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Abstract—We argue that the traditional notion of trust as
a relation among entities, while useful, becomes insufficient in
ephemeral ad hoc networks. In this paper, we address the chal-
lenge of extending the traditional notion of trust to data-centric
trust, that is, trustworthiness attributed to node-reported data per
se. We propose a framework for data-centric trust establishment:
First, trust in each individual piece of data is computed; then
multiple, related but possibly contradictory, data are combined;
finally, their validity is inferred by a decision component based
on the Dempster-Shafer Theory. We are especially interested in,
yet not restricted to, ephemeral ad hoc networks, i.e., highly
volatile systems with short-lived node encounters. We consider
and evaluate an instantiation of our framework in vehicular
networks as a case study. Our simulation results show that our
scheme is highly resilient to attackers and converges fast to the
correct decision.

I. I NTRODUCTION

In all traditional notions of trust, data trust (e.g., trust in the
identity or access/attribute certificates) was based exclusively
on a priori trust relations established with the network entities
producing these data (e.g., certification authorities, network
nodes) [9], [18], [19]. This was also the case when trust
was derived via fairly lengthy interactions among nodes, as
in reputation systems [3], [8], [20], [31]. Moreover, any new
data trust relationships that needed to be established required
only trust in the entity that produced those data. All trust
establishment logics proposed to date have been based on
entities (e.g., “principals” such as nodes) making statements
on data [3], [7], [9], [14], [18], [19], [26], [27]. Furthermore,
traditional trust relations were generally time-invariant: once
established, they lasted a long time.

Based on the above observations on existingentity-centric
notions, this paper approaches trust from a different point of
view: we are concerned withdata-centrictrust establishment.
The problem at hand ishow to evaluate the trustworthiness of
the data reported by other entitiesrather than ofthe entities
themselves. This question is crucial for emerging data-centric
networks, including sensor networks, vehicular networks, and
environment aware pervasive computing applications. A num-
ber of technical challenges are present. Primarily, the distinc-
tion among data reporting nodes is blurred by the network

operation itself (e.g., due to high mobility, privacy measures).
Moreover, nodes can be unreliable, faulty, or not sufficiently
equipped for accurate data reporting. To make things worse,
the network operation can beephemeral. A typical type of
ephemeral networks are vehicular networks, featuring short
encounters between nodes, high mobility, and large scale.

Under such conditions, the question remains: How can a
network node trust node-reported data, especially when contra-
dictory pieces of evidence are received? We propose a solution
for exactly this problem: a data-centric trust establishment
framework that can be applied in any ad hoc network and, most
often, ephemeral networks. The logic we propose extends the
traditional notions of trust and methods of trust establishment
in several ways.

First, unlike traditional trust, a priori trust relationships in
entities (nodes) represent only one of the default parameters
for establishing data trust. For example, our logic, while using
nodes’ statements on data, does not rely exclusively on such
statements. Instead, it takes into account dynamic factors, such
as location and time, as well as the number and type of
the statements on data, to derive data trust relations. Second,
beyond the traditional time-invariant or slow-evolving trust
notions, data-centric trust relations are by definition ephemeral
and have to be established and re-established frequently, based
on network and perceived environment changes. Just like the
network itself, data trust relations are ephemeral. For example,
an event report (e.g., accident report, weather report) that
must be believed by recipient nodes in real-time cannot last
longer than the lifetime of the event or the network formation.
Multiple rounds of node interactions are typically not possible
in such networks. Third, trust does not stem from a single
source of data (e.g., a certification authority) and generally it is
not application-independent (e.g., when multiple applications
use certificates for their access control and authentication
policies). In contrast, we derive data-centric trust relations
from multiple pieces of evidence, including environmental
data, and very rarely if at all, from exclusively a single node
report. Our logic weighs each individual piece of evidence
according to well-established rules, and takes into account
various trust metrics defined specifically in the context of an



application. Then, data and their respective weights serve as
inputs to a decision logic that outputs the level of trust in this
collection of evidence, and more importantly that the event
has taken place or not.

In the rest of this paper, we present our framework in Sec. II.
In Sec. III we mathematically develop our approach. Then, we
instantiate our framework in the context of vehicular commu-
nication systems in Sec. IV. We evaluate the effectiveness of
our scheme through simulations in Sec. V, and conclude with
a survey of related work in Sec. VI.

II. GENERAL FRAMEWORK

A. Preliminaries

We consider systems with an authority responsible for
assigning identities and credentials to all system entities that
we denote asnodes. All legitimate nodes are equipped with
credentials (e.g., certified public keys) that the authority can
revoke. Specific to the system and applications, we define
Ω = {α1, α2, . . . , αI}, a set of mutually exclusiveevents
where Ω is by no means the set of all possible events in
the system.αi is a perceivable environment, network, or
application event. There may be multiple applications, each
having its own set of relevant eventsΩj . These sets are
overlapping, as their events can belong to a basic pool of
events, e.g., regarding location or time.

