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Physical-Layer Privacy for E-Health

Distributed detection for health
monitoring - two concerns:

Detection performance
Privacy risk

Privacy-per-design approach: Include
both concerns in the system design!

Privacy-aware distributed detection

Benefits: Enhancement of existing privacy schemes, and/or
ensuring privacy when existing schemes cannot be applied, e.g.
statistical inference attack

Interesting for many other IoT/cyber-physical applications.
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Related Literature

Distributed detection. Well established theory, many
substantial contributions in the 80’s and 90’s.

[Tenney, Sandell Jr.,’81] introduced Bayesian problem
Physical-layer security. A hot topic in the last decade.

[Shannon,’49] introduced communication theory of secrecy
systems.

Recently, physical-layer security in distributed detection.
Perfect secrecy using KL divergence as security metric in the
asymptotic regime in the number of sensors:

[Marano et al.,’09]1 Eavesdrooper (Eve) intercepts wireless
transmissions from remote sensors to infer on natures state as well
[Nadendla et al.,’10]2 Eve intercepts sensors digital data

Others deal with Byzantine attacks in distributed detection

1S. Marano, V. Matta, and P. K. Willett, “Distributed detection with censoring sensors under physical layer
secrecy,” IEEE Trans. Signal Processing, vol. 57, no. 5, pp. 1976-1986, 2009.

2V. S. S. Nadendla, H. Chen, and P. K. Varshney, “Secure distributed detection in the presence of
eavesdroppers,” in Proc. of ASILOMAR 2010, 2010, pp. 1437-1441.
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Distributed Detection Vulnerable to an Eavesdropper

We keep N fixed and Eve wants to detect H as well!
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Binary hypothesis H and decisions Uk

Conditionally independent observations Yk given H
The eavesdropper is known to intercept a local decision.
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Parallel Distributed Detection with an Eavesdropper

Independently randomized
decision strategies at

remote sensors

γi(yi) = Ui

fusion center

γF(u1, . . . ,uN) = UF,

eavesdropper

γE(u1) = UE.
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Eavesdropper is informed about
the system and greedy.
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Bayesian vs. Neyman-Pearson Approach

Bayesian approach: Minimize the Bayesian risk
Known prior probability pH(h)
Assign detection costs cUF,H(uF, h).
Bayesian risk of the fusion node cF =

∑
uF,h pUF,H(uF, h)cUF,H(uF, h)

Neyman-Pearson approach: Maximize detection probability
pD

F = pUF|H(1|1) with an upper bound on the false alarm
probability pF

F = pUF|H(1|0)

Questions: How to extend problems to include an eavesdropper?
What are (properties of) optimal decision strategies? ...

[ICC’14]3 Privacy-constrained parallel Bayesian setting.
[ICC’14 workshop]4 Corresponding Neyman-Pearson setting.

3Z. Li, T. J. Oechtering, and K. Kittichokechai, “Parallel distributed Bayesian detection with privacy constraints,”
in Proc. IEEE ICC 2014.

4Z. Li, T. J. Oechtering, and J. Jaldén, “Parallel distributed Neyman-Pearson detection with privacy constraints,”
in Proc. IEEE ICC 2014 Workshop.
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Privacy-Constrained Bayesian Detection Problem

Bayesian approach:
Define costs for Eve cUE,H(uE, h)
Assume Eve knows prior probability pH(h)

Privacy metric (minimal Bayesian risk, since Eve is greedy):

cmin
E = min

γE
cE = min

γE

∑
uE,h

pUE,H(uE, h)cUE,H(uE, h).

A detection-theoretic operational privacy metric!

Privacy-constrained parallel distributed Bayesian detection
problem

min
γ1,γ2,··· ,γN,γF

cF, s.t. cmin
E ≥ β.
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Person-by-Person Optimality

Properties of local person-by-person optimal decision tests are
necessary to be satisfied by the global optimal tests.

Privacy-constrained person-by-person optimization of γ1

min
γ1

cF, s.t. cmin
E ≥ β,

while all other decision strategies are fixed.

