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ABSTRACT. The aim of this paper is to construct exact formulae for re-
flectionless potentials for ordinary differential operators of order four.
They lead to soliton type solutions which are well known for one di-
mensional Schr̈odinger operators. Such solitons are solutions of some
non-linear integrable systems appeared in [8] (see also [9]).

1. INTRODUCTION

Let us consider a fourth order selfadjoint differential operator

(1.1) L =
d4

dx4
+

d

dx
u(x)

d

dx
+ v(x).

We assume that potentialsu(x) and v(x) are real-valued, smooth and
rapidly decaying functions satisfying the property

(1.2) |u(x)|, |v(x)| < const exp(−ε|x|)
for someε > 0.

This article could be considered as a natural continuation of the study
started in [9] (see also [13], where some of the result of this paper were
presented). Namely we shall give a full description of potentialsu andv
which the operatorL is reflection free. Naturally such a class of potentials
is related to the discrete spectrum which in the case of fourth order operators
can be either negative or embedded into the continuous spectrum. However,
we find at least two following surprising facts. We prove that if a reflection-
less operatorL has a negative eigenvalue, then this eigenvalue has to be of
multiplicity two. The second fact concerns reflectionless potentials which
create a positive eigenvalue embedded into the continuous spectrum. In this
case we prove that the operatorL is equal to square of a Schrödinger oper-
ator with the soliton type potentialcosh−2. Of course such an eigenvalue is
of multiplicity one. In the end we also include so-called non-spectral singu-
larities and obtain a non-trivial class of reflectionless operators which does
not generate any eigenvalue.
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Compare with [9] where most of the main results were obtained by guess-
ing and using complicated computations applying Darboux transforms, in
this paper we are able to present full description of reflectionless potentials
by systematically studying a Riemann-Hilbert problem. Such an approach
has shown to be very fruitful in the study of higher order operators [1], [10],
where soliton type solutions were not considered. Notice that the Riemann-
Hilbert approach was also used in a number of related papers [2], [4], [5],
[6], [11] and [12].

Considering non-spectral singularities we are able to clarify the recent
result from [3], where the authors constructed an example violating a func-
tional inequality related to a trace formula for the operator (1.1) (see Re-
mark 3, Section 6).

2. RIEMANN -HILBERT PROBLEM

2.1. Reduction to an integral equation. Here we would like to remind
a formulation of the Riemann-Hilbert problem adapted to a fourth order
differential operator (see [1] and [10]).

Let us introduce the following four solutionsΨl(x, k), l = 1, 2, 3, 4, of
the spectral equation

(2.1) LΨ =
d4

dx4
Ψ +

d

dx
u
d

dx
Ψ + vΨ = k4Ψ

such that

(2.2) Ψl(x, k) = eklx(1 + o(1)), x→ +∞,
and

(2.3) Ψl(x, k) = eklxO(1), x→ −∞,
wherekl = k exp(iπ(l − 1)/2), l = 1, 2, 3, 4. Notice thatkl = kl(k),
k ∈ C. By using standard computations one can find thatΨl(x, k) satisfy
the following Fredholm integral equations

(2.4) Ψl(x, k) = eklx+

1

4k3

+∞∫
x

∑
j:Re(kj)≥Re(kl)

ekj(x−y)((kj)
2u(y) + kju

′(y) + v(y))Ψl(y, k)dy

− 1

4k3

x∫
−∞

∑
j:Re(kj)<Re(kl)

ekj(x−y)((kj)
2u(y) + kju

′(y) + v(y))Ψl(y, k)dy.

Such solutions are meromorphic functions in sectorsΩm,m = 1, . . . 8,

Ωm = {k : π(m− 1)/4 < arg k < πm/4}
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and have jumps on the set of raysγm

(2.5) γm = {k : arg k = mπ/4}.
It is well known that functionsΨl(x, k) might have singularities. Some of
them correspond to the spectrum of the operatorL and therefore lie on the
rays (2.5). However, there are poles which are usually called non-spectral
singularities and do not belongγm. Both such singularities appear from the
fact that the equations (2.4) are of Fredholm type. Due to the condition (1.2)
the solutionsΨl(x, k) have analytic continuation to some neibourhoodsΩε

m

of sectorsΩm, where

Ωε
m = {k : (m− 1)π/4− ε < argk < mπ/4 + ε}.