We considerreporters of events, that is, nodesvk ∈ V ,
classified according to a system-specific set of node types,
Θ = {a, b, . . . , z}. We define a functionτ : V → Θ
returning the type of nodevk. Reports are statements on
events, including related time and geographic coordinates
where applicable. For simplicity, we consider reports on single
events, as reports on composite events are straightforward. We
do not dwell on the exact method for report generation, as this
is specific to the application.

B. Default Trustworthiness

We define thedefault trustworthinessof a nodevk of type
a as a real value0 < ta < 1, which depends on the attributes
related to the designated type of nodevk. For all node types,
there exists a trustworthiness rankingta < tb < . . . < ty < tz.
For example, some nodes are better protected from attacks,
more closely monitored and frequently re-enforced, and, over-
all, more adequately equipped, e.g., with reliable components.
As they are less likely to exhibit faulty behavior, they are
considered more trustworthy.

We stress here that the data-centric trust establishment
framework does not aim to replace or amend source authen-
tication, as in reputation systems, but uses it as an input to
the data trust evaluation function. In fact, if a node reputation
system were in place, its output scores could also be used as
input to the data trust function. Hence, data trust builds on the
information provided by source authentication and reputation
systems without trying to supplant them. The choice of the
entity trust establishment system is orthogonal to the scope of
this paper and has been prolifically addressed in the literature
(Sec. VI).

C. Event- or Task-Specific Trustworthiness

Nodes in general perform multiple tasks that are system-,
node- and protocol-specific actions, withΛ being the set of
all relevant system tasks. Then for some nodesv1 andv2 with
default trustworthiness rankingsτ(v1) = a andτ(v2) = b and
ta < tb, it is possible thatv1 is more trustworthy thatv2 with
respect to a taskλ ∈ Λ.

Reporting data on events is clearly one of the node tasks.
For the sake of simplicity, we talk here about event-specific
trustworthiness implying that it is actually task-specific trust-
worthiness. Nevertheless, the two can be easily distinguished,
when necessary; e.g., when tasks include any other protocol-
specific action such as communication.

With the above considerations in mind, we define the event-
specific trustworthinessfunction f : Θ × Λ → [0, 1]. f has
two arguments: the typeτ(vk) of the reporting nodevk and
the taskλj . f does differentiate among any two or more nodes
of the same type, and ifλj = ∅ (no specific event or task),f
is the default trustworthinessf = tτ(vk).

D. Dynamic Trustworthiness Factors

The ability to dynamically update trustworthiness can be
valuable, especially for capturing the intricacies of a mobile ad
hoc networking environment. For example, nodes can become
faulty or compromised by attackers and hence need to be
revoked. In addition, the location and time of report generation
change fast and are important in assigning trustworthiness
values to events.

To capture this, we define asecurity statusfunctions : V →
[0, 1]. s(vk) = 0 implies nodevk is revoked, ands(vk) = 1
implies that the node is legitimate. Intermediate values can be
used by the system designer to denote different trustworthiness
levels, if applicable.

Second, we define a set ofdynamic trust metricfunctions
M = {µl : V × Λ → [0, 1]} indexed by a selectorl indicat-
ing different node attributes (e.g., location) that dynamically
change. That is, for each attribute a different metricµl is
defined.µl takes nodevk ∈ V and taskλj ∈ Λ as inputs
and returns a real value in[0, 1]. Metrics are calculated by a
nodevk for each of the nodesvi, i 6= k, that have interacted
with (and possibly observed)vk within a time window.

E. Location and Time

Among the possiblel for metricµl, proximityeither intime
or geographic locationis an attribute of particular importance.
Proximity can increase the trustworthiness of a report: The
closer the reporter is to the location of an event, the more
likely it is to have accurate information on the event. Similarly,
the more recent and the closer to the event occurrence time a
report is generated, the more likely it is to reflect the system
state.

Cryptographic primitives, such as digital signatures, can
ensure that location and time information cannot be modi-
fied if included in a report. However, the accuracy of such
information can vary, due to nodes’ differing capabilities or
(malicious or benign) faults. This is especially true for reports
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Fig. 1. Data-centric trust establishment framework.

that depend on fine-grained time and location data. Hence,
different types of nodes are more or less trustworthy when
reporting such data. In some cases, time- or geo-stamping a
report can be a distinct task.

F. Scheme Overview

We compute the trustworthiness of a report by using both
(i) static or slow-evolving information on trustworthiness,
captured by the default values and the event-specific trust
f , and (ii) dynamically changing information captured by
security statuss and more so by metricµl. We combine these
as arguments to a function

F = F (s(vk), f(τ(vk), λj), µl(vk, λj))

that returns values in the[0, 1] interval. These values are
calculated locally for each report received from another node
and are called theweights(or trust levels) of the reports. Fig. 1
illustrates our scheme.

