance Analysis 43

where

Q(Xi,Xj , s, σ
2) ,

|σ2I + ChX
H
i Xi|s|σ2I + ChX

H
j Xj |1−s

∣
∣
∣
∣
σ2I +

(
sCh

(1 − s)Ch

)(
XH

i Xi XH
i Xj

XH
j Xi XH

j Xj

)∣
∣
∣
∣

(2.25)
For high SNR σ2 → 0, we get

lim
σ2→0

Q(Xi,Xj , s, σ
2) =

|XH
i Xi|s|XH

j Xj |1−s

sM (1 − s)M |Ch|
∣
∣
∣
∣

XH
i Xi XH

i Xj

XH
j Xi XH

j Xj

∣
∣
∣
∣

=
s−M (1 − s)−M

(
|XH

i Xi|
|XH

j
Xj |

)s

|Ch||XH
i P⊥

Xj
Xi|

.

where we used (A.9) and assumed that the matrix

[Xi Xj ]
H [Xi Xj ] =

(
XH

i Xi XH
i Xj

XH
j Xi XH

j Xj

)

has full column rank. We can now choose the parameter 0 ≤ s <
1 such that the bound is minimized. Setting the derivative with
respect to s to zero, we obtain for the optimal s∗ that

1 − 2s∗

s∗(1 − s∗)
=

1

M
ln

|XH
i Xi|

|XH
j Xj |

, Zij

Apparently, for |XH
i Xi| = |XH

j Xj | implying Zij = 0 we obtain
as only solution s∗ = 1/2. This is an important special case, in
particular for signals with orthogonal columns (see Section 2.6.4)
The solution for general Zij in the allowed interval 0 ≤ s∗ < 1 is

s∗ =
1

2



1 − Zij

2 +
√

Z2
ij + 4





and consequently

lim
σ2→0

Q(Xi,Xj , s
∗, σ2) =

(

2 +
√

Z2
ij + 4

)M

eMZijs∗

|Ch||XH
i P⊥

Xj
Xi|
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which is smaller than the choice for s∗ = 1
2 which leads to

lim
σ2→0

Q

(

Xi,Xj , s =
1

2
, σ2

)

=
22MeMZij/2

|Ch||XH
i P⊥

Xj
Xi|

.

• GLRT receiver. Here we have

Λ = ln
ey

HPXj
y

ey
HPXi

y

and therefore obtain from (2.21)

Pr(Xi → Xj) ≤
∫ ∞

−∞

1

|πCi|
exp

(
−yH(C−1

i − sPXj
+ sPXi

)y
)
dy.

After some algebraic manipulations that are presented in Ap-
pendix 2.B, we obtain

Pr(Xi → Xj) ≤ σ2MQ(Xi,Xj , s, σ
2)

where

Q(Xi,Xj , s, σ
2) (2.26)

,
1

|s(1 − s)XH
i P⊥

Xj
XiCh + σ2(I − s2XH

i P⊥
Xj

XH†
i )|

and 0 ≤ s < 1 as before. In the high SNR region σ2 → 0 we obtain

Q(Xi,Xj , s, 0) =
1

|s(1 − s)XH
i P⊥

Xj
Xi||Ch|

which is minimized for s = 1/2.

2.6.4 Comparison of the Analysis Approaches

It is very useful to point out the similarities between the results presented
in this section so far. In order to obtain a meaningful statement about
the design of the two matrices Xi and Xj , we consider the behavior of

PEP(Xi,Xj) , Pr(Xi → Xj) + Pr(Xj → Xi)

and illustrate the presented analysis approaches in Figure 2.5 for the
GLRT and in Figure 2.6 for the ML receiver, respectively. The two
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Figure 2.5: Illustration of the PEP together with its Chernoff upper
bound and its approximation using asymptotic analysis for the GLRT
receiver

signal matrices with M = 2 and T ′ = 8 were picked at random with i.i.d.
elements and normalized to unit power per channel use. The channel
correlation profile was generated as the square of a random matrix.

Comparing Figures 2.5 and 2.6, we note that the performance results
for the ML and the GLRT receiver are very similar. In both cases, the
curves for PEP obtained by Monte Carlo simulation (dashdotted) match
the values computed with numerical integration very well. At an SNR of
about 12 to 15 dB and higher, the value of the PEP is very well approx-
imated by the asymptotic PEP. In contrast, the values of the Chernoff
bound and of the PEP differ by a significant factor. This factor appears to
be constant over the investigated SNR range. For high SNR, the slope of
all curves is the same. In this regime, the asymptotic analysis established
that

PEP(Xi,Xj) ≈ σ2M QAs(Xi,Xj)

|Ch| |[Xi Xj ]H [Xi Xj ]|
(2.27)

and the high SNR approximation on the Chernoff upper bound resulted
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Figure 2.6: Illustration of the PEP together with its Chernoff upper
bound and its approximation using asymptotic analysis for the ML re-
ceiver

in

PEP(Xi,Xj) . (σ2)M QCB(Xi,Xj)

|Ch| |[Xi Xj ]H [Xi Xj ]|
(2.28)

where the values of Q(Xi,Xj) for the applied receiver are given in Ta-
ble 2.1 for both the ML and GLRT receiver. These results rely on the
assumption that

|[Xi Xj ]
H [Xi Xj ]| > 0, (2.29)

i.e., that [Xi Xj ] has full column rank. Under this condition it is guar-
anteed by the exponent of σ2 in (2.27) and (2.28) that the slope of the
resulting PEP curve as a function of the SNR 1/σ2 on a double logarith-
mic plot is M , i.e., a diversity level of M is achieved. In other words, a
10 dB increase in SNR will lead to a reduction in PEP by a factor of 10M .
If the signals Xi and Xj are designed for low error probability in the high
SNR regime, the highest possible diversity order is usually required and
can be fulfilled by satisfying the rank criterion (2.29). Moreover, in the
high SNR region, the influence of the channel correlation profile repre-
sented in Ch is decoupled from the signal design as long as Ch is full
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receiver
type

analysis Q(Xi,Xj) in (2.27) and (2.28)

ML
asymptotic

analysis |XH
j Xj |

T ′

∑

k=0

(
2M − k
M

)
(MZij)

k

k!
, Zij ≥ 0

ML
Chernoff
bound

2

(

2 +
√

Z2
ij + 4

)M √

|XH
i Xi||XH

j Xj |

exp

(
Z2

ij
M/2

2+
√

Z2
ij

+4

)

GLRT
asymptotic

analysis

(
2M − 1
M

)

(|XH
i Xi| + |XH

j Xj |)

GLRT
Chernoff
bound

22M (|XH
i Xi| + |XH

j Xj |)

Table 2.1: Overview of the analysis approaches

rank (as is generally assumed in this thesis). Further design rules are
then targeted towards minimization of Q(Xi,Xj) and can be considered
independent on the channel correlation profile.

Using Table 2.1, we can point out the mentioned factor between the
Chernoff upper bound and the asymptotic expression in the high SNR
regime. Assuming |XH

i Xi| = |XH
j Xj |, the Chernoff bound is off by a

factor of 22M/
(

2M−1
M

)
for both the ML and the GLRT receiver (note

that ( 2M
M ) = 2

(
2M−1

M

)
), see also [BV01].

As mentioned in Section 2.6.3, the case that |XH
i Xi| = |XH

j Xj | im-
plying cij = Zij = 0 deserves additional attention. Then, asymptotic
analysis leads to the same resulting PEP for both GLRT and ML re-
ceiver, i.e. their performance is asymptotically equivalent. This addi-
tional condition is met in the special case of signal with orthonormal
columns

XH
i Xi = XH

j Xj =
T ′

M
I (2.30)

which is of particular interest since for high SNR or T ′ ≫ M and
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i.i.d. channel fading, orthonormal signals are optimal in terms of ca-
pacity [MH99] in the absence of receiver CSI. Therefore, condition
(2.30) has been imposed in several approaches on designing signals,
e.g., [HMR+00, MBV02, ARU01, BB02]. Another advantage of signals
satisfying (2.30) is the simplicity of the resulting PEP expression for the
ML receiver (the values in Table 2.1 reduce to a constant) which is impor-
tant for the purpose of obtaining a simple design criterion that can easily
be evaluated. If condition (2.30) cannot be imposed (if the signals have
specific substructure, see Chapter 3, such that the optimality statement
does not necessarily hold), the PEP expressions for the GLRT receiver
are much simpler than for the ML receiver. Apart from the different
philosophies behind the receiver choice, the design criterion is easier to
handle for GLRT, providing an additional motivation for its usage.

2.6.5 Conclusion on Performance Analysis

We have presented in this section three different approaches to analyze
the PEP dependent on the signal design. Whereas the first approach
based on numerical integration provides exact results, it does not allow
much insight on the design rules that should be imposed on the signaling
matrices. Such rules are easily derived from both the second and third
approach which approximate the PEP for high SNR or upperbound it.

In the course of this thesis, not all results concerning the PEP were
available from the start. We became aware of the numerical solution from
Section 2.6.1 first and designed the optimization method accordingly,
i.e., based on a preselected symbol alphabet (see Chapter 3). Later, the
asymptotic analysis in [BV01] allowed the application of a design method
based on gradient search. The Chernoff bounds were first derived for
signal matrices with orthogonal columns (see [HM00]) but could not be
used for signaling matrices not constrained on unitary columns. Such
a bound was presented in [LS03] for the GLRT receiver and in a very
general form for the ML receiver in [Dog03]. Even though the asymptotic
analysis appears to lead to a much tighter approximations, the Chernoff
bound as such is still helpful to guarantee the upper bound on the PEP.

2.7 Summary

We presented in this chapter two standard models for both a single carrier
as well as a multicarrier system. The resulting data models were found to
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be very similar and allowed a unified description of two receiver strategies
together with their subsequent PEP analysis. The results derived in
this chapter form the basis for the criteria and methods for constellation
design in subsequent chapters.
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Appendix 2.A Chernoff Bound for the ML

Receiver.

Continuing from (2.24), we have

|π(sC−1
j + (1 − s)C−1

i )−1|
|πCj |s|πCi|1−s

=
|Cj(sCi + (1 − s)Cj)

−1Ci|
|Cj |s|Ci|1−s

=
|Ci|s|Cj |1−s

|sCi + (1 − s)Cj |

=
|σ2I + XiChX

H
i |s|σ2I + XjChX

H
j |1−s

∣
∣
∣
∣
σ2I +

(
Xi Xj

)
(
sCh

(1 − s)Ch

)(
XH

i

XH
j

)∣
∣
∣
∣

After applying relation (A.8), we obtain

=
(σ2)T ′−M |σ2I + ChX

H
i Xi|s|σ2I + ChX

H
j Xj |1−s

(σ2)T ′−2M

∣
∣
∣
∣
σ2I +

(
sCh

(1 − s)Ch

)(
XH

i Xi XH
i Xj

XH
j Xi XH

j Xj

)∣
∣
∣
∣

= (σ2)MQML(Xi,Xj , s, σ
2)

where QML(Xi,Xj , s, σ
2) is defined in (2.25).

Appendix 2.B Chernoff Bound for the

GLRT Receiver

We start from

Pr(Xi → Xj) ≤
1

|πCi|

∫ ∞

−∞
exp

(

−yH(C−1
i + sP⊥

Xj
− sP⊥

Xi
)y
)

dy

and rewrite C−1
i by applying the matrix inversion lemma 6 twice as

C−1
i =

1

σ2
I − 1

σ4
Xi

(
1

σ2
XH

i Xi + C−1
h

)−1

XH
i

=
1

σ2

(
I − Xi(X

H
i Xi + σ2C−1

h )−1XH
i

)
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=
1

σ2
(I − Xi

·
(
(XH

i Xi)
−1−(XH

i Xi)
−1((XH

i Xi)
−1+σ−2C−1

h )−1(XH
i Xi)

−1
)
XH

i )

=
1

σ2
P⊥

Xi
+ Xi(σ

2XH
i Xi + XH

i XiC
−1
h XH

i Xi)
−1XH

i

Therefore, the matrix

C−1
i + sPXi

− sPXj
= C−1

i − sP⊥
Xi

+ sP⊥
Xj

is positive definite for 0 ≤ s < σ−2. Setting s = s̃σ−2, 0 ≤ s̃ < 1 we
obtain

Pr(Xi → Xj)

≤ 1

|πCi|

∫

exp
(

−yH
(

C−1
i − sP⊥

Xi
+ sP⊥

Xj

)

y
)

dy

=
|π(C−1

i + s̃σ−2(P⊥
Xj

− P⊥
Xi

))−1|
|πCi|

=
1

∣
∣I + s̃σ−2(PXi

− PXj
)Ci

∣
∣

=
1

∣
∣
∣I + s̃(PXi

− PXj
) + s̃σ−2P⊥

Xj
XiChXH

i

∣
∣
∣

=
1

|I − s̃PXj
||I + (I − s̃PXj

)−1(s̃PXi
+ s̃σ−2P⊥

Xj
XiChXH

i )|

Since PXj
has eigenvalue 1 with multiplicity M and eigenvalue 0 with

multiplicity T ′ −M , it is clear that |I − s̃PXj
| = (1 − s̃)M . Moreover, it

is not hard to show that (I − s̃PXj
)−1 = 1

1−s̃I − s̃
1−s̃P

⊥
Xj

. We therefore

obtain after replacing PXi
= XH†

i XH
i

Pr(Xi → Xj)

≤ 1

(1 − s̃)M |I+( 1
1−s̃I− s̃

1−s̃P
⊥
Xj

)(s̃XH†
i +s̃σ−2P⊥

Xj
XiCh)XH

i |

=
1

(1 − s̃)M |I+XH
i ( 1

1−s̃I− s̃
1−s̃P

⊥
Xj

)(s̃XH†
i +s̃σ−2P⊥

Xj
XiCh)|

=
1

|(1 − s̃)I + XH
i (I − s̃P⊥

Xj
)(s̃XH†

i + s̃σ−2P⊥
Xj

XiCh)|
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=
1

|I − s̃2XH
i P⊥

Xj
XH†

i + σ−2s̃(1 − s̃)XH
i P⊥

Xj
XiCh|

= (σ2)MQGLRT(Xi,Xj , s̃, σ
2)

where QGLRT(Xi,Xj , s̃, σ
2) is defined in (2.26). We can now just as well

replace s with s̃ as used in the main text.



Chapter 3

Design in the Time

Domain

We now start attacking the problem of designing signal matrices that
are optimized for data transmission over unknown channels. As for any
optimization problem, a criterion is needed in order to distinguish “good”
designs from “bad” ones. Moreover, the search space, i.e., the range of
parameters that can be varied, needs to be defined. In general, it is not
uncommon that analytical solutions for a given optimization problem are
unknown. In that case, algorithms searching for (at least approximately
or locally) optimal solutions have to be applied. Usually, the complexity
requirements of the optimization algorithm limit the size of problems
that can be solved using computer optimization. Sometimes, structural
properties or insight into the choice of parameters for the given specific
problem can be exploited to adapt a standard algorithm in order to reduce
the required computer resources. The size of problems that can be solved
can then be extended.

The optimization problems discussed in this chapter are examples of
this general methodology. Two different choices of the parameter space
are considered. In the first case, the symbols are drawn from a discrete set
which is restricted in all examples to BPSK symbols. In the second case,
the symbols are unconstrained complex-valued up to a power normaliza-
tion over the entire constellation. Due to the different parameter spaces,
the applied optimization methods are significantly different. Moreover,
our focus of comparison is different for both methods. In the first case,
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we compare the obtained constellations with standard constellations in
BPSK symbols whose design contains redundancy optimized either for
channel estimation or error-correction. The second approach is targeting
directly the conditions for the exploitation of maximum diversity gain
and optimal coding gain in the high SNR region which is particularly
important for multiple transmitter antennas.

A design criterion that is common to both approaches is defined in
Section 3.1. The detailed descriptions of both approaches in Sections 3.2
and 3.3, respectively follow a similar format. After the presentation of
the optimization method, some standard schemes “off the shelf” are re-
viewed and their performance evaluated in comparison with the resulting
constellations of this chapter. A comparison of both approaches together
with a summary is given in Section 3.4.

3.1 Design Criterion and Objective Func-

tion

We have derived in Section 2.3.3 the data model for a single carrier system

Y = S̄H + W

where Y represents the received symbols, H the unknown channel coef-
ficients and W additive noise. The equivalent signal matrix S̄ is related
to the transmitted symbols in S via the constraint (2.7). Our goal is to
determine a constellation of Z signal matrices S = {S0, . . . ,SZ−1} that
can be used for data transmission through the unknown channel. As a
design criterion, we attempt to design the signals in such a way that the
probability Pr(Ŝ 6= S) of false detection of the transmitted signal ma-
trix in the presence of noise is minimized. Since an exact expression of
this error probability appears to be mathematically intractable, we resort
to using the union bound on error probability. Assuming equally likely
signal matrices, this results in the bound

Pr(Ŝ 6= S) =
1

Z

∑

Sp∈S

Pr(Ŝ 6= Sp|Sp was transmitted)

≤ 1

Z

∑

Sp∈S

∑

Sq∈S

Sq 6=Sp

Pr(Sp → Sq), (3.1)
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with the PEP Pr(Sp → Sq) defined in Section 2.6. The criterion used
to design the constellations in this chapter is the minimization of the
union bound as objective function, either in scaled exact form in Section
3.2 or in approximative form for high SNR in Section 3.3. As motivated
in Section 2.6, the PEP depends on the receiver structure. Due to its
robustness with respect to mismatch in assumptions on the channel cor-
relation matrix and due to the simpler analytical expressions in the high
SNR region (see Section 2.6.4), the design in this chapter is based on the
assumption that the GLRT receiver is used.

Since the PEP can be made arbitrarily small for signals of infinite
power, some power constraint has to be imposed on the signal matrices.
Assuming as above equally likely signals, the average transmitted power
is limited by the constraint

1

Z

Z−1∑

k=0

‖Sk‖2
F = T (3.2)

to unit power per channel use.

3.2 Design Based on a Preselected Symbol

Alphabet

It is not uncommon in the design of wireless communication systems to
restrict the symbol alphabet to a small number of possible symbols. This
restriction can be motivated by, e.g., conceptional simplicity in represent-
ing binary data or implementational aspects if amplifiers are designed for
constant power output.

In order to model a system with these constraints, we deliberately re-
strict in our first signal design approach the search space to symbols that
belong to a finite and preselected alphabet. We choose BPSK, keeping in
mind that generalizations to higher order modulation are possible within
the proposed framework.

Following the notation in Section 2.3.3, we denote with S ∈ S a T×MT

matrix where the (t,m) element st,m is equal to the symbol transmitted
on antenna m in time instant t − 1 (remember that t = 0, . . . , T − 1,
but matrix indices start with 1 by convention). The symbol st,m belongs
to a finite alphabet that we restrict here to a scaled BPSK alphabet.
Using this restriction, we have limited the search space for each T ×MT

matrix S with binary parameters to a space of exactly 2TMT possible
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configurations. Thus, any possible S can be characterized by the integer
i ∈ IS , {0, 1, . . . , 2TMT − 1}. This characterization can be described by,
e.g., the representation of the integer i as a binary word of length TMT ,
i.e.,

i =

MT T∑

r=1

dr2
MT T−r, dr ∈ {0, 1} (3.3)

where the symbol st,m transmitted on antenna m at time instant t− 1 is

st,m =
1√
MT

(1 − 2d(m−1)T+t), st,m ∈
{

− 1√
MT

,
1√
MT

}

in agreement with the power constraint (3.2). We will use the given
mapping to characterize any possible S with the notation S = S(i) where
the argument i ∈ IS denotes the representation of S in integer format.
The problem of constellation design can then be reformulated as finding
the set of allowed signal matrices S ∈ S as subset of all signal matrices
that are possible given the preselected alphabet. Equivalently, we need
to determine a subset I ⊂ IS describing the indices of the allowed signal
matrices, i.e., we need to determine Z distinct indices that describe the set
of allowed signal matrices as a subset of IS which denotes the index set of
possible signal matrices given the preselected alphabet. Arguments of the
form S(k) refer therefore to possible signal matrices whereas subscripts as
in Sp refer to allowed signal matrices. With these notational conventions,
the union bound in (3.1) can be reformulated as

Pr(Ŝ 6= S) ≤ 1

Z

∑

p∈I

∑

q∈I

q 6=p

Pr(S(q) → S(p)). (3.4)

3.2.1 Optimization: Simulated Annealing

With the explicit formulas for Pr(S(q) → S(p)) in (2.17), we can pre-
compute a table of possible signal matrices and evaluate the objective
function (3.4) for any desired index set I matched to additional assump-
tions on SNR and the channel correlation profile (as required by (2.17)).
The constellation design problem can then be formulated as finding this
index set. For a given number Z of signal matrices, we therefore need
to determine Z integers i1, . . . , iZ with ik ∈ IS that constitute I. An
exhaustive search over all possible subsets is immediately seen to be too
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complex since
(

2TMT

Z

)

=
(2TMT )!

