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a b s t r a c t

A classifier for two or more samples is proposed when the data are high-dimensional and
the distributions may be non-normal. The classifier is constructed as a linear combina-
tion of two easily computable and interpretable components, the U-component and the
P-component. The U-component is a linear combination of U-statistics of bilinear forms
of pairwise distinct vectors from independent samples. The P-component, the discrimi-
nant score, is a function of the projection of the U-component on the observation to be
classified. Together, the two components constitute an inherently bias-adjusted classifier
valid for high-dimensional data. The classifier is linear but its linearity does not rest on the
assumption of homoscedasticity. Properties of the classifier and its normal limit are given
undermild conditions.Misclassification errors and asymptotic properties of their empirical
counterparts are discussed. Simulation results are used to show the accuracy of the
proposed classifier for small or moderate sample sizes and large dimensions. Applications
involving real data sets are also included.

© 2018 Elsevier Inc. All rights reserved.

1. Introduction

A linear classifier for g ≥ 2 populations is presented when the data are high-dimensional and possibly non-normal. For
each i ∈ {1, . . . , g}, let xi1, . . . , xini be ni independent and identically distributed random vectors from the ith population
with distribution function Fi. It is assumed that, for all k ∈ {1, . . . , ni}, xik = (xik1, . . . , xikp)⊤ with mean vector E(xik) = µi
and covariance matrix cov(xik) = Σi > 0. We are interested in constructing a classifier for high-dimensional, low sample
size setting, i.e., p ≫ ni, where Fi need not be normal.

Classification and regression are two of the most powerful tools of statistical analysis, both as the main objective of
analysis on their own and as a source of further investigation. Due to the ever growing complexity of data, classification
has attracted a central place in modern statistical analysis. The wave of large-dimensional data in the last few decades and
associated questions have led researchers to improve substantially the classical theory of classification.

This paper mainly addresses the classification problem for such a complex data set up, particularly when the dimension
p of the multivariate vector exceeds the number ni of such vectors, i.e., p ≫ ni; see Section 5. As the classical theory of
classification does not work in this case, mainly due to the singularity of the empirical covariance matrix (see Section 2
for more details), efforts have been made in the literature to offer potential alternatives. Bickel and Levina [9] discuss the
Independence Rule (IR), or naive Bayes rule, by using only the diagonal of the empirical covariance matrix and compare
it to Fisher’s linear discriminant function (LDF) for the case of two normal populations. Under certain conditions on the
eigenvalues of the scaled covariance matrix, they show that IR, under the assumption of independence, is comparable to
Fisher’s LDF under dependence when the empirical covariance matrix is replaced with a g-inverse computed from the
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empirical non-zero eigenvalues and the corresponding eigenvectors. See also [15,19] for discriminant analysis based on
a diagonal covariance matrix, and [38] where the regular inverse of a regularized covariance estimator is used.

Most of the modifications of the classical theory pertain to the linear classifier, with particular focus on sparsity. For
some recent attempts, see [10,12,18,20,27,34]. A regularized discriminant analysis using Fisher’s LDF is given in [39].
Classifier performance measures for high-dimensional data are discussed in [17]. Recently, there have also been attempts to
extend the quadratic classifier to the high-dimensional case, particularly under sparsity; see, e.g., [16,21,26]. For a review of
classification methods for high-dimensional data, see [28].

We begin, in Section 2, with the two-sample U-classifier, giving details on its construction and justification. A multi-
sample extension is given in Section 3. Section 4 reports the results of a simulation study and Section 5 describes real data
applications. Technical proofs are deferred to the Appendix.

2. The two-sample case

2.1. Construction and motivation of the U-classifier

For each i ∈ {1, 2}, let xik = (xik1, . . . , xikp)⊤ ∼ Fi be as defined above and πi denote the ith (unknown) population. Let
also Ri = {x : x ∈ πi} be the region of observed data from the ith population, where R1 ∪ R2 = X , R1 ∩ R2 = ∅ with X
the space of observed x, ∅ the empty set. Further let θi = {µi,Σi} be the set of parameters for Fi. We denote by π (1|2) the
error of misclassifying x in π1 when it actually comes from π2. Formally,

π (1|2) = Pr(x ∈ R1|x ∈ π2) =

∫
R1

dF2(x|θ), (1)

where π (2|1) = 1 − π (1|2) is the opposite error of misclassification.
Using the information on p characteristics, (xik1, . . . , xikp)⊤, our aim is to construct a classifier which assigns x to πi

optimally, i.e., by keeping π (i|j) as small as possible for all i, j ∈ {1, 2}, i ̸= j. As this aim is not achievable, since Fi or related
parameters are unknown, we focus onminimizing an appropriately defined empirical measure for the proposed classifier as
ni, p → ∞ where p may arbitrarily exceed ni (p ≫ ni), Fi may not necessarily be normal, and Σi may be unequal. We keep
the high-dimensional or (ni, p)-asymptotic framework general, in that we let ni → ∞ and p → ∞ but without requiring
the two indices to satisfy any relationship of mutual growth order.

To proceed with the idea, let

xi =
1
ni

ni∑
k=1

xik and Σ̂i =
1

ni − 1

ni∑
k=1

(xik − xi)(xik − xi)⊤ (2)

be the unbiased estimators of µi andΣi, respectively. The classical two-sample linear classifier, assuming equal and known
Σ with equal misclassification costs and population priors, is expressed, ignoring the constants, as

C(x) = (x1 − x2)⊤Σ−1x − (x⊤

1 Σ
−1x1 − x⊤

2 Σ
−1x2)/2,

where x denotes the point to be classified; see Chapter 6 in [32].
The rule is: x ∈ π1 if C(x) > 0, else x ∈ π2. Although C(x) is usually constructed under a normality assumption,

using the ratio of multivariate normal density functions and assuming Σ1 = Σ2, Fisher constructed the same classifier
without assuming normality, and hence it is also known as Fisher’s linear discriminant function. It is the most frequently
used classifier and, assuming ni > p and normality, its misclassification probability can be computed using the normal
distribution. Obviously, with Σ unknown in practice, we need to estimate C(x), replacing Σ with the pooled estimate

Σ̂pooled =

2∑
i=1

(ni − 1)Σ̂i

/ 2∑
i=1

(ni − 1),

where Σ̂i are defined above, so that

Ĉ(x) = (x1 − x2)⊤Σ̂
−1
pooledx − (x⊤

1 Σ̂
−1
pooledx1 − x⊤

2 Σ̂
−1
pooledx2)/2. (3)