Nonetheless, such a per message assessment may often be
insufficient. It can be hard to decide whether the reported event
took place based on a single message, and it is vulnerable
to faults (e.g., equipment failures or compromised nodes).
Instead, we propose the collection of multiple reports related
to the same event and of their weights, i.e., the accompanying
F value, and their combination into a robust decision scheme.
Then, the reports along with their weights are passed to a
Decision Logicmodule that outputs an assessment on the event
in question.1 More important, we are interested in a system
that not only decides on an event but also identifies the residual
uncertainty regarding the event (alternative algorithms for the
decision logic are discussed in detail in Sec. III-B). The way
to use such decisions and inferences is beyond the scope of
this paper, as it is specific to particular systems.

1It is possible that a decision regards not a single eventαi but also a
composite event, consisting of union(s) and intersection(s) of multipleαi.

III. E VIDENCE EVALUATION

The literature on trust in ad hoc networks proposes sev-
eral approaches for trust establishment, which we survey in
Sec. VI. In this work, we look at evidence evaluation for
trust establishment as a decision-making process that emulates
human reasoning. More specifically, the lack of knowledge
about an event is not necessarily a refutal of the event. In
addition, if there are two conflicting events, uncertainty about
one of them can be considered as supporting evidence for the
other (if not eventα1 then maybe eventα2). The Dempster-
Shafer Theory (DST) [22] addresses the above two issues (lack
of knowledge and conflicts) and hence seems appropriate for
the type of decision problems we study in this paper. The
simulation results in Sec. V shown indeed that DST performs
better than the widely used majority voting and Bayesian
inference.

To mathematically model our approach, assume a nodeV
has to decide whether a hypothesisH is true.2 There are two
types of evidence that each node can report concerningH: e1

k

means that the report of nodek confirms hypothesisH and
e0
k means that the report of nodek confirms hypothesis̄H (or

simply does not support hypothesisH). This last distinction
between confirminḡH and not supportingH is a distinguish-
ing property of DST as shown later. In the following, we
mathematically develop the decision logics based on Bayesian
inference [24] and DST.

A. Bayesian inference

In Bayesian inference, the posterior probability of a hypoth-
esisH given new evidencee is expressed in terms of the prior
probability P [H] using the Bayes’ theorem:

P [H|e] =
P [H]P [e|H]

P [e]
(1)

Given K independent3 pieces of evidenceek (reports from
K distinct nodes), the posterior probability can be computed
iteratively as:

P [H|e] =
P [H]

∏
k P [ei

k|H]
P [H]

∏
k P [ei

k|H] + P [H̄]
∏

k P [ei
k|H̄]

(2)

wherei ∈ {0, 1} andP [e1
k|H] is the probability that node

k confirms hypothesisH, given thatH is true. Using trust
levels as weights of binary reports (1 or 0 equivalent toH or
H̄, respectively), this probability is equal to thetrust level.

P [e0
k|H] is the probability that nodek does not confirmH

(hence, it confirms̄H), given thatH is true. This is equivalent
to a malfunctioning or cheating node (ideally, a node would
report a real event).
P [e0

k|H] = 1− P [e1
k|H].

2Multi-valued cases can be derived from the following analysis in a
straightforward way by using several hypotheses.

3The independenceproperty stems from the fact that (i) each node makes
local decisions about evidence before transmitting its reports, and (ii) each
node operates independently from other nodes.



P [e0
k|H̄] is the probability that nodek does not confirmH,

given thatH is false. In other words, this is the probability
that nodek confirmsH̄, given thatH̄ is true. As above, this
is equal to thetrust level.

P [e1
k|H̄] is the probability that nodek confirmsH, given

that H̄ is true. As before, this is the probability of malfunc-
tioning or cheating.P [e1

k|H̄] = 1− P [e0
k|H̄].

B. Dempster-Shafer Theory

The major difference between Bayesian inference and DST
is that the latter is more suitable for cases with uncertain or
no information. More precisely, in Bayesian inference a node
either confirms or refutes an event, whereas in DST a node
does not necessarily refute the event. For example, if a node
A confirms the presence of an event with probabilityp, in
Bayesian inference it refutes the existence of the event with
probability 1 − p. In DST, probability is replaced bybelief .
Hence, in this example, node A hasp degree of belief in the
event and 0 degree of belief in its absence. 0 in this case is
calledplausibility and means that A provides no support for
the absence of the event (but it does not necessarily refute this
absence as in Bayesian inference).