Z!(2TMT − Z)!

possible subsets need to be checked which is not feasible even for moderate
constellation parameters. As an example, choose T = 6, MT = 1 and
Z = 8 (implying a bit rate of R = 1/2 per channel use) which leads to
4426165368 different subsets! We are therefore in need of a simplified
optimization method. The method of simulated annealing has shown
very good results in similar problems of code design [GHSW87] and will
therefore be applied here as well. In simulated annealing, the objective
function to be minimized is interpreted as the energy ε of a physical
system with many degrees of freedom in thermal equilibrium. Slowly
cooling down (annealing) the system will drive the system to the most
probable state of lowest energy when the annealing process is sufficiently
slow.

Applied to constellation design, the state is represented by the con-
stellation description I and its energy ε is described by the objective
function (3.4)

ε(I) =
∑

p∈I

∑

q∈I

Pr(S(p) → S(q))

where we have defined Pr(S(p) → S(p)) , 0 for simplicity. The initial
state of the system is an arbitrary constellation described by I = I1 ⊂ IS

chosen at a high temperature τ . To simulate thermal movement at time
instant n, we first pick two elements

u ∈ In and v ∈ I
c
n = IS \ In

at random (with uniform probability for all elements) and define the set

Ĩn+1 = (In \ {u}) ∪ {v}.

This operation thus exchanges two randomly picked elements u ∈ In and
v ∈ I

c
n with each other. If the resulting energy change

∆ε = ε(Ĩn+1) − ε(In)

is negative, the change is always accepted, i.e., In+1 = Ĩn+1 whereas
changes ∆ε > 0 are also sometimes accepted, with probability
p = exp(−∆ε/τ). This probability refers to a Boltzmann factor
exp(−E/(kbT )) (notation see [KGV83]) in statistical mechanics to al-
low state degradation with a temperature-dependent probability. The
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Choose initial code I1 and temperature τ . Set n = 0.

REPEAT

REPEAT

n = n + 1

choose u ∈ In, v ∈ I
c

n

set Ĩn = In \ {u} ∪ {v}

set ∆ε = ε(̃In) − ε(In)

IF (∆ε < 0) THEN set In+1 = Ĩn

ELSE

with probability p = exp(−∆ε/τ)

set In+1 = Ĩn

otherwise

In+1 = In

UNTIL (several energy drops or too many iterations)

lower temperature: set τ = α τ , where 0 < α < 1

UNTIL (freezing temperature reached)

Figure 3.1: High-level description of code design algorithm.

possibility of accepting changes increasing the energy allows the system
to escape from local energy minima configurations. If the energy change
is rejected, we have of course In+1 = In.

The system is annealed by slowly decreasing τ (or, equivalently, the
probability of code degradation) in order to drive the system to a stable
state with minimum energy. Note that the initial code I1 does not notably
influence the final result because the code I gets randomized quickly at
high τ .

A high-level description of the design algorithm can be stated as in
Figure 3.1. Note that the cooling of the problem involves randomness
in the sense that the perturbation of the signal set is random. Further-
more, a perturbation that makes the signal set worse is accepted with a
certain probability. This probability decreases as a function of the de-
creasing temperature. Hence, bad perturbations are accepted quite often
at the beginning, giving the algorithm the possibility to escape from lo-
cal minima, while almost only better signal sets are accepted towards
the end of the design, providing convergence to a resulting signal set (see
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also [KGV83,GHSW87]).
In our simulations we initiate the temperature to τ0 = 107, and stop

when the freezing temperature τf = 10−7 is reached (this number is
chosen low enough such that the algorithm ends with a stable code).
We use α = 0.995 and, furthermore, the inner loop ends if more than 5
perturbations in a row are accepted, or if more than 500 perturbations
in a row are not accepted.

A remarkable advantage of this design method is its generality in the
sense that it works for any Pr(S(p) → S(q)). That is, a constellation can
be designed for any given decoder structure and for any channel model, as
long as the corresponding pairwise error probabilities can be computed or
approximated. If the approaches of Section 2.6 should be non-applicable
for the computation of the PEP, such an approximation might also be
obtained using Monte Carlo simulation if necessary.

3.2.2 Design Complexity Reduction

In the search for good signal sets in Section 3.2.1, we are in need of
accessing Pr(S(q) → S(p)) for all (p, q) ∈ IS × IS. Precomputing all PEP
values demands a storage of 22MT T real scalars, which is only feasible
for small T and MT . Inspecting the resulting table for specific examples,
it is apparent that a large number of elements have the same numerical
value. Thus, we expect a potential for reduction of memory requirement.
This section describes a structural property of the PEP table which will
be exploited to reduce storage requirements. Instead of accessing a table
directly, p and q determine a matrix whose elements are used for accessing
a table for storage of Pr(S(p) → S(q)) values. In certain cases, this leads
to a significant reduction of needed memory space.

Following the analysis on the GLRT receiver in Section 2.6.1, the PEP
is determined by the nonzero eigenvalues of

(σ2I + S̄pChS̄
H
p )(PS̄q

− PS̄p
)

= σ2(S̄q(S̄
H
q S̄q)

−1S̄H
q − S̄p(S̄

H
p S̄p)

−1S̄H
p ) − S̄pChS̄

H
p P⊥

S̄q

= [S̄p S̄q]

[
−σ2(S̄H

p S̄p)
−1 − Ch ChS̄

H
p S̄q(S̄

H
q S̄q)

−1

0 σ2(S̄H
q S̄q)

−1

] [
S̄H

p

S̄H
q

]

which in turn are equivalent to the nonzero eigenvalues of
[

−σ2(S̄H
p S̄p)

−1 − Ch ChS̄
H
p S̄q(S̄

H
q S̄q)

−1

0 σ2(S̄H
q S̄q)

−1

] [
S̄H

p S̄p S̄H
p S̄q

S̄H
q S̄p S̄H

q S̄q

]

.

(3.5)
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Here, we used the fact that for any two matrices A and B of compati-
ble dimension, the non-zero eigenvalues of AB are the same as for BA,
see [HJ99, Theorem 1.3.20]. Now since the matrix in (3.5) depends on the
signal matrices only via S̄H

p S̄p, S̄H
q S̄q and S̄H

p S̄q, it is apparent that its

eigenvalues and therefore the PEP depend only on the elements of S̄H
p S̄p,

S̄H
q S̄q and S̄H

p S̄q. Now since the symbols are taken from a predetermined
finite set, the elements of the mentioned matrices are elements in a finite
set. We can therefore address a table of PEP values either directly via
the mapping in (3.3) or indirectly using the distinct values of the ele-
ments of S̄H

p S̄p, S̄H
q S̄q and S̄H

p S̄q. These matrices have a block-Toeplitz
structure, and we therefore need less parameters than their number of el-
ements (LMT )2 to describe them. Both the matrices S̄H

p S̄p and S̄H
q S̄q are

Hermitian, i.e., we have a block on the main diagonal and L− 1 distinct
blocks off the diagonal. The block on the main diagonal is characterized
by (M2

T −MT )/2 parameters, the off-diagonal blocks by M2
T parameters.

Thus, S̄H
p S̄p and S̄H

q S̄q can be described by

(M2
T −MT )/2 + (L− 1)MT

parameters each. The matrix S̄H
p S̄q has 2L − 1 distinct blocks of di-

mension MT ×MT . Thus, (2L − 1)M2
T parameters are required for the

description of this matrix. Adding up the number of required parameters,
we conclude that

2

(
M2

T −MT

2
+ (L− 1)MT

)

+ (2L− 1)M2
T = (4L− 2)M2

T −MT

distinct parameters are sufficient to describe the matrices S̄H
p S̄p, S̄H

q S̄q

and S̄H
p S̄q and therefore the PEP. Each of these parameters is a sum

of at most T elements 1/
√
MT or −1/

√
MT and can thus take on a

limited number of distinct values, typically in the order of T (in a rough
approximation). Thus a memory for a number of entries in the order

T (4L−2)M2
T −MT

is sufficient to store all error probabilities. We will call this strategy of
indexing the values for the PEP the indirect approach in contrast to the
direct approach which stores the full PEP table. The direct approach
requires a memory with

(
2MT T

)2
= 22MT T
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elements which is exponential in T . The indirect approach has removed
the exponential dependence on T but has introduced an exponential de-
pendence on L. The direct approach demands a memory that grows
exponentially in MT whereas the memory size of the indirect approach
grows exponentially in M2

T ! It should be emphasized here that the num-
ber of memory elements that is actually used in the indirect approach can
of course never exceed the number of elements in the full table. How-
ever, the indexing of the table can become increasingly complex for larger
values of MT and L. The indirect method is therefore more suited for
constellation design in systems with a single transmitter antenna whereas
the direct approach is preferable for MIMO systems when the problem
size grows large.

Two numerical examples highlight the different properties of these
methods: For a design with the parameters MT = 1, L = 2, T = 10,
the direct approach requires a memory with 220 = 210 · 210 ≈ 106

entries, the indirect approach a memory with 105 elements (where by
far not all spaces are filled, so a sparse memory organization can be
used). For MT = 2, L = 2, T = 6, the direct approach demands
a memory for 224 ≈ 1.6 × 107 entries that can be accessed directly,
but the memory organized using the indirect approach is accessed us-
ing (4L− 2)M2

T −MT = 22 parameters, leading to a potential address
space of about 622 ≈ 1.3 × 1017 elements when the rough approximation
above is used. Clearly, the memory organization becomes increasingly
difficult in the design for MIMO systems using the indirect approach!

3.2.3 Training-Based Schemes

A standard way of enabling the receiver to acquire channel state infor-
mation is via the use of a training block, i.e., the transmission of known
symbols via each antenna. Each signal matrix S is thereby partitioned
into a q × MT training block St common to all signal matrices and a
(T − q) ×MT data block Sd as in

S =

[
St

Sd

]

.

The resulting signal matrix S̄ according to (2.7) can then be partitioned
into

S̄ =

[
S̄t

S̄d

]

(3.6)
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where the training matrix S̄t with dimension q × LMT is completely
known to the receiver and the (T +L− 1− q)×LMT matrix S̄d contains
the unknown data symbols as well as some training symbols.

The design of the training block, i.e., its dimension q, its allocated
power and symbols in view of the design of the data matrix can be viewed
as a tradeoff of spending resources on either channel acquisition at the
receiver or protection of the data against errors. The word resources
can here be interpreted in at least two ways, either as “redundancy” or
“power.” In the interpretation of “redundancy,” it is assumed that a
standard error-correcting code for the data symbols is applied which uses
a redundant representation of the data which is designed such that a
distortion of the data, typically in the form of a limited number of bit
errors, can be corrected if the channel is known at the receiver. The train-
ing block can then be considered as additional pure redundancy used for
CSI acquisition at the receiver. A longer training block implies therefore
that a shorter error-correcting code with worse error correction properties
must be used. In other words, more redundancy allocated to training and
CSI acquisition implies reduced redundancy allocated to error protection
for the data symbols (and vice versa). Another interpretation of the word
“resource” is “power.” Too much power spent on training will result in
accurate CSI acquisition but not enough power for data in view of the
receiver noise. Too much power on data symbols can result in ineffective
data detection if the channel is not identified with sufficient accuracy (for
instance, two signal matrices S1 and −S1 cannot be distinguished at the
receiver in the absence of CSI).

The design of the training block is therefore an important issue
and has received some attention in the literature (see, e.g., [HH03]
for frequency-flat fading MIMO channels and [ATV02, VHHK01] for
frequency-selective SISO channels, see also [LS03]). It is a common be-
lief that the resulting training matrix S̄ should have orthogonal columns
because such a design minimizes the estimation error variance if a chan-
nel estimate based on the training matrix only is computed at the re-
ceiver. The discussion of the mentioned resource tradeoff understood as
power tradeoff is the basis of the capacity considerations as in [HH03]
and [ATV02]. Here, we take the viewpoint of trading redundancy op-
timized for CSI acquisition against redundancy for error protection and
compare our constellation design with schemes with large amount of re-
dundancy for training on one side compared to schemes with large amount
of redundancy in the representation of the data.

This tradeoff of power or redundancy allocated to data of CSI acqui-
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sition can also be studied under the assumptions of simplified receivers
compared to the ML or GLRT receivers presented in Section 2.5 and al-
lows more insight into the mentioned tradeoff of resources. We therefore
consider several receiver implementations:

• Scheme 1: CSI acquisition on training only, equalization
and hard detection. Similar to the partitioning of the signal
matrix into a training only and signal matrix, we also partition
the received signal matrix into Yt and Yd where Yt stems from
training only and obtain a channel estimate Ĥ in

Ĥ = (S̄H
t S̄t)

−1S̄H
t yt = S̄†

tYt.

The obtained channel estimate is then considered correct in a subse-
quent Viterbi equalization of the channel (implying a hard decision
on the received symbols) and subsequent detection of the data us-
ing binary decoding. The choice of channel estimate is in line with
the channel estimate in (2.12). In a different context, the MMSE
channel estimate is preferred, see Section 3.3.4.

• Scheme 2: Detection with perfect CSI, equalization and
hard detection. This receiver works similar as receiver 3.2.3 but
it is assumed that it has perfect CSI available. The comparison of
receiver 1 and 2 thereby allows the assessment of the impact that
erroneous CSI acquisition has on the detection performance.

• Scheme 3: Joint GLRT decoding. Here we consider the signal
matrix as one joint code and apply the receiver of Section 2.5.

All these receivers suitable for the separate training and data symbol de-
sign can be compared to the application of the GLRT receiver in combina-
tion with signal matrices explicitly designed for the unknown frequency-
selective channel.

3.2.4 Numerical Results

We will illustrate in this section the performance of constellations de-
signed for unknown channels with some simulation examples. The pre-
sentation is divided into two subsections: First, we study a standard SISO
system and compare our constellations with well-known error-correcting
codes extended by a training sequence which we vary in length to il-
lustrate the mentioned tradeoff in the allocation of redundancy. In the
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second part, we focus on multi-antenna systems and show among others
a comparison of our designed signal set with an extension of the well
known Alamouti scheme. Some final remarks summarize this section.

For a SISO system, we choose in our first example with significant re-
dundancy allocated to CSI acquisition the well known (15, 11) Hamming
code as standard error-correcting code which is extended with seven pi-
lot bits to obtain a (22, 11) code of rate R = 1/2. All three receiver
schemes mentioned in the previous section are evaluated. The perfor-
mance comparison between these three benchmark schemes and a de-
signed (22, 11) constellation using simulated annealing is illustrated in
Figure 3.2 in terms of codeword error rate (WER) vs. SNR. The chan-
nel is in all cases modeled as a normalized Rayleigh fading channel of
length L = 2 and with coefficients of equal power, that is, h = [h0 h1

]

with h ∼ CN (0, 1/LI2). We define the SNR for these and all following
performance simulations as

SNR =
1

Rσ2
(3.7)

where the rate factor R = log2 Z
T in the denominator of (3.7) assures

power normalization on the information bit. The design assumptions
for the (22, 11) constellations were matched to the simulation setup and
a design SNR of 13 dB was assumed. As can be observed in Figure
3.2, the designed (22, 11) constellation significantly outperforms the other
schemes, clearly illustrating the performance benefit of optimizing the
signal set. Besides this observation, it is interesting to note that Scheme 2
performs worse than Scheme 3. Note that Schemes 2 and 3 use exactly
the same overall code but in Scheme 3 the channel is not known at the
receiver. However, Scheme 3 uses optimal joint estimation, equalization
and soft decoding, while Scheme 2 employs separate equalization and
hard decoding. Hence, it appears that the gain of Scheme 2 over Scheme 1
due to the genie aided channel estimation is not as large as the gain of
Scheme 3 due to the joint channel estimation and soft decoding.

When comparing the different techniques, it should be noted that the
complexity of the schemes that use optimal joint decoding is the high-
est (Scheme 3 and the detection of the designed constellation), because
implementing the GLRT detector requires a search over 211 terms per
transmitted signal matrix. We also emphasize that it is in no way obvi-
ous how to exploit the structure of the Hamming code or the new signal
set to lower the decoding complexity when employing GLRT detection
over the investigated unknown channel, as desired here.



3.2 Design Based on a Preselected Symbol Alphabet 65

0 5 10 15 20
10

−4

10
−3

10
−2

10
−1

10
0

estimated channel, equalization, Hamming decoding
known channel, equalization, Hamming decoding
GLRT detection of  extended Hamming code
designed constellation

W
E
R

SNR [dB]

Figure 3.2: Performance comparison of the designed (22, 11) constel-
lation against three benchmark schemes operating on a Hamming code
with a pilot sequence extension resulting in a different overall (22, 11)
constellation.

In Figure 3.2 both the designed constellation and Scheme 3 use GLRT
detection, i.e., joint data detection and channel estimation. Hence the
difference in performance between them is due only to the different de-
signs of the signal matrices. Note however that the approach used in
Scheme 3 of concatenating separate coding and pilot bits was motivated
by Schemes 1 and 2. The performance gap between Scheme 3 and 1 and
to thereby illustrates the impact on the performance of separated versus
joint decoding.

When using joint decoding it can be argued that the overall code de-
fined by the concatenation of error-control code and training sequence is
poor from an error correction point of view because a large part of the
available redundancy is spent on the training signal and this redundancy
can therefore not be used to improve the error-correcting code, whereas
redundancy in the error-correcting code might be useful for channel es-
timation as well. In an attempt to find a better off-the-shelf code for
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use with optimal joint decoding and with insignificant separate training,
we utilize a Golay (23, 12) code [Bos98] extended with one known pilot
bit. This defines a (24, 12) rate 1/2 code and therefore an additional
benchmark scheme when used with the GLRT detector.

The reason for using a pilot bit, and not the traditional extension (an
additional parity bit) of the Golay (23, 12) code to a (24, 12) code, is that
in the traditional (24, 12) code (and also in the (23, 12) code) both the all
zeros and the all ones blocks are allowed codewords and hence, since the
code is linear, for each signal matrix in the code the pattern defined by
negating all bits is also a signal matrix. This means that the traditional
extension of the (23, 12) Golay code cannot be used with the optimal
joint decoder because this decoder cannot tell the difference between S̄
and −S̄ when both matrices correspond to signal matrices resulting in a
detectability problem. Adding one known pilot bit to the Golay (23, 12)
code is a straightforward means of resolving the ambiguity, and hence
make the resulting signaling scheme work over a channel with unknown
Rayleigh fading. It can also be interpreted as minimal possible training
given the preselected symbol alphabet.

Figure 3.3 illustrates the performance of the extended Golay code and
compares it with a (24, 12) design obtained using simulated annealing
The channel model is the same as the one used in Figure 3.2 as were the
design assumptions for the constellation. As can be seen the new set of
signals outperforms the extended Golay code. The gain is about 1.4 dB
in SNR at a WER of 10−2, and is hence comparable to the gain using
(22, 11) codes over Scheme 3 in Figure 3.2. Note that the computational
complexities in the detection of the extended Golay code and the obtained
(24, 12) design are the same. There is a significant difference in design
complexity however, but since the optimization is carried out off-line, this
is of minor practical importance.

Our design approach described in Section 3.2.1 can also be applied
to the design of signal sets supporting different rates for more than one
transmitter antenna. As mentioned in Section 3.2.2, the required memory
resources cannot be reduced as efficiently as in the SISO case and we
therefore have to restrict ourselves to rather short example designs.

For MT = 2 transmitter antennas, a performance comparison
of designed constellations of word length T = 6 with rates R =
1/3, 1/2, 2/3, 1, 4/3 is presented in Figure 3.4. In all simulations, we
assume a frequency-selective Rayleigh fading channel with L = 2 taps
between each transmitter and receiver antenna. All signal sets were de-
signed under the assumption of an SNR of 20dB and uncorrelated fading.
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Figure 3.3: Performance comparison of the designed (24, 12) constella-
tion against a Golay (23, 12) code concatenated with a known pilot bit.
Both schemes use joint ML decoding.

For simplicity, MR = 1 receiver antenna is assumed. As becomes clear
from Figure 3.4, it appears that it is more power-efficient to transmit
at lower rates than at higher rates for the given signal length T . For
example, the code with R = 1/2 has a gain of about 3.6 dB compared
to the code with R = 1 at a remaining word error rate (WER) of 10−3.
Moreover, it is apparent from the slope of the performance curves that
not all constellations are able to exploit full diversity. In fact, none of
the constellations satisfies the rank criterion (2.29) for full diversity per-
formance in Section 2.6, because T + L− 1 < 2LMT . Depending on the
number of signals in each constellation, this does not lead to significant
flattening of the performance curves for SNR less than 30 dB as in Figure
3.5.