When the data are high-dimensional, i.e., p > ni, Σ̂i, and hence, Σ̂pooled, is singular so that Ĉ(x) cannot be used. To see
how the situation develops in this framework, let us first take Σ̂ out of the classifier in (3) and consider

C̃(x) = (x1 − x2)⊤x − (x⊤

1 x1 − x⊤

2 x2)/2. (4)

FromChapter 2 in [31], note that E(x⊤

i xi) = Bi+∥µi∥
2, where ∥a∥2

= a⊤a is the Euclidean normof vector a and Bi = tr(Σi)/ni
for all i ∈ {1, 2}. Assuming x ∈ π1, we have

E{̃C(x)|x ∈ π1} = ∥µ1 − µ2∥
2/2 − B, (5)
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with B = (B1 − B2)/2. We observe that, depriving the classifier of the covariance matrix makes it biased with bias term B
composed of the traces of unknown covariance matrices. IfΣ1 = Σ2, then B = (n2 − n1) tr(Σ)/(2n1n2), so that the classifier
is positively (negatively) biased given n2 > n1 (n2 < n1), and unbiased if Σ1 = Σ2 and n1 = n2. To inherently adjust it for
bias and improve its accuracy, consider the second component of C̃(x) in (4) with

E{(x⊤

1 x1 − x⊤

2 x2)/2} = B + (∥µ1∥
2
− ∥µ2∥

2)/2.

Now, write

x⊤

i xi =
1
n2
i

ni∑
k=1

ni∑
r=1

Aikr =
1
n2
i

ni∑
k=1

Aik +
1
n2
i

ni∑
k=1

ni∑
r=1

k̸=r

Aikr = Q0i + Q1i,

where Aik = x⊤

ikxik, Aikr = x⊤

ikxir , k ̸= r , where E(Q0i) = Bi + Ri and E(Q1i) = ∥µi∥
2

− Ri with Ri = ∥µ1∥
2/ni. Denoting

Q0 = Q01 − Q02, Q1 = Q11 − Q12, R = R1 − R2, we have

E(Q0) = 2B + R, E(Q1) = (∥µ1∥
2
− ∥µ2∥

2) − R.

Adjusting both components for R gives E(Q0) − R = 2B, E(Q1) + R = ∥µ1∥
2
− ∥µ2∥

2. This leads to an unbiased version of
C̃(x) in (4), to be denoted heretofore A(x), as

A(x) = (x1 − x2)⊤x/p − (Un1 − Un2 )/2, (6)

where Uni =
∑ni

k̸=rAikr/pQ (ni) is a one-sample U-statistic with symmetric kernel [33], Q (ni) = ni(ni − 1) and Aikr/p =

x⊤

ikxir/p, k ̸= r , is a bilinear form of independent components.
Assuming x ∈ π1 and independent of both samples, E

{
(x1 − x2)⊤x

}
= ∥µ1∥

2
− µT

2µ1 Thus

E {A(x)|π1} = ∥µ1 − µ2∥
2/(2p),

without bias term. Further, with x ∈ π1, A(x) is composed of bilinear forms, two from sample 1, one from sample 2, one
mixed. By symmetry, E {A(x)|π2} = −∥µ1 − µ2∥

2/2p, with A(x) composed of two bilinear forms from sample 2, one from
sample 1, one mixed. We, therefore, define the classification rule for the proposed U-classifier in (6) as

Assign x to π1 if A(x) > 0, otherwise to π2.

Before we study the properties of A(x) in Section 2.2, a few important remarks are in order. First, A(x) is composed of
bilinear forms — and we call it bilinear classifier — where the bi-linearity of the U-component is expressed in the kernels of
the two U-statistics and that of the P-component by the projection of the new observation with respect to the difference
between the empirical centroids of the two independent samples. Further, A(x) is entirely composed of empirical quantities,
free of any unknown parameter, so that it can be directly used in practice. Moreover, A(x) is linear but the linearity does not
rely on a homoscedasticity assumption: it is linear even if Σ1 ̸= Σ2. In the classical case, the violation of homoscedasticity
makes the classifier quadratic, which is not the case for A(x). This provides an additional advantage for the proposed classifier
so that it can be used without assuming or testing homoscedasticity. The same advantage will be valid for the multi-sample
extension in Section 3 as well.

In this context, it may also bementioned that the theory of U-statistics has recently gainedmomentum in its use in high-
dimensional inference. Although most applications have so far been restricted to testing hypotheses for large dimensional
parameters (see, e.g., [1,2] and the references therein), it has recently also been used in classification and cluster analysis.
For a general overview and application in genetics, see [13].

Moreover, the first part of A(x) is normalized by p, and so are the kernels of the U-statistics in the second part. This will
help us derive the limit distribution of A(x) for (ni, p)-asymptotics under a generalmultivariatemodel andmild assumptions.
As a final remark, recall that the formulation of A(x) arises from depriving the original classifier of its empirical covariance
matrix. Although removing an essential ingredient has its price, the resulting classifier can still be justified.

First, a completely affine-invariant classifier (or a test statistic) in high-dimensional case is not possible. Given this, scale
invariance is mostly compromised due to the singularity of the empirical covariance matrix, as explained above. Thus, a
location-invariant classifier is the best that can be achieved. One can use a regularized estimator or a diagonal matrix to keep
scale-invariance but such alternatives obviously have their own price, e.g., in terms of loss of huge amount of information.
We take the first route and sacrifice scale-invariance for the sake of location-invariance. Second, the proposed classifier can
be justified simply as a different type of classifier on its own.

To see this, let d̄12 = d̄1 − d̄2, d̄i = (dk1 + · · ·+ dkni )/ni, where dki = ∥x− xki∥2 is the Euclidean distance of x from sample
i ∈ {1, 2}, k ∈ {1, . . . , ni}. It follows that d̄12 has the same bias B as for A(x). Now consider

D(x) = d̄12 − {tr(Σ̂1)/n1 − tr(Σ̂2)/n2},

where

Σ̂i =

ni∑
k̸=r

D⊤

ikrDikr/ni(ni − 1) with Dikr = xik − xir ;
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see [3]. As dk1 + · · · + dkni = (ni − 1) tr(Σ̂i) + ni∥x − xi∥2, it simplifies to D(x) = A(x) + B; see Eq. (5). This implies that
A(x) can also be constructed as a distance-based classifier with same bias-adjustment that leads Eqs. (5)–(6). This approach
is discussed in [5,11]; see also [6]. Our approach, however, makes the classifier not only unbiased but also more general and
practically convenient.

