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Abstract. We consider quotient sheaves by equivalence relations
of schemes, in subcanonical topologies. We introduce the notion of
stability, and we show that algebraic spaces are stable. We provide
some general criteria for stability of quotient sheaves, and we apply
these results to give a global construction of the Grassmannians
and some Hilbert schemes.

Introduction

By definition an algebraic space A is the étale quotient sheaf by
an étale equivalence relation of schemes R

// //X . The quotient map
X −→ A becomes representable, and étale. Properties of the quotient
sheaf are related to properties of its cover, and as such, algebraic spaces
are very close to being schemes.

There are however many subcanonical topologies available, and other
properties than étaleness, that one could impose on the equivalence re-
lation. Furthermore, in many moduli situations one encounters the
situation when one would like to quotient out by an equivalence rela-
tion that is not étale. For these two reasons alone, it is natural and
interesting to consider sheaf quotients by schemes in general.

Given an equivalence relation R
////X of schemes, one forms the

quotient functor of equivalence classes XR. Then the natural question
is in which topology one should sheafify the functor XR within. This
and related questions were considered in ample generality in the SGA-
seminars ([Dem63], [Ver72]), and in particular the question wheter such
a quotient were representable by a scheme was of natural interest (see
e.g. [Ray67], [Gro95], [Mur95]).

The approach we undertake in this article is however different as
we are not concerned wheter the quotient sheaf becomes representable
by a scheme. Instead we focus on which properties a quotient sheaf
should posess in order to be treated as it were a scheme. Or put more
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speficially, what exactly makes the notion of an algebraic space behave
so arguably well.

Let A denote the sheaf quotient of an equivalence relation of schemes

R
////X in some fixed subcanonical topology. Under some mild hy-

pothesis the quotient map of sheaves X −→ A will be representable,
and as such it will be a covering map for the topology. A sheaf with
a representable cover X −→ A is however not behaving as it was a
scheme. In particular such a sheaf quotient might not remain a sheaf
in a refinement of the topology.

In this article we introduce the notion of stability. We say that a
sheafification A of a functor, in a subcanonical topology, is stable if A
remains a sheaf in any refinement of the topology. For technical and
practical purposes we limit ourselves by not going any further than the
fpqc-topology.

Schemes are by definition stable in any subcanonical topology, and
we show that algebraic spaces are stable (for the étale topology). In
particular we have that a sheaf A which is representable in a given
topology, is stable.

The particular choice of topology in which the quotient sheaf of an
equivalence relation R

// //X is taken with respect to, is crucial for
the stability of the quotient sheaf. It is natural to choose the coarsest,
and we give some general criteria of stability. The notion of stability
appears to be quite complex, and is in particular not directly related
to the maps defining the equivalence relation. For instance, we give
examples where the equivalence relation are Zariski open immersions,
but where the quotient sheaf is not stable for the Zariski topology. And
we provide examples where the equivalence relation are not Zariski
open immersions, but where the quotient sheaf is stable for the Zariski
topology.

As applications of our results we construct the Grassmannian and
the Hilbert scheme of points on affine d-space as Zariski sheaf quotients
of an equivalence relation of schemes.

Structure of the article. In the first section we recall some basic no-
tions about contravariant functors on schemes, and their sheafification
in a given pretopology. The results of Section 1 are surely well-known.

In Section 2 we consider the saturated situation, working with a
topology instead of a pretopology. The results of Section 2 are found
more or less explicitely in the SGA-seminars, for instance. Important
for our understanding is Corollary (2.10), after which we provide some
new examples that we hope will be of interest.

The main novelty of our article is in Section 3, where we give the
notion of stability, and give some general criteria for stability. We
apply these criteria to show that algebraic spaces are stable, and to
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give examples of finite group quotients that are not stable in the finite
étale topology.

In the last section we give two examples that initated this article:
Both the Grassmanninan and the Hilbert scheme of points on affine n-
space, naturally occur as the quotient sheaf of an equivalence relation
of schemes. The equivalence relation is given by smooth morphism,
but the Zariski topology is where we form the quotient sheaf.

Acknowledgements. Discussion with David Rydh have been impor-
tant and clearifying.

1. Presheaves and associated sheaves

In this section we recall some general results about sheaves. We
include these for readability and completeness, as well as to give an el-
ementary treatment of quotient sheaves. Apart from Proposition (1.16)
the statements are sheaf theoretical.

1.1. Functors and universe. A category c will always mean an U -
category, where U is a fixed universe. A category c means furthermore
always some category of schemes over a fixed base scheme. Moreover,
as our category always will be small, being a U -category, we have that
the collection of contravariant functors from c to the category of sets,
will again form a category. The objects are contra-variant functors and
referred to as presheaves. Morphism are the natural transformations of
functors. The category of presheaves Funop(c, Ens) we denote by ĉ.

Example 1.2. This example, due to T. Ekedahl, shows that if the
category c is not small, then one will encounter set-theoretical problems
when considering the collection of functors from c to sets, or in fact any
codomain.

Let Funop(c, 0) denote the collection of functors from c to the trivial
category 0. Note that there is only a single functor F in this collection.

Any functor F induces a map on the class of objects f : ob(c) −→ 0.
A map f is a subclass Γf of the product ob(c)× 0, and we consider the
image of Γf by the projection map to c. The image of a set is a set.
Hence, if we assume that the category c is not small, i.e. the objects
form a proper class and not a set, then we have that Γf is a proper
class. It follows that also F is a proper class.

Now, if the collection of functors were to be a category it ought
to have a class of objects. In particular F ∈ ob(Funop(c, 0)), which
however is a contradiction since F is a proper class and can then, by
definition, not occur as an element of a class.

Proposition 1.3 (Yoneda Lemma). Let h(X) = Hom(−, X) denote
the associated presheaf for any scheme X. For any presheaf F on the
category c, there is a natural bijection Homĉ(h(X), F ) = F (X). In
particular the functor h : c −→ ĉ is full and faithful.
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In what follows we do not distinguish a scheme X from its associated
presheaf h(X).

1.4. Equivalence relations. An equivalence relation on a presheaf
X is a monomorphism of presheaves R −→ X × X such that for any
scheme S the set R(S) is the graph of an equivalence relation on X(S).
If X is a scheme itself, then an equivalence relation R on X will always
be assumed to be a scheme.

