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Physical-Layer Privacy for E-Health

@ Distributed detection for health
monitoring - two concerns:
@ Detection performance
@ Privacy risk
@ Privacy-per-design approach: Include
both concerns in the system design!
e Privacy-aware distributed detection

Benefits: Enhancement of existing privacy schemes, and/or
ensuring privacy when existing schemes cannot be applied, e.qg.

statistical inference attack

@ Interesting for many other loT/cyber-physical applications.
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Related Literature

@ Distributed detection. Well established theory, many
substantial contributions in the 80’s and 90’s.

@ [Tenney, Sandell Jr.,81] introduced Bayesian problem
@ Physical-layer security. A hot topic in the last decade.
@ [Shannon,49] introduced communication theory of secrecy
systems.
@ Recently, physical-layer security in distributed detection.
e Perfect secrecy using KL divergence as security metric in the
asymptotic regime in the number of sensors:
@ [Marano et al.;09]' Eavesdrooper (Eve) intercepts wireless
transmissions from remote sensors to infer on natures state as well
@ [Nadendla et al.,;10]? Eve intercepts sensors digital data

o Others deal with Byzantine attacks in distributed detection

1S. Marano, V. Matta, and P. K. Willett, “Distributed detection with censoring sensors under physical layer
secrecy,” IEEE Trans. Signal Processing, vol. 57, no. 5, pp. 1976-1986, 2009.

2V. S. S. Nadendla, H. Chen, and P. K. Varshney, “Secure distributed detection in the presence of
eavesdroppers,” in Proc. of ASILOMAR 2010, 2010, pp. 1437-1441.
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Distributed Detection Vulnerable to an Eavesdropper

We keep N fixed and Eve wants to detect H as well!

@ Binary hypothesis H and decisions Uy
@ Conditionally independent observations Y} given H
@ The eavesdropper is known to intercept a local decision.
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Parallel Distributed Detection with an Eavesdropper

Independently randomized
decision strategies at

@ remote sensors
vi(yi) = U;

@ fusion center

U U
VF(”1/~~~/MN) = UF/ ¢ ‘

@ eavesdropper

Eavesdropper is informed about
the system and greedy. J

ye(u1) = Ug.




Bayesian vs. Neyman-Pearson Approach

@ Bayesian approach: Minimize the Bayesian risk
e Known prior probability pr (k)
e Assign detection costs cy, g (ur, h).
e Bayesian risk of the fusion node cr =}, pue 1 (ur, h)cue, 1 (ur, h)

@ Neyman-Pearson approach: Maximize detection probability
pR = pugr(1[1) with an upper bound on the false alarm

probability pE = i (110)

Questions: How to extend problems to include an eavesdropper?
What are (properties of) optimal decision strategies? ...

@ [Icc'14]% Privacy-constrained parallel Bayesian setting.
@ [ICC'14 workshop]* Corresponding Neyman-Pearson setting.

3Z. Li, T. J. Oechtering, and K. Kittichokechai, “Parallel distributed Bayesian detection with privacy constraints,”
in Proc. IEEE ICC 2014.

4Z. Li, T. J. Oechtering, and J. Jaldén, “Parallel distributed Neyman-Pearson detection with privacy constraints,”
in Proc. IEEE ICC 2014 Workshop.
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Privacy-Constrained Bayesian Detection Problem

@ Bayesian approach:

e Define costs for Eve cy n(ug, h)
o Assume Eve knows prior probability pg(h)

@ Privacy metric (minimal Bayesian risk, since Eve is greedy):

cg™ = mincg = min E pug,H(UE, h)cug H(uE, h).
VE VE ug,h
E/

o A detection-theoretic operational privacy metric!

Privacy-constrained parallel distributed Bayesian detection

problem

min  cr, st EN>B
Y1, Y2, YN/ YF




Person-by-Person Optimality

@ Properties of local person-by-person optimal decision tests are
necessary to be satisfied by the global optimal tests.

Privacy-constrained person-by-person optimization of y

mincg, S.t Cgﬂn > B,
7

while all other decision strategies are fixed.

Observations:
e Strategy y; determines operation point (pf, p°).
e Objective cr(pt, pP) = aipF + bipP + ¢y is linear in (p7, pP).
e Constraints ¢ > B & ce(p],p?) > B, Vye are linear in (pf, pP).



lllustration of Privacy-Constrained PBPO

@ A linear objective over a convex set:
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Person-by-Person Optimality

It is sufficient to consider operating points (pf, p°) on the bold
boundary sections .




Deterministic LRT Optimality

@ Since the curved boundary is achieved by likelihood ratio tests
(LRTs) assuming observations Y; with continuous support:

It is sufficient to consider deterministic likelihood ratio tests (LRTSs)
for the local person-by-person optimal and global optimal decision
strategies of the eavesdropped decision maker (DM) S;.

Remark:
Same holds for other decision strategies as well.



Extended Privacy-Constrained PBPO Algorithm

The algorithmic method of PBPO® can be easily extended to
incorporate the privacy constraint.
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GI. Y. Hoballah and P. K. Varshney, “Distributed Bayesian signal detection,” IEEE Trans. Inf. Theory, vol. 35, no.
5, pp. 995-1000, 1989.
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AWGN Example

@ Independent N; ~ N(0,1)

@ Bayesian costs such that
cr and c"" measure
average detection error
probabilities.