2.2. Asymptotic distribution of the U-classifier

For i ∈ {1, 2} and given xik ∼ Fi, let zik = xik − µi with E(zik) = 0, cov(zik) = Σi. When we relax normality, we assume
the general multivariate model

zik = Λiyik, (7)

where yik = (yik1, . . . , yikp)⊤ has i.i.d elements with E(yik) = 0, cov(yik) = I, and Λi is a known p × p matrix of constants
with Λ⊤

i Λi = Ai, ΛiΛ
⊤

i = Σi > 0. For the properties of A(x), we need following assumptions under Model (7).

Assumption 1. E(y4iks) = γ < ∞, γ ∈ R+ for all i ∈ {1, 2}.

Assumption 2. limp→∞ tr(Σi)/p = O(1) for all i ∈ {1, 2}.

Assumption 3. limp→∞µ⊤

i Σkµj/p = O(1) for all i, j, k ∈ {1, 2}.

Assumption 4. limp→∞ tr(Σa
i ⊙ Σb

j )/tr(Σ
a
i ⊗ Σb

j ) = 0 for all i, j ∈ {1, 2} and a, b ∈ {1, 2, 3} such that a + b ≤ 4, where ⊙

and ⊗ are Hadamard and Kronecker products, i, j denote population index and a, b are exponents.

Assumption 1 essentially replaces normality. Assumption 2 is simple and mild, and as its consequence, tr(ΣiΣj)/p2 =

O(1). Assumptions 3 and 4 are needed only to control the misclassification rate and consistency of the moments of classifier.
Assumption 4 ensures that themoments asymptotically coincidewith those under normality whence all terms involving the
ratio vanish. The same assumptions will be extended to the multi-sample case in Section 3. The following lemma, proved in
Appendix B.1, gives themoments of the classifier. GivenM > 0, p×p, denote∆2

M = ∥µ1−µ2∥
2
M = (µ1−µ2)⊤M−1(µ1−µ2) =

∆2 ifM = I.

Lemma 1. Given the two-sample classifier in Eq. (6), let x ∈ πi for some i ∈ {1, 2}. Then

E {A(x)|πi} = (−1)i+1
∥µ1 − µ2∥

2/(2p) = (−1)i+1∆2/(2p), (8)

var {A(x)|πi} = δ2i /p
2
+ ∥µ1 − µ2∥

2
Σ−1

i
/p2 = δ2i /p

2
+ ∆2

Σ−1
i

/p2, (9)

where

δ2i = tr(Σ2
i )/ni + tr(ΣiΣj)/nj +

2∑
i=1

tr(Σ2
i )/{2ni(ni − 1)}.

The moments in Lemma 1 are reported in general notation, x ∈ πi, so that they are easily extended to the multi-sample
case later. Note that the second component in Eq. (9) vanishes under Assumption 3. The rests of var {A(x)|πi}, and E {A(x)|πi},
are uniformly bounded in p for any fixed ni, under Assumption 2. Thus, for p → ∞, E {A(x)|πi} and var {A(x)|πi} converge,
respectively, to

∆2
0/2 and δ20,i {O (1/n1 + 1/n2) + o(1)} , (10)

where limp→∞∆2/p = ∆2
0 ∈ (0, ∞) and limp→∞δ2i /p

2
= δ20,i ∈ (0, ∞). The variance vanishes when ni, p → ∞. It gives

consistency of A(x) (see Theorem 2). In practice, consistency must hold with unknown parameters replaced by estimators.
We need to estimate ∆2 and non-vanishing traces in δ2i to estimate the limiting moments of the classifier.

Given i ∈ {1, 2} and xi, Σ̂i as in (2), let Qi =
∑ni

k=1 (̃x
⊤

ik x̃ik)
2/(ni − 1), x̃i = xik − xi, and ηi = (ni − 1)/{ni(ni − 2)(ni − 3)}.

The estimators of ∆2/p2, tr(Σ2
i )/p

2 and tr(ΣiΣj)/p2 are defined, respectively, as

E0 = Uni + Unj − 2Uninj , Ei = ηi{(ni − 1)(ni − 2)tr(Σ̂2
i ) + {tr(Σ̂i)}2 − niQi}, Eij = tr(Σ̂iΣ̂j), (11)

where Uni is given after Eq. (6), Uninj =
∑ni

k=1
∑nj

ℓ=1Aijkℓ/pninj is the corresponding two-sample U-statistic with E(Uninj ) =

µ⊤

i µj, and Eij follows by independence. Note that, E0, Ei, Eij are also U-statistics based location-invariant estimators. They
are presented above in a simplified form which is computationally very efficient. For a detailed treatment in equivalent
U-statistic form and proof of their properties under high-dimensional set up, see [1–3]. Theorem 1, proved in Appendix B.2,
shows that the variances of the ratios of these estimators to the parameters they estimate are uniformly bounded in p, so
that they are consistent for p → ∞.
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Theorem 1. E0, Ei, Eij, defined in Eq. (11), are unbiased estimators of ∆2/p2, tr(Σ2
i )/p

2 and tr(ΣiΣj)/p2. Further, under
Assumptions 1–4,

var(E0/∆2) = O(1/ni + 1/nj), (12)

var{Ei/tr(Σ2
i )} = O(1/ni), (13)

var{Eij/tr(ΣiΣj)} = O(1/ni + 1/nj), (14)

cov{Ei/tr(Σ2
i ), Eij/tr(ΣiΣj)} = O(1/ni). (15)

By Theorem 1, E0/E(E0)
P
−→ 1 which implies that the empirical mean, Ê {A(x)|πi} = E0/2, is a consistent estimator of true

mean of the classifier. Using similar probability convergence of Ei and Eij implies, by Slutsky’s lemma [37, p. 11], that the
first component of the empirical variance, v̂ar {A(x)|πi}, i.e., δ̂2i , is a consistent estimator of δ2i for all i ∈ {1, 2}. The limiting
empirical moments, parallel to (10), then follow, for p → ∞, as

Ê {A(x)|πi} = ∆2
0 {1 + oP (1)} /2, v̂ar {A(x)|πi} = δ20,i{O(1/n1 + 1/n2) + oP (1)}

with limp→∞E0/p = ∆2
0 ∈ (0, ∞), limp→∞δ̂2i /p

2
= δ20,i ∈ (0, ∞), where the limit indicates convergence in probability.

Hence, with E{·} and var{·} as in Eqs. (8)–(9), for p → ∞,

Ê {A(x)|πi} − E {A(x)|πi} = oP (1), (16)
v̂ar {A(x)|πi} − var {A(x)|πi} = oP (1). (17)

Theorem 2, proved in Appendix B.3, states the true and empirical consistency of A(x).