Observations:
Strategy γ1 determines operation point (pF

1 , p
D
1 ).

Objective cF(pF
1 , p

D
1 ) = a1pF

1 + b1pD
1 + c1 is linear in (pF

1 , p
D
1 ).

Constraints cmin
E ≥ β⇔ cE(pF

1 , p
D
1 ) ≥ β,∀γE are linear in (pF

1 , p
D
1 ).
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Illustration of Privacy-Constrained PBPO

A linear objective over a convex set:
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Privacy-Constrained
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Person-by-Person Optimality

It is sufficient to consider operating points (pF
1 , p

D
1 ) on the bold

boundary sections .
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Deterministic LRT Optimality

Since the curved boundary is achieved by likelihood ratio tests
(LRTs) assuming observations Y1 with continuous support:

Theorem
It is sufficient to consider deterministic likelihood ratio tests (LRTs)
for the local person-by-person optimal and global optimal decision
strategies of the eavesdropped decision maker (DM) S1.

Remark:
Same holds for other decision strategies as well.
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Extended Privacy-Constrained PBPO Algorithm

Remark
The algorithmic method of PBPO6 can be easily extended to
incorporate the privacy constraint.
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6I. Y. Hoballah and P. K. Varshney, “Distributed Bayesian signal detection,” IEEE Trans. Inf. Theory, vol. 35, no.
5, pp. 995-1000, 1989.
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AWGN Example

H

S1 S2

EVE FC

Y1 Y2

U1 U2

UE UF

N1 N2 Independent Ni ∼ N(0, 1)
Bayesian costs such that
cF and cmin

E measure
average detection error
probabilities.

Maximal privacy constraint - Interception should not improve Eves
risk compared to the risk based on prior knowledge only!

Can be achieved by cutting of sensor with intercepted link!
Question: Can we do better?
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Tradeoff: Detection vs. Privacy Performance

Answer: Yes! Intercepted local decision can be useless for
Eve, but useful for fusion center due to information from other
remote sensor!

0 0.2 0.4 0.6 0.8 1
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

p
H

(0)

c
F

 

 

Non−Privacy−Constrained

Privacy−Constrained

Single−Branch Active

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

p
H
(0)

c
Em
in

 

 

Non−Privacy−Constrained

Privacy−Constrained

12 / 25



Privacy-Constrained Neyman-Pearson Problem
Privacy metric (based on the Neyman-Pearson criterion):

p̂D,γ
E = max

γE
pD

E , s.t. pF
E ≤ γ.

Privacy-constrained Neyman-Pearson problem

max
γ1,γ2,γF

pD
F , s.t. pF

F ≤ λ, p̂
D,γ
E ≤ δ.
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Deterministic LRT Optimality for Remote DMs

Theorem
When a proper randomized fusion strategy is employed, it is
sufficient to consider a deterministic LRT for each remote DM in
the optimal privacy-constrained design.

For a design with deterministic strategies and γ = λ,
pD

F increases along line segments A→ B and A→ C so that the
optimal operating point is on the curved boundary, therefore
it is sufficient to consider deterministic LRT for remote DMs.
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Detection - Privacy Tradeoff

AWGN example, same settings as before
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The non-smooth curves result from using deterministic
strategies at fusion node only.
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Serial Setting with Privacy Constraint [ICASSP ’14]
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Similar to parallel setting:
same concepts and
privacy metric
similar problem
formulation and
conclusions

Major difference:
Decision strategies γi(yi,ui−1) = Ui are parametrized by
previous decision ui−1 requires extension of analysis.

7Z. Li and T. J. Oechtering, “Tandem distributed Bayesian detection with privacy constraints,” in Proc. IEEE
ICASSP 2014, 2014, pp. 8188-8192.
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Differential Privacy in Distributed Detection [Fusion’14]

H(HA,HB)
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......
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4-ary hypothesis H = (HA,HB)
public binary HA
private binary HB

Fusion center
has access to all local decisions Ui,
should infer HA while HB should be
kept private.