Lemma 1.5. Two morphisms R
π1 //
π2

//X of presheaves form an equiv-

alence relation if and only if the following four assertions hold.

(1) The natural map R −→ RX×XR is an isomorphism.
(2) The diagonal map ∆: X −→ X ×X has a unique factorization

through R −→ X ×X.
(3) There exists a morphism i : R −→ R such that the diagram

R //

i
��

X ×X

τ

��
R // X ×X

is commutative, where τ : X ×X −→ X ×X is the involution
shifting the order.

(4) Let R×X R denote the sub-presheaf of R×R given by

R×X R(T ) = {(r, s) ∈ R×R(T ) | π2(r) = π1(s)}.

Then the image of (π1, π2) : R ×X R −→ X ×X is included in
the image of R −→ X ×X.

Proof. A morphism of presheaves R −→ U is a monomorphism if and
only if the morphism R −→ R ×U R is an isomorphism. We therefore
have that (1) is equivalent with R −→ X ×X being a monomorphism.

By (1) we have that R −→ X × X is a monomorphism. Together
with the reflexivity we get a factorization of ∆ via R −→ X ×X, and
the factorization is unique. Conversely, a factorization of ∆ through R
implies the reflexivity axiom.

The symmetry axiom together with (1) imply (3), whereas (3) implies
symmetry. Itis also clear that Assertion (4) is a reformulation of the
transitivity axiom.

�

1.6. Presheaf quotients. If R
π1 //
π2

//X is an equivalence relation then

for each scheme S we can form the quotient set XR(S) of equivalence
classes in X(S). If T −→ S is any morphism of schemes we obtain two
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commutative diagrams of sets

(1.6.1) R(S)

��

π1 //
π2

// X(S)

��

// XR(S)

R(T )
π1 //
π2

// X(T ) // XR(T ).

And consequently we obtain an induced map of sets XR(S) −→ XR(T ),
and we have that XR is a presheaf.

Lemma 1.7. Let π : X −→ F be an epimorphism of presheaves. Then
the presheaf R = X ×F X with its two projections to X, form an
equivalence relation on X, and the quotient presheaf XR is canonically
identitfied with F .

Proof. The map R = X ×F X −→ X ×X is a monomorphism. There
is furthermore a natural involution i : R −→ R, and the diagonal map
X −→ X × X factorizes through R −→ X × X. So R −→ X × X
satisfies (1), (2) and (3) of Lemma (1.5). One checks that the image of
R ×X R in X ×X is included in the image of R, hence R −→ X ×X
is an equivalence relation. The map π factors through the quotient of

R
// //X , and since π was assumed to be an epimorphism it follows

that F equals the quotient of R
////X . �

1.8. Pretopologies. For each scheme S we assume that we have a
collection Cov(S) of morphisms of schemes with codomain S, satisfying
the axioms of a pretopology (see e.g. [Ver72] Expose II, Definition 1.3,
p. 221). An element of Cov(S) is a collection of maps {Sα −→ S}α∈A ,
we occasionally replace with the single morphism T −→ S, where T =
tSα is the disjoint union of the domains Sα of the collection.

1.9. Sheaves. Let F be a presheaf. For any covering {Sα −→ S}α∈A

of a scheme S, we get the induced sequence

(1.9.1) F (S) //
∏

α∈A F (Sα)
p //
q

//
∏

α,β∈A F (Sα ×S Sβ) .

The presheaf F is separated if the leftmost map (1.9.1) is injective, and
a sheaf if the sequence is exact, for all schemes S, and all coverings.

A pretopology is subcanonical if the associated presheaf X is a sheaf,
for any scheme X.

1.10. Sheafification. For any presheaf F we can form its sheafification
with respect to a given pretopology. For each scheme S, the set Cov(S)
is filtered via the fiber product. We form the directed limit

(1.10.1) LF (S) := lim−→T→S∈Cov(S)F (T ).

This assignment gives a map of presheaves F −→ LF .
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Proposition 1.11. For any presheaf F the presheaf LF is separated.
Furthermore we have that

(1) The morphism F −→ LF is a monomorphism if and only if F
is separated. And in that case LF is a sheaf.

(2) The morphism F −→ LF is an isomorphism if and only if F
is a sheaf.

In particular we have that L2F is a sheaf, for any presheaf F .

Proof. See Demazure [Dem63], IV, 4, Proposition 4.3.11, p. 200 or
Verdier [Ver72], II, 4, Proposition 3.2, p. 232. �

Remark 1.12. There is one point to make about the usual pretopolo-
gies and our fixed universe U lying in the background. For a fixed
scheme X the category of Zariski coverings is small, and the category
of surjective, étale morphism (as well as fppf-coverings), is essentially
small. In particular we can assume that the coverings are all included
in our universe U . The category of fpqc-coverings is however not small,
and consequently only some of the fpqc-coverings will fit in our uni-
verse. It is therefore plausible that the sheafification of a presheaf in
the fpqc-topology will depend on the universe, see [BLR90] p. 201, and
[Wat75].

Proposition 1.13. Let Cov be a pretopology, and let R and X be two
sheaves. Assume that we have an equivalence relation R

////X , and
let XR denote its presheaf quotient. Then the presheaf XR is separated.
In particular we have that LXR is a sheaf, and that the equivalence
relation is effective, i.e. R = X ×LXR

X.

Proof. Let S be a scheme and {Sα −→ S}α∈A some covering. We will
show that the induced map XR(S) −→

∏
XR(Sα) is injective. To see

this we consider the commutative diagram of sets

(1.13.1) R(S)

��

π1 //
π2

// X(S)

��

// XR(S)

��∏
R(Sα)

q

��
p

��

π1 //
π2

//
∏

X(Sα)

q

��
p

��

//
∏

XR(Sα)

q

��
p

��∏
R(Sα,β)

π1 //
π2

//
∏

X(Sα,β) //
∏

XR(Sα,β),

where Sα,β = Sα ×S Sβ. The horizontal sequences are exact by defini-
tion, whereas the two leftmost vertical sequences are exact since R and
X are sheaves. We want to check that the upper right vertical map is
injective. Let f, g ∈ X(S) be two elements that are mapped to the same
element in

∏
XR(Sα), and let f1, g1 be the images of f, g in

∏
X(Sα).