Theorem 2. Consider A(x) in Eq. (6) with its moments as in Lemma 1. For i ∈ {1, 2}, let x ∈ πi. Under Assumptions 1–3, as
ni, p → ∞,

A(x)/(∆2/p)
P
−→ (−1)i+1/2 + oP (1),

with ∆2 defined above. Further, by Eqs. (16)–(17), consistency holds when the moments of the classifier are replaced with their
estimates.

By the same arguments, the asymptotic normality of A(x) is given the following theorem, proved in Appendix B.4.

Theorem 3. Consider A(x) in Eq. (6) with its moments as in Lemma 1. For i ∈ {1, 2}, let x ∈ πi. Under Assumptions 1–3, as
ni, p → ∞,

A(x) − E {A(x)|πi}
√
var {A(x)|πi}

⇝ N (0, 1).

Further, the limit holds if the moments are replaced with their estimates.

The construction of A(x) is of great benefit in proving Theorem 3. It consists of two parts, each of which is in turn a linear
combination of two independent components; this reduces the bulk of the computational burden. Moreover, the optimality
property of U-statistics ensures the minimum variance (efficiency) of the classifier. A further verification of these properties
through simulations is the subject of Section 4.

2.3. Estimation of misclassification probabilities

Recall the misclassification error π (i|j) in Eq. (1) for i, j ∈ {1, 2}, i ̸= j. Given that E(xi) = µi and E(Uni ) = µ⊤

i µi for all
i ∈ {1, 2}, and assuming the parameters known, consider first the oracle classifier

Aoracle(x ∈ π1) = x⊤(µ1 − µ2)/p − (µ⊤

1 µ1 − µ⊤

2 µ2)/(2p).

IfF1 andF2 are known, saymultivariate normal, i.e., xik ∼ Np(µi,Σi), then, assumingΣ1 = Σ2 = Σ, the so-called optimum
error rate of Aoracle can be computed as follows, where Φ denotes the standard normal distribution function:

ϵoracle
= Φ

(
−

∥µ1 − µ2∥
2

2
√

∥µ1 − µ2∥
2
Σ

)
.

Now, assuming equal priors, the best possible performance in this oracle setting, i.e., with µ1, µ2, Σ known, is achieved
by Fisher’s linear classifier (equivalently Bayes rule; see [4]), viz.

AFisher(x) = x⊤Σ−1(µ1 − µ2) − (µ1 + µ2)
⊤Σ−1(µ1 − µ2)/2

with the corresponding misclassification rate given by

ϵFisher
= Φ

(
−

1
2

√
∥µ1 − µ2∥

2
Σ

)
,
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where ∥µ1 − µ2∥
2
Σ is the Mahalanobis distance. Denoting ϵFisher as a benchmark, the relative performance of Aoracle(x) can

be theoretically evaluated by using the ratio of the arguments of Φ, say q, where

q =
∥µ1 − µ2∥

2
I

{∥µ1 − µ2∥
2
Σ × ∥µ1 − µ2∥

2
Σ−1}

1/2
.

Bickel and Levina [9] proposed a nice strategy to compute a bound for an expression like q, based on Kantorovich
inequality [8]. Following the same idea, letM be any positive definite symmetric p × p matrix. Then for any vector υ

∥υ∥
2
I

∥υ∥
2
M × ∥υ∥

2
M−1

≥
4λmin(M) × λmax(M)
{λmin(M) + λmax(M)}2

,

where λmin(M) and λmax(M) denote the smallest and the largest eigenvalues ofM, respectively. Applying this inequality to q
and denoting λmax(Σ)/λmin(Σ) = κ (assuming both eigenvalues bounded away from 0 and ∞), we get

q ≥ 2
√

κ/(1 + κ), (18)

so that the upper bound on the misclassification probability of Aoracle(x) is

ϵoracle
≤ Φ

{
−

2
√

κ

1 + κ
Φ−1(1 − ϵFisher)

}
,

which essentially depends on κ , the range of non-zero eigenvalues of Σ. We note that, for moderate κ , the increase in the
misclassification rate, induced by taking the covariance matrix away while constructing Aoracle(x), is not large relative to the
best possible performance, i.e., ϵFisher; see Fig. 4. Further, the upper bound in (18) represents the worst-case scenario so that
the empirical results are expected to be better.

Now, for an alternative flavor of the evaluation of the classifier, while still continuing to assumenormality, let us condition
the classifier on the data, i.e., An(x) = A(x)|(xi,Uni ), say. It immediately follows, for i ∈ {1, 2}, that

A(x) ∼ N
[
µ⊤

i (x1 − x2)/p − (Un1 − Un2 )/2, ∥x1 − x2∥2
Σ−1

i

]
.

This, using the standardized version of the classifier (Theorem 3), gives the actual error rate, viz.

ϵn =
1
2

[
Φ

{
−

µ⊤

1 (x1 − x2) − (Un1 − Un2 )/2√
(x1 − x2)⊤Σ1(x1 − x2)

}
+ Φ

{
−

µ⊤

2 (x2 − x1) − (Un1 − Un2 )/2√
(x1 − x2)⊤Σ2(x1 − x2)

}]
,

where the subscript n denotes the dependence on the observed sample. Using Theorem 2,⏐⏐{µ⊤

i (x1 − x2)/p − (Un1 − Un2 )/2} − ∆2
0,I/2

⏐⏐ P
−→ 0,

⏐⏐⏐⏐∥x1 − x2∥2
Σ−1

i
− ∆2

Σ−1
i

⏐⏐⏐⏐ P
−→ 0,

so that by Slutsky’s lemma [37, p. 11], as ni, p → ∞,

ϵn − {Φ(−∆2
0,I/∆Σ−1

1
) + Φ(−∆2

0,I/∆Σ−1
2
)}/2

P
−→ 0,

where the convergence remains (asymptotically) true even for the sample based classifier An(x) since ϵoracle is the limiting
value of ϵn.

As the parameters are unknown in practice, they can be replaced with estimates θ̂j, leading to empirical regions R̂i which
leads to the actual error rate. Although consistent estimators are available, as shown above, the actual rate still cannot be
achieved until the form of the underlying distributions is known. As we do not assume any distribution for A(x), normal or
otherwise, we resort to themost commonly used practical measure in such situations, namely the apparent error rate, APER,
defined as

APER =

2∑
i=1

πiπ̂ (i|j) =
m1 + m2

n1 + n2
, (19)

where π̂ (i|j) = mi/ni estimatesπ (i|j),mi is the number ofmisclassified observations of population i into population j and ni is
the size of the ith sample. Following the standard procedure, we shall combine APER with Lachenbruch’s holdout procedure
by circulating the training and validation samples; see, e.g., Dudoit et al. [14].