Belief and plausibility are the upper and lower bounds,
respectively, of the probability of an event. The frame of
discernmentΩ contains all mutually exclusive possibilities
related to an observation4. Thus, in the case of a hypothesis
H with a binary state,Ω = {H, H̄}. The belief value
corresponding to hypothesisH and provided by nodevk is
computed as:

belk(H) =
∑

q:eq⊂H

mk(eq) (3)

which means it is the sum of all basic belief assignments
mk(eq), eq being all pieces of evidence supporting hypothesis
H. As the hypothesisH is binary in our example and hence
the only piece of evidence provided byvk is the affirmative
report,belk(H) = m1

k(H).
The plausibility value corresponding to hypothesisH rep-

resents the sum of all evidence that does not refuteH and is
computed as:

plsk(H) =
∑

r:er∩H 6=∅
mk(er) (4)

Belief and plausibility are related bypls(H) = 1− bel(H̄).
Independent pieces of evidence (provided by independent

observing nodes) can be combined using Dempster’s rule for
combination:

m1(H)
⊕

m2(H) =

∑
q,r:eq∩er=H m1(eq)m2(er)∑
q,r:eq∩er=∅m1(eq)m2(er)

(5)

Belief can be computed similarly by iterative combination
of independent basic beliefs assignmentsmi

k(H) (wherei ∈
4We use the same notationΩ as in Sec. II-A as both sets correspond to

each other in this case.

{0, 1}) that either confirmH (i.e., m1
k(H)) or do not refute

H (i.e., mΩ
k (H)):

bel(H) =
⊕

k

belk(H) =
⊕

k

mi
k(H) (6)

m1
k(H) is the basic belief assignment, reported by nodek,

that confirmsH. As before, using trust levels as weights of
binary reports, this value is equal to thetrust level.

m0
k(H) = 0 is the basic belief assignment, reported by node

k, that refutesH. As explained before, in DST, non-supporting
evidence is not refuting evidence.

mΩ
k (H) is the basic belief assignment corresponding to the

universal hypothesisΩ. It represents the uncertainty and can
support eitherH or H̄. HencemΩ

k (H) = 1−m1
k(H).

Similarly, m0
k(H̄) is equal to thetrust level, m1

k(H̄) = 0,
andmΩ

k (H̄) = 1−m0
k(H̄).

The expressions of the other valuesbel(H̄), pls(H) and
pls(H̄) can be derived similarly.

IV. CASE STUDY

To illustrate the application and utility of the data trust
framework, we present in the following a case study of a
real ephemeral ad hoc network instantiation, namely vehicular
networks. We first describe the system and adversary models,
then explain through examples how the different components
of data trust can be practically derived.

A. Secure Vehicular Communications System

Vehicular Ad hoc NETworks (VANET)andVehicular Com-
munication (VC)systems [29] seek to enhance the safety and
efficiency of transportation systems, providing, for example,
warnings on environmental hazards (e.g., ice on the pavement)
and traffic and road conditions (e.g., emergency braking,
congestion, or construction sites). From a networking point of
view, the nodes are vehicles and road-side infrastructure units
(RSUs), all equipped with on-board processing and wireless
modules, enabling multi-hop communication in general.

Authoritiesare public agencies or corporations with admin-
istrative powers; e.g., city or state transportation authorities
entrusted with the management of nodeidentitiesandcreden-
tials. A subset of the infrastructure nodes serves as a gateway
to and from the authorities.

We assume that each nodevk is equipped with a pair
of private/public cryptographic keysPrk/Puk, and a certifi-
cate issued by an authorityX as CertX{Puk}. Nodes are
equipped with a clock and a positioning system (such as GPS
or Galileo). This allows them to include their time and location
information in any outgoing reports. Source authentication is
required to prevent Sybil attacks and is achieved by digital
signatures according to both academic and industrial proposals
[2], [21]. In this example, source authentication by digital
signatures defines the default trustworthiness as explained in
Sec. II-B.

Unicast and multicast communication is possible; how-
ever, local broadcast (single hop) and geocast (flooding to



a given geographic area) are predominantly in use. Vehicle-
specific information (e.g., velocity, coordinates) is transmitted
frequently and periodically5 in the form of safety messages.
Reports on in-vehicle or network events are included in these
messages. The combined safety and other messages, generated
by vehicles and RSUs, can result in an abundant influx of
information about events. It is important to note here that
our approach, based exclusively on local processing, does not
add any communication overhead and very little computation
overhead in the nodes. The actual overhead is due to frequent
broadcasting and asymmetric cryptography and is inherent in
VANETs.6

B. Adversary Model

Nodes either comply with the implemented protocols (i.e.,
they are correct) or they deviate from the protocol definition
and become adversaries. The attacks that can be mounted by
either internal (equipped with credentials and cryptographic
keys) or external adversaries vary greatly. In brief, adversaries
can replay any message, jam communications, and modify (yet
in a detectable manner due to the digital signatures) messages.
More importantly, they can inject faulty data and reports, or
control the inputs to otherwise benign nodes and induce them
to generate faulty reports.