Then there exists z ∈
∏

R(Sα) such that π1(z) = f1 and π2(z) = g1.
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We have furthemore that p(f1) = q(f1) by the exactness of the mid-
dle coloumn, hence by the commutativity we have π1(p(z)) = π1(q(z)).
Similarily using g1, we get that π2(p(z)) = π2(q(z)). Since R −→ X×X
is a monomorphism it follows that p(z) = q(z). Since the left vertical
sequence is exact we get an element z′ ∈ R(S) such that π1(z

′) = f
and π2(z

′) = g, and we have that the map XR(S) −→
∏

XR(Sα) is
injective. Consequently the quotient sheaf XR is separated, and by
Proposition (1.11) we have that LXR is a sheaf.

To see that the equivalence relation is effective we need to establish
that R = X ×LXR

X. By Lemma (1.7) we have that R = X ×XR
X

since X −→ XR clearly is an epimorphism of presheaves. Moreover,
as just proven, the map XR −→ LXR is a monomorphism, and we get
that

X ×LXR
X(S) = X ×XR

X(S),

for any scheme S. Hence X ×LXR
X = X ×XR

X = R, and we have
proven the proposition. �

Corollary 1.14. Let X −→ A be an epimorphism of sheaves. Then
the sheaf R = X ×A X with its projections to X, form an equivalence
relation on X, and the sheaf quotient LXR is A.

Proof. For each scheme S let F (S) ⊆ A(S) denote the image subset of
the sheaf epimorphism π : X −→ A. We have that the map X −→ F
is an epimorphism of presheaves. Furthermore, as

X ×F X(S) = X ×A X(S),

for any scheme S, we have R = X ×A X = X ×F X. By Lemma
(1.7) we have that R → X × X forms an equivalence relation, and
that the presheaf quotient XR = F . From the proposition we get
that the sheaf quotient of the equivalence relation R

////X is LF .
The inclusion of presheaves XR = F ⊆ A induces an isomorphism of
sheaves LXR −→ A, proving the corollary. �

Lemma 1.15. Let R and X be two sheaves in some pretopology Cov.
Let R

////X be an equivalence relation, and let A = LXR denote the
sheaf quotient. Let s : S −→ A be a morphism, with S a scheme. Then
there exists T → S in Cov(S), making the cartesian diagram

(1.15.1) T ×X R //

��

S ×A X

��
T ×X // S ×X

Proof. Via the Yoneda Lemma (1.3) we identify s : S −→ A with an
element s ∈ A(S). As A = LXR we get from the definition of the
direct limit that there exists a cover j : T −→ S of S, and an element
t̄ ∈ XR(T ) that is mapped to s via the natural map

XR(T ) −→ LXR(S) = lim−→{T−→S}∈Cov(S)XR(T ).



8 ROY MIKAEL SKJELNES

Let t ∈ X(T ) be a representative of the equivalence class t̄ ∈ XR(T ).
Then again by the Yoneda lemma we have that t : T −→ X. If
π : X −→ A denotes the quotient map, then the covering j : T −→ S
is such that π ◦ t = j ◦ s. Since the composition π ◦ t : T −→ A factors
via X, we can write

(1.15.2) T ×A X = T ×X X ×A X.

By Proposition (1.13) we have that R = X ×A X, and it follows that
the diagram (1.15.1) is cartesian. �

Proposition 1.16. Let Cov be a subcanonical pretopology, and let A
be a sheaf. Then the following are equivalent.

(1) There exists an epimorphism of sheaves π : X −→ A, with X
a scheme, the morphism π being representable, and such that
the induced morphism of schemes X ×A X −→ X ×X satisfies
effective descent ([Knu71, p.32]) with respect to the pretopology
Cov.

(2) There exists a morphism of schemes R −→ X × X satisfying
effective descent with respect to Cov, and where the induced
maps R

////X form an equivalence relation with sheaf quotient
A.

Proof. Assume (1). We obtain from the representability of the map
π : X −→ A that the sheaf X ×A X is a scheme R. From Corollary
(1.14) we have that R

////X is an equivalence relation and where the
sheaf quotient is A. Thus we have that (1) implies (2).

To show the converse, assume that (2) holds. Let S −→ A be a
morphism with S a scheme. By Lemma (1.15) there is a cover T −→ S
of S, such that we obtain a cartesian diagram as (1.15.1). The left
vertical morphism in (1.15.1) is a morphism of schemes that satisfies
effective descent with respect to Cov. Since T −→ S is a covering map
the effective descent assumption implies that the right vertical map
in (1.15.1) is also a morphism of schemes. In particular S ×A X is a
scheme, and hence the quotient map X −→ A is representable. Since
A is the sheaf quotient we have that A = LXR by Corollary (1.14),
and in particular the map X −→ A is an epimorphism of sheaves. We
have shown that (2) implies (1). �

Remark 1.17. The result above is a generalization of the defining prop-
erty of algebraic spaces (cf. [Knu71], Proposition 1.3, p. 93).

Example 1.18. With this example we show that a quotient sheaf
with a representable cover can behave unexpectedly. Let K −→ L
be a separable field extension. Then Spec(L⊗K L) // //Spec(L) form
an equivalence relation on Spec(L). The quotient sheaf, in the étale
topology, is well-known to be Spec(K) (see also Example (2.13)). If
one instead consider the sheaf quotient A in the Zariski topology we
obtain a different sheaf.
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By Proposition (1.16) the quotient map Spec(L) −→ A is repre-
sentable, and there is a natural inclusion of sheaves

A ⊂ Spec(K),

which however is not an isomorphism: Consider the identity morphism
idK on Spec(K). Assume that there exists s ∈ A(Spec(K)) mapping
to the identity map idK . Since A is the Zariski sheafification of the
quotient presheaf, the element s ∈ A(Spec(K)) would after a Zariski
refinement S ′ −→ Spec(K) lift to Spec(L). As there are only trivial
Zariski refinements of Spec(K) we get that s : Spec(K) −→ A lifts to
a morphism Spec(K) −→ Spec(L). Which is impossible as long as
K 6= L, and consequently A 6= Spec(K).

2. Effective quotients of schemes

The results in this section are perhaps lesser known that the result
in the previous section. The upshot of this section is Corollary (2.10)
that characterizes when a scheme Y is the sheaf quotient of a scheme
X by a morphism f : X −→ Y .

2.1. Sieves. A subpresheaf F ⊆ Y of a scheme Y is a sieve on Y . A
morphism π : X −→ Y of schemes determines the sieve Fπ ⊆ Y , by
Fπ(T ) = {f : T −→ Y that factorizes through π : X −→ Y }, for any
scheme T .