In particular, this means that the singularities ofΨl(x, k) cannot have ac-
cumulating points belonging to the rays (2.5). From the equation (2.4) one
immediately derives that functionsΨl(x, k) satisfy the following asymp-
totics as|k| → ∞ uniformly with respect tox:

(2.6) Ψl(x, k) = eklx(1 + o(1)).

This allows us to conclude that the set of singularities of functions
{Ψl(x, k)}4

l=1 is finite.
Let us now consider asymptotics of the functionsΨl(x, k), asx→ −∞,

and introduce

(2.7) al(k) = 1 +
1

4k3

+∞∫
−∞

e−kly((kl)
2u(y) + klu

′(y) + v(y))Ψl(y, k)dy.

Then the asymptotics (2.3) can be written in a more transparent form

(2.8) Ψl(x, k) = eklx(al(k) + o(1)), x→ −∞, k ∈ ∪8
m=1Ωm.

Functions al(k) have the same analytical properties as the functions
Ψl(x, k). In particular, they are meromorphic in sectorsΩm.

2.2. Some algebraic properties ofΨl(x,k). Let us introduce a Wron-
skian of three functions

W3[f, g, h] =

∣∣∣∣∣∣
f g h
f ′ g′ h′

f ′′ g′′ h′′

∣∣∣∣∣∣ .
Lemma 2.1. If f(x, k), g(x, k), h(x, k) are three solutions of the spectral
equation(2.1), then so is the following Wronskian

W3[f(x,−k), g(x,−k), h(x,−k)].

This is a well-known statement which follows from Liouville’s formula.
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Lemma 2.2. Let L be the operator defined in(1.1) with real potentialsu
and v. Then solutionsΨl(x, k) defined by the boundary conditions(2.2)
and (2.3)satisfy the following relations:

Ψ1(x, k) = Ψ1(x, k), Ψ3(x, k) = Ψ3(x, k),

Ψ2(x, k) = Ψ4(x, k), Ψ1(x, k) = Ψ4(x, ik), Ψ2(x, k) = Ψ3(x, ik).

Proof. The left hand sides of all these relations are solutions of the equation
(2.1) and satisfy the same conditions at±∞ as the functions at the right
hand side. This implies that they must be equal. �

By using Lemma 2.2 and taking into account (2.2) and (2.8) we obtain
the following statement:

Lemma 2.3. Letal(k) be the functions defined in(2.7). Then

a1(k) = a1(k), a3(k) = a3(k),

a2(k) = a4(k), a1(k) = a4(ik), a2(k) = a3(ik).

Further interesting relations between the coefficientsal were first found
in [13].

Lemma 2.4. The functionsal(k) satisfy the identities

(2.9) a1(k) a3(k) = 1, a2(k) a4(k) = 1.

Proof. The proofs of the two identities (2.9) are similar, so we consider only
the first one. Let us now introduce a Wronskian of two functions

(2.10) W2[f, g] = f ′′′g′ − f ′′g′ + f ′g′′ − fg′′′.

Using (2.1) we obtain

(W2[Ψ1,Ψ3])′ = Ψ′′′′1 Ψ3 −Ψ1Ψ′′′′3 = (uΨ1Ψ′3 − uΨ′1Ψ3)′

and therefore

W2[Ψ1,Ψ3](c)−W2[Ψ1,Ψ3](−c) = (uΨ1Ψ′3 − uΨ′1Ψ3)|c−c.

Due to (1.2), (2.2) and (2.3) the limit of right hand side of this equality
equals zero asc→ +∞. Thus

lim
x→−∞

W2[Ψ1,Ψ3](x, k) = lim
x→+∞

W2[Ψ1,Ψ3](x, k).

The latter equality together with asymptotics (2.2) and (2.8) (which hold
true even together with the derivatives with respect tox) completes the proof
of the lemma. �
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Let Ψ := (Ψ1,Ψ2,Ψ3,Ψ4)t. Denote byΨ+m (Ψ−m) the limits ofΨ ask
approaches the rayγm such thatarg k → πm/4±0. LetGm(k) be matrices
which connect vector-functionsΨ+m(x, k) andΨ−m(x, k)

Ψ+m(x, k) = Gm(k)Ψ−m(x, k).