Note that, when we evaluate A(x) by simulating data from an assumed distribution, we can compute the actual or
theoretical error rate. We, therefore, use this as a benchmark to compare the estimated APER, using a three-fold cross-
validation; see Section 4 for details.

3. The multi-sample case

Here we extend the two-sample classifier to the multi-sample case when g ≥ 2 populations are independently sampled.
For each i ∈ {1, . . . , g}, let xi1, . . . , xini ∼ Fi be i.i.d vectors with E(xik) = µi, cov(xik) = Σi. The multi-sample version of
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classifier in Eq. (6) can be expressed, for all i, j ∈ {1, . . . , g} with i ̸= j as

Aij(x) = x⊤(xi − xj)/p − (Uni − Unj )/2. (20)

Alternatively, to write it in a more explicit form, let Ai(x) = x⊤xi/p − Uni/2 be the discriminant function for population i, so
that the classifier is

Aij(x) = Ai(x) − Aj(x) (21)

for any distinct pair (i, j). To extend the classification rule for multi-sample case, let the sample spaceX be partitioned into g
mutually exclusive regionsR1, . . . ,Rg so that, following (1), the error of misclassifying x to πj when it actually comes from
πi is given as

π (j|i) = Pr(x ∈ Rj|x ∈ πi) =

∫
Rj

dFi(x|θ).

The total probability ofmisclassification that we aim tominimize, assuming equal costs and priors, is then p1 Pr(1)+· · ·+

pg Pr(g), where Pr(i) =
∑g

j=1,j̸=i Pr(j|i) denotes the probability of misclassifying an element of πi into any other population.
The classification rule that minimizes this total probability of misclassification can now be defined as

Assign x to πi if ∀j̸=i Aij(x) > 0, i.e., if ∀j̸=i Ai(x) > Aj(x); otherwise to πj.

Equivalently, we assign x to πi if Ai(x) is the largest among all i ∈ {1, . . . , g}. Since three-sample classification is the most
common multi-sample case, the rule can be specifically stated for g = 3 as following: Assign x to π1 if A12(x) > 0 and
A13(x) > 0; assign x to π2 if A12(x) < 0 and A23(x) > 0; assign x to π3 if A12(x) < 0 and A13(x) < 0.

To study the properties of the multi-sample case, we extend the two-sample assumptions as below.

Assumption 5. E(x4iks) = γ < ∞, γ ∈ R+ for all i ∈ {1, . . . , g}.

Assumption 6. limp→∞ tr(Σi)/p = O(1) for all i ∈ {1, . . . , g}.

Assumption 7. limp→∞µ⊤

i Σlµj/p = O(1) for all i, j, ℓ ∈ {1, . . . , g}.

Assumption 8. limp→∞ tr(Σa
i ⊙ Σb

j )/tr(Σ
a
i ⊗ Σb

j ) = 0 for all i, j ∈ {1, . . . , g} and a, b ∈ {1, 2, 3} with a + b ≤ 4, where ⊙

and ⊗ are the Hadamard and Kronecker products, respectively.

We begin with the following generalization of Lemma 1.

Lemma 2. Consider Aij(x) in Eq. (20) or (21). Let x ∈ πi. Then

E{Aij(x)|πi} = (−1)i∥µi − µj∥
2/2p = ∆2/2p,

var{Aij(x)|πi} = δ2i /p
2
+ ∥µi − µj∥

2
Σ−1

i
/p2 = δ2i /p

2
+ ∆2

Σ−1
i

/p2,

where, for all i, j ∈ {1, . . . , g} with i ̸= j,

δ2i = tr(Σ2
i )/ni + tr(ΣiΣj)/nj +

2∑
i=1

tr(Σ2
i )/{2ni(ni − 1)}.

The moment estimators follow from the two-sample case in (11) and their consistency from Lemma 1. This helps us
extend Theorems 2 and 3 to the general case as follows.

Theorem4. Consider Aij(x) in Eq. (20) or (21)with its moments in Lemma 1. For i ∈ {1, . . . , g}, let x ∈ πi. Under Assumptions 5–
7, as ni, p → ∞,

Aij(x)
∆2/p

P
−→

(−1)i

2
+ oP (1),

Aij(x) − E{Aij(x)|πi}√
var{Aij(x)|πi}

⇝ N (0, 1).

Further, the limit holds if the moments are replaced with their empirical estimators.

As themulti-sample case is a straightforward extension of its two-sample counterpart in Section 2, we skipmany detailed
proofs to avoid unnecessary repetitions.

4. Simulations

We use simulation results to evaluate the performance of A(x) under practical scenarios, mainly focusing on consistency,
asymptotic normality and the control of misclassification under a high-dimensional framework. We consider the case g = 2
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and generate data from themultivariate normal and Student’s t distributions, i.e.,Fi is eitherNp(µi,Σi) or tν(µi,Σi), ν = 10,
i ∈ {1, 2}. For each distribution, we set µ1 = 0 with ⌊p/3⌋ elements of µ2 also 0 and the rest as 1, where ⌊x⌋ denotes the
integer part of x. For Σi, we consider two cases:

(1) Both populations have an AR(1) structure, cov(xk, xℓ) = σ 2ρ|k−ℓ| for all k, ℓ, with σ 2
= 1 for i = 1 and 2, where

ρ = 0.3 for i = 1 and ρ = 0.7 for i = 2, to represent both low and high correlation structures.
(2) Same AR(1) structure for i = 1with σ 2

= 1, ρ = 0.5, whereas unstructured (UN)Σi for i = 2, defined asΣ = (σij)
p
i,j=1

with σii = 1(1)p, ρij = (i − 1)/p, i ̸= j.

For finite-sample performance of the classifier under growing dimension, emphasizing p ≫ ni, we draw samples of sizes
n1 = 5, n2 = 7, with p = {10, 20, 50, 100, 300, 500, 700, 1000, 3000, 5000, 10000}. Finally, all results are averages of 1000
simulation runs for each combination of parameters mentioned above. Additionally, to observe the effect of large ni, the
misclassification rates are also presented for n1 = 10, n2 = 12. We also assessed the classifier for very different sample
sizes, e.g., n1 = 5, n2 = 25 or n1 = 10, n2 = 50, with similar results, hence not reported here.

Fig. 1 shows the QQ-plots for asymptotic normality of A(x), whose first two rows are for the normal distribution,
respectively for AR–AR and AR–UN structures; likewise, the last two rows are for Student’s t distribution with ν = 10.
The three QQ-plots in each row pertain to p ∈ {100, 500, 1000} dimensions (left to right). As stated above, similar results
were obtained for other dimensions, up to p = 10,000, but only a selection is reported here.