Lemma 2.2. Let π : X −→ Y be a morphism of schemes that has a
section. Then the associated sieve Fπ = Y .

Proof. Let s : Y −→ X be a section of π. If f : T −→ Y is a morphism
of schemes, then f composed with π ◦ s gives a factorization of f via
π : X −→ Y . Hence we have equality Fπ = Y . �

Let π : X −→ Y be a morphism of schemes, and let F be a sieve on
Y . Then we have the pull-back X ×Y F, denoted π∗F, which is a sieve
on X.

Definition 2.3. A topology J is, for any scheme Y , a collection of sieves
J(Y ), called covering sieves, satisfying the following three axioms.

(t1) If F ∈ J(Y ) is a covering sieve, then f ∗F ∈ J(Y ′) is a covering
sieve, for a, any morphism of schemes f : Y ′ −→ Y .

(t2) Let F ∈ J(Y ) be a covering sieve, and let iY : F ⊆ Y denote the
inclusion. Let G be any sieve on Y . If, for any scheme Y ′, any
morphism of presheaves f : Y ′ −→ F, we have that the pullback
(iY ◦ f)∗G is a covering sieve on Y ′, then G is a covering sieve
on Y .

(t3) For any scheme Y we have that Y ∈ J(Y ).



10 ROY MIKAEL SKJELNES

Remark 2.4. A pretopology determines a collection of sieves, which
not necessarily satisfy Axiom (t2). By adding the needed sieves we get
the topology J generated by the pretopology. We can assume that our
universe U also contains the sieves needed to make a pretopology a
topology ([Ver72], Proposition 3.0.4, p. 229).

Remark 2.5. A sheaf A on a pretopology will remain a sheaf in the
topology generated by the pretopology ([Ver72], Corollary 2.4, p. 226).
Thus, the results about sheaves given in the preceding sections remains
true also for topologies.

2.6. A morphism of schemes π : X −→ Y is a covering map for the
topology J if the sieve Fπ is a covering sieve, that is if Fπ ∈ J(Y ).

Proposition 2.7. Let J be a topology, and let π : X −→ Y be a mor-
phism of schemes. Then π is a covering map for the topology J if
and only if there exist a covering map Y ′ −→ Y such that the induced
morphism X ′ = X ×Y Y ′ −→ Y ′ has a section.

Proof. If π : X −→ Y is a covering map then the result is clear since
we can take R = X ×Y X −→ X, which has a section. To prove the
converse we need to show that π : X −→ Y is a covering map, that is
Fπ ∈ J(Y ). By assumption there exists a covering map i : Y ′ −→ Y
such that the induced morphism of schemes

π′ : X ′ = X ×Y X ′ −→ Y ′

has a section. The pull-back i∗Fπ is the sieve on Y ′ consisting of all
maps to Y ′ that factors through X ′ −→ Y ′. In other words i∗Fπ = Fπ′ .
By assumption π′ has a section, and we have from the Lemma (2.2) that
Fπ′ = Y ′. By the Axiom (t3) we have Y ′ ∈ J(Y ′), hence i∗Fπ ∈ J(Y ′).

Consider now the covering sieve Fi on Y , where i : Y ′ −→ Y is the
covering map as above. Let f : Z −→ Fi be any morphism, with Z a
scheme. The pull-back of the sieve Fπ along the composition of f and
the inclusion Fi −→ Y is f ∗i∗Fπ. As just seen i∗Fπ = Fπ′ is a covering
sieve, hence by Axiom (t1) so is the pull-back f ∗i∗Fπ. It then follows
from Axiom (t2) that Fπ ∈ J(Y ). Thus, π : X −→ Y is a covering
map. �

Corollary 2.8. The topology generated by surjective, smooth mor-
phisms equals the topology generated by surjective, étale morphisms.

Proof. A smooth surjective morphism of schemes π : X −→ Y has
étale locally a section ([Gro67] Corollary 17.16.3). A consequence of
the Proposition is then that the topology generated by smooth, sur-
jective morphisms equals the topology generated by étale, surjective
morphisms. �

Corollary 2.9. If π : X −→ Y is a morphism of schemes that has a
section, then π : X −→ Y is a covering map in any topology.
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Proof. By Axiom (t3) the identity morphism Fid = Y is a covering
map in any topology. Consequently the map π : X −→ Y has a sec-
tion locally in any topology, and then the corollary follows from the
proposition. �

Corollary 2.10. Let J be a subcanonical topology, and π : X −→ Y
a morphism of schemes. Let R = X ×Y X and let A denote the sheaf
quotient of the equivalence relation R

// //X . Then A = Y if and only
if π is a covering map.

Proof. If Y equals the sheaf quotient of R
// //X then Y = LXR, and

in particular we have that the morphism π : X −→ Y is an epimorphism
of sheaves. By considering the identity morphism idY we have that
there exists a covering i : Y ′ −→ Y such that π′ : X ×Y Y ′ −→ Y ′ has
a section. By Proposition (2.7) we have that π : X −→ Y is a covering
map.

To prove the converse, assume that π is a covering map. By Propo-
sition (2.7) we get that the morphism π : X −→ Y is an epimorphism
of sheaves. Then the result follows from Corollary (1.14).

�

Example 2.11. Let X = Spec(k[x, y]/(xy)) denote the coordinate
cross, and let π : X −→ Spec(k[x]) = A1 denote the natural projection
onto one of its axis. Since π is not flat, then neither is the equivalence
relation R = X ×A1 X on X. However, as the projection

π : X = Spec(k[x, y]/(xy)) −→ A1

has a section, we obtain, by Corollary (2.10) that the quotient sheaf of

R
////X is the affine line A1, in any subcanonical site.

Example 2.12. Let π : X = Spec(k[x, y]) −→ C = Spec(k[x2, xy, y2])
be the natural map from the affine plane to the cone C. We have the
equivalence relation

R = X ×C X = Spec(k[x, y]⊗k[x2,xy,y2] k[x, y])

= Spec(k[x1, y1, x2, y2]/(x
2
1 − x2

2, y
2
1 − y2

2, x1y1 − x2y2).