In order to compare our scheme with a previously known approach, we
also construct a signal set based on the Alamouti scheme [Ala98] which
was originally conceived for two transmitter antennas over flat fading
channels that are known to the receiver. Concatenating two Alamouti
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Figure 3.4: Performance comparison for T = 6 over MT = 2 transmitter
antennas with variable rate R.

blocks of the form [
s1 s2
−s2 s1

]

with a training block of length 2 resulted in a constellation of rate R =
2/3. As becomes apparent from Figure 3.4, this constellation has inferior
performance compared to the one of the same rate which was designed
using simulated annealing.

Additional Remarks

The constellations presented in this section are the result of computer-
intensive searches using the simulated annealing optimization algorithm.
The constellations with T = 22 and T = 24 could only be designed using
the design complexity reduction method described in Section 3.2.2. A di-
rect approach computing and storing a table with (222)2 = 244 elements
was clearly not feasible whereas the indirect approach using a sparse table
organization did not exceed memory requirements on a standard worksta-
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tion with 256 MB RAM. In contrast, the indirect approach did not lead to
a memory reduction for systems with several transmitter antennas and
the design complexity therefore imposed a restriction to constellations
spanning only a small number of symbols. It is apparent that constella-
tions of high dimensions may be required for better performance when
the channel allows longer signals.

3.3 Constellations Based on General

Complex-Valued Symbols

In this section, we present a method to design signal sets that are opti-
mized for data transmission over unknown frequency-selective channels
without using any preselected symbol alphabet. The resulting signals are
thus built up from arbitrary complex-valued symbols subject to the power
constraint (3.2). The design criterion is, similar as in Section 3.2, based
on the union bound on decoding error. However, we use an approxima-
tion from [BV01] to determine approximate pairwise error probabilities.
This results in an objective function for the optimization which is sig-
nificantly easier to handle analytically, provides insight into conditions
on the signal set to allow maximum diversity gains and permits an easy
implementation of an optimization algorithm operating on continuous
variables.

3.3.1 Design Criterion and Search Space

In Section 2.6, the behavior of the PEP was analyzed for high SNR either
by means of the Chernoff upper bound or using asymptotic analysis. It
was found that for GLRT detection, the Chernoff upper bound and the
asymptotic approximation of the PEP behave essentially as

Pr(Sp → Sq) ≈ Pra(Sp → Sq) , σ2LMT MR V
|S̄H

p P⊥

S̄q
S̄p|MR

(3.8)

where the constant V summarizes factors independent of the elements
of the signal matrices Sp and Sq and differs dependent on the type of
analysis of the PEP. The expression in (3.8) is easily differentiable in the
consitutent symbols and therefore lends itself to numerical optimization
based on gradient methods in contrast to the exact expression for the PEP
used in Section 3.2. Replacing the PEP in (3.1) with its approximation
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for high SNR, we arrive after dropping constant factors independent of
the constellation design at the objective function

J(S) = J(S0, . . . ,SZ−1) ,
Z−1∑

p=0

Z−1∑

q = 0
p 6= q

1

|S̄H
p P⊥

S̄q
S̄p|MR

(3.9)

The advantage in analytical tractability is achieved at the expense of
generality. Whereas the optimization method in Section 3.3.2 can be ap-
plied in general for every receiver structure, channel correlation profile
and SNR as long as the PEP can be computed or approximated numer-
ically, the objective function in this section is based on the assumption
of high SNR, full rank channel correlation matrix (which decouples from
the objective function) and the application of the GLRT receiver. More-
over, for signal matrices with T < 2MT , the required rank criterion on
[S̄p S̄q] cannot be fulfilled which implies that (3.9) cannot be adopted as
objective function. Therefore, using (3.9) implies that these additional
assumptions must be satisfied.

3.3.2 Optimization

The goal of our constellation design is to find a set S = {S0, . . . ,SZ−1}
that minimizes (3.9) under the power constraint (3.2). This problem is
non-convex. We therefore apply a generic gradient-search type algorithm
to find an approximate solution.

In order to compute gradients with respect to complex-valued pa-
rameters, we define the complex differentiation operator for real-valued
functions with respect to a complex scalar z as

∂

∂z
,

1

2

(
∂

∂ℜ(z)
+ j

∂

∂ℑ(z)

)

. (3.10)

Moreover, let stm,k = [Sk]tm denote the complex symbol sent at time
instant t − 1 on antenna m in the signal matrix with index k. We can
then define the derivative ∂J/∂Sk of the scalar function J with respect
to the complex-valued matrix Sk as the matrix with elements

[
∂J

∂Sk

]

tm

,
∂J

∂stm,k
.

This gradient on the given cost function J is computed in Appendix 3.A.
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The gradient-search method consists now in iteratively approaching
a minimum of the objective function by improving a solution at step n

S
n = {Sn

0 , . . . ,S
n
Z−1}

by “moving” the parameters in Sk in the direction of maximum decreasing
objective function which is −∂J/∂Sk. Since the constellation will then
no longer satisfy the power constraint (3.2), a normalization is necessary
to reach the improved design

S
n+1 = {Sn+1

0 , . . . ,Sn+1
Z−1}

using

Sn+1
k =

√
TZ

Sn
k − µ ∂J

∂Sn
k

Z−1∑

k=0

∥
∥
∥
∥
Sn

k − µ
∂J

∂Sn
k

∥
∥
∥
∥

2
(3.11)

where the step size µ is chosen such that J(Sn+1) ≤ J(Sn).
The signal matrices Sk are parameterized here directly in the con-

stituent symbols. Alternative parameterizations exist which, e.g., impose
the structure of orthonormal columns with equal transmission power on
the signal matrices [ARU01]. Such a parameterization is motivated by
the result of [MH99, HM00] that for high SNR or T ≫ MT , these ma-
trices achieve capacity. Moreover, it was shown in [BV01] that such
matrices also minimize the asymptotic union bound on error probability
for ML detection if equal energy for all signals is required. The benefit
of a parameterization that imposes this structure lies in somewhat more
advantageous numerical properties in the optimization since the search
space is smaller and the design problem can be cast as an unconstrained
optimization problem. However, the capacity result is based on the as-
sumption that the channel is frequency-flat fading and we are not aware
of an extension to frequency-selective channels. Thus, we have no strin-
gent motivation to impose a constraint of equal energy signaling. We can
however show that optimal matrices with respect to the asymptotic union
bound have orthogonal columns, however not necessarily with equal en-
ergy.

Lemma 1 For any S = {S0, . . . ,SZ−1} with tr
(
SH

k Sk

)
= Ek, there

exists a set S̃ = {S̃0, . . . , S̃Z−1} with S̃H
k S̃k = Ek/MT IMT

and J(S̃) ≤
J(S).
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The proof is an extension of a similar derivation in [BV01] and presented
in Appendix 3.B.

This lemma shows that signals which are scaled unitary, i.e.,

SH
k Sk = Ek IMT

are optimal with respect to the objective function (3.9). In other words, it
is optimal with respect to asymptotic pairwise error probability to trans-
mit signals which are orthogonal between different antennas. However,
we cannot claim that each signal should transmit with the same power
(the quantity Ek depends on k). We could therefore just as well use a
parameterization as in [ARU01] together with a power parameter for each
signal matrix. However, this is again a constrained optimization prob-
lem and therefore no significant improvement compared with the direct
parameterization in the symbols. Still, it is interesting to note in how
far solutions obtained allowing variable transmit power per signal matrix
really differ in that respect (see Section 3.3.3).

The recursion in (3.11) is initialized either with a random S
0 or with

a set of matrices satisfying (S0
k)HS0

k = T/MT IMT
. The recursion is

stopped if the Kuhn-Tucker conditions (see [Fle91])

∂J

∂Sn
k

+ λSn
k = 0

are approximately satisfied for some λ > 0 jointly for all k. The con-
vergence can only be guaranteed to a local optimum which is dependent
on the initialization, so many optimization runs with different initializa-
tion values are performed, picking the best resulting constellation out of
the runs. The difference in final objective function value appeared to
be insignificant and independent on whether the recursion was initialized
with a random matrix constellation or a signal matrices with orthogonal
columns. The latter approach lead however to faster convergence.

3.3.3 Constellation Properties

It was pointed out in Section 2.3.3 that a system model with MT trans-
mitter antennas over a frequency-selective channel with L taps can be
considered equivalent to a system model with MTL transmitter antennas
over a flat channel whereMT (L−1) antennas transmit time-shifted copies
of the signals on the first MT antennas. The resulting signal matrix S̄
thus has the structure described in (2.7). As mentioned in Section 3.3.1,
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it was shown for flat-fading channels with L = 1 where no structure is
imposed on S̄ = S that the signal matrix S should have orthonormal
columns. We consider it interesting to compare in how far the analogy
described above influences the constellation design in our setup, i.e., in
how far the signal matrices designed for frequency-selective fading follow
the design rules for channels with frequency-flat fading. We therefore
define

κ̄ =
1

Z

Z−1∑

i=0

κ(S̄H
i S̄i)

where κ(S̄H S̄) denotes the condition number of S̄H S̄ with respect to the
spectral norm [HJ99]. Equivalently, κ(S̄H S̄) is the ratio of largest to
smallest eigenvalue of S̄H S̄. For unitary matrices S̄, all eigenvalues of
S̄H S̄ = IT+L−1 are equal leading to κ̄ = 1. The difference between κ̄ and
1 is thus a measure for how “close” the matrices S̄ are to being unitary
on average.

Moreover we are interested in the distribution of power between signal
matrices. Let

E = max
S∈S

tr
(
SHS

)
and e = min

S∈S

tr
(
SHS

)

denote the maximum and minimum power allocated by a signal matrix
of the chosen constellation. The quantity E/e describes in how far the
signal power is unevenly spread between signal matrices (which would be
signified by E/e = 1).

3.3.4 Evaluation

Single-Antenna Schemes with Optimized Training

It was claimed in [ATV02] with similar results in [VHHK01, MGO02,
HH03] that optimized training sequences allow coding schemes to capture
most of the available channel capacity, at least in the high SNR domain.
However, an argumentation based on capacity relies on infinite decoding
delay assumptions and is therefore not necessarily relevant in real-time
constrained systems. Nevertheless, the design rules given in [ATV02]
allow a well motivated choice of benchmark schemes in the comparison
with our designed codes.

Referring to the notation introduced in Section 3.2.3 for training-
based SISO schemes, we choose as training sequence length q = L, i.e.,
the minimum length if channel estimation is performed exclusively based
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on training. The resulting training matrix St should have orthonormal
columns according to [ATV02] which can be achieved by choosing as only
non-zero symbol s0 =

√

(2L− 1)ρt and s1 = s2 = · · · = sq−1 = 0 where
ρt is computed according to [ATV02] in order to optimize the power al-
location between training and data block. Note that in order to compare
a training-based design constructed in this way with signals designed by
our scheme, an additional power normalization is necessary since the for-
mulas in [ATV02] are normalized to give average signal matrix power
T +L−1, not T as in (3.2). Similar to the discussion in Section 3.2.3, we
consider a training-only based CSI acquisition followed by a detector us-
ing the acquired channel estimate as perfect as well as the joint decoder.
However, in agreement with [ATV02], the channel estimate is computed
as the MMSE estimate, not as the ML estimate.

• MMSE channel estimation followed by detection for per-
fect CSI. CSI acquisition in [ATV02] is performed using training-
only based minimum mean square error (MMSE) channel estima-
tion according to

ĥ = ChS̄
H
t (S̄tChS̄

H
t + σ2I)−1 yt.

This estimate is then applied in the detection of S̄d as

ˆ̄Sd = arg min
S̄d

‖yd − S̄dĥ‖2.

Note that this receiver requires knowledge of some channel charac-
teristics that are assumed to be E[h] = 0L×1 and E

[
hhH

]
= Ch.

Moreover, knowledge of σ2 is necessary. Note that the received sym-
bols as well as the channel are vectors because of the single-antenna
setup.

Moreover, joint GLRT detection is considered. Given these two receiver
schemes, we consider two different benchmark constellations (picked to
obtain constellations of rate R = 1/2).

• An extension of the well-known (7, 4) Hamming code in BPSK sig-
nals with a training block.

• An extension of the (23, 12) Golay code in BPSK signals with a
training sequence.

The training block in both schemes is optimized according to [ATV02]and
of length L. The simulation results in terms of WER vs. SNR are shown
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in Figures 3.5 and 3.6 for L = 1 and L = 3 in comparison to the extended
Hamming and Golay codes together with constellations specifically de-
signed for the scenario. We assume as earlier Rayleigh fading channel
coefficients h ∼ CN (0, 1/LI). Note that the slope of the WER curves in
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Figure 3.5: Performance comparison of constellations designed for L =
1 and L = 3 vs. extended Hamming code.

both Figures 3.5 and 3.6 indicates the value of L which shows the benefit
of multipath diversity. Our designed constellations clearly outperform
both training-based schemes for L = 3 whereas the gain appears to be
minor for the frequency-flat case L = 1. The gain is even more significant
when comparing our scheme to the training-based design using separate
channel estimation and decoding.

Some more results on SISO systems were obtained when comparing
with constellations designed by Hochwald et al. [HMR+00] which are
defined for both single-antenna as well as multi-antenna systems. We
will present the simulation results in comparison with these signal sets in
the following section.
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Figure 3.6: Performance comparison of constellations designed for L =
1 and L = 3 vs. extended Golay code.

Constellations for Unknown Channels

For flat fading Rayleigh channels, a design method to obtain a set of
signaling matrices was described by Hochwald et al. in [HMR+00] and
we will refer to these constellations as Hochwald constellations. All signal
matrices are generated by successively rotating an initial signal matrix
using diagonal unitary matrices. The initial signal matrix together with
the rotation matrix describe the constellation. We compare our design to
constellations with T = 8 and Z = 256 for MT = 1 and MT = 2 that were
also used as illustrative examples in [HMR+00]. All simulations assume
independently identically Rayleigh distributed channel parameters h with
covariance matrix Ch = ILMT

/L.

A WER performance comparison of the single antenna Hochwald con-
stellations with signal sets obtained using gradient search is given in Fig-
ure 3.7. It turns out that the WER performance difference between our
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scheme and the Hochwald constellation is negligible for the flat fading
case L = 1. This is radically different from the L = 3 case where the

10 15 20 25 30 35 40
10

−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

Hochwald constel., L=1
designed constel. with mismatch, L=1
designed constel., L=1
Hochwald constel., L=3
designed constel. with mismatch, L=3
designed constel., L=3

SNR [dB]

W
E
R

Figure 3.7: Performance comparison with Hochwald constellations for
MT = 1 and L = 1 and L = 3.

slope of the performance curve related to the Hochwald constellation flat-
tens out to have a slope corresponding to L = 1 at an SNR of about 25
dB. This behavior can be explained with the fact that the constellation
design was not oriented towards frequency-selective channels. In fact,
the constellation does not offer full multipath diversity over a frequency-
selective channel. The reason for this is that the signal matrices in the
Hochwald constellation do not always fulfill the criterion of full rank
Ci,j = [Si Sj ], see Section 2.6. As an example, the signals

Sc1
= [−1, 1,−1, 1,−1, 1,−1, 1]T

and
Sc0

= [1, 1, 1, 1, 1, 1, 1, 1]T
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result in a matrix [S̄c1
S̄c0

] which is rank-deficient for L = 3 preventing
the constellation from exploiting full diversity. We also investigated mis-
match between the design assumption on L in our scheme. The curves
annotated “designed constellations with mismatch” in Figure 3.7 refer
to the scenario of applying a constellation designed for L = 3 over a
channel with L = 1 and vice versa. It can be seen in Figure 3.7 that
the signal set designed for L = 1 offers full diversity gain L = 3 in the
case of mismatched channel length. There is however a loss of around 1
dB compared to the constellation with matched design. No significant
differences can be observed in the frequency-flat case L = 1.

The performance results for MT = 2 in terms of WER for the
Hochwald constellations as well as the signals set obtained using gra-
dient search are summarized in Figure 3.8. For L = 1 channel tap, the
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Figure 3.8: Performance comparison with Hochwald codes for MT = 2
over channels with L = 1 and L = 2.

code designed using gradient search performs ca. 1 dB better than the
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MT Z T L E/e κ̄
8 1 1.0000 1.0

24 9 2 1.0025 1.0079
10 3 1.0067 1.0113
11 4 1.0083 1.1159

1 24 1 1.0031 1.0
216 25 2 1.0476 1.0133

26 3 1.1445 1.0981
27 4 1.1592 1.1854
8 1 1.0031 1.0

28 8 3 1.0091 1.0827
8 1 1.0028 1.0

2 28 8 2 1.0236 1.3542
9 2 1.0116 1.1800

Table 3.1: Some characteristics of the designed constellations

Hochwald constellation. For L = 2 taps, the gain is ca. 1.4 dB, illustrat-
ing the superior performance obtained when using signal design matched
to the given scenario.

3.3.5 Characterization of the Obtained Constella-

tions

We have compared in this section signal sets found using gradient search
with several benchmark schemes. The gain between our scheme and the
benchmark schemes became particularly apparent for frequency-selective
(L > 1) channels in both single and multi antenna systems.

We investigated the properties of all designed constellations that we
have presented in this chapter using the two characteristic quantities
defined in Section 3.3.3. The results are given in Table 3.1. The larger
L, the larger the value for κ̄. We can conclude that the matrices S
are close to (but not exactly) unitary, and the stronger the influence
of the frequency-selective channel, i.e., the larger L, the less important
is orthogonality between columns in S. Although this effect is rather
small, it provides some insight into the nature of the signal design and
can possibly be exploited in future design approaches. We also note that
the power is not uniformly distributed among the signals. In particular,
the longer the channel, the higher the spread in power between different
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signal matrices leading to a similar conclusion that the design criteria
move away the further from orthogonal columns in S, the stronger the
influence of the frequency-selective characteristic of the channel is.

3.4 Comparison between Optimization Ap-

proaches

Having presented two design approaches to constellation design for un-
known frequency-selective channels, a comparison between the design
method in Section 3.2 and 3.3 is illustrative. Whereas the first approach
is restricted to a fixed symbol alphabet, the second approach allows arbi-
trary complex valued symbols (up to power constraint on the entire con-
stellation). The first design criterion is based on the exact union bound
which can be evaluated at any SNR, whereas the second approach aims
at optimizing an approximation of the union bound which is valid only in
the high SNR regime. The second approach imposes design requirements
on the signals such that full diversity performance is guaranteed. No
such requirements or guarantees apply for the first approach. Due to the
different character of the search space, different optimization methods
were used (simulated annealing and constrained gradient search). Com-
pared to suitable benchmark schemes, the resulting constellations showed
excellent detection error performance.

Both approaches suffered from design complexity problems for large
constellations, either in memory requirements for storing large tables
(approach 1) or in evaluating the objective function and its gradient (ap-
proach 2). The example constellations presented in this chapter with up
to 2048 or 4096 distinct signals were testing the limits of the available
computer hardware. Moreover, both design approaches resulted in con-
stellations that were unstructured in the sense that an optimal detection
required exhaustive search over all possibly transmitted signals. It is
therefore a general conclusion that it is highly desirable to investigate
constellations that reduce detection as well as design complexity while
maintaining excellent detection performance.