Maximal privacy constraint - Interception should not improve Eves
risk compared to the risk based on prior knowledge only!

@ Can be achieved by cutting of sensor with intercepted link!
@ Question: Can we do better?
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Tradeoff: Detection vs. Privacy Performance

@ Answer: Yes! Intercepted local decision can be useless for
Eve, but useful for fusion center due to information from other
remote sensor!
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Privacy-Constrained Neyman-Pearson Problem
@ Privacy metric (based on the Neyman-Pearson criterion):

D F
= n;agxpE, st pe<y.

max p,[:), s.t. p,'z < A,ﬁg'y <o
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Deterministic LRT Optimality for Remote DMs

When a proper randomized fusion strategy is employed, it is
sufficient to consider a deterministic LRT for each remote DM in
the optimal privacy-constrained design.

For a design with deterministic strategies and y = A,

° pE increases along line segments A — B and A — C so that the
optimal operating point is on the curved boundary, therefore

@ it is sufficient to consider deterministic LRT for remote DMs.
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Detection - Privacy Tradeoff

@ AWGN example, same settings as before
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@ The non-smooth curves result from using deterministic
strategies at fusion node only.
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Serial Setting with Privacy Constraint [icassp '14]

Similar to parallel setting:
@ same concepts and
privacy metric
@ similar problem

formulation and
conclusions

Us
Major difference:

@ Decision strategies y;(y;, ui—1) = U; are parametrized by
previous decision u;_; requires extension of analysis.

7Z. Li and T. J. Oechtering, “Tandem distributed Bayesian detection with privacy constraints,” in Proc. IEEE
ICASSP 2014, 2014, pp. 8188-8192.

16/25



Differential Privacy in Distributed Detection [Fusion14]

@ 4-ary hypothesis H = (Hp, Hg)
o public binary Ha
e private binary Hg

@ Fusion center

e has access to all local decisions U,
e should infer Hx while Hg should be
kept private.

Parallel distributed Bayesian detection with a differential

privacy constraint

min ca, st g" =B
V1,72, /VYNYA

82. Li and T. J. Oechtering, “Differential privacy in parallel distributed Bayesian detections,” accepted at Fusion
2014, July 2014.
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Optimality of Deterministic and Randomized LLCT(s)

@ Same conceptual tools are used as previously.
@ Operation region is extended to 4-dimensions.
@ More linear privacy constraints.

It is sufficient to consider a deterministic linear likelihood
combination test (LLCT) or a randomized strategy of LLCT.
Randomized strategies are needed if operation point is determined
by privacy constraints only.

@ LLCT: a; fy,r, 1, (vil0, 0) + bi frm, 11, (ill, 0) + ci frm, 1 (il0, 1) +
u;=1
difyym,m(vill,1) 2 0

i=
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Sequential Detection with an Eavesdropper [Giobalsip14]

@ Binary
H e hypothesis H and
o decisions Uy, Uy, UF,
Yy, Y Ug
DM, | (U0} | DM, ° YlT —H-Y], eachi.id. in
lUl \\\\ \\\\ Uzrli‘{Ult-lﬁUZFI} time
g U UL @ Fusion decides to
terminate sequential
| | detection system to
pend or output Uy~ pend or output Ug make final decision UF.

o Finite-time horizon T

1OZ. Li and T. J. Oechtering, “Privacy-concerned parallel distributed Bayesian sequential detection,” invited to
IEEE GlobalSIP 2014, December 2014.
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Privacy-Concerned Detection Problem

@ Independently randomized local decision strategies:

vie(yir, ul ™ ub) = Uy

@ yr, yE are deterministic sequential detection strategies.

@ Privacy-concerned Bayesian risk:
cp=acr—(1- az)cm'n € [0,1].

@ Privacy-concerned parallel distributed Bayesian sequential
detection problem:

min cp.
yIyEve
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Privacy-Concerned Person-by-Person Optimality

min min acg — (1 — a)cgg,

kell,..., K} (pF D eR. 11 4
" (pitluﬁ_l,utz_l,pitluﬁ_l,ué_l) ’tk\lltl 1,Mt2 1

convex optimization
with convex set

CEk < CE1
R ={e" D NE! with
itklul bt = pitlua’l,ug’l’pitlui’l,ufz’l 7/1't|u§’1,ut2’1
Cex < CEK

F D
ot -1 P
1t|u1 iy

and cr, cgrare linear functions of p P
o,

=1
2

21/25



lllustration of Sub-Regions with 4 Candidates of y¢
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@ When privacy-concerned person-by-person optimizing yg, use
the dynamic programming argument.
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Optimality of Deterministic and Randomized LRT(s)

It is sufficient to consider the boundary of thlut 1yt and the vertices
of sub-regions as the optimal candidates of (p© it PP

ltlut i t 1)

Corollary:
yftl 1 is not achieved by a deterministic LRT then can be

realized by a randomized strategy of two LRTs.
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Summary

@ We proposed new a privacy-per-design framework for
distributed detection problems:

e Introduced detection-theoretic privacy metrics;
e Formulated privacy-constraint and privacy-aware problems;
e ldentified necessary and sufficient conditions for optimal decision

strategies
e Studied parallel, serial, differential-privacy, and sequential setups
@ ltis possible to improve detection performance under maximal
privacy constraint.

@ Concept is interesting due to low complexity at remote sensors
even with many sensors and therefore low delay.

o We just started to explore the ideas...
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Thank you for your attention!
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