This equivalence relation is the equivalence relation generated by the
natural action of Z2 on the affine plane, and its topological quotient |C|
is discussed in ([Kol08]). However, as there is no section of π : X −→ C,
not locally in any subcanonical topology, we get that the quotient sheaf
A of R

////X does not equal the cone C.
Topologically |A| = |C|, but over the vertex of the cone C, the

sheaf quotient A has additional points sticking out . Any infinitesimal
thickening of the origin of A2 will give a point of A. In particular
the two tangent directions, from the origin pointing towards (x, y) and
(−x,−y) in the plane will give two different tangent directions in A
pointing at the same point.
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Example 2.13. Let K ⊆ L be a field extension, not necessarily sep-
arated. Let X = Spec(L), and let R = Spec(L ⊗K L). Depending
on the topology, the sheaf quotient of R

// //X will not necessarily be
Spec(K). However, the morphism X = Spec(L) −→ Spec(K) has a
section in the fpqc-topology, and consequently we can always find some
subcanonical site where the quotient sheaf R

////X equals Spec(K).
For instance, we could have K = Q included in its algebraic closure

L = Q. Then Spec(Q) would not be the sheaf quotient R
// //X unless

the map Spec(Q) −→ Spec(Q) is a covering map for the topology.

2.14. Glueing. It is well-known that schemes can be glued along
Zariski open subsets as long the identification of the glueing charts
satisfy the cocycle condition. The scheme one obtains by glueing X
along the open subsets R is the quotient or push-out of R

// //X , in
the category of schemes. With the following example we show that the
quotient depends on the category.

Example 2.15. . The following example is based on ([Knu71], page 9).
Let X = Spec(k[x, y]/(xy)) again be the coordinate cross. Let R be the
disjoint union of X and X0, where X0 = X \ (0, 0) is the complement
of the origin. We consider the two morphisms πi : R −→ X, where π1

is the natural inclusion on both components of R. The morphism π2 is
the identity on the component X, but on the other component X0 the
morphism π2 switches the axes. Note that the two maps π1 and π2 are
Zariski local open immersions.

The glueing of X along R will give the affine line, but the quotient
sheaf A, of R

////X is not a scheme, in any topology. To see this note
that the presheaf quotient has, over the origo, different tangent direc-
tions sticking out. Since the presheaf quotient is separated (Proposition
(1.13)), these tangent directions will also appear in the sheaf quotient.
Hence, since the sheaf quotient is different from the affine line, it follows
that the sheaf quotient can not be a scheme.

Thus, the non-scheme like points, as the tangent directions in the
above example, are not particular for algebraic spaces being étale quo-
tient sheaves by étale equivalence relations. One encounters these non-
scheme points when taking Zariski quotient sheaves by Zariski equiva-
lence relations.

Proposition 2.16. Let J be a subcanonical topology. Let R
////X

be an equivalence relation, where R −→ X × X is a morphism of
schemes that satisfies effective descent with respect to J . Denote by
π : X −→ A the sheaf quotient. Then we have for any Y −→ A, with
Y a scheme, that the induced morphism of schemes πY : Y ×A X −→
Y is a covering map for the topology J . Furthermore, we have that
R×A Y ////X ×A Y is an equivalence relation of schemes, and the
quotient sheaf is Y .
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Proof. For any morphism s : Y −→ A, with Y a scheme, we have by
Proposition (1.16) that the induced morphism πY : XY = Y ×A X −→
Y is a morphism of schemes. We need to see that πY is a covering map
for the topology J . By Lemma (1.15) there exist a covering Y ′ −→ Y
making the cartesian diagram

(2.16.1) Y ′ ×X R //

��

Y ×A X

��
Y ′ ×X // Y ×X

By Lemma (1.5) (2) the diagonal map X −→ X×X factorizes through
R −→ X×X. It follows that the morphism π1 : R −→ X has a section,
and consequently that the left most vertical arrow in the diagram above
has a section. Furthermore, as Y ′ −→ Y is a covering of Y , we get
from Axiom (t1) that Y ′×X −→ Y ×X is a covering of Y ×X. Then,
by Proposition (2.7) we have that πY is a covering map.

And finally, as the morphism πY : XY −→ Y is a covering map, we
get from Corollary (2.10) that the sheaf quotient equals Y . �

Remark 2.17. Note that there is no assumption on the maps in the
equivalence relation. The notion of equivalence relation makes these
maps covering maps in any subcanonical topology.

3. Stability

The main novelty of this article is the notion of stability that we
introduce below. After giving some general criteria for stability, we
show that algebraic spaces satisfy the stability condition. Thereafter we
give examples of group quotients that are unstable in some topologies
coarser than the étale topology.

3.1. Notation. We use the definition of fpqc as in ([FGI+05], p. 23).
In particular any of the standard subcanonical topologies (Zariski,
étale, fppf) can be refined to the fpqc. Our interest is to understand,
given an equivalence relation R

// //X , which topology J provides a
well-behaved quotient sheaf LXR. Note that by Proposition (2.16) we
have that the geometry, that is the points, of a quotient sheaf behaves
well in any topology, whereas it is clear, e.g. Example (1.18), that in
some topologies the quotient sheaves do not behave well.

Definition 3.2. Let F be a presheaf, and let J be a topology that
can be refined to the fpqc-topology. The sheafification FJ = L2F with
respect to J is stable if the presheaf FJ is a sheaf in the fpqc-topology
as well.

Remark 3.3. Note that a scheme Y is stable, in any subcanonical topol-
ogy. In particular if the sheafification L2F of a presheaf F in some
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subcanonical topology J , is isomorphic to a scheme L2F = Y , then the
sheafifcation L2F is stable with respect to J .

Remark 3.4. The Zariski sheaf quotient of Example (1.18) is not stable.
The étale sheafification of that quotient is stable since the étale quotient
is representable by a scheme.

Remark 3.5. As any sheaf in the fpqc-topology is stable, the definition
is a bit unsatisfactory. This means also that one can always find a
topology J , namely the fpqc, that makes the sheafification stable. Our
interest is however in finding coarser topologies than the fpqc that will
provide stable sheafification.

Lemma 3.6. Let π : X −→ Y be a morphism of schemes where π is
a covering map for the fpqc-topology, and let R = X ×Y X. Assume
that π is not a covering map for a subcanonical topology J . Then the
quotient sheaf of the equivalence relation R

////X in the J-topology is
not stable.