Parallel distributed Bayesian detection with a differential
privacy constraint

min
γ1,γ2,··· ,γN,γA

cA, s.t. cmin
B ≥ β.

8Z. Li and T. J. Oechtering, “Differential privacy in parallel distributed Bayesian detections,” accepted at Fusion
2014, July 2014.
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Optimality of Deterministic and Randomized LLCT(s)

Same conceptual tools are used as previously.
Operation region is extended to 4-dimensions.
More linear privacy constraints.

Theorem
It is sufficient to consider a deterministic linear likelihood
combination test (LLCT) or a randomized strategy of LLCT.
Randomized strategies are needed if operation point is determined
by privacy constraints only.

LLCT: ai fYi |HA,HB (yi|0, 0) + bi fYi |HA,HB (yi|1, 0) + ci fYi |HA,HB (yi|0, 1) +

di fYi |HA,HB (yi|1, 1)
ui=1
≷

ui=0
0
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Sequential Detection with an Eavesdropper [GlobalSIP’14]

H
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Binary
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1 −H − YT

2 , each i.i.d. in
time

Fusion decides to
terminate sequential
detection system to
make final decision UF.

Finite-time horizon T

10Z. Li and T. J. Oechtering, “Privacy-concerned parallel distributed Bayesian sequential detection,” invited to
IEEE GlobalSIP 2014, December 2014.

19 / 25



Privacy-Concerned Detection Problem

Independently randomized local decision strategies:

γit(yit,ut−1
1 ,ut−1

2 ) = Uit

γF, γE are deterministic sequential detection strategies.

Privacy-concerned Bayesian risk:

cP = αcF − (1 − α)cmin
E , α ∈ [0, 1].

Privacy-concerned parallel distributed Bayesian sequential
detection problem:

min
γT

1 ,γ
T
2 ,γF

cP.
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Privacy-Concerned Person-by-Person Optimality

min
k∈{1,...,K}

min
(pF

it|ut−1
1 ,ut−1

2
,pD

it|ut−1
1 ,ut−1

2
)∈Ritk|ut−1

1 ,ut−1
2

αcF − (1 − α)cEk

︸                                                   ︷︷                                                   ︸
convex optimization

,

with convex set

Ritk|ut−1
1 ,ut−1

2
=

(pF
it|ut−1

1 ,ut−1
2
, pD

it|ut−1
1 ,ut−1

2
)

∣∣∣∣∣∣∣∣∣∣∃γit|ut−1
1 ,ut−1

2
with

cEk ≤ cE1

...

cEk ≤ cEK

 ,
and cF, cEkare linear functions of pF

it|ut−1
1 ,ut−1

2
, pD

it|ut−1
1 ,ut−1

2
.
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Illustration of Sub-Regions with 4 Candidates of γ∗E
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When privacy-concerned person-by-person optimizing γF, use
the dynamic programming argument.
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Optimality of Deterministic and Randomized LRT(s)

Theorem
It is sufficient to consider the boundary of Rit|ut−1

1 ,ut−1
2

and the vertices

of sub-regions as the optimal candidates of (pF
it|ut−1

1 ,ut−1
2
, pD

it|ut−1
1 ,ut−1

2
).

Corollary:
If γ∗

it|ut−1
1 ,ut−1

2
is not achieved by a deterministic LRT then can be

realized by a randomized strategy of two LRTs.
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Summary

We proposed new a privacy-per-design framework for
distributed detection problems:

Introduced detection-theoretic privacy metrics;
Formulated privacy-constraint and privacy-aware problems;
Identified necessary and sufficient conditions for optimal decision
strategies
Studied parallel, serial, differential-privacy, and sequential setups

It is possible to improve detection performance under maximal
privacy constraint.
Concept is interesting due to low complexity at remote sensors
even with many sensors and therefore low delay.

We just started to explore the ideas...

Thank you for your attention!
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