We assume that at most a small fraction of the nodes
is faulty, and accordingly the fraction of the network area
affected by adversaries is bounded. This bound on the presence
of adversaries could be further refined by distinct values
for different node types. However, this assumption does not
preclude that a few adversarial or faulty nodes surround a
correct node at some point in time.

C. Framework Instantiation

We focus on the use of our scheme on-board a vehicle.
Clearly, it could be run on RSUs, nonetheless, the challenge
is to design a scheme practical for nodes that are not part of
the system infrastructure.

The forms of thef (event-specific trust),s (security status),
µl (dynamic trust metric), andF (trust level) functions are
determined by the secure VC system: they are either preloaded
at the time the node is bootstrapped, or updated after the node
joined the system. Their values are either provided by the
authorities or distributed by the infrastructure.

We assume that private vehicles are classified in different
categories, especially due to the expected gradual deployment
and diversity in VC systems. For example, different levels
may be assigned to vehicles of foreign authorities, for internal
administrative or compatibility reasons. Or, vehicles may be
equipped with hardware and software of differing levels of
sophistication. Also, vehicle models may comply with one

5For example, typical range and frequency values on a highway are 300m
and 300ms, respectively.

6It should be clarified that, although this overhead seems unreasonable for
typical ad hoc networks, VANETs have distinct properties and requirements
(making networking and security infrastructure necessary as in cellular sys-
tems) [17] and were shown to be able to support public key cryptography
[21].

among multiple certified levels of equipment. Similarly, public
vehicles’, as well as RSUs’, trustworthiness varies according to
the level of protection, physical or other, as well as their type
of equipment. Police cars are the first responders to accidents
and thus their reports are the most trustworthy, whereas RSUs
announce highly trusted junction warnings.

Trustworthiness is also adjusted by metricµl according
to the reporter’s proximity to the event. However, this is
done in different ways, i.e., different functions, according to
the reporter’s type. For example, on the one hand, accident
information is distributed by RSUs as long as the traffic is
affected or the attention of the drivers is needed. On the other
hand, trustworthiness of private vehicles decays with their
distance from the event location. We express this in terms
of the number of hops,h(vk) = dd(vk)/Re, whered is the
distance of the reporting node from the accident andR is a
nominal communication range. However, being within radio
communication range does not ensure at all times first-hand
contact with the reported event. If this distinction is mandated
by the application, then the above definition is meaningful for
nodes beyond those in immediate contact with the event. We
use hereµl(0, λ) = 1, µl(1, λ) = 0.9, µl(h, λ) = −0.25h + 1
if 1 < h ≤ 4, andµl(h, λ) = 0 if h > 4. Of course, this is
just an example, and any other function form can be devised.

The weight for each report is calculated by the following
example rule/expression7 :

F = s(vk)× f(τ(vk), λj)× µl(vk, λj)

To illustrate our instantiation, we consider an example
scenario: a collision at a junction between two vehiclesA
and B. After their airbag opening, they start including an
accident report in their periodic safety messages (typically,
the periodicity will also increase to 10 messages/s [1]);A for
example disseminatesrptA = “Own accident; locationLA;
time TA.” The system considers the locationsLA, LB and the
times TA, TB , which are very close to each other, to be the
same.A and B are at full proximity (h = 0) to the event.
rptA and rptB are received by nodes that either relay them
or generate their own reports on the same accident.

Now, let us consider a vehicleV several communication
hops away from the accident location.V receives safety
messages indicating that there is an accident on its route and
has to decide whether to trust this information (it could have
been generated by an attacker). The hypothesisH, as defined
in Sec. III, is: “There is an accident at locationLA, LB”. If
V receives a safety message containing no information about
the accident, it assumes this safety message represents the
uncertainty aboutH (in Bayesian inference, it supports the
hypothesisH̄) (Sec. III). If there are several hypotheses, the
data trust is computed for each of them. The resulting values
can be used by the application to decide the consequent action;
the specific use of these values by the application is beyond

7It should be noted that the actual values of trustworthiness have to be
provided by the competent authorities once VANETs are deployed; hence,
the exact choice of these values is out of scope of this paper.



the scope of this paper. For example, a collision avoidance
application can instruct the driver to start braking even when
the collision probability is close to 0.5; a traffic jam avoidance
application may only react if the probability is higher than 0.8.
For example, if the security statuss is binary (“revoked” or
“valid”), λj =“Accident Alert”, and geographic proximity in
number of hops is used as input to metricµl, we can compute
the following values:F = 0.95 for a police car on the accident
spot (if f = 0.95 and h = 0), F = 0.45 for private vehicles
at h = 1 (if f = 0.5), andF = 0.4 for a RSU ath = 2 from
the accident (iff = 0.8).