Proof. By Corollary (2.10) we have the sheaf quotient LXR in the J-
topology is not equal to Y , but that the sheaf quotient in the fpqc-
topology is Y . Consequently the sheafification of the quotient XR is
not stable with respect to the J-topology. �

Proposition 3.7. Let R
π1 //
π2

//X be an equivalence relation of schemes,

and assume that the two morphism π1 and π2 have a property P. Let
I and J be two subcanonical topologies with J being a refinement of I.
Assume that the three following conditions hold.

(1) If π is a morphism of schemes with property P, then π is a
covering map for the I-topology.

(2) The property P is local on the domain with respect to J .
(3) The morphism R −→ X × X satisfies effective descent with

respect to J .

Then the quotient sheaf of the equivalence relation R
// //X in the

I-topology, equals the sheaf quotient in the J-topology.

Proof. Let XR denote the quotient functor, and let IXR and JXR de-
note the quotient sheaves in the I-topology and J-topology, respec-
tively. Since J is a refinement of I, we have an induced map of
presheaves

(3.7.1) IXR −→ JXR.

One can check that the map (3.7.1) is a monomorphism as follows.
Assume f, g ∈ IXR(S) are two elements that are mapped to the same
element in JXR(S), where S is some scheme. The two elements f and
g in IXR(S) we represent with two elements in XR(U), for some I-
covering i : U → S ∈ I(S). And we have that f = g in XR(T ) for some
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J-covering j : T −→ S ∈ J(S). We get that i∗f = i∗g in XR(T ×S U).
As T ×S U −→ U is an element of J(U), we get that the map

XR(U) −→ JXR(U) = lim−→T→U∈J(U)XR(T )

sends f and g to the same element in JXR(U). By Proposition (1.13)
we have that XR is separated, and it follows that (3.7.1) is a monomor-
phism.

Next we show that (3.7.1) is an epimorphism of presheaves. Let
π : X −→ JXR denote the quotient map of sheaves. By Assumption
(3) we have that R −→ X ×X satisfies effective descent with respect
to J , and consequently by Proposition (1.16) we have that the quotient
map π : X −→ JXR is representable. Let s ∈ JXR(S) be an element,
with S a scheme. Consider the cartesian diagram of sheaves in the
J-topology

X
π // JXR

X ×JXR
S

πS //

OO

S

s

OO
.

We have that πS is a morphism of schemes. From Lemma (1.15) we
have that there exist a J-cover T −→ S such that the pull-back of the
morphism πS is

id×π1 : T ×X R −→ T ×X.

Since π1 : R −→ X has property P, so has id×π1. By assumption the
property P is local on the domain for the J-topology, which guarantees
that πS has property P. By the first assumption we get that πS

is a covering map for the I-topology, hence by Proposition (2.7) the
morphism πS has I-locally a section. In other words the element s
in JXR(S) is also in IXR(S), and we have proven that (3.7.1) is an
epimorphism of presheaves. Thus IXR = JXR as claimed. �

Corollary 3.8. [LMB00, Théorème A.4] Let J denote the topology

generated by surjective étale morphisms, let R
π1 //
π2

//X be an equivalence

relation of schemes, where π1 and π2 are étale morphisms. Assume
furthermore that the diagonal morphism R −→ X ×X is quasi-affine.
Then we have that the quotient sheaf is stable.

Proof. Quasi-coherent sheaves with descent data are effective for the
fpqc-topology ([FGI+05], Theorem 4.23, p.82), from where one ob-
tains that quasi-affine morphisms satisfy effective descent for the fpqc-
topology ([Gro63], Expose VIII, Corollary 7.9, p.31). As étale mor-
phisms are local on the domain for the fpqc-topology ([FGI+05], Propo-
sition 2.36, p.29) the corollary follows from the proposition. �

Remark 3.9. In (Théorème A.4[LMB00]) one only assumes that the
diagonal map R −→ X ×X is quasi-compact.
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Remark 3.10. An algebraic space is defined as the étale quotient sheaf of
an étale equivalence relation R

////X of schemes. The diagonal map
R −→ X ×S X of an étale equivalence relation will satisfy effective
descent for the fppf-topology [RG71]. It is unclear if algebraic spaces,
not being quasi-separated, are stable.

3.11. Examples: Parametrizing finite closed subschemes. Let
X be a separated scheme (over the base), and let Xn = X × · · · ×X
denote the n-fold product. Let U = Xn \ ∆ denote the open comple-
ment of the closed set ∆ given as the union of all diagonals. The group
Sn acts on Xn by permuting the factors, and the induced action on U
is free.

Proposition 3.12. Let J be a subcanonical topology that can be refined
to the fpqc-topology. Let X be a separated scheme, and let En

X denote
the sheaf quotient of the equivalence relation Sn × U // //U , where U
is the open complement of the diagonals U = Xn \ ∆. Then we have
for any scheme S that

En
X(S) =

{
closed subschemes Z ⊆ X × S, such that there exists

a J-covering T −→ S such that Z ×S T = tn
i=1T

}
Proof. Elements in Xn(S) correspond to n ordered sections si : S −→
X × S, i = 1, . . . , n. The separatedness assumption implies that each
section si : S −→ X×S gives a closed subscheme Zi ⊆ X×S isomorphic
to S. An element in U(S) ⊆ Xn(S) corresponds to n disjoint ordered
sections si : S −→ X × S, which together give a closed subscheme
Z ⊆ X × S, with Z being the disjoint union of n-copies of S.

Let F denote the presheaf quotient of Sn × U // //U . By definition
F (S) is the quotient set U(S)/Sn, and we get that elements in F (S)
corresponds to closed subschemes Z ⊆ X × S that are split Z = tZi,
where Zi = S, for each i = 1, . . . , n.

Since En
X = LF is the sheafification of F we have that an element

s ∈ En
X(S) is J-locally an element of F (S). Thus, J-locally the element

s corresponds to a closed subscheme in X. Closed immersions are
local on the domain for the fpqc-topology ([Gro63], Corollary 4.4),
and then in particular for the J-topology. Hence we have that an
element in s ∈ En

X(S) will give a closed subscheme Z ⊆ X × S, such
that Z splits J-locally. Since the presheaf F is separated (Proposition
(1.13)) it follows that elements in En

X(S) correspond precisely to closed
subschemes Z ⊆ X × S that J-locally splits. �

Corollary 3.13. Consider the topology generated by étale surjective
morphisms, and let En

X denote the sheaf quotient of the equivalence
relation given in the proposition. We then have the modular description

En
X(S) = {closed subschemes Z ⊆ X × S, étale of rank n over S}.