We observe a very close normal approximation for ni as small as 5 or 7, and the results for Student’s t distribution depict
small-sample robustness of the classifier to non-normality. Comparing the results for two distributions, the heavy-tailed
behavior of Student’s t distribution translates into a small departure of points from the line at the extremes. But in general,
a nice normal approximation holds for both distributions, and is not altered as the dimension grows.

A similar performance is observed for the control of misclassification rate, shown in Figs. 2 for n1 = 5, n2 = 7, and
3 for n1 = 10, n2 = 12. The thick line represents the actual error rate under asymptotic normality of the classifier,
i.e.,Φ{− E(A)/

√
var(A)}, whereΦ is the (univariate) standard normal distribution. This actual error rate is used as a reference

to assess the estimated error rate shown in the dashed line for the normal distribution, and in the dotted line for the
t10 distribution. Further, the upper and lower panels in each figure are for the AR–AR and AR–UN pair of covariances,
respectively.

The estimated error closely follows the actual error for n1 = 5, n2 = 7, and the error rate also converges to zero, showing
consistency of the classifier. For Student’s t distribution with n1 = 5, n2 = 7, the estimated error rates are relatively higher
than under normality, but with ni increased only by 5, a discernible difference in the performance of the classifier is observed
in Fig. 3. Note that the x-axis in Figs. 2–3 is truncated at p = 500 since the misclassification rates already converge to 0 by
this value and remain so for larger p.

5. Applications

We apply A(x) on two large data sets for g ∈ {2, 3}. With moderate sample sizes (77 and 102), we use K = 3-fold CV for
evaluation; see [14]. Let L and T be learning and test sets. We randomly divide the data set into K classes of roughly equal
size, where T consists of K − 1 classes and the K th class held out as test data. The procedure is repeated K times, each time
with a different test class, and amisclassification rate is computed for each repetition. The evaluation criterion is the average
misclassification rate over all repetitions.

For the kth fold of CV, let nk
i (L), n

k
i (T ) and mk

ij(T ) be, respectively, the sample sizes for learning and test data in sample i
and the number of misclassified observations from class i into class j, i, j ∈ {1, . . . , g}, g = 2 or 3, k ∈ {1, . . . , K }, K = 3. Let
ek(i|j) be the estimated misclassification rate, an estimator of π (i|j) in (1), for kth rotation, i.e., ek(i|j) = mk

ij(T )/nk(T ), where
nk(T ) = nk

i (T ) + nk
j (T ). For g = 3, we do the same procedure for each of three pairs and compute overall misclassification

rate. For details, see [7,35,36] etc.

Example 1 (DLBCL Data). The Diffuse Large B-cell Lymphoma (DLBCL) data belongs to a study of lymphoid malignancy
in adults. The analysis reported here consists of p = 5469 gene expressions studied on pre-treatment biopsies from two
independent groups of 77 patients, one with DLBCL (n1 = 58), the other with follicular lymphoma (FL) (n2 = 19). For a
3-fold CV, we randomly divide the data into three groups of sizes 26, 26, 25 with n1(L) = 52, n1(T ) = 25, nk(L) = 51,
nk(T ) = 26 for k ∈ {2, 3}. By coding the populations as 1 (DLBCL) and 2 (FL), the misclassifications observed from the three
rotations of CV, i.e.,mk

12 and mk
21, are

m1
12 = 3, m1

21 = 1; m2
12 = 6, m2

21 = 0; m3
12 = 2, m3

21 = 3,

with an overall misclassification rate 15/77. The sample sizes for each fold are as below.

K = 1 : n1
1(L) = 38, n1

2(L) = 14, n1
1(T ) = 20, n1

2(T ) = 5,
K = 2 : n2

1(L) = 40, n2
2(L) = 11, n2

1(T ) = 18, n2
2(T ) = 8,

K = 3 : n3
1(L) = 38, n3

2(L) = 13, n3
1(T ) = 20, n3

2(T ) = 6
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Fig. 1. QQ plots of A(x) for two-class case for multivariate normal (Rows 1–2) and t (Rows 3–4) distributions, n1 = 5, n2 = 7, p ∈ {100, 500, 1000} (L-R
each row) and covariance structures AR–UN (Rows 1 and 3) and AR–AR (Rows 2 and 4).



278 M. Rauf Ahmad, T. Pavlenko / Journal of Multivariate Analysis 167 (2018) 269–283

Fig. 2. Theoretical (thick line) and estimated error rates (APER, Eq. (19)) of A(x) for two-class case for multivariate normal (dashed) and t (dotted)
distributions, n1 = 5, n2 = 7, p ∈ {10, 20, 50, 100, 200, 300, 500}, covariance structures AR–AR (upper panel) and AR–UN (lower penal).

Example 2 (Leukemia Data). The data set pertains to a study of patients with acute lymphoblastic leukemia (ALL) carrying
a chromosomal translocation involving mixed-lineage leukemia (MLL) gene. The analysis reported here consists of p =

11,225 gene expression profiles of leukemia cells from n2 = 24 patients diagnosed with B-precursor ALL carrying an
MLL translocation and compared to a group of n3 = 20 individual diagnosed with conventional B-precursor without MLL
translocation. In addition, there is a third group of a random sample of n1 = 28 with acute myelogenous leukemia (AML).

For a 3-fold cross-validation, we randomly divide the data into three equal groups of size 24 and use K − 1 = 2 classes of
total nk(L) = 48 observations in learning set and nk(T ) = 24 in the test set, k ∈ {1, 2, 3}. The rest of the procedure is same
as in Example 1. The misclassifications, given below, lead to an overall misclassification rate 9/72.

K = 1 : m1
12 = 1, m1

21 = 0; m1
13 = 2, m1

31 = 1; m1
23 = 0, m1

32 = 1,
K = 2 : m2

12 = 0, m2
21 = 1; m2

13 = 2, m2
31 = 0; m2

23 = 1, m2
32 = 0,

K = 3 : m3
12 = 0, m3

21 = 0; m3
13 = 0, m3

31 = 0; m3
23 = 0, m3

32 = 0.

The sample sizes used in each rotation are as follows:

K = 1 : n1
1(L) = 21, n1

2(L) = 15, n1
3(L) = 12; n1

1(T ) = 7, n1
2(T ) = 9, n1

3(T ) = 8,
K = 2 : n2

1(L) = 18, n2
2(L) = 14, n2

3(L) = 16; n2
1(T ) = 10, n2

2(T ) = 10, n2
3(T ) = 4,

K = 3 : n3
1(L) = 17, n3

2(L) = 19, n3
3(L) = 12; n3

1(T ) = 11, n3
2(T ) = 5, n3

3(T ) = 8.
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Fig. 3. Theoretical (thick line) and estimated error rates (APER, Eq. (19)) of A(x) for two-class case for multivariate normal (dashed) and t (dotted)
distributions, n1 = 10, n2 = 12, p ∈ {10, 20, 50, 100, 200, 300, 500}, covariance structures AR–AR (upper panel) and AR–UN (lower penal).