If m = 0, then

Ψ(+0)(x, k) =


ekx

eikx

e−kx

e−ikx + r0(k)eikx

 (1 + o(1)), x→ +∞,

respectively

Ψ(−0)(x, k) =


ekx

eikx + r0(k)e−ikx

e−kx

e−ikx

 (1 + o(1)), x→ +∞,

wherer0 can be found from (2.4) as

r0(k) =
1

4k3

∫ ∞
−∞

ek2y((k2)2u(y) + k2u
′(y) + v(y))Ψ4(y, k + i0) dy.

Therefore

G0(k) =


1 0 0 0
0 1 0 −r0

0 0 1 0
0 r0 0 1− |r0|2

 .

If m = 1, then

Ψ(+1)(x, k) =


ekx

eikx

e−kx + r1(k)eikx

e−ikx + r2(k)ekx

 (1 + o(1)), x→ +∞,

and

Ψ(−1)(x, k) =


ekx + r2(k)e−ikx

eikx + r1(k)e−kx

e−kx

e−ikx

 (1 + o(1)), x→ +∞,

where

r1(k) =
1

4k3

∫ ∞
−∞

ek2y((k2)2u(y) + k2u
′(y) + v(y))Ψ3(y, kei0) dy,

r2(k) =
1

4k3

∫ ∞
−∞

ek1y((k1)2u(y) + k1u
′(y) + v(y))Ψ4(y, kei0) dy.
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Thus

G1(k) =


1 0 0 −r2

0 1 −r1 0
0 r1 1− |r1|2 0
r2 0 0 1− |r2|2

 .

By using the invariance of the equation (2.1) under transformationk → ik
one finds matricesG3 andG4

Gm+2(ik) = σGm(k)σ−1, σ =


0 1 0 0
0 0 1 0
0 0 0 1
1 0 0 0

 .

It is natural to call the functionsrl(k), l = 0, 1, 2, the reflection coefficients.

3. REFLECTIONLESS POTENTIALS GENERATED BY ONE NEGATIVE

EIGENVALUE

3.1. A negative eigenvalue is always of multiplicity two.We define re-
flectionless potentials as potentials for which all solutionsΨl(x, k) are
meromorphic ink functions. For such potentials jump conditions atγm
are trivial and reflection coefficients are equal to zero

r0(k) = r1(k) = r2(k) = 0.

Let us consider reflectionless case corresponding to one negative eigenvalue
λ∗ = k4

∗, k∗ = (1 + i)s∗, s∗ > 0, and such that the functionsΨl(x, k) do
not have any other spectral and non-spectral singularities.

The boundary conditions (2.2), (2.8) at±∞ imply a
(−1)
2 (k∗) = 0 or

a
(−1)
3 (k∗) = 0, wherea(±m)

l are the limits ofal as argk → πm/4±0. On the

other hand from the integral equations (2.4) one obtains thatΨ
(+1)
2 = Ψ

(−1)
3 .

Therefore by using (2.7) we find

(3.1) a
(+1)
2 (k) = a

(−1)
3 (k).

Clearly Ψ2(x, k∗) and Ψ3(x, k∗) are exponentially decaying functions as
x → +∞. It follows from (3.1) that the functionsa2(k) anda3(k) are
meromorphic in the first quadrant{k : 0 < arg k < π/2} andk∗ is their
common zero. Thus (2.8) implies thatΨ2(x, k∗) andΨ3(x, k∗) are two lin-
ear independent eigenfunctions of the operatorL.

In particular, since the multiplicity of the negative eigenvalue of the op-
eratorL cannot exceed two, this means thatk∗ is a simple zero for each of
the functionsa2(k) anda3(k).
We finally obtain that for a reflectionless pair of potentialsu and v the
negative eigenvalueλ∗ of the operatorL is always of multiplicity two.
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3.2. Properties of eigenfuntions.Let us now consider meromorphic so-
lutions Ψl(x, k) at k∗. If k ∈ γ1 then for the functionsΨ2(x, k) and
Ψ3(x, k) the sum in the second integral in (2.4) disappears and therefore
these equations become Volterra’s integral equations. This fact implies that
bothΨ2(x, k) andΨ3(x, k) are analytic atk∗. Sincek∗ is a simple zero of
functionsa2(k) anda3(k), in view of Lemma 2.4 we find thata1(k) and
a4(k) have simple poles of multiplicity one atk∗.