In order to compare both approaches in terms of the error perfor-
mance of the resulting code, we have chosen a scenario with L = 3 and
T = 10 to allow a comparison of both approaches with a standard scheme
based on the (7, 4) Hamming code. Since the search space of the first ap-
proach is restricted to BPSK symbols and therefore a subset of the search
space used in gradient search, we expect the constellation designed using



3.4 Comparison between Optimization Approaches 81

gradient search to perform at least as good as the constellation based on
BPSK, at least for high SNR. The results are shown in Figure 3.9. It

extended Hamming code, joint decoding
Approach 1: BPSK code symbols
Approach 2: complex valued code symbols
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R
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Figure 3.9: Comparison of the presented signal design approaches for
T = 10, MT = 1 and L = 3.

appears that in this chosen scenario, the constellation based on gradient
search performs about 0.5dB better than the constellation obtained us-
ing simulated annealing and around 1 dB better than the training-based
Hamming code (using optimized training according to [ATV02] and using
the joint decoder). It is a matter of further research to determine the-
oretically in how far the preselection of the symbol alphabet necessarily
implies losses.
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Appendix 3.A Derivation of the Gradient

Let A(θ) be a square invertible matrix dependent on a real parameter θ
and let ∂A/∂θ denote the matrix obtained from A by element-wise differ-
entiation. Then the following rules apply (see [Gra81] and e.g. [MN88]):

∂|A|
∂θ

= |A|tr
(
∂A

∂θ
A−1

)

∂

∂θ

1

|A|MR
= −MR

1

|A|MR
tr

(
∂A

∂θ
A−1

)

∂PA

∂θ
= P⊥

A

∂A

∂θ
A† + (. . . )

H

∂P⊥
A

∂θ
= −∂PA

∂θ

where the (. . . )
H

notation indicates the Hermitian transpose of the pre-
vious expression. Now let θk denote an arbitrary real parameter in the
signal matrix S̄k. Dropping the terms independent of θk, the derivative
of the cost function in (3.9) is

∂J

∂θk
=

∂

∂θk

∑

j 6=k

(

1

|S̄H
k P⊥

S̄j
S̄k|MR

+
1

|S̄H
j P⊥

S̄k
S̄j |MR

)

which leads to

∂J

∂θk
= −MR

∑

j 6=k

tr
([

∂
∂θk

(

S̄H
k P⊥

S̄j
S̄k

)]

(S̄H
k P⊥

S̄j
S̄k)−1

)

|S̄H
k P⊥

S̄j
S̄k|MR

−MR

∑

j 6=k

tr
([

∂
∂θk

(

S̄H
j P⊥

S̄k
S̄j

)]

(S̄H
j P⊥

S̄k
S̄j)

−1
)

|S̄H
j P⊥

S̄k
S̄j |MR

where

∂

∂θk
(S̄H

k P⊥
S̄j

S̄k) =

(
∂

∂θk
S̄H

k

)

P⊥
S̄j

S̄k + S̄H
k P⊥

S̄j

(
∂

∂θk
S̄k

)

∂

∂θk
(S̄H

j P⊥
S̄k

S̄j) = S̄H
j

(

(−P⊥
S̄k

(
∂

∂θk
S̄k

)

S̄†
k) + (. . . )

H

)

S̄j

Now the complex derivative with respect to stmk defined in (3.10) as
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scaled sum of the real derivatives turns out to be

∂

∂stmk
(S̄H

k P⊥
S̄j

S̄k) =

(
∂S̄H

k

∂stmk

)

P⊥
S̄j

S̄k

∂

∂stmk
(S̄H

j P⊥
S̄k

S̄j) = −S̄H
j S̄†H

k

(
∂S̄H

k

∂stmk

)

P⊥
S̄k

S̄j .

The derivative of the cost function J can then be expressed as

∂J

∂stmk
= −MR

∑

j 6=k

tr

((
∂S̄H

k

∂stmk

) P⊥
S̄j

S̄k(S̄H
k P⊥

S̄j
S̄k)−1

|S̄H
k P⊥

S̄j
S̄k|MR

)

+MR
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tr
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∂S̄H

k

∂stmk
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P⊥

S̄k
S̄j(S̄

H
j P⊥

S̄k
S̄j)

−1S̄H
j S̄H†

k

|S̄H
j P⊥

k S̄j |MR

)

.

Defining

Fjk =
P⊥

S̄j
S̄k(S̄H

k P⊥
S̄j

S̄k)−1

|S̄H
k P⊥

S̄j
S̄k|MR

,

this can also be written as

∂C

∂stmk
= −MR tr





(
∂S̄H

k

∂stmk

)
∑

j 6=k

(

Fjk − FkjS̄
H
j S̄†H

k

)





Note that ∂S̄H
k /∂stmk is a selection matrix in the sense that all rows have

at most one element equal to one and all other elements equal to zero. In
order to compute ∂C/∂stmk for all t,m, it is thus sufficient to compute

−MR

∑

j 6=k

(

Fjk − FkjS̄
H
j S̄†H

k

)

and add up the appropriate elements of this matrix to arrive at the desired
derivative.

Appendix 3.B Proof of Lemma 1

For all 0 ≤ k < Z let

SH
k Sk = ΨkΛkΨ

H
k
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with unitary Ψk and diagonal Λk with positive diagonal elements. The
power of the signal is

Ek = tr
(
SH

k Sk

)
= tr (Λk) .

Define the set S̃ = {S̃0, . . . , S̃Z−1} with

S̃k =

√

Ek

MT
SkΨkΛ

−1/2
k . (3.12)

Note that Sk and S̃k have the same power since

tr
(

S̃H
k S̃k

)

= tr
(√

Ek/MT IMT

√

Ek/MT

)

= Ek.

The ¯̃Sk associated with S̃k via (2.7) can then be written as

¯̃Sk = S̄k(IL ⊗
√

Ek/MT ΨkΛ
−1/2
k )

and it easily follows that

P⊥
¯̃
Sk

= IT+L−1 − ¯̃Sk(¯̃SH
k

¯̃Sk)−1 ¯̃SH
k = IT+L−1 − S̄k(S̄H

k S̄k)S̄H
k = P⊥

S̄k
.

The approximation of the PEP in (3.8) for the detection of ¯̃Sj when ¯̃Si

has been transmitted becomes

Pra(S̃i → S̃j) =
V (σ2)LMT MR

|¯̃SH
i P⊥

¯̃
Sj

¯̃Si|MR

=
V (σ2)LMT MR

|S̄H
i P⊥

S̄j
S̄i|MR |IL ⊗ Ei

MT
ΨH

i Λ−1
i Ψi|MR

=
V (σ2)LMT MR

|S̄H
i P⊥

S̄j
S̄i|MR | Ei

MT
Λ−1

i |LMR

≤ Pra(Si → Sj)

since
∣
∣
∣
∣

Ei

MT
Λ−1

i

∣
∣
∣
∣
=

(
Ei

MT

)M

|Λi|
≥ 1

because of the inequality of geometric and arithmetic mean. Applying
the transformation in (3.12) to all signal matrices S ∈ S will thus result
in a cost function value J(S̃) ≤ J(S). �



Chapter 4

Design in the Frequency

Domain

The approaches to signal design for communication over unknown
frequency-selective channels that were presented in Chapter 3 resulted
in constellations with excellent performance. However, these constella-
tions were unstructured in the sense that no suitable rule was imposed
on the signals that would allow detection with a complexity that is sig-
nificantly lower than exhaustive search. The signals were designed such
that the data influenced all symbols transmitted via all antennas and re-
quired a signal set of considerable size as well as detection algorithms of
high complexity. One way to decrease the complexity of the signal design
and potentially also the detection problem is to partition the transmitted
signal into parts that are (in some sense) independent of one another and
can therefore be coded independently. Since these partial coding prob-
lems are smaller in size, they require smaller signal sets and therefore
smaller design complexity.

A subdivision of the signal design problem leading to a simple detec-
tion algorithm is difficult to achieve directly in the time domain due to
the substructure in the equivalent signal matrix S̄ in (2.7). This substruc-
ture implies that most received symbols depend on symbols transmitted
in neighboring time intervals (an effect sometimes called “intersymbol
interference”), complicating the detection and signal design problem. A
standard way of overcoming this difficulty is the use of OFDM which effec-
tively transforms the frequency-selective channel into a set of orthogonal
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subchannels which can each be considered frequency-flat. Then, the sig-
nals received in each subchannel are not influenced by signals transmitted
in neighboring subchannels.

As might be expected, such an advantage does not come without a
drawback. Apparently, partitioning the signal design problem into small
subproblems which are solved independently implies a loss of design free-
dom. Therefore, the obtained signal sets have potentially worse perfor-
mance than signal sets operating over the entire signal block. Moreover,
the usage of suboptimal detection algorithms with lower complexity can
lead to a further loss in performance.

A main goal of this chapter is the investigation of this complexity-
performance tradeoff in the specific application of space–frequency dif-
ferential transmission. Based on the intuition that the channel gains on
neighboring subchannels are highly correlated, constellations designed
for differential space–time transmission are applied as differential space–
frequency constellations. The usage of these constellations thereby allows
the application of a detection algorithm which no longer requires a com-
plexity that grows exponentially with the size of the signal block. The
parametric description of the channel model is exploited for a perfor-
mance analysis and a sufficient criterion for full diversity performance
is derived. Numerical examples confirm our theoretical results concern-
ing the exploitation of diversity and provide a comparison with different
signaling methods that require higher detection complexity.

The remainder of this chapter is organized as follows. After a short
review of the data model in Section 4.1, we describe two concepts re-
quired for our presentation of space–frequency transmission. First, the
idea in [BB04] of forming equivalent space–frequency signal matrices with
orthonormal columns is presented. Second, the standard theory of dif-
ferential space–time differential transmission is reviewed in Section 4.2.
Both concepts are combined in our presentation of space–frequency differ-
ential transmission that we discuss in detail in Section 4.3. Then, an error
analysis in Section 4.4 results in the derivation of a sufficient criterion for
full diversity performance if low-complexity differential detection is ap-
plied. Numerical performance results in Section 4.5 illustrate the value
of this criterion and provide a comparison to other signaling approaches
operating in the frequency domain before we conclude in Section 4.6.
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4.1 Data Model

As mentioned in Section 2.4, the data model for the OFDM system
with N carriers over a channel with L matrix-valued channel taps
H0, . . . ,HL−1 can be summarized (see (2.9)) as

Y = [S DNS . . . DL−1
N S]






H0

...
HL−1




+ W

where the element {S}n,m describes the symbol transmitted over sub-
carrier n − 1 on antenna m, the elements of Y and W are the re-
ceived symbols and noise, respectively on the respective subcarrier and
DN = diag{e−j 2π

N
k}N−1

k=0 is the frequency-domain equivalent of a cyclic
shift matrix. This model is equivalent to transmitting via P = LMT “vir-
tual” antennas the N × P equivalent signal matrix (or pseudocodeword
matrix in [BB04])

GN,L(S) , [S DNS . . . DL−1
N S] (4.1)

over the P ×MR frequency-flat channel

H , [HT
0 . . .HT

L−1]
T

resulting in
Y = GN,L(S)H + W. (4.2)

The model in (4.2) illustrates the analogy between space–time and space–
frequency coding. The pseudocodeword GN,L(S) in space–frequency cod-
ing assumes the role of the signaling matrix S̄ in space–time coding and
is its frequency-domain counterpart when using OFDM. Similar to the
equivalent signal matrix S̄ in the time domain, there is a structural con-
straint on GN,L(S) in (4.1), preventing the direct application of signal
design approaches that were conceived for space–time transmission over
frequency-flat fading channels.

Still, the analogy of the system model in (4.2) has been exploited
to motivate signal design in the frequency-selective case based on con-
structions for frequency-flat channels. If the channel is frequency-flat
and constant during the transmission of the entire signal matrix but
changes to an independent realization for each codeword, it was argued
in [HM00,MH99] based on capacity considerations that the signaling ma-
trices for space–time transmission limited by a power constraint should
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be scaled unitary, i.e., have orthonormal columns. This property was sub-
sequently imposed during the design of signaling matrices in [HMR+00]
that can be summarized as

Sk = ΘkS0 (4.3)

where Θ is an N ×N diagonal matrix satisfying ΘHΘ = I and S0 (and
therefore all Sk) satisfy SH

k Sk = N/MT IMT
. The diagonal elements of

Θ and the design of S0 determine the entire constellation. Using these
signals in a frequency-selective context, it is apparent that

GN,L(Sk) = ΘkGN,L(S0)

because the diagonal matrices Θk and DN commute when inserting (4.3)
into (4.1). The columns of the equivalent signal matrix GN,L(S) are in
general not orthonormal because it is not guaranteed that GN,L(S0) has
orthonormal columns if S0 does. Still, for a specific choice of S0, this
property can be assured. Define the N×N Fourier transform matrix FN

with elements

{FN}p,q =
1√
N

exp

(

−j 2π

N
(p− 1)(q − 1)

)

(4.4)

and let its k-th column vector be denoted as fk. The matrix FN is unitary,
i.e., FH

NFN = I. Moreover, we have the property

DN fk = fk+1

which is exploited in the following choice of S0. Setting

S0 =

√

T

MT
[f1 f1+L . . . f(MT −1)L]

the matrix GN,L(S0) contains LMT scaled distinct column vectors of F.
Since F is unitary, GN,L(S0) has orthogonal columns. This construction
was exploited in [BB04] to design constellations for frequency-selective
channels unknown to the receiver in the form of (4.3), i.e., the matrix
Θ was determined for some example values of the parameters Z, N , MT

and L. The section of differential space–frequency transmission makes
use of a similar construction in order to exploit the analogy to space–
time differential transmission over frequency-flat channels.

It is important to note that the restriction to signals with orthonormal
columns is, similar as in the design approach in the time domain, not
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strictly motivated by capacity considerations. However, it was noted
earlier that for signals that satisfy this constraint, the ML and GLRT
receiver coincide and can be written in rather simple form. Moreover,
performance analysis is somewhat simplified (see [BB04]). Therefore,
constructions restricted to this constraint will be considered here.

4.2 A Short Review of Differential Space–

Time Transmission

Differential transmission is a standard approach if accurate estimation
of the channel at the receiver may require an intolerable amount of
training symbols or may be infeasible because the channel fading is
too fast. Differential coding [Pro95] is a well-known method for single–
input single–output frequency-flat channels in this scenario and has been
generalized to multiple–input multiple–output (MIMO) channels in e.g.,
[HS00, Hug00] allowing the exploitation of space diversity. The general
idea of space–time differential transmission in flat Rayleigh fading can
be summarized as follows [HS00]: Assume that two MT × MT signal
blocks Sk−1 and Sk are transmitted through the same channel H̃ (which
is unknown to the receiver) resulting in the data model

Yk−1 = Sk−1H̃ + Wk−1

Yk = SkH̃ + Wk.

which can just as well be understood as the reception of signals in the
combined matrix Y = [YT

k−1Y
T
k ]T as a result of transmitting the signal

S = [ST
k−1S

T
k ]T . Note that the subscript here indicates the sequential

order of the two matrices, not their index in the signaling alphabet. As
mentioned before, in Rayleigh flat fading the signal matrix should have
orthonormal columns, i.e., SHS = 2IMT

which is most easily satisfied if
SH

k Sk = SH
k−1Sk−1 = I (see also [HS00]). The GLRT receiver (as well as

the ML receiver if i.i.d. fading is assumed) reduces then to

(Ŝk−1, Ŝk) = arg max
S

‖PSY‖2
F

= arg max
Sk−1,Sk

tr
(
YH

k−1Sk−1S
H
k Yk + YH

k SkS
H
k−1Yk−1

)
.

(4.5)

The decision variable of this receiver depends on the signaling matrices
only via the product Sk−1S

H
k , i.e., the same value is assumed if both
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Sk−1 and SH
k are multiplied by an arbitrary unitary matrix. Therefore,

it can just as well be assumed that the matrix

S · SH
k−1 =

[
Sk−1

Sk

]

SH
k−1 =

[
I

SkS
H
k−1

]

was transmitted. In other words, only data encoded in the product
SkS

H
k−1 can be detected at the receiver. This motivates the “fundamental

differential transmission equation” [HS00]

Sk = VkSk−1

where the data to be transmitted is encoded in the unitary matrix Vk.
After initializing this recursion with some arbitrary unitary S0 and trans-
mitting the resulting signal matrices S0, . . . ,Sk, any two subsequently
received matrices Yk and Yk−1 can be used to detect Vk.

An alternative derivation starting from

Yk−1 = Sk−1H̃ + Wk−1 (4.6)

Yk = VkSk−1H̃ + Wk. (4.7)

replaces Sk−1H = Yk−1 − Wk−1 from (4.6) in (4.7) leading to

Yk = VkYk−1 + VkWk−1 + Wk

which motivates the detector

V̂k = arg min
Vk

‖Yk − VkYk−1‖2

= arg max
Vk

tr
(
YH

k VkYk−1 + YH
k−1V

H
k Yk

)
(4.8)

which coincides with (4.5). Note that the derivation of these receivers is
based on the assumption of constant channel H̃ during the transmission
of the signal matrices Sk−1 and Sk if Vk is detected. For the detec-
tion of the data encoded in the following block Vk+1, according to (4.8),
constant channel during the transmission of Sk and Sk+1 is required.
Together with the assumptions used in the detection of Vk, a constant
channel during the transmission of Sk−1 to Sk+1 is required. Continuing
this recursion, constant channel during the transmission of all signal ma-
trices is assumed. However, if the channel is constant for a long period
of time, it might also be reasonable to estimate it which in turn would
imply a different transmission strategy. A very interesting application of
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differential transmission is therefore the case where H is only approxi-
mately constant during the transmission of two signal matrices. Loosely
speaking, the channel should be “constant enough” to allow simple differ-
ential detection but not “too constant” such that it would be beneficial
to estimate it. This notion is the basis for our derivation of differential
space–frequency transmission.

4.3 Differential Space–Frequency Transmis-

sion

If the channel is frequency-selective and OFDM is applied, coding
over different OFDM subcarriers and antennas was proposed in, e.g.,
[WY02,MTL03], to allow the exploitation of additional frequency diver-
sity, while differential coding in time over consecutive OFDM blocks is
used to eliminate the need for channel estimation at the receiver. In
contrast, we propose in the present section to use differential modula-
tion in frequency within a single OFDM block based on the assumption
that the complex-valued channel gains of neighboring OFDM subcarriers
are highly correlated. We thereby generalize single-antenna differential
modulation in the frequency domain [Lot99] to systems with multiple
transmitter antennas. The advantage of this method is that the need for
explicit channel estimation is removed within a single OFDM block. It
can therefore also be used in the context of noncoherent MIMO-OFDM
as in [BB04].

Differential modulation over space and frequency was also investigated
in [LS01] in combination with a decision-feedback receiver. Moreover, the
idea of coding differentially in frequency was presented in [Mar03]. We
note however that neither [LS01] nor [Mar03] provides analytical criteria
that can be employed in the design process to guarantee the exploitation
of full space and frequency diversity. The introduction of such criteria
is one main contribution of the present section. We also demonstrate
the existence in some cases of an error floor at high SNR’s which can be
avoided by satisfying the mentioned criteria for full diversity performance.

4.3.1 Partitioning the Signal Matrix

Similar as space–time differential transmission can be thought of as split-
ting up a large signal block into smaller pieces that experience piece-
wise constant channel, we investigate the implications of splitting up the
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space–frequency signal matrix into subblocks which experience at least
approximately constant channel between two subsequent subblocks such
that differential coding can be employed. A main contribution is an
analysis concerning the resulting diversity order, explicitly taking into
account effects of channel fading in the frequency-selective channel.

Assuming that the number of carriers N is an integer multiple of
P = LMT , i.e., N = BP , we partition S into B subblocks S0, . . . ,SB−1.
Each subblock contains P rows of S, i.e., the a subblock contains the
symbols transmitted on P subcarriers via all antennas. Let sT

n denote
row n of S, i.e., the symbols transmitted on subcarrier n. Let the P×MT

matrix Sk consist of equispaced rows of S spread over the whole frequency
band, i.e.,

Sk = [sk sk+B . . . sk+(P−1)B]T .

This grouping of subcarriers effectively distributes the subcarriers within
each block over the allocated signal bandwidth, see an example in Fig-
ure 4.1.

0 1 2 0 1 2 0 1 2 0 1 2

0 3 6 9 carrier index

group index

Figure 4.1: Example for the choice of subcarriers within each block for
N = 12 subcarriers and P = LMT = 4 leading to B = 3 groups with
four subcarriers each.

Note that subsequent Sk,Sk+1 contain the symbols transmitted on
adjacent subcarriers. Any matrix Sk can now be associated with the
corresponding selection of rows in GN,L(S), i.e.,

Gk = [gk gk+B . . . gk+(P−1)B]
T

where

gT
k = [sT

k e−j 2π
N

ksT
k e−j 2π

N
2ksT

k . . . e−j 2π
N

(L−1)ksT
k ].

Now the stacked P × P matrix Gk can be written as

Gk = [Sk DP Sk . . . DL−1
P Sk]

·
(

diag
{

e−j 2π
N

kl
}L−1

l=0
⊗ IMT

)

.
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For an arbitrary choice of Sk, the resulting matrix Gk is in general not
unitary as desired in [HS00]. However, when choosing

Sk =
√
LΦk[f1 f1+L . . . f(MT −1)L]ej

π(L−1)
N

k (4.9)

where Φk is diagonal unitary and fk is here the k-th column of a P × P
Fourier transform matrix FP , we obtain the scaled unitary matrix

Gk =
√
LΦkUP (diag{e−j 2π

N
kl}L−1

l=0 ⊗ IMT
)ej

π(L−1)
N

k. (4.10)

Here, UP is column permuted version of FP and therefore also unitary.

The role of the factor ej
π(L−1)

N
k will become clear in the next section

related to encoding and decoding. The factor
√
L assures energy normal-

ization such that tr
(
SH

k Sk

)
= P = LMT .