An important system parameter is the number of messages,
and hence the time, needed to make a fast and correct judg-
ment. Our simulations show that, in a typical VANET scenario,
this can be achieved within merely 100ms (Sec. V-D), which is
enough to transmit a new safety message based on the freshly
received input from other vehicles.

V. PERFORMANCE EVALUATION

In this section, we examine the performance of the data trust
establishment system described in the previous sections. We
compare three decision logics: Bayesian inference, DST, and
weighted votingthat computes the difference between the sum
of all supporting evidence (i.e., weights of reports affirming the
event) and the sum of all refuting evidence; if this difference
is positive, it outputs 1, otherwise it outputs 0. The decision
logics based on Bayesian inference and DST are simulated
using the mathematical frameworks developed in Sec. III. The
results show that DST performs overall better than the other
two methods: First, both DST and weighted voting behave
similarly in terms of decisions on events and resilience to
attackers whereas Bayesian inference performs poorly in some
cases; second, DST provides finer decision granularity than
weighted voting.

We assume that a vehicle receives several reports concerning
an event. A trust level is computed for each report as illustrated
in Fig. 1. The vehicle then locally applies a decision logic that
outputs the probability of the event.

To study the performance of each method, we varied several
parameters, namely theaverage trust level, the percentage of
affirmative reports, and time. The average trust level is the
mean of the trust levels assigned to the reports received by
the observing vehicle. The percentage of affirmative reports
indicates how many reports affirm the event. We use time to
study the speed of data trust establishment as the reports arrive
from vehicles. We also study the effect of thepercentage of
attackerson the behavior of each decision method and hence
the corresponding resilience, which is very important in a
security context.

For Bayesian inference we use the neutral prior probability
value of 0.5 (i.e., no prior knowledge). Simulations were
performed in MATLAB and ns-2 (Sec. V-D), results were av-
eraged over 100 simulations and plotted with95% confidence
intervals.

A. Effect of the Average Trust Level

We use a Beta distribution, with its mean equal to the
average trust level, to distribute the trust levels among the
reports received by the observing vehicle. We chose the Beta
distribution because it approximates the Normal distribution,
a common choice in statistics, but with bounds (0 and 1). We
simulate scenarios with two basic common cases: relatively
numerous nodes/reporters and only a few ones. In each case,
we also vary the average trust level between low and high.

Having experimented with several values, we chose the
following as sample average trust levels: 0.1 for low8 trust
and 0.6 for high trust. The reason behind this choice is that
lower values show the behavior of the system at critical
values, whereas higher values of trust in each range provide
no additional information.

In Fig. 2, we observe that both weighted voting and DST
behave similarly at both low and high trust levels. Given that
an event happened, the probability of the event as seen by the
observing vehicle increases as the percentage of affirmative
reports increases. At low levels of trust, the evolution of DST is
smoother than that of weighted voting because DST can output
values other than 0 and 1. This means that the application logic
has more available granularity with DST, which helps it make
better informed decisions.

An interesting observation is related to the behavior of the
Bayesian inference. At high trust levels (Fig. 2(b)), it exhibits
behavior similar to that of the other two methods. But at low
trust levels (Fig. 2(a)), it behaves opposite to the other two
methods, because Bayesian inference deals with probabilities
and if a report is assigned a 0.3 trust level (i.e., 0.3 probability
of being correct), it is assumed to have a 0.7 mistrust level (i.e.,
0.7 probability of being false). Thus, given a small percentage
of affirmative reports with low trust levels, there is a high
percentage of refuting reports with low trust levels also. In
Bayesian logic, this high percentage transforms into a high
percentage of affirmative reports with high trust levels (i.e.,
the opposite). Similar reasoning applies to high percentages
of affirmative reports.

Another interesting parameter to observe is the number of
reporters that the observing vehicle can hear. As we can see
in Figs. 2(c) and 2(d), weighted voting does not differ much
when the number of reporters is small (e.g., 10). But Bayesian
inference and DST are more sensitive to this parameter.
With a low number of reporters, DST yields higher output
probabilities only at high trust values and hence represents
better the typically cautious human response.

It is also worth noting that changing the value of the prior
probability in Bayesian inference does not lead to significant
changes in the results. Bayesian inference also exhibits higher
variance than the other two methods and hence it is less
reliable in threshold-based schemes.

8Such values can result from low values of the security statuss, e.g., due
to the discovery of a virus in the network. Ifs = 0.2, f = 0.5, andµ = 1
thenF = s× f × µ = 0.1 in the example in Sec. IV-C.
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(a) Low average trust level (0.1), large number of
reporters (100).
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(b) High average trust level (0.6), large number of
reporters (100).
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(c) Low average trust level (0.1), small number of
reporters (10).