Let Ψ̃l(x, k) be solutions of our differential equation (2.1) satisfying the
following boundary conditions at±∞:

Ψ̃l(x, k) = eklx(1 + o(1)), x→ −∞,

Ψ̃l(x, k) = eklxO(1), x→ +∞.
Then

Ψ̃l(x, k) = eklx+

1

4k3

+∞∫
x

∑
j:Re(kj)>Re(kl)

ekj(x−y)(kj)
2u(y) + kju

′(y) + v(y))Ψ̃l(y, k)dy

− 1

4k3

x∫
−∞

∑
j:Re(kj)≤Re(kl)

ekj(x−y)((kj)
2u(y) + kju

′(y) + v(y))Ψ̃l(y, k)dy.

If k ∈ γ1 and l = 1 or 4 then in the latter equation the sum in the sec-
ond integral disappears and̃Ψ1(x, k) andΨ̃4(x, k) satisfy Volterra’s integral
equation. This implies that these functions are analytic atk = k∗.

By using asymptotic formulae (2.2) and (2.8) we find that there is a nat-
ural relation betweeñΨ1(x, k) andΨ̃4(x, k) and our basic functionsΨ1 and
Ψ4

(3.2) Ψ1(x, k) = a1(k)Ψ̃1(x, k), Ψ4(x, k) = a4(k)Ψ̃4(x, k).

Hence functionsΨ1(x, k) andΨ4(x, k) have simple poles at pointk∗. Us-
ing invariance under the transformationk 7→ ik we obtain the complete
description of poles of functionsΨl(x, k):

(3.3) Ψ1(x, k) = ekx
(

1 +
α(x)

−k − ik∗
+

β(x)

−k + k∗

)
,

(3.4) Ψ2(x, k) = eikx
(

1 +
α(x)

−ik − ik∗
+

β(x)

−ik + k∗

)
,

(3.5) Ψ3(x, k) = e−kx
(

1 +
α(x)

k − ik∗
+

β(x)

k + k∗

)
,
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(3.6) Ψ4(x, k) = e−ikx
(

1 +
α(x)

ik − ik∗
+

β(x)

ik + k∗

)
.

We shall now compute the unknown functionsα(x) andβ(x). We know
that

Ψ4(x, k) = a4(k)Ψ̃4(x, k).

Clearly Ψ̃4(x, k∗) is a decaying function asx → −∞. Therefore,Ψ̃4 can
be expressed as a linear combination of functionsΨ2 andΨ3

Ψ̃4(x, k∗) = z1Ψ2(x, k∗) + z2Ψ3(x, k∗).

So, we obtain that

(3.7) resk=k∗Ψ4(x, k) = cΨ2(x, k∗) + dΨ3(x, k∗),

where the constantsc = z1 resk=k∗a4(k) andd = z2 resk=k∗a4(k). Similarly
we find that there exist constantsc̃ andd̃ such that

(3.8) resk=k∗Ψ1(x, k) = c̃Ψ2(x, k∗) + d̃Ψ3(x, k∗).

SinceΨ̃1 andΨ̃4 are linear independent we obtain thatcd̃ 6= c̃d. Selfad-
jointness of the operatorL and Lemma 2.2 imply that ifk ∈ γ1, then

(3.9) Ψ2(x, k) = Ψ3(x, ik̄), Ψ1(x, k) = Ψ4(x, ik̄).

Thus by using (3.7), (3.8) and (3.9) we find

(3.10) c̃ = id, d̃ = ic.

3.3. Some relations between the coefficientsc and d. By using Lemma
2.1 we find that the WronskianW3[Ψ2(x,−k),Ψ3(x,−k),Ψ4(x,−k)] is a
solution of the spectral equation (2.1). Comparing its behaviour asx →
+∞ with the asymptotic formulae (2.2) we obtain

4ik3Ψ1(x, k) =W3[Ψ2(x,−k),Ψ3(x,−k),Ψ4(x,−k)].

In particular, this implies
(3.11)

4ik3
∗ resk=k∗Ψ1(x, k) = resk=k∗W3[Ψ2(x,−k),Ψ3(x,−k),Ψ4(x,−k)].