In particular En
X is stable.
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Proof. We have by the proposition that S-valued points of En
X are

closed subschemes Z ⊆ X × S that étale locally splits. Conversely, if
Z ⊆ X × S is finite and étale, then there exists an étale morphism
T −→ S such that Z ×S T splits. Stability follows from Corollary
(3.8). �

Remark 3.14. The modular description is also given in [LMB00] and
[RS07]).

Corollary 3.15. Let f : Z −→ S be a finite étale morphism of rank
n. Let J be a subcanonical topology where Ff /∈ J(S) is not a covering
map for the topology J . Then for any separated scheme X containing
Z ⊆ X as a closed subscheme, the sheafification En

X in the J-topology
is not stable.

Proof. Let Eet denote the étale sheaf quotient of Sn × U // //U , where
U = Xn \ ∆ is the complement of the diagonals. By Corollary (3.13)
we have that f : Z −→ S is an element of the étale sheaf Eet(S). By
assumption Ff /∈ J(S), hence by Theorem (2.7) we have that f : Z −→
S has no section J-locally. Consequently f : Z −→ S does not split
J-locally, and we get that Z is not an element of En

X(S). Thus En
X is

not equal to Eet. As the étale sheafification of En
X is the sheaf Eet we

have proven that En
X is not stable. �

Remark 3.16. If G is a finite, discrete, group acting on a scheme X,
separated over the base, then there exist a group quotient X/G in
the category of algebraic spaces. That particular sheaf X/G is stable,
being an algebraic space, and the question is wheter group quotients
are stable in a topology coarser than the étale topology. The results
above show that the topology must contain Zariski coverings, and finite
étale coverings.

4. Applications

4.1. Notation. Let M be a quasi-coherent sheaf on the fixed base
scheme S. For any scheme T −→ S, let ET = ⊕n

i=1OT denote the free
OT -module of rank n. We have that the functor of linear maps from
M to E is represented by L(M, E) = Spec(S (MS ⊗OS

E∗
S)), where

E∗
S is the dual of E, and where S (−) is the sheaf of symmetric tensor

algebra [Die62].

Lemma 4.2. There is an open subset XM
E ⊆ L(M, E) parameterizing

surjective linear maps M −→ E.

Proof. We may assume that the base schemes S = Spec(A) is affine,
and that the quasi-coherent sheaf M is given by an A-module M . On
the scheme L = L(M, E) we have the universal map ML −→ EL. The
open set XM

E ⊆ X(M, E) is the union of the open schemes obtained by
inverting all (n× n)-minors of the universal map. �
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4.3. Grassmannians. We give here a global construction of the Grass-
mannian Grassn(M) of quasi-coherent OS-modules that are locally free
rank n-quotients of a quasi-coherent sheaf M ([GD71], [Kle69]).

Let GLn ⊂ An2

S denote the open subscheme obtained by inverting
the determinant. The group scheme GLn acts naturally by composition
on the space L(M, E) of linear maps from M −→ E, and we get an
induced action on the set of surjective maps XM

E ⊆ L(M, E). Indeed
let ϕ : MT −→ ET be a surjective OT -linear map corresponding to
t : T −→ XM

E , with T a scheme. For any group element g ∈ GLn(T )
we consider the composition

(4.3.1) g ◦ ϕt : MT −→ ET .

Since the composition also is surjective it corresponds to an element
gt ∈ XM

E (T ).

Lemma 4.4. Let R = GLn ×S XM
E . The projection on the second

factor, together with the action (4.3.1), form an equivalence relation
on XM

E . The presheaf quotient XR parameterizes quotient modules of
M that are free of rank n over the base scheme S.

Proof. One checks that the action is free, that is g · t = t implies
g = id. Furthermore, as a group scheme acting freely on a scheme form
an equivalence relation, we have the first statement of the lemma.

The value of XR at a scheme T is the set of surjective linear maps
MT −→ ET modulo the equivalence given by GLn. If t ∈ XM

E (T ), then
the kernel of the corresponding surjective linear map ϕt : MT −→ ET

equals the kernel of g · t, for any g ∈ GLn(T ). And conversely, if
t1, t2 ∈ XM

E (T ) are two elements where the corresponding surjective
linear maps ϕi have the same kernel, then there exists g12 ∈ GLn(T )
such that g12 · t1 = t2. Thus XR(T ) is the set of surjective linear maps
where two maps are identified if they have the same kernel. �

Proposition 4.5. Let M be a quasi-coherent sheaf on a scheme S, and
let LXR denote Zariski sheaf quotient of the equivalence relation given
in Lemma (4.4). Then LXR is the Grassmannian Grassn

S(M).

Proof. Let t ∈ LXR(T ), for some scheme T . Then there exist a Zariski
covering T ′ −→ T such that t lifts to t′ ∈ XM

E (T ′). That is a surjec-
tive quotient map of OT ′-modules MT ′ −→ ET ′ , with descent datum.
Effective descent for quasi-coherent surjective module homomorphism
([Gro63], Corollary 1.8, p.6) gives a Zariski locally free OT -module L
being the quotient of MT .

Conversely, if MT −→ L is a surjective quotient with L a Zariski-
locally free OT -module, then by definition there exist a Zariski trivial-
ization {Tα −→ T} such that LTα trivializes. For each α we choose a
trivialization, and let

ϕα : MTα −→ LTα −→ ETα
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denote the composition. Let pi : Tα×T Tβ −→ Tα denote the projection
on the i′th factor. We have that there exist gα,β ∈ GLn(Tα×T Tβ) such
that gα,βp∗1(ϕα) = p∗2(ϕβ). We get a map tTα × Tβ −→ GL×Xm

E . The
commutative diagrams

GLn ×XM
E

π1 //
π2

// Xm
N

tTα × Tβ

gα,β ,p∗1ϕα

OO

p1 //
p2

// tTα

ϕα

OO

gives a map of sheaves T −→ LXR, which corresponds to the quo-
tient MT −→ L. Consequently the sheaf LXR is the Grassmannian
Grassn(M).

�

Corollary 4.6. Let An+1
S \ 0 denote the open complement of the in-

tersection of the coordinate axis of the affine n + 1-space. The group
Gm of multiplicative units acts naturally on An+1

S \ 0, and the Zariski
quotient is the projective n space Pn

S over S.