10 20 30 40 50 60 70 80 90 100
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Percent of affirmative reports

P
ro

ba
bi

lit
y 

of
 e

ve
nt

 a
s 

se
en

 b
y 

th
e 

de
ci

si
on

 lo
gi

c

 

 

Weighted voting
Bayesian inference
DST

(d) High average trust level (0.6), small number of
reporters (10).
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(e) Average trust level of attackers (0.8) is higher
than the average trust level of honest nodes (0.6).
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(f) Average trust level of attackers (0.3) is lower
than the average trust level of honest nodes (0.8).
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(g) Effect of multihop on data trust.

5.05 5.06 5.07 5.08 5.09 5.1 5.11
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Time (s)

P
ro

ba
bi

lit
y 

of
 e

ve
nt

 a
s 

se
en

 b
y 

th
e 

de
ci

si
on

 lo
gi

c

 

 
Weighted voting
Bayesian inference
DST

(h) Speed of decision with a small percentage of
affirmative reports (0.3).
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(i) Speed of decision with a large percentage of
affirmative reports (0.7).

Fig. 2. Performance of the data trust decision logic at different average trust levels and with respect to the percentage of affirmative reports, percentage of
attackers, multihop, and time.

B. Effect of the Percentage of Attackers

It is important to analyze the resilience of the different
decision logics to attackers. The graphs in Figs. 2(e) and
2(f) and the observations detailed above can provide us with
valuable insight into the effect of the percentage of attackers.
As mentioned in the adversary model, we assume that the
attacker tries to falsify event reports in order to disturb the
perception of the observing vehicles. In this case, colluding
attackers report information opposite to that reported by honest
vehicles. Thus, there are two different pieces of information
that are conflicting in their content. Both the trust distribution
of honest nodes and that of attackers follow Beta distributions

with different means9. We examine two scenarios: the average
attacker trust is higher than that of honest nodes (Fig. 2(e))
and vice versa (Fig. 2(f)).

We can conclude as a general rule that the higher the
average trust level of attackers, the smaller their percentage
needed for success. In Fig. 2(e), Bayesian inference is the
least resilient to attackers and weighted voting is the most
resilient among the three methods. But in Fig. 2(f), when
the average attackers’ trust is low, Bayesian inference never
favors their information and thus is more resilient to them. This
observation can be explained as follows: When the percentage
of attackers is small (Fig. 2(b)), honest nodes influence the

9The case of equal means is represented in Fig. 2.



output probability; when their percentage is high (Fig. 2(a)),
Bayesian inference outputs the opposite of their reports.

C. Effect of Multihop

An important factor to study in trust establishment is trust
propagation in space, more specifically the effect of multihop.
We assume that vehicular safety applications decide whether to
rebroadcast information about events based on event-specific
predefined thresholds (Sec. IV-C). Hence, intuitively only
highly trusted information (i.e., with a trust value higher than
the threshold) should propagate over multiple hops; in contrast,
untrustworthy information should fade out. In addition, since a
safety message without information about an event represents
the uncertainty about this event (Sec. IV-C), this contributes
to the fading effect. To confirm this intuition, we performed
simulations with a message acceptance threshold equal to 0.5
and 40% of messages confirming an event. The results in
Fig. 2(g) show indeed that, on the one hand, data with high
trust (0.6) propagates well over several hops when the average
attacker trust is low (0.3) (note here that the attackers do not
propagate information, which means that 60% of messages
represent the uncertainty about the event). On the other hand,
if the propagated data is untrustworthy (with a trust level
of 0.3), it fades out practically after the first hop. Based
on these properties, we can claim that DST-based data trust
establishment can be considered as a resilient data aggregation
technique [28].

D. Evolution in Time

In ephemeral networks, it is important to evaluate data trust
rapidly in order to permit an application logic to use the
resulting values. Hence, a decision logic should be able to
output the final result as fast as possible, based on the freshly
received reports. This property distinguishes the mechanisms
explored in this work from other approaches that rely on a
longer history of available reports (e.g., reputation systems [3],
[20], [31]). The results show how fast an observing vehicle can
make a decision once the reporters have detected an event. In
this section, we are only interested in the networking delay of
the event detection as inferred by the decision logic10.

To simulate ephemeral networks, we used VANETs with
highly mobile vehicles. Moreover, decisions in these VANETs
should be made fast because they may incur life-critical
consequences. We use a highway scenario with 3 lanes in each
direction. Vehicles are moving at speeds between 90 km/h (≈
56 miles/h) and 150 km/h (≈ 93 miles/h); the average distance
between two vehicles on the same lane is 50 m (≈ 164 ft). To
simulate the networking aspects of VANETs, we assume that
vehicles periodically broadcast safety messages every 300 ms
within a radius of 300 m, according to the DSRC specification
[1]. In our simulations, vehicles begin message broadcasting
at second 5 and receive reports from around 43 reporters on
average.

10The total event detection delay by the observing vehicle depends also on
how fast the reporters detect the event, which in turn depends on the particular
detection sensors and hence we do not consider it in this work.