Now, using identities (2.2), (3.7), (3.8) we obtain from (3.11) asx→ +∞

4ik3
∗(c̃ e

ik∗x + d̃ e−k∗x) =W3[eik∗x, c̃ eik∗x + d̃ e−k∗x, e−ik∗x]+

+W3[eik∗x, ek∗x, c eik∗x + d e−k∗x] = d̃ 4ik3
∗e
−k∗x + d 4k3

∗e
ik∗x.

Finally, applying (3.10) we conclude that

(3.12) Red = 0.
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Inserting expressions (3.3)-(3.6) into (3.7) and (3.8) we finally obtain the
system of two algebraic equations for coefficientsα(x) andβ(x):

(3.13) A(x)

(
α(x)
β(x)

)
=

(
−ceik∗x − de−k∗x
−ideik∗x − ice−k∗x

)
,

where

A(x) =

(
ie−ik∗x − ceik∗x

2ik∗
+ de−k∗x

(1−i)k∗
ceik∗x

(1−i)k∗ + de−k∗x

2k∗

−deik∗x

2k∗
+ ice−k∗x

(1−i)k∗ ek∗x + ideik∗x

(1−i)k∗ + ice−k∗x

2k∗

)
.

Let d = ib, b ∈ R andk∗ = (1 + i)s∗, then direct calculations show that

detA(x) = i

(
e2s∗x +

b2 − |c|2

8s2
∗

e−2s∗x +
b

s∗
+
|c|√
2s∗

sin
(

2s∗x+ argc+
π

4

))
.

In order to find the family of reflectionless potentials corresponding to the
eigenvalueλ∗ we have to find solutionsα andβ of the equation (3.13). It is
easy to verify that detA(x) 6= 0 for all x ∈ R if and only if

(3.14) b > |c|.

Example. If c = 0 andd = i 2
√

2 s∗ then

α(x) =
−
√

2 s∗ − (1 + i)s∗e
−2xs∗

cosh(2xs∗) +
√

2
,

β(x) =
−
√

2 s∗ − (1− i)s∗e−2xs∗

cosh(2xs∗) +
√

2
.

SubstitutingΨ1(x, k) given by (3.3) into the equation (2.1) we obtain po-
tentialsu(x) andv(x)

u(x) = 16s2
∗(
√

2W (x)−W 2(x)),

v(x) = 16s4
∗(
√

2W (x)− 12W 2(x) + 16
√

2W 3(x)− 8W 4(x)),

where

W (x) =
1

cosh(2s∗x) +
√

2
.

The same solution was found in [9] with the help of a Hirota-type equation.

The next theorem summarizes the main results obtained in this Section.

Theorem 3.1.LetL be a fourth order differential operator defined by(2.1).
Assume thatL has one negative eigenvalueλ∗. For an arbitrary family of
parametersc andd, c ∈ C, d = ib, b > |c|, there exists a unique pair of
real potentialsu andv, such that the operatorL is reflection free and has
λ∗ as its negative eigenvalue of multiplicity two.
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Remark.The potentialsu andv can be found explicitly via solutionsα and
β of the algebraic equation (3.13). In general,α(x) andβ(x) and conse-
quentlyu(x) andv(x) are rational functions ofe2s∗x, e−2s∗x, cos(2s∗x) and
sin(2s∗x).

4. REFLECTIONLESS POTENTIALS GENERATED BY SEVERAL NEGATIVE

EIGENVALUES

4.1. Solutions corresponding to several eigenvalues.We now consider
a more general situation. Namely, let a reflectionless operatorL hasN
negative eigenvaluesλn∗ = (kn∗ )

4, n = 1, 2, ...N .
In the previous Section we studied the properties of solutionsΨl at

k∗. Notice that such arguments (arguments concerning the behaviour of
Ψ near k∗) were local and have not assumed that there were no other
singular points. Therefore we find that eigenvaluesλn∗ are all of multi-
plicity two and that the corresponding eigenfunctions areΨ2(x, kn∗ ) and
Ψ3(x, kn∗ ). Similarly to (3.3)-(3.6) we obtain that the four independent so-
lutions{Ψl(x, k)}4

l=1 are given in the following form:

(4.1) Ψ1(x, k) = ekx

(
1 +

N∑
n=1

(
αn(x)

−k − ikn∗
+

βn(x)

−k + kn∗

))
,

(4.2) Ψ2(x, k) = eikx

(
1 +

N∑
l=1

(
αn(x)

−ik − ikn∗
+

βn(x)

−ik + kn∗

))
,

(4.3) Ψ3(x, k) = e−kx

(
1 +

N∑
l=1

(
αn(x)

k − ikn∗
+
βn(x)

k + kn∗

))
,

(4.4) Ψ4(x, k) = e−ikx

(
1 +

N∑
n=1

(
αn(x)

ik − ikn∗
+

βn(x)

ik + kn∗

))
.