4.3.2 Encoding and Detection

The received symbols on the subcarriers related to Gk and Gk−1 can be
written as

Yk−1 = Gk−1H + Wk−1 (4.11)

Yk = GkH + Wk. (4.12)

where Yk and Wk are the matrix block-partitions of Y and W, respec-
tively, which are related to Gk that in turn depends on Sk in (4.9) and
therefore on the diagonal unitary matrix Φk. The channel H is the same
as in (4.2).

In order to allow decoding without any knowledge of the channel H,
we apply differential encoding of the data symbol Vk in

Φk = VkΦk−1 (4.13)

with initialization Φ0 = IP .
At the receiver side, replacing H in (4.12) with G−1

k−1(Yk−1 −Wk−1)
yields

Yk = GkG
−1
k−1(Yk−1 − Wk−1) + Wk. (4.14)

Now using (4.10) we can rewrite

GkG
−1
k−1 = Φk UP

(

diag
{

e−j 2π
N (l−L−1

2 )
}L−1

l=0
⊗ IMT

)

UH
P

︸ ︷︷ ︸

, E

ΦH
k−1 (4.15)
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and reformulate (4.14) as

Yk = ΦkEΦH
k−1Yk−1 + Wk − ΦkEΦH

k−1Wk−1 (4.16)

The appearance of the matrix E in (4.16) is central to our analysis of
the differential modulation scheme in the sense that it captures explicitly
the effects of channel correlation on adjacent subcarriers. This is in con-
trast to the assumption of constant H between two subblocks in [HS00] in
the context of analyzing space–time differential modulation. Note how-
ever that for L = 1, i.e., a frequency-flat channel, we have E = IP and a
setup equivalent to the one in [HS00] results, indicating that our general
framework directly includes this special case.

The key observation now is that for N ≫ L, the arguments of the
eigenvalues of E are small and therefore E is “close” to the identity
matrix. In most practical systems, the number of subcarriers is much
larger than the number of channel taps and therefore N ≫ L is satisfied.
We therefore extend (4.16) to

Yk = ΦkΦ
H
k−1Yk−1 + Φk(E − I)ΦH

k−1Yk−1 + Wk

= VkYk−1 + Φk(E − I)ΦH
k−1Yk−1 + Wk, (4.17)

and apply the decoder

V̂k = arg min
V

‖Yk − VYk−1‖2 (4.18)

similar to the decoder in space–time differential transmission in [HS00].
Note that the detection of the entire sequence of V as in [LLK03,SL02]
is also possible. In the subsequent discussion, we will however use the
decoder (4.18).

The observation that a matrix E which is close to the identity ma-
trix implies a standard setup with approximately constant H is also the

motivation for the factor ej
π(L−1)

N
k in (4.9). This factor minimizes the

maximum arguments of the complex-valued eigenvalues of E, i.e., the
eigenvalues of E are as close as possible to one.

4.4 Performance Analysis

In order to study the performance of the detector in (4.18), we investigate
the pairwise error probability (PEP) similar to the analysis in Section 2.6.
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The PEP computing a value in (4.18) in favor of the wrong signal matrix
Ve when Vc was transmitted can be written as

Pr(Vc → Ve) = Pr
(
‖Yk−VcYk−1‖2>‖Yk−VeYk−1‖2

)
(4.19)

conditioned on the transmission of Vc. We have the following

Lemma 2 If the matrix A = (I−VH
c Ve)E+EH(I−VH

c Ve)
H is positive

definite, full diversity performance is achieved. If A has positive and
negative eigenvalues, the PEP is bounded away from zero as σ2 → 0.

Proof: See Appendix 4.A.
This lemma is the extension to space–frequency differential transmis-

sion of the statement that full diversity is exploited in flat Rayleigh fading
channels if |(Vc − Ve)

H(Vc − Ve)| = |2I − VH
c Ve − VH

e Vc| > 0 which
is equivalent to the statement in Lemma 2 for E = I. The properties
of E determine therefore in how far the varying channel influences the
diversity performance of the used signal constellations.

An immediate conclusion of Lemma 2 is thus that it is a sufficient
criterion to check full diversity performance if λmin, defined as the min-
imum eigenvalue among all A dependent on different signal matrices, is
positive. Conversely, λmin < 0 corresponds to the existence of an error
floor.

A particular special case is the usage of the constellations designed
for flat Rayleigh fading channel. In [HS00], a set of signaling matrices
which can be considered as a cyclic group was presented constructing
all matrices Vk and therefore Φk as matrix multiples of a “generator”
matrix Θ in

Φk ∈ {Θn}Z−1
n=0

where

Θ = diag
{

e−j 2π
Z

qk

}P

k=1
, qk ∈ {0, . . . , Z − 1}

with constellation parameters q1, . . . , qP and size Z. An important group
property here is the fact that for any two matrices within the constella-
tion, the product of these matrices is again within the constellation. In
other words, the signal set is closed under matrix multiplication. Thus,
the signals generated in the fundamental differential transmission equa-
tion (4.13) never leave the set. Moreover, an evaluation of Lemma 2
for all distinct Vc and Ve can be reduced to an evaluation in the single
matrix VH

c Ve which is again within the set. If the signal matrices are
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constructed in this way, the minimum eigenvalue of A in Lemma 2 in the
the frequency-flat case E = IP results in

λmin = min
k∈{1,...,P}

min
n∈{1,...,Z−1}

2 − e−j 2π
Z

qkn − ej 2π
Z

qkn

= min
k∈{1,...,P}

min
n∈{1,...,Z−1}

4 sin2
( π

Z
qkn
)

(4.20)

which means that the qk have to be chosen such that qk > 0 and Z
are relatively prime in order to guarantee λmin > 0 and therefore full
diversity performance. This condition was mentioned in [HS00] and used
in the search for good constellation parameters.

It is now of special interest if a constellation designed to obtain full
diversity performance in differential space–time transmission is guaran-
teed to do so when operating in space–frequency transmission over a
frequency-selective channel. The following lemma is helpful for this prob-
lem relating the length of the channel, the number of carriers and the size
of signaling codebook.

Lemma 3 A constellation with parameters qk, k = 1, . . . , P leading to a
scheme with full diversity performance in the frequency-flat channel will
exploit full space–frequency diversity in a frequency-selective channel if

sin2
( π

Z

)

> 2 sin

(
π(L− 1)

2N

)

. (4.21)

Proof: We establish the above lemma using Theorem 6.3.2 in [HJ99] on
eigenvalue perturbation using the spectral norm [HJ99, Section 5.6.6]

‖X‖S , max{
√
λ : λ is an eigenvalue of XHX}.

We know that for any eigenvalue λk of

A = 2I − VH
e Vc − VH

c Ve

+ (I − VH
e Vc)(E − I) + (E − I)H(I − VH

c Ve)

there exists an eigenvalue λ̃i of 2I − VH
e Vc − VH

c Ve such that

|λk − λ̃i| ≤ ‖(I −VH
e Vc)(E−I)+(E−I)H(I−VH

c Ve)‖S

≤ 2‖E − I‖S ‖I − VH
e Vc‖S

≤ 8 sin

(
π(L− 1)

2N

)
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because ‖I − VH
e Vc‖S ≤ 2 and ‖E − I‖S < 2 sin

(
π(L−1)

2N

)

. Now since

we assume full diversity performance in the frequency-flat channel, we
have that λ̃i ≥ 4 sin2(π/Z) (see (4.20)) and it follows immediately that
λk > 0 if

4 sin2
( π

Z

)

> 8 sin

(
π(L− 1)

2N

)

. �

The factor (L−1)/N describes the impact of the frequency-selective chan-
nel. The smaller the number of taps for a given number of carriers, the
less pronounced are the effects of variations in the channel coefficients
for adjacent carriers. In other words, the correlation of channel gains of
adjacent carriers is higher and therefore the assumption of constant chan-
nel when decoding two subsequent codewords is more and more justified.
On the other hand, if (L− 1)/N becomes large, channel gain correlation
decreases and the channel varies significantly between two adjacent car-
riers. An apparent interpretation of Lemma 3 is that if the constellation
elements e−j 2π

Z
qkn are significantly far apart, i.e., Z is sufficiently small,

the constellation design has inherent redundancy to cope with the vari-
ation of channel coefficients and therefore full diversity performance can
still be achieved.

4.5 Numerical Results

We are interested in the behavior of λmin to predict the constellation
performance for different values of N and L. An illustration of λmin is
presented in Figure 4.2 when using the corresponding signal sets of [HS00,
Table I] with rate one. We expect an error floor because of λmin < 0 for
N ≤ 12 and L = 3, for N ≤ 20 and L = 4 as well as for N ≤ 50 for L = 5.
For L = 4 and MT = 1, computed values of the error floor (using the
union upper bound) are presented in Figure 4.3 together with simulation
results in terms of symbol error rate (SER) vs. SNR 1/σ2, confirming a
very good agreement between numerical and theoretical results.

In particular, no error floor results for N ≥ 24. An example for the
exploitation of full space and frequency diversity is presented in Figure 4.4
for three combinations of taps L and transmitter antennasMT . The slope
of all curves indicates the diversity order of P = LMT = 4. The receiver
performance is slightly worse in the case MT = 1, L = 4 because the error
implied in the approximation E ≈ I in the receiver is larger than in the
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Figure 4.2: Minimum eigenvalue of all A dependent on the number of
subcarriers N for L = 3, L = 4 and L = 5 where MT = 1.

case MT = 2, L = 2 and MT = 4, L = 1. Note that the difference in
receiver performance in the latter two cases is insignificant.

One of the main motivations for the application of space–frequency
differential transmission was the reduced complexity both in detection
as well as in signal design compared to alternative approaches similar
to the ones described in Chapter 3. It is therefore beneficial to evaluate
“the price” of this reduced complexity in terms of detection performance.
Two alternative schemes are considered. In [BB04], a constellation de-
sign for comparatively small signal sets and restricted choice of N , L and
MT is presented which is structured in the design of the signal set but
requires exhaustive search in the detection. As a second alternative, we
applied the constrained gradient search algorithm presented in Chapter 3
on the design of space–frequency constellations. For Z = 64, N = 8 and
MT = 1 and L = 2, performance evaluations of the mentioned scheme
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Figure 4.3: Simulation results assuming MR = MT = 1 and L = 4
illustrating the error floor when N is small.

together with the differential transmission are presented in Figure 4.5.
Whereas the “noncoherent space-frequency codes” presented in [BB04]
and the unstructured constellation designed using gradient search per-
form practically identical, the differential transmission scheme with the
low-complexity detector in (4.18) incurs a loss of about 4.5 dB at a re-
maining word error rate (i.e., of the entire block) of 10−2 when compared
to the alternative schemes. Note that with the mentioned parameters,
each OFDM block is encoded using four 2 × 2 diagonal matrices. Using
joint detection of all four subblocks instead of using (4.18) reduces the
performance gap to about 1.2 dB. This loss is therefore solely due to the
highly structured signal design used in differential transmission whereas
the additional 3.3 dB performance is caused by the low-complexity de-
tector.
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Figure 4.4: Simulation results for three combinations of frequency and
transmitter diversity of combined order P = 4. N = 64 subcarriers and
MR = 1 antenna were assumed with N ≫ L.

4.6 Conclusions

We have investigated space–frequency differential transmission as a low-
complexity scheme for communication over unknown frequency-selective
channels. Based on the intuition that the unknown channel is approxi-
mately constant on adjacent subcarriers, we employed diagonal matrices
designed for space–time differential transmission in order to code dif-
ferentially in space and frequency using scaled unitary equivalent signal
matrices. A performance analysis of this transmission scheme revealed
the possibility of an error floor if the assumption of approximately con-
stant channel on adjacent subcarriers was not met. A sufficient criterion
that guarantees the absence of an error floor as well as full diversity
performance for a specific type of constellations was also derived.

In an example where two alternative signaling schemes based on much
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Figure 4.5: Comparison of four different signaling and detection
schemes.

higher design as well as required detection complexity were available, the
performance penalty incurred by differential space–frequency transmis-
sion with low complexity detection was significant. The expected tradeoff
complexity vs. performance therefore appears inevitable.
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Appendix 4.A Proof of Lemma 2

We first rewrite (4.11) and (4.12) as

yk−1 = G̃k−1h + wk−1

yk = G̃kh + wk

where the vectors yk−1, yk, h, wk−1 and wk contain the stacked columns
of Yk−1, Yk, H, Wk−1 and Wk, respectively and G̃k−1 , IMR

⊗ Gk−1

as well as G̃k , IMR
⊗ Gk. The PEP can now be expressed as

Pr(Λ(yk,yk−1,Vc,Ve) > 0)

where

Λ(yk,yk−1,Vc,Ve)

, ln
exp(‖yk − (IMR

⊗ Vc)yk−1‖2)

exp(‖yk − (IMR
⊗ Ve)yk−1‖2)

=
(
yH

k yH
k−1

)
(

0 I ⊗ (Ve − Vc)
I ⊗ (Ve − Vc)

H 0

)(
yk

yk−1

)

.

Similar to the analysis in Section 2.6, we can express the PEP as

Pr(Vc → Ve) = Pr
(∑

λkχ
2
k > 0

)

(4.22)

where λk are the eigenvalues of

(
0 I ⊗ (Ve − Vc)

I ⊗ (Ve − Vc)
H 0

)

Cy (4.23)

with

Cy =

(
G̃k

G̃k−1

)

Ch

(

G̃H
k G̃H

k−1

)

+ σ2I. (4.24)

These eigenvalues can be computed in order to evaluate the PEP using
numerical integration. Since the behavior of these eigenvalues is of par-
ticular importance for the high SNR case, i.e., σ2 → 0, we use a modified
lemma from [BV01]. Given three matrices A,B and C of compatible
dimension and with invertible BA, the eigenvalues of AB + σ2C are ar-
bitrarily close to the eigenvalues of BA and σ2C(I − A(BA)−1B) for
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σ2 → 0. Identifying

A =

(
0 I ⊗ (Ve − Vc)

I ⊗ (Ve − Vc)
H 0

)(
G̃k

G̃k−1

)

Ch

B =
(

G̃H
k G̃H

k−1

)

C =

(
0 I ⊗ (Ve − Vc)

I ⊗ (Ve − Vc)
H 0

)

we can therefore conclude that the eigenvalues of (4.23) approach the
eigenvalues of

(

G̃H
k G̃H

k−1

)( 0 I ⊗ (Ve − Vc)
I ⊗ (Ve − Vc)

H 0

)(
G̃k

G̃k−1

)

Ch

which can also be rewritten as

(I ⊗ (GH
k (Ve − Vc)Gk−1 + GH

k−1(Ve − Vc)
HGk))Ch (4.25)

and σ2C(I − A(BA)−1B. If (4.25) is indefinite, i.e. has positive and
negative eigenvalues, the PEP in (4.22) can be approximated for σ2 → 0
using only the eigenvalues of (4.25) which do not dependend on σ2. Since
both positive and negative eigenvalues are assumed, the high SNR ap-
proximation of the PEP results in a constant value larger than zero, i.e.,
an error floor is obtained.

If the eigenvalues of (4.25) are all negative, it is clear that the eigenval-
ues of (4.23) can be upperbounded by σ2λmax where λmax is the maximum
eigenvalue of C(I − A(BA)−1B. Thus the matrix

I − s

(
0 I ⊗ (Ve − Vc)

I ⊗ (Ve − Vc)
H 0

)

Cy

is positive definite for s < σ−2/λmax. Then a Chernoff bound analysis
along the lines in Section 2.6.3 shows that

Pr(Vc → Ve) =
1

∣
∣
∣
∣
I − s

(
0 I ⊗ (Ve − Vc)

I ⊗ (Ve − Vc)
H 0

)

Cy

∣
∣
∣
∣

Choosing s = σ−2/(2λmax) we obtain that

Pr(Vc → Ve) = (σ2)LMT MRQ(Vc,Ve, σ
2)
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where

lim
σ2→0

Q(Vc,Ve, σ
2)

=
(2λmax)

2LMT MR

∣
∣(I ⊗ (GH

k (Vc − Ve)Gk−1 + GH
k−1(Vc − Ve)HGk))

∣
∣ |Ch|

showing that we obtain full diversity performance under the condition
that (4.25) is negative definite.

We can simplify this condition by noting that (4.25) is negative def-
inite if (GH

k (Ve − Vc)Gk−1 + GH
k−1(Ve − Vc)

HGk) is negative defi-

nite which is equivalent to the statement that (Vc − Ve)Gk−1G
H
k +

GkG
H
k−1(Vc − Ve)

H is positive definite. Using (4.15), this is equivalent
to the condition that

(I − VH
c Ve)Φk−1EΦH

k−1 + ΦH
k−1E

HΦk−1(I − VH
e Vc)

is positive definite which in turn is equivalent to the condition that

(I − VH
c Ve)E + EH(I − VH

e Vc) (4.26)

is positive definite (where it was exploited that Vc,Ve and Φk−1 are
diagonal and therefore commute). We can therefore summarize: If the
matrix in (4.26) is positive definite, full diversity performance is obtained.
If the matrix is indefinite, an error floor is obtained for high SNR. �



Chapter 5

Design for Partial CSI at

the Receiver

The assumption in Chapters 3 and 4 that the receiver has no CSI avail-
able for detection of the data can be considered as overly pessimistic. If
the channel coefficients do not obey a strict block fading model in the
sense that the realization of the channel coefficients in each block is in-
dependent of the subsequent blocks (in other words, the current channel
state provides some information about the subsequent state), some kind
of channel estimation or tracking might be useful at the receiver. How-
ever, the implementation of the receiver has to take the imperfections of
this channel estimation into account. Having an estimate with known
error statistics available at the receiver is thereby an intermediate case
between the extremes of perfect CSI and absence of CSI at the receiver
and can be relevant when the amount of pilot signals to estimate the
channel is kept at a minimum (implying a noisy channel estimate) or the
channel fades between subsequent channel uses are such that the cur-
rent channel state is loosely correlated to the previous state (i.e., neither
perfectly the same nor completely independent).

It appears surprising that the effort spent on designing constellations
when only so-called “partial” CSI is available at the receiver has been
rather limited even though related work in a single input single output
system dates back as far as about 40 years [Vit65]. In an investigation on
MIMO systems assuming training blocks to acquire channel knowledge,
the length of a training block and its corresponding power allocation is
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optimized using capacity considerations [HH03] but leaves the question
open of how to design a practical coding scheme. Recently, Borran et
al. [BSAV03] presented a design method based on the Kullback-Leibler
distance. Their scheme however does not guarantee that diversity, a
major benefit of the MIMO channel, is exploited.

In this chapter, we derive a criterion that allows the assessment and
design of constellations for perfect, partial or no CSI at the receiver,
respectively with guaranteed diversity gain and quantified coding gain.
Moreover, the criterion provides insight into the design of possible train-
ing signals if CSI has to be obtained at the receiver. For the frequency-flat
fading MIMO channel, we also present two constructions of constellations
adapted to the level of CSI. Whereas the first approach is based on nu-
merical optimization using gradient search, the second approach combines
signals originally designed for perfect CSI and for no CSI in an appro-
priate tradeoff adapted to the level of CSI at the receiver. The second
construction also allows for receivers of reduced complexity by exploiting
structural properties of the signal combination. Both design approaches
are compared using numerical simulation results.

5.1 System Model

As in Chapter 2, we assume a communication system transmitting T
symbols via MT antennas to a receiver equipped with MR antennas. We
restrict ourselves to the frequency-flat channel model

Y = SH + W (5.1)

where Y is the T ×MR matrix of received symbols, S is the T ×MT ma-
trix of transmitted symbols, the element {H}tr of the MT ×MR matrix
H describes the complex channel coefficient between transmitter antenna
t and receiver antenna r and the T ×MR matrix W contains the addi-
tive receiver noise. The signal matrix S is chosen from a constellation
{S0, . . . ,SZ−1} with power constraint

1

Z

Z−1∑

n=0

tr
(
SH

n Sn

)
= T,

the elements of W and H are modeled as circular-symmetric com-
plex Gaussian variables with w , vec(W) ∼ CN (0, σ2I) and
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h , vec(H) ∼ CN (0,Ch) with full rank Ch. The channel H stays con-
stant during the transmission of the signal matrix S.

If the channel does not change too rapidly, some knowledge of the
channel coefficients in H is possibly available at the receiver in an es-
timate Ĥ. This knowledge can be obtained by a channel estimation al-
gorithm which tracks the evolution of the channel coefficients or by the
transmission of a pilot sequence. The ML detection rule at the receiver
is then

Ŝ = arg max
S

p(Y|S, Ĥ),

i.e., the receiver is aware that the available CSI is an estimate with pos-
sible imperfections.

We now discuss three typical models for the available channel knowl-
edge and define the corresponding likelihood functions p(Y|S, Ĥ).