By examining both cases of small (Fig. 2(h)) and large
(Fig. 2(i)) percentages of affirmative reports, we can see how
fast the three decision logics reach their final output values
as event reports arrive. The obtained graphs show that this
happens within 100 ms, which is fast enough to make a
decision and consequently broadcast a safety message. The
final output values are in concordance with the results of
Figs. 2(a) to 2(d).

VI. RELATED WORK

Work on trust has produced rich literature in conventional,
P2P and ad hoc networks. In the latter, most works share
assumptions that there is no infrastructure and no PKI; trust
is a relation among entities; trust is based on observations,
with a history of interactions needed to establish trust. To
the best of our knowledge, the computation of trust values
in the context of ad hoc networks has been considered in only
two cases: certification [7], [12], [27] and routing [3], [31].
Otherwise, trust evaluation assumes the prior establishment of
trust relations. In both certification and routing, trust values are
established in very specific ways that cannot be generalized to
other approaches.

Eschenauer et. al. [7] introduce the general principles of
trust establishment in mobile ad hoc networks and compare
them to those in the Internet. They describe examples of
generic evidence generation and distribution in a node-centric
authentication process.

Several papers [3], [8], [20], [31] describe the use of
modified Bayesian approaches to build reputations systems
with secondhand information to establish trust in routing pro-
tocols. As mentioned throughout the paper, reputation systems
monitor node actions over several interactions to compute node
trust values. In contrast, data trust, as defined in this work,
focuses on evaluating data rather than nodes and based on
only one message per node (to cope with the ephemerality
of the network). In addition, all of these works relied on
Bayesian inference to compute reputation scores, whereas we
showed that DST is more resilient to attacks (Sec. V) by taking
uncertainty into consideration. In addition, as mentioned in
Sec. V-C, our approach can be used as a resilient data
aggregation technique in the sense defined in [28], a feature
that distinguishes it from the above metioned works.

The main approach advanced by Jiang and Baras [13], [14]
is based on local voting that is a weighted sum of votes.
Conflicting votes are mitigated by each other when summed.
Voting cannot properly address conflicts between relative
majorities in two distinct groups of voters (e.g., ”Which group
to trust: 9 out of 10 or 50 out of 100?”). These works also
favor local interactions that we use as well.

The main idea behind the work by Sun et. al. [25], [26] is
that trust represents uncertainty that in turn can be computed
using entropy. They also introduce the notion ofconfidence of
belief to differentiate between long-term and short-term trust.
Trust can be established through direct observations or through
a third party by recommendations.



Theodorakopoulos and Baras [27] assume the transitivity of
trust to establish a relation between two entities without pre-
vious interactions. In this context, they model trust evaluation
as a path problem on a directed graph. Given that nodes sign
certificates for each other without any security infrastructure,
this work extends PGP [30] by using secondhand evidence.
Routing protocols are the main target of this approach.

Hubaux et al. [12] propose a distributed version of PGP for
ad hoc networks. In their approach, nodes store partial local
certificate repositories. When two nodes want to establish a
certificate chain between them, they merge their repositories.

The Internet and peer-to-peer (P2P) networks provide a rich
pool of work on reputation systems. A comprehensive survey
on these systems can be found in [16] and [20].

More closely related to VANETs and thus the case-study
instantiation of our framework, Doetzer et al. [6] introduce a
reputation system for VANETs. A vehicle makes, over time,
opinions of other vehicles based on the consistency of their re-
ports with its own observations. Moreover, vehicles propagate
opinions bypiggybackingthem on messages. Another paper
by Golle et. al. [10] proposes a framework for data validation
in VANETs; it consists in comparing received data to amodel
of the VANETand accept their validity if both agree.

There is little work on applying the Dempster-Shafer Theory
to ad hoc networks, the most relevant to our work is the
paper by Chen and Venkataramanan [4] that describes how
DST can be applied to distributed intrusion detection in
ad hoc networks. Siaterlis and Maglaris [23] apply DST to
DoS anomaly detection. The notion of belief, disbelief, and
uncertainty appears in the work of Jøsang [15]. The paper
describes a certification algebra based on a framework for
artificial reasoning calledSubjective Logic.

The literature on sensor fusion is richer with examples of
DST application. Several works compare DST to Bayesian
inference [5], [11] but they do not consider them in a trust-
related context.

VII. C ONCLUSION

In this work, we developed the notion of data trust. We
also addressed ephemeral networks that are very demanding
in terms of processing speed. We instantiated our general
framework by applying it to vehicular networks that are both
highly data-centric and ephemeral. Our approach consists in
using the Dempster-Shafer Theory to evaluate data reports
with corresponding trust levels. We compare this approach
to weighted voting and Bayesian inference. The simulation
results show that the local processing approach, based on DST,
best suits the decision logic requirements and converges fast
enough in a time-critical vehicular network.
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