As we had before, the functionsΨj(x, k) satisfy the identities

(4.5) resk=kn∗Ψ4(x, k) = cn Ψ2(x, kn∗ ) + dn Ψ3(x, kn∗ ),

resk=kn∗Ψ1(x, k) = c̃n Ψ2(x, kn∗ ) + d̃n Ψ3(x, kn∗ ).

Besides, as in (3.10) and (3.12) we find

c̃n = idn, d̃n = icn, Redn = 0.
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4.2. Further properties of cn and dn. For one-soliton solution the in-
equality (3.14) followed from the explicit expression for the determinant
of the matrixA(x). For a N-soliton solution the corresponding determi-
nant is too complicated. Therefore in order to prove that the corresponding
system of equations is uniquely solvable we need two auxiliary statements.

Lemma 4.1. The constantsdn andcn introduced in(4.5)satisfy the follow-
ing relations

dn = ibn, bn > 0, bn > |cn|, n = 1, 2...N.

Proof. Let us consider two functionsΨ2(x, k) andΨ3(x, k) satisfying the
spectral equation (2.1).

Differentiating the identityLΨ2(x, k) = k4Ψ2(x, k) with respect tok we
arrive at

LΨ̇2(x, k) = 4k3Ψ2(x, k) + k4Ψ̇2(x, k).

Therefore for a fixedk = kn∗ we obtain

−W2[Ψ3(x, kn∗ ), Ψ̇2(x, kn∗ )]|+∞−∞ = 4(kn∗ )
3

∫ +∞

−∞
Ψ2(x, kn∗ )Ψ3(x, kn∗ )dx

= 4(kn∗ )
3

∫ +∞

−∞
|Ψ2(x, kn∗ )|2dx,

where the latter equality follows fromΨ2(x, k) = Ψ3(x, ik̄).
From (4.2) and (4.3) we immediately find that

lim
x→+∞

W2[Ψ3(x, kn∗ ), Ψ̇2(x, kn∗ )] = 0.

Let us consider the behaviour of the WronskianW2[Ψ3, Ψ̇2] at−∞. Ac-
cording to (2.4),Ψ2(x, k) and its derivative with respect tok have the fol-
lowing asymptotics asx→ −∞:

Ψ2(x, k) = exp(ikx)(a2(k)+o(1)), Ψ̇2(x, kn∗ ) = exp(ikn∗x)(ȧ2(kn∗ )+o(1)).

SinceΨ2(x, kn∗ ) andΨ3(x, kn∗ ) are two linear independent eigenfunctions
they can be written as linear combinations ofΨ̃1 andΨ̃4

(4.6) Ψ2(x, kn∗ ) = en1 Ψ̃1(x, kn∗ ) + en2 Ψ̃4(x, kn∗ ),

(4.7) Ψ3(x, kn∗ ) = en1 Ψ̃4(x, kn∗ ) + en2 Ψ̃1(x, kn∗ ),

where

(4.8) |en1 | 6= |en2 |.
Finally we obtain

−W2[Ψ3(x, kn∗ ), Ψ̇2(x, kn∗ )]
∣∣∣+∞
−∞

= ien1 4(kn∗ )
3ȧ2(kn∗ )
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or

(4.9) i en1 ȧ2(kn∗ ) =

∫ +∞

−∞
|Ψ2(x, kn∗ )|2dx.

Repeating this argument forΨ2(x, k) instead ofΨ3(x, k), namely consider-
ing the WronskianΨ2(x, k) andΨ̇2(x, k), we obtain

(4.10) i en2 ȧ2(kn∗ ) =

∫ +∞

−∞
(Ψ2(x, kn∗ ))

2dx.