1. The channel estimate Ĥ and the error E = H− Ĥ are independent
in the relation

H = Ĥ1 + E1 (5.2)

with e1 , vec(E1) ∼ CN (0,Ce1
). We denote the probability den-

sity function of Y conditioned on the data matrix S and the channel
estimate Ĥ1 by

p1(Y|S, Ĥ1;Ce1
)

taking into account that it is also a function of Ce1
.

2. In contrast, the second channel estimate in

Ĥ2 = H + E2 (5.3)

is defined under the assumption of independence of the channel H
and the error E with e2 , vec(E2) ∼ CN (0,Ce2

) and the corre-
sponding probability density function is denoted

p2(Y|S, Ĥ2;Ce2
).

3. The receiver has no knowledge about the realization of the channel
coefficients H. However, a pilot signal SP that is known to both
transmitter and receiver is transmitted through the same channel
as the data as in

YP = SP H + WP . (5.4)
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ML detection can then be performed as

Ŝ = arg max
S

p(Y,YP |S;SP )

= arg max
S

p(Y|YP ,S;SP )p(YP |S;SP )

= arg max
S

p(Y|YP ,S;SP )

because p(YP |S;SP ) = p(YP ;SP ) since YP is independent of S and the
density p(YP ;SP ) is constant when maximizing over S. We denote the
required probability density function as

p3(Y|YP ,S;SP ).

The following lemma is essential for casting all three cases into a
common framework.

Lemma 4 Assuming full column rank of SP and independent columns
of E1, E2 and H with identical column covariance matrix,i.e.,

Ce1
= IMR

⊗ CE1
(5.5)

Ce2
= IMR

⊗ CE2
(5.6)

Ch = IMR
⊗ CH (5.7)

the following equalities

p3(Y|S,YP ;SP ) = p1(Y|S, Ĥ1;Ce1
) (5.8)

= p2(Y|S, Ĥ2;Ce2
) (5.9)

hold if we replace

Ĥ1 = (SH
P SP + σ2C−1

H )−1SH
P YP (5.10)

CE1
= (σ−2SH

P SP + C−1
H )−1 (5.11)

in (5.8) using (5.5) and

Ĥ2 = (SH
P SP )−1SH

P YP (5.12)

CE2
= σ2(SH

P SP )−1 (5.13)

in (5.9) using (5.6).
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The proof is presented in appendix 5.A.

Our main conclusion from Lemma 4 is that the likelihood functions
and therefore the analysis of data communication system with available
channel state information of the forms 1–3 can be cast into a common
framework under the conditions that the replacements (5.10) to (5.13)
exist. Then for any channel estimate of the models 1 or 2, we can compute
an equivalent training block (as in model 3) leading to the same likelihood
function and thus the same detection performance. Performance analysis
can therefore focus on one of the proposed models. We choose in the
following model 3 in order to apply the results of Section 2.6 to this case.

We note here that the estimate in (5.10) and (5.11) is the MMSE
estimate whereas the the estimate in (5.12) and (5.13) is commonly re-
ferred to as the ML estimate of the channel coefficients based on the pilot
block SP . In [BT04], it was mentioned that data detection based on joint
processing of the pilot and signaling matrix (as in model 3) is equivalent
to first computing an ML or MMSE estimate based on the pilot matrix
alone and then using a receiver based on model 1 or 2, respectively. How-
ever, a restriction to orthogonal pilot matrices was made which appears
to be unnecessary as proven in Lemma 4.

In view of the result, the restrictions in (5.5) to (5.7) become ap-
parent: If the columns of the channel estimation errors E1 and E2 and
the channel H are independent (implying a block diagonal structure of
Ce1

,Ch2
and Ch but not necessarily with the same blocks on the main

diagonal as in (5.5) to (5.7)), then columns of Y conditioned on the data
and the available CSI are independent. For each column of Y, we can
then associate a specific pilot matrix SP with the given error covariance
matrix. Since we only send one training matrix, the error covariance
matrices of each column of Y must be the same, imposing the Kronecker
structures in (5.5) to (5.7).

We also want to point out that it was mentioned in [ATV02] that there
is no loss in mutual information with respect to the transmitted data if
the receiver has only access to an MMSE channel estimate compared to
the case that the received symbols in the training block are available. In
that sense, Lemma 4 make this statement explicit in terms of likelihood
functions and extends it also to ML channel estimates.
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5.2 Pairwise Error Probability Analysis

A common criterion to assess the performance of different signal designs
is the PEP

Pr(Si → Sj) , Pr (p(Y|Si) < p(Y|Sj) |Si) , (5.14)

i.e., the probability that a binary ML test between two signaling matrices
Sj and Si decides in favor of Sj when Si was transmitted. A priori,
the PEP depends on the applied likelihood function in (5.14). However,
using the results of the previous section, the likelihood functions p1, p2

and p3 are equivalent under the assumptions of Lemma 4 and therefore,
the resulting PEPs are the same. We can therefore take into account
available CSI at the receiver in the form of a channel estimate in (5.2) or
(5.3) by considering the transmission of an equivalent training block SP

and analyze the resulting PEP as a function of the likelihood function p3

which depends on the extended matrices

Si =

[
SP

Si

]

, Sj =

[
SP

Sj

]

(5.15)

and assumes no further CSI at the receiver. We can thereby reuse the
results in Section 2.6 indicating that

Pr(Si → Sj) + Pr(Sj → Si) ≈ σ2MRMT
Q(Si,Sj)

|Ch||[Si Sj ]
H [Si Sj ]|MR

(5.16)

in the high SNR regime where Q(Si,Sj) is given in Table 2.1. It was
noted already in Section 2.6.4, that under the assumption

|SH
j Sj | = |SH

i Si| (5.17)

the function Q(Si,Sj) in (5.16) is a constant and the sum of the PEPs in

(5.16) depends essentially only on |SH
j P⊥

Si
Sj | = |SH

i P⊥
Sj

Si| which should

be as large as possible for a low PEP. The additional assumption in (5.17)
is met in the special case of scaled unitary signaling

SH
i Si = SH

j Sj =
T

MT
I (5.18)

which is of particular interest since for high SNR or T ≫ MT , unitary
signals are optimal in terms of capacity [MH99] in the absence of receiver



5.2 Pairwise Error Probability Analysis 111

CSI and have certain attractive properties with perfect CSI (as orthog-
onal space-time block codes [TJC99]). We will in the remainder of this
chapter restrict ourselves to signal matrices satisfying (5.18) such that the
common design rule relates to both the results of the asymptotic analysis
as well as the Chernoff bound. We therefore assume in the following

Sk =

√

T

MT
Φk, ΦH

k Φk = I ∀k (5.19)

In appendix 5.B, we show that |SH
j P⊥

Si
Sj | can also be written as

|T/MT D(Φi,Φj ,Σ)| where we define

D(Φi,Φj ,Σ) , (Φi − Φj)
H(I + ΦjΣΦH

j )−1(Φi − Φj), (5.20)

after using (5.15) and replacing

Σ ,
T

MT
(SH

P SP )−1 (5.21)

The quantity |D(Φi,Φj ,Σ)| can be understood as taking the role of a
“distance” between the two signal matrices Φi and Φj depending on
the available CSI: The larger |D(Φi,Φj ,Σ)|, the lower the PEP for high
SNR. We formalize this statement in the following
Design Criterion:The quantity

|D(Φi,Φj ,Σ)| (5.22)

should be as large as possible.
Note however that the quantity in (5.22) is not a distance in the sense

of a metric because, e.g., a vanishing distance here does not imply equality
of the signals. The condition |D(Φi,Φj ,Σ)| > 0 guarantees that full
diversity can be exploited at the receiver and generalizes similar design
rules for both perfect CSI and no CSI at the receiver. In the following, the
notation A → B means that the spectral norm (see Section 4.4) of A−B
goes to zero. We then obtain in the two extreme cases the following:

• If we have perfect CSI at the receiver, i.e. Σ → 0, we obtain

D = Dc(Φi,Φj) , (Φi − Φj)
H(Φi − Φj) (5.23)

which is a standard criterion (see, e.g., [TSC98]). We will refer
to this case also as coherent reception. Note that the requirement
|D(Φi,Φj ,Σ)| > 0 always implies that Φi−Φj must be full column
rank. This is impossible for T < MT and we therefore need to
assume T ≥MT .
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• For noncoherent reception, i.e., no CSI at the receiver modeled by
Σ−1 → 0, we obtain

(I + ΦjΣΦH
j )−1 = I − Φj(Φ

H
j Φj + Σ−1)−1ΦH

j

→ P⊥
Φj

= I − ΦjΦ
H
j

leading to

D = Dnc(Φi,Φj) , ΦH
i P⊥

Φj
Φi = I − ΦH

i ΦjΦ
H
j Φi. (5.24)

which is also widely used (see, e.g., [MBV02]) if no CSI is available.

Dc and Dnc are related to a coherent and noncoherent “distance” |Dc|
and |Dnc|, respectively. The implications of using |Dc| or |Dnc| as basis
for a criterion to design Φi and Φj are significantly different: Whereas
for coherent communication we obtain maximum coherent distance by
choosing Φi and Φj antipodal, i.e. Φi = −Φj , such a choice of signals
would lead to an ineffective communication system in the noncoherent
setup because |Dnc(Φi,−Φi)| = 0. In contrast, signals with maximum
noncoherent distance are orthogonal, i.e. ΦH

i Φj = 0 leading to |Dnc| = 1
and can also be used in a coherent setting, however with suboptimal
performance. Since

Dc = (Φi − Φj)
H(PΦj

+ P⊥
Φj

)(Φi − Φj)

= ΦH
i P⊥

Φj
Φi + (Φi − Φj)

HPΦj
(Φi − Φj)

= Dnc + (Φi − Φj)
HPΦj

(Φi − Φj),

the condition |Dnc| > 0 implies |Dc| > 0 showing that if full diversity
can be exploited in the absence of CSI, it can also be exploited with
perfect CSI. Moreover, the coherent distance is at least as large as the
noncoherent distance. Both results are of course quite intuitive because
available CSI should result in improved detection performance, i.e., lower
probability of error and therefore in particular allow at least the same
level of diversity.

In summary, the constellation design and performance are critically
dependent on the available CSI at the receiver. We investigate therefore
the behavior and implications of our derived design criterion as a function
of the error covariance of the channel estimate in the next two sections.
In particular, we address the following questions:



5.2 Pairwise Error Probability Analysis 113

• Assuming we use a predetermined constellation with signals
Φ0, . . . ,ΦZ−1 and the channel coherence time T allows for addi-
tional symbols such that we can transmit a training sequence. How
should the training matrix be designed? This question is partic-
ularly relevant if signals designed for perfect CSI at the receiver
are used, but CSI is not available yet which can lead to ineffective
communication as pointed out above. A standard answer to this
question about training design is to use orthogonal training, i.e., a
training block SP with orthogonal columns which leads to a covari-
ance matrix Σ = δ2I. This choice minimizes the channel estimation
error covariance and has therefore intuitive appeal. When is this
choice really optimal (or: When is it not optimal?)? How much
power should be dedicated to data transmission and how much to
power to training? We will address this question in Section 5.3.

• Assume that a channel estimate at the receiver with equivalent
covariance matrix Σ is given, how should the signaling matrices Φk

be designed? This question is of apparent importance due to the
remarkable difference of design rules for the extreme cases Σ → 0
and Σ−1 → 0. A discussion concerning this problem is presented
in Section 5.4.

In both sections, an analytical investigation requires the use of a criterion
function to assess the quality of the design. The criterion (5.22) is a
pairwise relation and has to be extended to more than two signals. In
general, we are interested in minimizing the word error probability

Jerr = EΦ

[

Pr
(

Φ̂ 6= Φ| Φ transmitted
)]

(5.25)

=
1

N

N−1∑

n=0

Pr
(

Φ̂ 6= Φn|Φn transmitted
)

assuming the signals Φ ∈ {Φ0, . . . ,ΦZ−1} are transmitted with equal
probability. A comparison between different constellations can be based
on the resulting error probability at the same SNR or on comparing the
required SNR to achieve a given error probability. If we assume that all
signal pairs allow the exploitation of full diversity and therefore the error
probability satisfies

Pr(Φ̂ 6= Φ) ≈ Gσ2MT MR
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for large SNR with some constant G, we can just as well define the
objective function

Jerr,dB ,
10

MTMR
log10 σ

−2MT MRJerr ≈
G[dB]

MTMR
.

A difference in the criterion Jerr,dB between two different constellation
designs then expresses the equivalent loss or gain in SNR.

The mentioned criterion function is usually intractable for analyti-
cal analysis and can be evaluated only approximately using Monte Carlo
simulations. Instead, two other criteria which are easier to handle are fre-
quency used in practice. In Chapters 3 and 4, we have used the objective
function

JUB(Φ0, . . . ,ΦZ−1,Σ) =

Z−1∑

i=0

∑

j 6=i

1

|D(Φi,Φj ,Σ)|MR

as a scaled upper bound on the error probability. The advantage of this
performance measure is the relatively simple dependence of the objective
function on the parameters which usually allows for tractable differenti-
ation and therefore lends itself to optimization based on gradient search.

A different criterion or principle is the maximization of the minimum
distance. Motivated by classical constellation design for AWGN channels
where the minimum distance determines the constellation’s asymptotic
error performance [Pro95], we can assess the design using the cost func-
tion

JWC(Φ0, . . . ,ΦZ−1,Σ) =
1

mini6=j |D(Φi,Φj ,Σ)|MR
.

A criterion based on the “worst case” distance between two signal ma-
trices has advantages if the minimum distance can be deduced easily due
to some design rule and is therefore frequently used in structural design
of the constellations.

5.3 Training Based on Predetermined Con-

stellation Design

In this section, we assume that we extend the signals Φ ∈ {Φ0, . . . ,ΦZ−1}
with a training block SP and investigate the design of this training block.
Our analysis is divided into two parts: First, we investigate the design
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of the training matrix assuming that the maximum power devoted to
training is limited. In the second part, we assess the optimum level of
power devoted to training.

5.3.1 Structure of the Training Matrix

The problem of designing training matrices has been investigated many
times earlier, usually based on the minimization of channel estimation er-
ror variance [LS03] or under capacity optimization considerations [HH03].
Intuitively, optimizing the channel estimate such that the estimation er-
ror is minimal appears to be a reasonable choice because the purpose of
the training block is to provide channel state information to the receiver.
The more accurate this information is, the better the receiver should op-
erate. However, we are not aware of any formalization of this intuition in
the sense that data detection performance is optimized in the error proba-
bility sense. Since our design criterion is related to a tight approximation
of the PEP in the high SNR case, we will use the criterion to investigate
the optimality of orthogonal training. We can show in the two-signal case
that orthogonal training leading to minimized channel estimation error
is in general not optimal for every signal design. The difference to the
optimal solution however is small and orthogonal training appears to be
still an excellent choice for well-designed signal sets with more than two
signals.

We will investigate the design of the training block SP first under the
two signal assumption: Assuming we have only two different signals Φ0

and Φ1, what training block (equiv. error covariance matrix) maximizes
the distance between the two signals under a power constraint on the
training block? Formally written, we want to solve the following problem:

maximize |D(Φ0,Φ1,Σ)| w.r.t. Σ
subject to tr

(
Σ−1

)
≤ P

(5.26)

From (5.20) it is not difficult to show that

|D(Φ0,Φ1,Σ)| = |Dc||I − (I − ΦH
0 Φ1)

HD−1
c (I − ΦH

0 Φ1)(I + Σ−1)−1|

where we assume that D−1
c exists to obtain full diversity performance

at least in the case of coherent signaling. Now since Dc − Dnc = (I −
ΦH

0 Φ1)(I − ΦH
0 Φ1)

H , we define

(Dc − Dnc)
1
2 , I − ΦH

0 Φ1
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and use the eigenvalue decomposition of the Hermitian matrix

(Dc − Dnc)
1
2 HD−1

c (Dc − Dnc)
1
2 = QΛQQH (5.27)

where ΛQ = diag {q1, . . . , qMT
} to reformulate the problem (5.26) in

X = Σ−1 to

maximize |I − ΛQ(I + QHXQ)−1| w.r.t X
subject to tr (X ) ≤ P.

(5.28)

Now since for any positive semidefinite matrix A we have |A| ≤∏k{A}kk

with equality if and only if A is diagonal, we have that

|I − ΛQ(I + QHXQ)−1| ≤
∏

k

(1 − qk{(I + QHXQ)−1}kk)

with equality if and only if QHXQ is diagonal. We therefore choose

X = Qdiag {x1, . . . , xMT
}QH (5.29)

and reformulate the problem to

maximize
∏MT

k=1

(

1 − qk

1+xk

)

w.r.t. x1, . . . , xMT

such that
∑

k xk ≤ P

This is a waterfilling type of problem. In Appendix 5.C, we show that
we need to set

xk = [qkλ
′ − 1]+

where [·]+ denotes the positive part (see Section 1.7) and we choose λ′

such that
∑

k xk = P is satisfied. We can then choose any SP that
satisfies (5.29) and (5.21), e.g.,

SP =

√

T

MT
Qdiag{√x1, . . . ,

√
xMT

}QH

This solution implies that more power of the training block is allocated
to directions associated with larger eigenvalues in (5.27). We emphasize
that the qk are not equal in general and therefore some directions obtain
more power than others. In other words, the training optimized for the
two signals Φ0 and Φ1 is in general not orthogonal!

An intuitive explanation for this can be obtained using the point of
view of noncoherent transmission of S = [ST

P

√

T/MT ΦT ]T . For nonco-
herent transmission, signals with optimal distance should be orthogonal.
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Therefore, if Φ0 and Φ1 are predetermined, SP should be chosen such
that S0 and S1 are “as orthogonal as possible,” which is of course depen-
dent on Φ0 and Φ1. In how far the optimized training differs from or-
thogonal training is characterized by the eigenvalues of the matrix (5.27).

In order to analyze the benefit of optimal training in the mentioned
sense, we compare the distance |Dopt| obtained with optimal training
with the distance |Dortho| achieved with orthogonal training. Assuming
P is large enough such that all xn > 0, we obtain

( |Dopt|
|Dortho|

) 1
MT

=

1

MT

MT∑

n=1

(
P

MT
+ 1 − qn

)

MT∏

n=1

(
P

MT
+ 1 − qn

) 1
MT

≥ 1

with equality if and only if q1 = · · · = qMT
(which is the case when

orthogonal training is optimal) because of the inequality of geometric
and arithmetic mean (see, e.g., [HJ99, p. 535]). As an upperbound for
this ratio, we consider the worst case with maximally spread eigenvalues.
For an even number of antennas, let MT /2 eigenvalues of ΛQ approach
unity and the other half approach zero, then we obtain

( |Dopt|
|Dortho|

) 1
MT

≤
P

MT
+ 1

2
√

P
MT

(
P

MT
+ 1
) =

√
√
√
√1 +

1

4 P
MT

(
P

MT
+ 1
)

which approaches 1 with growing P. Thus, if large training power is used,
the difference to optimal training goes to zero (which is also an intuitive
result because for high training power P , the channel is estimated with
vanishing error covariance for any full rank training matrix).

The generalization of this result to constellations with more than two
signals suffers from the dependency of the resulting optimum covariance
matrix on the eigenvectors of (5.27). Any two distinct pairs can possibly
have distinct eigenvectors of (5.28) and therefore a single training block
can not satisfy the waterfilling solution for all signal pairs.

We have tried two approaches using JWC and JUB on a randomly
chosen signal set in order to get an insight into the characteristics of
the optimum solution for larger signal sets. Both an approach based on
sequential waterfilling (i.e., by increasing the power allocated to the train-
ing in small steps up to the desired limit where in each step the training
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power is allocated with respect to the currently worst-case signal pair) as
well as on a gradient search on Σ−1 did not result in any solution that was
clearly superior to orthogonal training in performance. Our experience
that we have obtained from these approaches is that for any “normal”
constellation, i.e., with (approximately) isotropically distributed signals,
the eigenvectors of the matrix in (5.27) referring to its largest eigenvalue
are also approximately isotropically distributed. Thus, a nonorthogonal
training which effectively transmits more power in preferred directions
will leave other directions with less power, leading overall to worse per-
formance. Therefore, even though orthogonal training is not necessarily
optimal in the two-signal case, it still appears to be a reasonable choice
for constellations with a large number of signals.