6. Discussion and conclusions

A U-classifier for high-dimensional and possibly non-normal data has been proposed. The threshold part of the classifier,
called U-component, is a linear combination of two bivariate U-statistics computed from two independent samples. The
discriminator, called P-component, forms an inner product between the observation to be classified and the difference of
the mean vectors of the corresponding independent samples. It results into a computationally simple classifier which is
linear without requiring the underlying covariance matrices to be equal. A multi-class extension with same properties has
also been given.

The classifier is unbiased, consistent and asymptotically normal. Rapid convergence of error rate has been shown for
small sample sizes and non-normal distributions, under mild and practical conditions. The performance of the classifier, in
terms of its consistency, asymptotic normality and control of misclassification rate, has been shown through simulations for
different distributions with small sample sizes and large dimension.

We applied the classifier to genetics and microarray data sets, some of the most popular areas for classification analysis.
To emphasize the role of high-dimensionality, we demonstrated that the use, accuracy, and validity of the classifier does not
rest on any form of data pre-processing. That is, a data set measured in large dimension can be directly used for classification
without any dimension reduction through sorting, clustering or other means.
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Fig. 4. Upper bound on the misclassification probability of Aoracle(x) as a function of ϵFisher
o for normal (thick line) and t5 (dashed line) distributions with

κ ∈ {3, 10, 80}.
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Appendix A. Moments of quadratic and bilinear forms

For zik in (7), let Aik = z⊤

ikΣizik = y⊤

ikA
2yik, Aijkℓ = z⊤

ikzjℓ = y⊤

ikΛiΛjyjℓ, k ̸= ℓ, be quadratic and bilinear forms of
independent components with Aik = y⊤

ikyik = Qik if Σi = I. As all terms involving Ai eventually vanish under Assumption 4,
we write Ai = A for simplicity. Theorem 5 gives basic moments of Aik and Aijkℓ, which are extended in Lemma 3. Proofs of
these results are tedious but simple, hence skipped; see [2].

Theorem 5. For Aik and Aijkℓ, as defined above, we have

E(Q 2
ik)

2
= 2 tr(Σ2

i ) + {tr(Σi)}2 + M1, E(A2
ik)

2
= 2 tr(Σ4

i ) + {tr(Σ2
i )}

2
+ M2,

E(A4
ijkℓ) = 6 tr(ΣiΣj)2 + 3{tr(ΣiΣj)}2 + M3,

E(AikAjk) = 2 tr(Σ3
i Σj) + tr(Σ2

i ) tr(ΣiΣj) + M2,

E(QikQjkA2
ijkℓ) = 4 tr(ΣiΣj)2 + 4 tr(Σ3

i ) tr(Σj) + {tr(Σi)}2 tr(Σ2
j ) + M4,

with M1 = γ tr(A ⊙ A), M2 = γ tr(A2
⊙ A2),

M3 = 6γ tr(A2
⊙ A2) + γ 2

p∑
s=1

p∑
t=1

A4
st , M4 = 2γ tr(Σi) tr(A2

⊙ A) + 4γ tr(A3
⊙ A) + γ tr(A ⊙ ADA),

and D = diag(A). Moreover, E(Aik) = tr(Σi), E(A2
ikr ) = tr(Σ2

i ) and cov(Aik, Aikr ) = 0.

Lemma 3. Let zit be as given above with zit , ziu independent if t ̸= u. Then

E(z⊤

it ziuz
⊤

it zivz
⊤

iuΣiziv) = tr(Σ4
i ) = E{z⊤

it ziuz
⊤

iwziuz
⊤

it zivz
⊤

iwzivt}, cov{(z⊤

it ziu)
2, z⊤

it Σjzit} = 2 tr(Σ3
i Σj) + M2,

E{(z⊤

it ziu)
2z⊤

it Σizit} = 2 tr(Σ4
i ) + {tr(Σ2

i )}
2
+ M2 = var(z⊤

it ziuz
⊤

ivziu), E{(z⊤

iuziv)
2z⊤

it Σjzit} = tr(ΣiΣj) tr(Σi)2,

E{(z⊤

it zju)
2z⊤

it Σjzit} = 2 tr{(ΣiΣj)2} + {tr(ΣiΣj)}2 + M2 = var(z⊤

it zjuz
⊤

ivzju), cov{(z⊤

it ziu)
2, (z⊤

it ziv)
2
} = 2 tr(Σ4

i ) + M2,

E(z⊤

jt ziuz
⊤

jt zivz
⊤

iuΣjziv) = tr{(ΣiΣj)2} = cov(z⊤

it Σiziu, z⊤

it Σjziu), cov{(z⊤

jt ziu)
2, (z⊤

jt ziv)
2
} = 2 tr{(ΣiΣj)2} + M2.

Furthermore, E{(z⊤

it ziu)
2z⊤

it ziuz
⊤

it ziv}, E{z
⊤

it ziuz
⊤

it zivz
⊤

it Σizit}, E{z⊤

it ziuz
⊤

it zivz
⊤

it Σiziu}, E{(z⊤

it ziu)
2z⊤

it Σiziu}, E{(z⊤

it ziu)
2z⊤

it Σjziu}, and
E{(z⊤

it ziu)
2z⊤

it zivz
⊤

iuziv} all vanish.
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Appendix B. Main proofs

In what follows, E (·) and var (·) will denote, for simplicity, E (·|π1) and var (·|π1).

B.1. Proof of Lemma 1

Let x ∈ π1. With x independent of both samples, E {A(x)} is trivial. For variance, ignoring p for simplicity, we begin with

var{x⊤(x1 − x2)} = E{x⊤(x1 − x2)}2 − {µ⊤

1 (µ1 − µ2)}
2.

Since E
{
x⊤(x1 − x2)

}2
= E

{
x⊤(x1 − x2)(x1 − x2)⊤x

}
, we immediately get

E{x⊤(x1 − x2)}2 = tr[(Σ1 + µ1µ
⊤

1 ){Σ1/n1 + Σ2/n2 + (µ1 − µ2)(µ1 − µ2)
⊤
}],

so that

var{x⊤(x1 − x2)} = tr(Σ2
1)/n1 + tr(Σ1Σ2)/n2 + µ⊤

1 Σ1µ1/n1 + µ⊤

1 Σ2µ1/n2 + (µ1 − µ2)
⊤Σ1(µ1 − µ2).