Proof. Set M as the free OS-module of rank n + 1. Then L(M, OS)
equals the affine space An+1

S , given by OS[x1, . . . , xn]. Each variable de-
termines an open set D(xi) where the variabel xi is non-vanishing. The
open set XM

O ⊆ L(M, OS) is identified with the open union ∪n+1
i=1 D(xi),

which is An+1
S \ 0. The result now follows from the proposition as the

Grassmannian of locally rank one quotients of M = ⊕n+1
i=1 OS is Pn

S. �

4.7. Hilbert scheme of points. We give here a global construction
of the Hilbert scheme of n-points on the affine d-space Ad

S, over an arbi-
trary base scheme S. In the special situation with the base being a field,
the construction is known ([Nor78], [?], [?], and the non-commutative
version [Ber88]).

4.8. Notation. As before we let ET denote the free OT -module of
rank n, and we let L(E, E) the space of endomorphisms of ES, where

S is the base scheme. Let Ld,n
S denote the space parameterizing d-

ordered sequence of linear maps, and vectors in E. Thus

Ld,n
S = L(E, E)×S · · · ×S L(E, E)×S L(OS, E).

For any S-scheme T we have that a point in t ∈ Ld,n
S (T ) is given by

t = (Z1, . . . , Zd, v)

where Zi : ET −→ ET are endomorphisms (i = 1, . . . , d), and v ∈ ET a
vector. Such a point induces by evaluation a map

(4.8.1) ϕt : OT < z1, . . . , zn >−→ ET
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by sending the variable zi 7→ Zi(v). A point t ∈ Xd,n
S (T ) is called

cyclic if the corresponding map (4.8.1) is surjective. Moreover, there is

a natural action of GLn on Ld,n
S given by

(g, (Z1, . . . , Zd, v)) 7→ (gZ1g
−1, . . . , gZdg

−1, gv)

for all g ∈ GLn(T ), (Z1, . . . , Zd, v) ∈ Ld,n
S (T ), all schemes T .

Lemma 4.9. The set of cyclic vectors form an open subset of Ld,n
S ,

and the induced action of GLn on the set of cyclic vectors is free.

Proof. That the cyclic vectors form an open subset is clear. Assume
that t = gt for some cyclic vector t ∈ Ld,n(T ), and some g ∈ GLn(T ).
Let t = (Z1, . . . , Zd, v), and let w ∈ ET be any vector. Since t is cyclic,
there exists an element f(z1, . . . , zd) in the free algebra, such that

f(Z1, . . . , Zd)v = w.

By assumption we have that gZig
−1 = Zi for all i, and that gv = v.

We then get that

w = f(gZ1g
−1, . . . , gZdg

−1) · gv = g · f(Z1, . . . , Zd)g
−1gv = gw.

As gw = w for all vectors w ∈ ET we have that g = id, and the action
is free. �

4.10. Commuting matrices. Let Xd
E ⊆ Ld,n

S be the locally closed
subset consisting of cyclic vectors having commuting endomorphisms.
That is t = (Z1, . . . , Zd, v) ∈ Xd

E(T ), with T a scheme, if t is cyclic and

[Zi, Zj] = 0 for all i, j = 1, . . . , d.

Note that for t ∈ Xd
E(T ) the evaluation map (4.8.1) now factorizes

to give a surjective map

ϕt : OT [z1, . . . , zd] −→ ET .

And as such we get that ET corresponds to a closed subscheme Z ⊆ Ad
T ,

which is finite and given by a free OT -module of rank n .
Moreover, it is clear that the action of GLn on the cyclic vectors,

induces an action on Xd
E. By Lemma (4.9) the action of GLn on Xd

E is
free, and consequently the induced map

R = GLn ×S Xd
E −→ Xd

E ×S Xd
E

form an equivalence relation on Xd
E.

Proposition 4.11. Let LXR = L(Xd
E)R denote the Zariski sheaf quo-

tient of the equivalence relation on Xd
E given by the action of GLn. The

evaluation map induces an morphism of sheaves

LXR −→ Hilbn
Ad

S
,

which is an isomorphism.
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Proof. It is clear that any point t ∈ Xd
E(T ), and gt for any g ∈ GLn(T )

the associated evaluation maps ϕt and ϕgt have equal kernels. Hence
we get an induced map of presheaves

(4.11.1) (Xd
E)R −→ Hilbn

Ad
S
.

This map is a monomorphism: Assume that t = (Z1, . . . , Zd, v) and
u = (Z ′

1, . . . , Z
′
d, v

′) in Xd
E(T ) give the same point in the Hilbert functor.

We can find a g ∈ GLn(T ) such that gv′ = v. By letting Yi = gZ ′
ig
−1

we may assume that u = (Y1, . . . , Yd, v). By assumption we would then
have Ziv = Yiv, for all i = 1, . . . , d. As the vectors are cyclic, it follows
that Ziw = Yiw, for all vectors w ∈ ET , as well. Hence t = gu, and
the map (4.11.1) is monomorphism. As the quotient sheaf is separated
(Proposition 1.13) the induced morphism of sheaves

(4.11.2) L(Xd
E)R −→ Hilbn

Ad
S

is a monomorphism.
To verify that (4.11.2) is also an epimorphism we take a T -valued

point of the Hilbert funtor. That is a closed subscheme Z ⊆ Ad
T which

is flat, finite of rank n over T . One can then find a Zariski trivialization
T ′ −→ T , on where Z×T T ′ is given by a finite OT ′-algebra, which is free
as a module. This amounts to giving an element t′ ∈ Xd

E(T ′). Arguing
as in the case with Grassmanian, one gets by descent a morphism
T −→ L(Xd

E)R and thereby proving that (4.11.2) is an isomorphism.
�

Remark 4.12. In both of these two examples of this section, the two
functors Grassn(M) and Hilbn

Ad are representable by schemes.In partic-
ular the quotient sheaves of Proposition (4.5) and of Proposition (4.11)
are stable for the Zariski-topology. That these two quotient sheaves
are stable for the Zariski-topology can be proven without knowledge
of representability in the following way. Since the group GLn is spe-
cial we have that a torsor for fpqc-topology, already trivializes in the
Zariski topology ([Ser95]). This proves stability for the quotient sheaf
construction of the Grassmannian. That result and the fact that closed
immersions are local on the domain for the fpqc-topology shows that
the quotient sheaf construciton for the Hilbert scheme also is stable.
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