We therefore assume in the following (similar to the standard ap-
proaches) that orthogonal training leading to

Σ = δ2I (5.30)

has been used. After some standard algebraic manipulations, we can then
simplify (5.20) to

D = ρDc + (1 − ρ)Dnc = Dnc + ρ(Dc − Dnc) (5.31)

where ρ = 1/(δ2+1) describes the quality of the CSI: ρ = 0 due to δ2 → ∞
implies no CSI at the receiver, ρ = 1 due to δ2 → 0 means perfect CSI
at the receiver and 0 < ρ < 1 implies imperfect or “partial” CSI. The
parameter ρ thereby illustrates the transition of noncoherent distance to
coherent distance. For this case of orthogonal training and orthogonal
signal matrices, we obtain the important simplification that the matrix
relevant to distance with partial CSI is just a linear interpolation of the
matrices related to the coherent and noncoherent distances.

5.3.2 Optimized Training Power

A very relevant question in practice is the required quality of the avail-
able channel estimates. As mentioned in Section 5.2, a design assum-
ing perfect channel estimation at the receiver can fail completely if no
such channel estimate is available. An important question is then the
amount of power that should be dedicated to training: Too much train-
ing and the channel is estimated well, but the data detection suffers, not
enough training and the data symbols can possibly not be distinguished
well at the receiver due to the inaccurate channel estimate. Hassibi and



5.3 Training Based on Predetermined Constellation Design119

Hochwald [HH03] investigated the required length of the training interval
as well as the fraction of power that should be devoted to the training
sequence in terms of maximizing capacity, i.e., implicitly assuming the
use of an optimized coding scheme for the given scenario operating over
infinitely many blocks with statistically independent channel realizations.
In contrast, we consider here the case that the signals to be used are given
a priori and span only a single channel coherence interval. The coherence
time T is long enough that we have the opportunity to extend the data
signal with a training sequence, but we have to keep the overall power
constant. We can then base the data detection on the joint processing of
the training as well as the data sequence as in Section 5.1. We restrict
ourselves to unitary training matrices based on the result of the previ-
ous subsection and vary the power allocated to training and data in the
variable 0 ≤ x ≤ 1.

Let {Φ̃0, . . . , Φ̃Z−1} be the constellation with

Φ̃i =

[ √
xI 0
0

√
1 − xI

] [
I
Φi

]

(5.32)

and ΦH
i Φi = I as before. Here 0 ≤ x ≤ 1 is the ratio of power dedicated

to the training sequence which is chosen to be a scaled identity matrix
consistent with our assumption of orthogonal training. The power used
in transmitting Φ̃i is the same as transmitting the symbol block Φi,
however we have a variable tradeoff of power for training vs. power for
data in the variable x. Inserting the definition (5.32) into (5.20) for no
prior training Σ−1 → 0, we obtain

D(Φ̃i, Φ̃j) = x(1 − x)Dc(Φi,Φj) + (1 − x)2Dnc(Φi,Φj) (5.33)

which is zero for x = 1 (all power is used for training) and equal to the
noncoherent distance matrix Dnc for x = 0.

We can now optimize x with respect to the mentioned optimization
criteria (worst case distance or union bound). These optimizations are
problems in one single variable. If this optimization cannot be carried out
analytically, numerical optimization using line-search methods is straight-
forward.

As an example for a single antenna system, we consider the (7, 4)
Hamming code in scaled BPSK symbols. For MT = 2 transmitter anten-
nas, the Alamouti scheme in BPSK symbols over one block in T = 2 or
with two concatenated blocks over T = 4 is used. The resulting objective
function values JUB for variable data/training tradeoff are presented in
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Figure 5.1(a) together with an experimental verification in Figure 5.1(b).
In all three example cases, the objective function represents very well the
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(b) Simulation results at SNR σ
−2 = 20dB

Figure 5.1: Determining the optimal training power using either objec-
tive function or simulation

behavior of the resulting word error probability when using a variable
amount of training power. Note however that the objective function is
independent of the SNR and therefore the vertical axes in do not repre-
sent the same interval for objective function and simulation results.

It appears that 20% of the available power should be dedicated to
training for the Hamming code whereas the Alamouti scheme requires
half the power on training when detection is performed over a single
block and one third of the power when two blocks are detected jointly.
It is not surprising that the detection of a single Alamouti block requires
exactly half the power since Dnc = 0 for all signal pairs and therefore
only the coherent distance is relevant. Its coefficient x(1− x) in (5.33) is
maximized for x = 1/2.
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5.4 Constellation Design Based on Partial

CSI

5.4.1 Motivation

We now address the design of signals assuming a certain level of CSI at
the receiver. The following simple example motivates the relevance of the
amount of channel knowledge in the design of the constellation.

Assume binary communication, i.e., we use a constellation of Z = 2
signal matrices Φ0 and Φ1 and we want to design these matrices assuming
channel estimation error variance δ2 or equivalently 0 ≤ ρ ≤ 1 in a single-
antenna system. The objective function

|D| = ρ(Φ1 − Φ0)
H(Φ1 − Φ0) + (1 − ρ)(I − ΦH

1 Φ0Φ
H
0 Φ1)

= ρ(1 − ΦH
0 Φ1 − ΦH

1 Φ0 + ΦH
1 Φ0Φ

H
0 Φ1) + 1 − ΦH

1 Φ0Φ
H
0 Φ1

= ρ‖1 − θ‖2 + 1 − ‖θ‖2

depends only on the scalar θ , ΦH
0 Φ1. Maximizing with respect to θ

leads to

θopt =

{ − ρ
1−ρ if ρ < 1/2

−1 if ρ ≥ 1/2

which can be achieved in the case of T = 2 by choosing

Φ0 =
1√
2

(
1
1

)

, Φ1 =
1√
2

(

ej cos−1(θopt)

e−j cos−1(θopt)

)

.

For perfect channel knowledge we have θopt = −1 (the signals are antipo-
dal) and for no channel knowledge we have θopt = 0, i.e., the signals are
orthogonal. In between these extreme cases, the signals assume interme-
diate values, illustrating our previous conclusion that the constellation
design should be matched to the quality level of receiver CSI and choos-
ing a design based on the assumption of either perfect or no CSI at the
receiver is in general suboptimal. We can evaluate the benefit of signal
design matched to partial CSI at the receiver for different values of ρ.
The result is presented in Figure 5.2 in terms of the objective function
JUB = JWC = |D|−1 when using matched signal design compared to an-
tipodal (coherent) and orthogonal (noncoherent) signals. It is apparent
that antipodal signals designed for perfect channel knowledge are inef-
fective in the absence of channel knowledge because the receiver cannot
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Figure 5.2: Evaluation of signaling matched to the level of receiver CSI
compared to coherent and noncoherent signaling for various ρ

distinguish between the different symbols. We also notice the loss of 3dB
for noncoherent signaling against coherent signaling when perfect chan-
nel information is available, i.e., ρ = 1. Both coherent and noncoherent
design show equivalent performance for ρ = 1/3 where they are inferior to
the perfectly matched constellation with a loss of about 0.5dB in SNR.
These significant performance losses when using mismatched signaling
design motivate the use of signals matched to partial channel knowledge
at the receiver.

Moreover, we find it interesting to note that the resulting optimal
design for any ρ ≥ 1/2 is the same as for the coherent case which leads to
the conclusion that even in the absence of perfect channel knowledge at
the receiver, signals designed for this case can still be appropriate. This
is somewhat implicitly assumed in investigations on the impact of CSI
errors for a fixed signal set when this error is small (see, e.g., [LS03]),
taking for granted that the signal set does not have to be modified.
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5.4.2 Design for Partial CSI

We consider two approaches to the design of signals adapted to the level
of CSI at the receiver. First, we use a gradient search method to design
Φ0, . . . ,ΦZ−1 by optimizing the objective function JUB. The second
approach is based on a combination of constellations previously designed
for coherent and noncoherent communication where the more weight is
given to the coherent or noncoherent constellations dependent on the
available CSI at the receiver.

Design Based on Gradient Search

Similar as in previous chapters, we can use a gradient search method
to optimize constellations. Due to our constraint on unitary matrices
in (5.18), we have to assure that the resulting solution follows this con-
straint. Agrawal et al. proposed a method of factorizing unitary matrices
in [ARU01] and used this factorization to design constellations for non-
coherent communication using a cost function based on the minimum
distance (or “worst case”) criterion. We make use of this factorization
now in the wider context of partially coherent communication. For sim-
plicity, we employ the cost function based on the union bound (similar
to [MBV02]).

Structured Design

The intuition behind our structured design method is based on the in-
terpretation of |D(Si,Sj , ρ)| as a distance and the result that D is a
weighted sum of the corresponding matrices for the coherent and non-
coherent distance. Similarly, our proposed construction uses elements of
typical designs for the noncoherent and coherent case which are chosen
according to the weighting factor between both distances.

Let us first review the geometrical interpretations of both the coherent
and noncoherent distance. Following [GvL96, Sec. 12.4.3], we can use the
singular value decomposition (SVD) as ΦH

i Φj = Udiag {r1, . . . , rM}VH

to compute the principal angles θ1, . . . , θM between the subspaces
spanned by Φi and Φj using

cos(θk) = rk.
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Then, the noncoherent distance in (5.24) can be written as

|Dnc| =

M∏

k=1

(1 − r2k) =

M∏

k=1

sin2(θk),

which therefore only depends on the principal angles between the sub-
spaces spanned by Φi and Φj . In other words,

|Dnc(Φi,Φj)| = |Dnc(ΦiZi,ΦjZj)|

for any two unitary MT ×MT matrices Zi and Zj . Moreover, two signals
in the same subspace have noncoherent distance zero.

In contrast, the coherent distance depends essentially on the singular
values of the difference Φi − Φj . In particular, signals within the same
subspace can have nonvanishing coherent distance. In fact, signals with
maximum coherent distance are antipodal, i.e., Φj = −Φi and thereby
lie in the same subspace.

Since Dc − Dnc is a positive semidefinite matrix we have

|D| = |ρ(Dc − Dnc) + Dnc| ≥ |Dnc|.

Thus, the noncoherent component |Dnc| always contributes to the dis-
tance between two matrices. In other words, a constellation designed for
noncoherent communication (and thus advantageous properties of Dnc)
is still appropriate if partial or perfect CSI is available. However, the
design freedom of having several signals occupy the same subspace can-
not be exploited by a pure noncoherent design. For ρ > 0, two signals
in the same subspace lead to |D| = |ρDc| which can be a sufficiently
large distance for good overall performance if |Dc| is large. The goal of
our design is therefore to produce signal matrices which either occupy
distinct subspaces and thereby have good noncoherent distance or have
good coherent distance when they lie in the same subspace. The numbers
of distinct subspaces and distinct signals within each subspace depend on
the quality of the channel estimate: The lower ρ, the more distinct sub-
spaces are needed and less signals occupy each subspace. In the extreme
case of ρ = 0, only one signal per subspace is admissible.

Inspired by this intuition, we propose here to split up the task of
designing the matrices {Φ0,Φ1, . . . ,ΦZ−1} into two subtasks:

1. the design of distinct subspaces that the signal matrices occupy

2. the “position” of the signal matrices within each subspace.



5.4 Constellation Design Based on Partial CSI 125

As before, the design can be evaluated using either the worst-case distance
or a union bound based criterion.

The two subtasks are the typical design goals of noncoherent and
coherent communication and we therefore make use of available results
in literature. We then need to investigate the mentioned tradeoff of either
designing a constellation with a high number of distinct subspaces but
small number of signals per subspace or choosing signals with a smaller
number of subspaces but more signals within each subspace.

To evaluate this tradeoff, we propose the following construction: Let
the constellations Xc = {Φc

0, . . . ,Φ
c
Zc−1} and Xnc = {Φnc

0 , . . . ,Φ
nc
Znc−1}

be given where Xc was designed for coherent communication and has ele-
ments of dimension MT ×MT and Xnc was designed for noncoherent com-
munication with elements of dimension T ×MT . Then we can construct
the new constellation X with Z = ZcZnc such that for k = k1Zc + k2,
k1 ∈ {0, . . . , Znc − 1}, k2 ∈ {0, . . . , Zc} we have

Φk = Φnc
k1

Φc
k2
,

i.e., we allow every combination of one noncoherent and one coherent
signal. The particular choice of the noncoherent signal matrix thereby
determines the subspace of the combined signal and the coherent signal
determines its “position” within this subspace. It is thereby apparent
that the information contained in Φnc can be recovered without taking
into account Φc in a noncoherent detection. We will investigate the
detection of these matrices later in Section 5.5. Note that for Zc = 1 or
Znc = 1, we obtain a construction purely optimized for noncoherent or
coherent communication, respectively. The choice of both the coherent
and noncoherent constellation depends of course on ρ.

Numerical Evaluation

We will illustrate the performance of this design with several examples.
All resulting constellations here have T = 8 and Z = 256, i.e., a rate of
1 bit per channel use. We compare the performance of a purely nonco-
herent constellation (Znc = 256, Zc = 1) with a signal set on combining
a Znc = 64 noncoherent and a Zc = 4 coherent constellation (termed
as 6 noncoherent bits, 2 coherent bits), and a constellation combining
Znc = 16 with Zc = 16, i.e. 4 noncoherent and 4 coherent bits. The non-
coherent constellations for MT = 1, 2 are taken from [HMR+00], and the
coherent signals are Zc-PSK constellations forMT = 1 and a scaled Alam-
outi code in

√
Zc-PSK for MT = 2. The channel elements are i.i.d. fading
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and the channel estimation error is white such that we can describe the
available amount of CSI with the real scalar ρ. A performance characteri-
zation in terms of simulation results is provided in Figure 5.3 for MT = 1
transmitter antenna and in Figure 5.4 for MT = 2 antennas. We restrict
the simulation results here to the high SNR region with the example point
σ−2 = 20dB and investigate the performance as function of the CSI qual-
ity ρ. We also compare the structured constellations with unstructured
design obtained using gradient search. In the MT = 1 case, we obtain
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Figure 5.3: Simulation results at σ−2 = 20dB with MT = 1 transmitter
antenna for various ρ

that the constellation with Zc = 16, i.e., a large number of signals per
subspace, has by far the worst performance among all compared signal
sets for any ρ. Both this constellation and the one with 2 coherent bits
(i.e., Zc = 4) are useless for ρ = 0. However, performance improves dras-
tically for the Zc = 4 constellation with growing ρ. At around ρ ≈ 0.25
the signal set with Zc = 4 performs just as good as the constellation
designed for noncoherent communication and outperforms it by about
0.5dB for ρ ≥ 0.5. We have tried to improve on this constellation using
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Figure 5.4: Simulation results at 1/σ2 = 20dB with MT = 2 transmit-
ter antennas for various ρ

our gradient search method taking the given set as starting point but
were unable to obtain better results than the given signal set for ρ > 0.3.
Moreover, for ρ = 0, the performance improvement over the noncoherent
constellation is visible, but not very large. Thus, the unstructured design
for MT = 1 did not lead to significant improvements.

In the case with MT = 2, the numerical optimization using gradient
search appeared to be effective in the sense that clear improvements over
all structured constellations are obtained for any ρ. As expected, the
constellation with Nc > 1 is useless for ρ close to zero. It turns out
that among the compared constellations, the noncoherent design with
Znc = 256 performs best for 0 ≤ ρ < 0.25, the constellation with Zc = 4
perform best for 0.25 ≤ ρ < 0.66 and the signal set withNc = 16 performs
best for ρ ≥ 0.66. In other words, all of the structured constellations can
be associated with values of ρ where they perform best, illustrating the
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benefit of designing the signals according to the available CSI at the
receiver.

5.5 Detection

We will now focus on the detection or decoding of the symbol matrix S
based on the received symbol matrix Y and the available channel state
estimate. For simplicity, we focus here on CSI available in the form 2 (see
Section 5.1), keeping in mind that the equivalence with the other forms
of CSI is guaranteed under the assumptions of Lemma 4.

Using the results of appendix 5.A, we know that y = vec(Y) condi-

tioned on S and Ĥ2 is Gaussian with mean µ2 and covariance C2 (see
(5.37) and (5.38))), i.e.,

p(y|S, Ĥ2,CE2
) =

1

|πC2|
exp

(
(y − µ2)

HC−1
2 (y − µ2)

)

Now since SHS = T/MT I we have that

|πC2| = |π(I ⊗ (σ2I + (C−1
H + C−1

E2
)−1SHS))|

=

∣
∣
∣
∣
π

(

σ2I +
T

MT
(C−1

H + C−1
E2

)−1

)∣
∣
∣
∣

MR

which does not depend on S. Therefore, the ML detector reduces to

Ŝ = arg max
S

p2(y|S, Ĥ2;CE2
)

= arg min
S

(y − µ2)
HC−1

2 (y − µ2)

= arg min
S

tr
(

−σ−2YHSMSHY − YHSMC−1
E2

Ĥ2 − ĤH
2 C−1

E2
MSHY

)

where

M ,

(
T

MT
I + σ2C−1

H + σ2C−1
E2

)−1

(5.34)

and the algebraic details are provided in appendix 5.D. Assuming orthog-
onal training or, respectively, a white channel estimation error Σ = δ2I
as before leading to C−1

E2
= 1

σ2δ2
T

MT
I and i.i.d. fading, i.e., CH = I,

the matrix M is a scaled identity matrix and the ML detector can be
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simplified to

Ŝ = arg min
S

tr

(
T

δ2MT
(−YHSĤ2 − ĤH

2 SHY) − YHSSHY

)

= arg min
S

(

ρ‖Y − SĤ2‖2 + (1 − ρ)‖P⊥
S Y‖2

)

where the same weighting factor ρ as in (5.31) is used and we have
dropped constant factors such as T/MT (note that SSH = T/MT PS).
The metric ‖Y−SH‖ is related to the ML receiver for perfectly coherent

communication and we use it here with the estimate H = Ĥ2 as if it were
perfect. The decision variable ‖P⊥

S Y‖2 relates to noncoherent detector.
The decision variable computed by a partially coherent detector is there-
fore a linear weighting between the decision variables for a coherent and
a noncoherent detector in analogy with the linear weighting between the
matrices Dc and Dnc determining the asymptotic error performance for
high SNR.

An advantage of this observation is then that we can use properties of
the constituent signals described in Section 5.4 for a simplified decoding
rule. Using

S =

√

T

MT
ΦncΦc

we obtain after some simple algebraic manipulations

(Φ̂nc, Φ̂c) = arg min
Φnc,Φc






‖P⊥

ΦncY‖2 + ρ

∥
∥
∥
∥
∥
ΦncHY −

√

T

MT
ΦcĤ2

∥
∥
∥
∥
∥

2

.







(5.35)

The first part constitutes the decision variable for the noncoherent detec-
tor (which is always a compound of the decision variable). The second
part can be understood as related a coherent detector based on the re-
ceived matrix Ỹ = ΦncHY which uses the channel estimate as if it was
perfect. Since the columns of Φnc form an orthogonal basis of the sub-
space spanned by Φnc, Ỹ can be understood as representation of PΦncY
in the basis vectors of the subspace defined by Φnc.

Due to the partitioning of the decision variable into a noncoherent
part together with a coherent part applying the channel estimate as if
it was perfect, structural design approaches for coherent constellations
allowing low detection complexity can be advantageous here as well. As
an example, if Φc is taken from an orthogonal space-time block code
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(OSTBC) [TJC99] [Ala98], the computation of the ML decision variable
requires Znc evaluations of the noncoherent decision variable and for each
this evaluations, a detection of the coherent signal. Since the complexity
of this coherent detection is significantly lower than evaluating all Zc

coherent signals (it decouples into scalar detection of the constituent
symbols), overall detection complexity is reduced.

We can also decrease the detection complexity using the following
simplified decoder:

Φ̂nc = arg min
Φnc

‖PΦncY‖2

Φ̂c = arg min
Φc

∥
∥
∥
∥
∥
Φ̂ncY −

√

T

MT
ΦcĤ

∥
∥
∥
∥
∥

2

which no longer requires the knowledge of ρ. Note that we are basically
performing a hard decision on Φnc before decoding Φc, thereby possibly
losing detection performance.

If we use unstructured noncoherent and coherent constellations with
this simplified detector, we require Znc evaluations of the noncoherent de-
cision variable and Zc evaluations of the coherent variable, which is much
lower than performing ZncZc evaluations of (5.35). Similar as above, us-
ing an OSTBC as constituent coherent constellation results in even lower
detection complexity.

In Figures 5.5 and 5.6 we compare the performance of the simplified
decoding scheme with the optimal ML detection where we used the same
constellation combinations as in Section 5.4.2. For MT = 1, we see
almost no difference in the performance between the optimal ML and
the simplified detector for ρ ≤ 0.5 and the loss in SNR for the simplified
detection is not significant. Only for large ρ, the simplified detector for
the constellation with Znc = 64 and Zc = 4 performs about 0.4dB worse
than the optimal detection.