Now var(Un1 −Un2 ) = var(Un1 )+var(Un2 ). For Uni with h(xik, xir ) = x⊤

ikxir , h1(xik) = x⊤

ikµi with ξ1 = var {h1(xik)} = µ⊤

i Σiµi,
and h2 = hwith ξ2 = var(Aik) = tr(Σ2

i ) + 2µ⊤

i Σiµi, so that, for i ∈ {1, 2},

var(Uni ) = 2{2(ni − 2)ξ1 + ξ2}/{ni(ni − 1)} = 2 tr(Σ2
i )/{ni(ni − 1)} + 4µ⊤

i Σiµi/ni.

For cov
{
x⊤(x1 − x2),Un1 − Un2

}
, cov(x⊤x2,Un1 ) = 0 = cov(x⊤x1,Un2 ), by independence, where it immediately follows

that cov(x⊤xi,Uni ) = 2µ⊤

i Σiµi/ni, i ∈ {1, 2}. Combining all results and simplifying gives Eq. (9). □

B.2. Proof of Theorem 1

The unbiasedness is trivial. For var(E), var(Uni ) for each i ∈ {1, 2} is given in Appendix B.1. For var(Unij ), h(xik, xjℓ) = x⊤

ikxjℓ
with h10 = µ⊤

j xik, h01 = µ⊤

i xjℓ so that ξ10 = var {h10(·)} = µ⊤

j Σiµj and ξ10 = var {h10(·)} = µ⊤

i Σjµi. Also h11(·) = h(·) with
ξ11 = var {h11(·)} = µ⊤

i Σjµi + µ⊤

j Σiµj + tr(ΣiΣj). Hence, from [24],

var(Uninj ) =
1

ninjp2
{niµ

⊤

i Σjµi + njµ
⊤

j Σiµj + tr(ΣiΣj)}

where cov(Uni ,Uninj ) = 2µ⊤

j Σiµi/nip2, cov(Unj ,Uninj ) = 2µ⊤

i Σjµj/njp2 and, by independence, cov(Uni ,Unj ) = 0. Now
var(E/p) can be approximated as

var(E/p) = 2 tr(Σ2
0ij)/p

2
+ 4(µi − µj)

⊤Σ0ij(µi − µj)/p
2,

for i, j ∈ {1, 2}, i ̸= j, whereΣ0ij = Σi/ni +Σj/nj. The second term vanishes under Assumption 3 and the first is bounded in
p under Assumption 2 so that var(E0) reduces to O(1/n1 +1/n2) as p → ∞, providing consistency. The bound in (12) follows
trivially. As Ei and Eij, are one- and two-sampleU-statisticswith higher order kernels, we essentially follow the same strategy
as for E. First, from Theorem 5 and Lemma 3, it can be shown that

var(Ei) =
4

η(ni)p4
[
(2n3

i − 9n2
i + 9ni − 16) tr(Σ4

i ) + (n2
i − 3ni + 8){tr(Σ2

i )}
2
+ M2O(n3

i ) + M3O(n2
i )
]
,

var(Eij) =
2

(ni − 1)(nj − 1)p4
{
(n − 1) tr{(Σ1Σ2)2} + {tr(Σ1Σ2)}2 + M2O(n) + M3O(1)

}
,

cov(Ei, Eij) =
4

ni(ni − 1)p4
{ni tr(Σ3

i Σj) + M2O(ni)},

with n = ni + nj, i, j ∈ {1, 2}, i ̸= j, η(ni) = ni(ni − 1)(ni − 2)(ni − 3), M2, M3 are as in Theorem 5 and cov(Ei, Ej) = 0. As the
terms involvingMs vanish under Assumption 4, the consistency and the bounds in Eqs. (13)–(15) follow, by Cauchy–Schwarz
inequality, the sameway as for E0. Note also that, the terms involvingM ’s are exactly zero under normality whence the same
results hold even more conveniently. □

B.3. Proof of Theorem 2

The proof essentially follows from that of Theorem 1 without much new computations. In particular, the first part,
assuming true parameters known, is trivial. For the second part with estimates, the (ni, p)-consistency of estimators proved
in Appendix B.2 implies that E/E(E)

P
−→ 1, and the same holds for Ei, Eij.

Plugging these estimators in themoments of A(x) and using Slutsky’s lemma, δ̂2i /δ
2
i

P
−→ 1 so that v̂ar {A(x)} = var {A(x)}+

oP (1), and the consistency follows similarly as with known parameters. □
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B.4. Proof of Theorem 3

Write Ã(x) = {A(x)|x ∈ π1} − E {A(x)|x ∈ π1}, where, ignoring p for simplicity,

Ã(x) = {x⊤(x1 − x2) − µ⊤

1 (µ1 − µ2)} − {(Un1 − µ⊤

1 µ1) − (Un2 − µ⊤

2 µ2)}/2,

Let Ûni be the projection of Ũni = Uni − µ⊤

i µi. Then g1(x1k) = h1(·) − µ⊤

1 µ1 = (x1k − µ1)⊤µ1 for Un1 ; see Chapter 5 in [33].
Similarly, g1(x2ℓ) for Un2 , with E {g1(·)} = 0 for both. Thus

Ûn1 − Ûn2 =
2
n1

n1∑
k=1

(x1k − µ1)
⊤µ1 −

2
n2

n2∑
ℓ=1

(x2ℓ − µ2)
⊤µ2, (B.1)

where Ũni = Ûni +oP (1) for all i ∈ {1, 2}. With x ∈ π1 and independence of samples, this projection of Ã(x) results into a sum
of two independent components, each an average of i.i.d variables [37]. For fixed p, the normal limit follows immediately by
the usual Central Limit Theorem. However, the kernels of U-statistics here vary with ni (hence with p through ni).

The theory of U-statistics with varying kernel is rich and has been considered by many authors, e.g., [22,29]; see also
Chapter 4 in [23] and the references therein. In fact, the theory has recently also got inroads into high-dimensional statistics.
An approach with very similarly constructed U-statistics, as in our case, is given in [30,40], where the latter also provide a
general framework for the application of U-statistics in a high-dimensional set up. See also [2].

The key factor in determining the limit of suchU-statistics rests on the projection variances. This limit, in our case, follows
relatively easily for two reasons. First,A(x), hence its projection in Eq. (B.1), is a sumof two independent components. Second,
the projection variances are uniformly bounded under the assumptions so that the variance of the linear combination of
these projections in Eq. (B.1), and eventually the variance of the classifier itself, is uniformly bounded. The limit then follows
immediately from Theorem 6.1.2 in [25]. □
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