However, the performance difference between the detectors are sub-
stantial for MT = 2. The simplified detection of the constellation with 6
noncoherent bits and 2 coherent bits incurs a loss of almost 2dB in SNR
at σ−2 = 20dB and detection performance does not improve for ρ > 0.3.
Apparently, for ρ > 0.3, errors in the noncoherent detection dominate
(the noncoherent distance between subspaces is significantly smaller than
the coherent distance between signals in the same subspace). Therefore,
detection can not be improved with better knowledge of the channel. The
difference between coherent and noncoherent distances in the constella-
tion with 4 coherent and 4 noncoherent bits however are much smaller.
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Figure 5.5: Comparison of optimal and simplified decoding for MT = 1
transmitter antennas and σ−2 = 20dB for various level of CSI quality

Therefore, the same effect of dominating error events in the noncoherent
detection has much smaller impact.

It is therefore important to judge for the specific constellations used
under which receiver CSI assumptions the simplified detection is appli-
cable without significant performance loss.

5.6 Summary

In this chapter, we investigated the impact of channel state information
at the receiver on constellation design. After showing the equivalence of
three seemingly different types of receiver CSI, we used a PEP analy-
sis to present a design criterion that unifies previous results for no and
perfect channel knowledge at the receiver and allows a continuous transi-
tions between these cases. Two main applications of the design criterion
were presented. First, for systems with separate training and data trans-
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Figure 5.6: Comparison of optimal and simplified decoding for MT = 2
transmitter antennas and σ−2 = 20dB for various level of CSI quality

mission using a predetermined constellation, we investigated the design
of optimal training blocks. It was found that orthogonal training is not
optimal in general, but still is usually an excellent solution for reason-
ably designed signals. The amount of power dedicated to training was
also optimized dependent on the design of the constellation. The second
application assumed a given level of CSI at the receiver and investigated
the implications on the signal design. An unstructured design approach
based on numerical optimization together with a structured design com-
bining constellations used for coherent and noncoherent communication
were presented. It was found that the combined constellations perform
similar to the unstructured constellation for MT = 1 but incur a perfor-
mance loss for MT = 2. This loss has to be traded off against a possible
reduction in receiver complexity due to structure of the consituent co-
herent signal set. A simplified decoding algorithm for such structured
constellations was also presented.
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We consider the work presented in this chapter as a starting point
for further analysis of signaling schemes under the viewpoint of partially
coherent distance. For example, differential detection of two subsequent
space-time symbols can be viewed as one training block and one data
block, thereby spending exactly half the power (if the transmission power
is normalized) on training, half on data. This can be optimal in the
sense of maximizing distance, but is not necessarily so if multiple symbol
detection with coding between symbols is used. Moreover, the theory
in this chapter can possibly be extended to frequency-selective channels
which were the subject of Chapters 3 and 4.
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Appendix 5.A Equivalence of Receivers

We will now analyze the three different receivers in turn. For notational
convenience, we rewrite (5.1) by stacking the columns of Y, H and W
into their respective vector counterparts y, h and w and obtain

y = S̃h + w (5.36)

where S̃ = IMR
⊗ S. The vectors ĥ1, ĥ2 and the matrix S̃P = IMR

⊗ SP

are similarly defined.

1. Inserting the vectorized form of (5.2) into (5.36), we obtain

y = Sĥ1 + Se1 + w

with independent Gaussian variables ĥ1, e1 and w and therefore y
conditioned on S and ĥ1 is Gaussian with mean and covariance

µ1 = S̃ĥ1

= vec(SĤ1)

C1 = σ2I + S̃Ce1
S̃H

= I ⊗ (σ2I + SCE1
SH)

2. y and ĥ2 in (5.36) and (5.3) are both linear combinations of the
independent Gaussian variables h, e2 and w. They are therefore
jointly Gaussian with

[
y

ĥ2

∣
∣
∣
∣
S̃

]

∼ CN
([

0
0

]

,

[
σ2I + S̃ChS̃

H S̃Ch

ChS̃
H Ch + Ce2

])

.

Using Lemmas 5 and 6 we conclude after some algebraic manipu-
lations that y conditioned on ĥ2 and S̃ is Gaussian with mean and
covariance

µ2 = S̃(C−1
h + C−1

e2
)−1C−1

e2
ĥ2 (5.37)

= vec(S(C−1
H + C−1

E2
)−1C−1

E2
Ĥ2)

C2 = σ2I + S̃(C−1
h + C−1

e2
)−1S̃H (5.38)

= I ⊗ (σ2I + S(C−1
H + C−1

E2
)−1SH)
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3. Apparently, y in (5.36) and yP in (5.4) are jointly Gaussian with

[
y
yP

∣
∣
∣
∣
S̃

]

∼ CN
([

0
0

]

,

[
σ2I + S̃ChS̃

H S̃ChS̃
H
P

S̃P ChS̃
H σ2I + S̃P ChS̃

H
P

])

.

Again using Lemma 5 and after some algebraic manipulations in-
volving Lemma 6, we obtain that y conditioned on S̃ and yP is
Gaussian with mean and and covariance

µ3 = S̃(S̃H
P S̃P + σ2C−1

h )−1S̃H
P yP (5.39)

= vec(S(SH
P SP + σ2C−1

H )−1SH
P YP )

C3 = σ2I + S̃(C−1
h + σ−2S̃H

P S̃P )−1S̃H (5.40)

= I ⊗ (σ2I + S(C−1
H + σ−2SH

P SP )−1SH)

Now using the replacements (5.10)–(5.13) we obtain that µ1 = µ2 = µ3

and C1 = C2 = C3. Since Gaussian probability densities are completely
characterized by their first two moments, the assertion is proven.

Appendix 5.B Some Determinant Calcula-

tions

Using Relation A.10, we expand

|SH
j P⊥

Si
Sj | = |SH

j Sj − SH
j Si(S

H
i Si)

−1SH
i Sj |

=

∣
∣
∣
∣

SH
i Si SH

i Sj

SH
j Si SH

j Sj

∣
∣
∣
∣

|SH
i Si|

=

∣
∣
∣
∣

SH
P SP + SH

i Si SH
P SP + SH

i Sj

SH
P SP + SH

j Si SH
P SP + SH

j Sj

∣
∣
∣
∣

|SH
P SP + S

H

i Si|

where we used Relation (A.9) and the definitions in (5.15). Since adding
scalar multiples of columns(rows) to other columns(rows) does not change
the value of the determinant, we obtain after some manipulations in the
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numerator
∣
∣
∣
∣

SH
P SP + SH

i Si SH
P SP + SH

i Sj

SH
P SP + SH

j Si SH
P SP + SH

j Sj

∣
∣
∣
∣

=

∣
∣
∣
∣

SH
P SP + SH

i Si SH
P SP + SH

i Sj

(Sj − Si)
HSi (Sj − Si)

HSj

∣
∣
∣
∣

=

∣
∣
∣
∣

SH
P SP + SH

i Si SH
i (Sj − Si)

(Sj − Si)
HSi (Sj − Si)

H(Sj − Si)

∣
∣
∣
∣

= |SH
P SP + SH

i Si|
|(Sj − Si)

H(I − Si(S
H
P SP + SH

i Si)
−1Si)(Sj − Si)|

where we used the relation (A.9) in the last step. Applying Lemma 6 in
the appendix, we conclude that

|SjP
⊥
Si

Sj | = |(Sj − Si)
H(I + Si(S

H
P SP )−1SH

i )−1(Sj − Si)|
= |T/MT (Φj − Φi)

H(I + ΦiΣΦH
i )−1(Φj − Φi)|

where used the replacements (5.19) and (5.21).

Appendix 5.C Finding the Optimum

Training Matrix

Based on the constraints P −∑n xn ≥ 0 and xn ≥ 0, we construct the
Lagrangian

J(x1, . . . , xMT
)

=

MT∑

n=1

ln−
(

1 − qn
1 + xn

)

− λ(P −
∑

n

xn) −
∑

n

µnxn

whose derivative with respect to xn is

∂J

∂xn
= − 1

(

1 − qn

1+xn

)

(
qn

1 + xn

)2

+ λ− µn

which, when set to zero after solving yields

xn = qn

(√∥
∥
∥
∥

1

4
+

1

λ− µn

∥
∥
∥
∥

+
1

2

)

− 1. (5.41)
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For inactive constraints (i.e., xn > 0) we have µn = 0 (inactive constraints
have zero multiplier [Fle91]) which implies that

xn = qnλ
′ − 1

where λ′ =
√

1
4 + 1

λ + 1
2 or λ, respectively, needs to be chosen such that

∑

n xn = P is satisfied. For active constraints, µn > 0 is chosen to
guarantee xn = 0 in (5.41). As a summary, we obtain

xn = [qnλ
′ − 1]+

and λ′ is chosen such that
∑

n xn = P is satisfied.

Appendix 5.D Reformulation of the ML

Receiver

We evaluate the term (y−µ2)
HC−1

2 (y−µ2) by splitting up this product
into four terms that are considered in turn. Since

C−1
2 = I ⊗ (σ2I + S(C−1

H + C−1
E2

)−1SH)−1

= I ⊗ (σ−2I − σ−2S(SHS + σ2C−1
H + σ2C−1

E2
)−1SH)

= I ⊗ σ−2(I − SMSH)

with M defined in (5.34), we have that

yHC−1
2 y = tr(σ−2YH(I − SMSH)Y)

yHC−1
2 µ2 + µ

H
2 C−1

2 y = 2ℜ(yHC−1
2 µ2)

= 2ℜ(tr(σ−2YH(I − SMSH)S

(C−1
H + C−1

E2
)−1C−1

E2
Ĥ2))

= 2ℜ(tr(σ−2YHSM(M−1 − SHS)(C−1
H + C−1

E2
)−1

C−1
E2

Ĥ2))

= 2ℜ(tr(YHSMC−1
E2

Ĥ2))

µ
H
2 C−1

2 µ2 = tr(σ−2Ĥ2C
−1
E2

(C−1
H + C−1

E2
)−1SH(I − SMSH)S

(C−1
H + C−1

E2
)−1C−1

E2
Ĥ2)
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Since SH(I − SMSH)S = T
MT

(I − T
MT

M) and tr(YHY) are constant in
a variation of S, we have that

yHC−1
2 y − µ

H
2 C−1

2 y − yHC−1
2 µ2 + µ2C

−1
2 µ2

= −2ℜ(tr(YHSMC−1
E2

Ĥ2)) − σ−2 tr(YHSMSHY) + const.



Chapter 6

Summary and Future

Work

6.1 Summary

We have investigated signaling design in a communication system oper-
ating over linear time-discrete channels. Our particular focus was on the
scenario that the receiver has no or imperfect knowledge of the channel
coefficients, i.e., has no or imperfect CSI. Traditional signal design ap-
proaches for this scenario were based on separate acquisition of CSI and
subsequent data transmission through channels known at the receiver. In
contrast, we proposed to adjust the signal design directly to the level of
CSI, which resulted in signaling schemes allowing significant performance
gain when compared to traditional approaches.

We began our investigation with a description of common models for
wireless communication systems where both the transmitter and the re-
ceiver are equipped with one or possibly several antennas. Both a single
carrier as well as an OFDM signal model were presented for the commu-
nication over a frequency-selective block-fading channel. Moreover, two
different receiver structures were described that were based on different
assumptions on the statistical properties of the channel coefficients. Due
to the linear nature of the communication channel and the signal mod-
eling, it was possible to cast the analysis of both system models into a
common framework. The two different receiver structures were analyzed
in terms of pairwise error probability either by applying the Chernoff
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bound, using an asymptotic expression valid in the high SNR region or
in exact form. These analysis results laid the groundwork for several
design methods applied in subsequent chapters.

In our first approach to signal design suitable for communication over
unknown frequency-selective channels, we fixed the symbol alphabet to
a given finite set. Assuming knowledge of the system configuration pa-
rameters, we applied the results of the preceding chapter to define the
minimization of the union upper bound on detection error probability as
criterion for our signal design. The corresponding optimization problem
was then solved using simulated annealing and the resulting constella-
tions evaluated using Monte Carlo simulation.

The second approach to signal design removed the restriction to a
predetermined symbol set and was based on the criterion to minimize
a high SNR approximation of the union bound on detection error. The
objective function had the advantage of being much easier to evaluate and
allowed optimization approaches based on gradient search. Again, the
resulting constellations were evaluated numerically and showed superior
performance compared to alternative schemes suitable for the unknown
channel at the receiver.

The excellent performance of the two mentioned approaches came at
the expense of high complexity requirements. The third design method
investigated in this thesis allowed the communication through unknown
frequency-selective channels with significantly lower demands in complex-
ity, albeit at the price of a penalty in detection error performance. Con-
stellations previously used for space–time differential transmission were
applied for differential space–frequency transmission over a frequency-
selective channel. A detailed analysis on the error performance of the
differential detector resulted in a criterion that guarantees the exploita-
tion of full diversity depending on signal and channel model parameters.

In the last part of this thesis, we extended the assumptions concern-
ing the available channel knowledge at the receiver. Here, we assumed
that the receiver has access to an estimate of the channel parameters
together with knowledge about its statistical properties. This model in-
cluded thereby the cases of unknown channel (if the estimate is useless)
as before, but also the other extreme case of perfect channel knowledge
(i.e., the estimate has zero error) and allowed a smooth transition be-
tween these scenarios. Three seemingly different types of channel knowl-
edge were shown to be equivalent under certain circumstances and could
be investigated under a common framework. We then motivated that
the design of the constellation used for data transmission should take
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into account the quality of the available channel estimate at the receiver.
Therefore, two different signal constructions that can be matched to the
quality of the channel estimate were proposed and compared in perfor-
mance. Moreover, structural properties of one signal construction were
exploited to propose a detection algorithm with lower complexity.

6.2 Future Work

The chapters 3 to 5 reflect the chronological order in which the design ap-
proaches were conceived, analyzed and investigated. The extension from
no CSI to partial CSI in the receiver in Chapter 5 thereby was devel-
oped last and as a first step restricted to frequency-flat fading channels.
The application of the theory developed in Chapter 5 to the frequency-
selective case is an immediate proposition for future work.

Moreover, the signal design approaches proposed in this thesis were
all based on the objective to minimize the detection error probability (or
some objective function approximating or bounding it) assuming mod-
erate to high SNR. An interesting topic for future work is therefore an
investigation concerning signal design criteria in the low SNR regime.
In addition, further research into transmission schemes requiring signifi-
cantly lower detection complexity than exhaustive search appears promis-
ing.

Finally, the system models used in this thesis were idealized in the
sense that no further imperfections such as, e.g., synchronization errors in
the receiver were taken into account. It is therefore of practical interest to
investigate the robustness of the proposed signaling schemes with respect
to such effects. Moreover, as a further step in this direction, signal design
explicitly taking these effects into account can be an interesting area for
future research.
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Appendix A

Some Useful Lemmas and

Rules

The following standard results are used in various places throughout this
thesis.

Lemma 5 Let a and b be two jointly complex Gaussian random vectors
with [

a
b

]

∼ CN
([

ā
b̄

]

,

[
Σaa Σab

Σba Σbb

])

then the pdf of a conditioned on b = b̃ is also Gaussian with mean

ā + ΣabΣ
−1
bb (b̃ − b̄)

and covariance

Σaa − ΣabΣ
−1
bb Σba

Proof: See [Kay93, Appendix 15B]. �

Lemma 6 For the four matrices A,B,C,D it holds that

(A + BCD)−1 = A−1 − A−1B(DA−1B + C−1)−1DA−1 (A.1)

if all involved inverse matrices exist.

Proof: The proof can be established by direct verification, i.e., multi-
plication of the right-hand side of (A.1) with (A + BCD) with some
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subsequent algebraic manipulations. An alternative is to solve the ma-
trix equation

(A + BCD)X = I (A.2)

in the unknown matrix X. It follows immediately from (A.2) that

X = A−1 − A−1BCDX (A.3)

as well as by multiplying (A.2) with DA−1 from the left that

(C−1 + DA−1B)CDX = DA−1. (A.4)

Now isolating CDX in (A.4) and inserting the result into (A.3) yields
the result for X. �

We also note other standard rules from linear algebra (see, e.g.,
[Lüt96]). All rules assume that the matrices are of compatible dimen-
sion and inverses exist.

tr
(
AHB

)
= (vec(A))Hvec(B) (A.5)

vec(ABC) = (CT ⊗ A)vec(B) (A.6)

(A ⊗ B)(C ⊗ D) = (AC) ⊗ (BD) (A.7)

|kIM + AB| = kM−N |kIN + BA|, k 6= 0 (A.8)
∣
∣
∣
∣

A B
C D

∣
∣
∣
∣

= |A||D − CA−1B| (A.9)

= |D||A − BD−1C| (A.10)
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[Dog03] A. Dogandžić. Chernoff bounds on pairwise error probabil-
ity of space–time codes. IEEE Transactions on Information
Theory, 49(5):1327–1336, May 2003.

[FG98] G. J. Foschini and M. J. Gans. On limits of wireles commu-
nications in a fading environment when using multiple an-
tennas. Wireless Personal Communications, 6(3):311–335,
March 1998.

[FGL+84] G. D. Forney, Jr., R. G. Gallager, G. R. Lang, F. M.
Longstaff, and S. U. Qureshi. Efficient modulation for band-
limited channels. IEEE Journal on Selected Areas in Com-
munications, SAC-2(5):632–647, September 1984.

[Fle91] R. Fletcher. Practical Methods of Optimization. John Wiley
and Sons, 2nd edition, 1991.

[For72] G. D. Forney, Jr. Maximum-likelihood sequence estimation
of digital sequences in the presence of intersymbol interfer-
ence. IEEE Transactions on Information Theory, 18(3):363–
378, May 1972.

[GFBK99] J.-C. Guey, M. P. Fitz, M. R. Bell, and W.-Y. Kuo. Signal
design for transmitter diversity wireless communication sys-
tems over Rayleigh fading channels. IEEE Transactions on
Communications, 47(4):527–537, April 1999.



148 Bibliography

[GHSW87] A. A. El Gamal, L. A. Hemachandra, I. Shperling, and V. K.
Wei. Using simulated annealing to design good codes. IEEE
Transactions on Information Theory, IT-33(1):116–123, Jan-
uary 1987.

[GL97] A. Gorokhov and P. Loubaton. Semi-blind second order iden-
tification of convolutive channels. In Proc. IEEE Interna-
tional Conference on Acoustics, Speech, and Signal Process-
ing, pages 3905–3908, Seattle,USA, 1997.

[Gra81] A. Graham. Kronecker Products and Matrix Calculus With
Applications. Ellis Horwood Ltd., 1981.

[GS02a] J. Giese and M. Skoglund. Space–time code design for com-
bined channel estimation and error protection. In Proc. IEEE
International Symposium on Information Theory, Lausanne,
Switzerland, June 2002.

[GS02b] J. Giese and M. Skoglund. Space–time code design for com-
bined channel estimation and error protection. In Proc. Ra-
dioVetenskap och Kommunikation (RVK), Stockholm, Swe-
den, June 2002.

[GS02c] J. Giese and M. Skoglund. Space–time code design for un-
known frequency-selective channels. In Proc. IEEE Interna-
tional Conference on Acoustics, Speech, and Signal Process-
ing, Orlando, Florida, USA, May 2002.

[GS03a] J. Giese and M. Skoglund. Combined coding and modu-
lation design for unknown frequency-selective channels. In
Proc. IEEE International Symposium on Information The-
ory, Yokohama, Japan, 2003.

[GS03b] J. Giese and M. Skoglund. Single and multi-antenna constel-
lations for communication over unknown frequency-selective
fading channels. Submitted to IEEE Transactions on Infor-
mation Theory, May 2003.

[GS03c] J. Giese and M. Skoglund. Space–time constellations for un-
known frequency-selective channels. In Proc. IEEE Interna-
tional Conf. on Communications, pages 2583–2587, Anchor-
age, AK, USA, 2003.



Bibliography 149

[GS04] J. Giese and M. Skoglund. Performance of unitary differential
space-frequency modulation. In Proc. International Sympo-
sium on Information Theory and its Applications, Parma,
Italy, October 2004.

[GS05a] J. Giese and M. Skoglund. Space–time constellation design
for partial CSI at the receiver. In Proc. IEEE Interna-
tional Symposium on Information Theory, Adelaide, Aus-
tralia, September 2005.

[GS05b] J. Giese and M. Skoglund. Space–time constellation design
for partial CSI based on code combination. In Proc. Asilo-
mar Conference on Signals, Systems, and Computers, Pacific
Grove, CA, USA, October 2005.

[GS05c] J. Giese and M. Skoglund. Space–time constellation design
for partial CSI at the receiver. October 2005. In Preparation.

[GvL96] G. H. Golub and C. F. van Loan. Matrix Computations. The
Johns Hopkins University Press, 3rd edition, 1996.
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