Therefore (4.9), (4.10) together with (4.8) imply

|en1 | > |en2 |.
By Lemma 2.4

resk=kn∗ Ψ4(x, k) = Ψ̃4(x, kn∗ ) resk=kn∗ a4(k)

(4.11) = Ψ̃4(x, kn∗ ) resk=kn∗

1

a2(k)
.

Moreover, from (4.6) and (4.7) we have

Ψ̃4(x, kn∗ ) =
1

|en1 |2 − |en2 |2
(−en2 Ψ2 + en1 Ψ3).

Equations (4.11) and (4.9) lead us to

resk=kn∗Ψ4(x, k) =
ien1

(|en1 |2 − |en2 |2)

(−en2 Ψ2 + en1 Ψ3)∫ +∞
−∞ |Ψ2(x, kn∗ )|2dx

.

Thus

dn =
i|en1 |2

(|en1 |2 − |en2 |2)
∫ +∞
−∞ |Ψ2(x, kn∗ )|2dx

,

cn =
−iēn1 ēn2

(|en1 |2 − |en2 |2)
∫ +∞
−∞ |Ψ2(x, kn∗ )|2dx

and thereforedn = ibn with somebn > 0 andbn > |cn|, n = 1, 2, . . . , N .
The proof is complete. �

Inserting expressions (4.1)-(4.4) into (4.6) and (4.7) we obtain the system
of 2N algebraic equations for the coefficientsαn(x) andβn(x):

−ie−ik
j
∗xαj(x) = cje

ikj∗x

(
1 +

N∑
n=1

(
αn(x)

−ikj∗ − ikn∗
+

βn(x)

−ikj∗ + kn∗

))

+dje
−kj∗x

(
1 +

N∑
n=1

(
αn(x)

kj∗ − ikn∗
+

βn(x)

kj∗ + kn∗

))
,
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−ek
j
∗xβj(x) = idje

ikj∗x

(
1 +

N∑
n=1

(
αn(x)

−ikj∗ − ikn∗
+

βn(x)

−ikj∗ + kn∗

))

+icje
−kj∗x

(
1 +

N∑
n=1

(
αn(x)

kj∗ − ikn∗
+

βn(x)

kj∗ + kn∗

))
.

4.3. Solvability of algebraic equations. Solvability of this system de-
pends on it’s determinant∆(x).

Lemma 4.2. Determinant∆(x) of the matrix described by the above equa-
tions is non-degenerate for allx ∈ R.

Proof. Let us assume that∆(x0) = 0 for somex0 ∈ R. Then for thisx0 we
have a non-trivial solution(αn0 , β

n
0 ) of our algebraic homogeneous system

of equations

−ie−ik
j
∗x0αj0 = cje

ikj∗x0

N∑
n=1

(
αn0

−ikj∗ − ikn∗
+

βn0
−ikj∗ + kn∗

)

+dje
−kj∗x0

N∑
n=1

(
αn0

kj∗ − ikn∗
+

βn0
kj∗ + kn∗

)
,

−ek
j
∗x0βj0 = idje

ikj∗x0

N∑
n=1

(
αn0

−ikj∗ − ikn∗
+

βn0
−ikj∗ + kn∗

)
+

+icje
−kj∗x0

N∑
n=1

(
αn0

kj∗ − ikn∗
+

βn0
kj∗ + kn∗

)
.

Let us consider four functions

Ψ0
1(k) = ekx0

N∑
n=1

(
αn0

−k − ikn∗
+

βn0
−k + kn∗

)
,

Ψ0
2(k) = eikx0

N∑
n=1

(
αn0

−ik − ikn∗
+

βn0
−ik + kn∗

)
,

Ψ0
3(k) = e−kx0

N∑
n=1

(
αn0

k − ikn∗
+

βn0
k + kn∗

)
,

Ψ0
4(k) = e−ikx0

N∑
n=1

(
αn0

ik − ikn∗
+

βn0
ik + kn∗

)
.
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It follows from Lemma 2.2 thatΨ1(x, is) = Ψ3(x, is), s ∈ R. Thus

I :=

∫ +i∞

−i∞
Ψ0

1(k)Ψ0
3(k)dk =

∫ +i∞

−i∞
|Ψ0

1(k)|2dk.

We now observe that the value of the integralI = ip, p ≥ 0, and it can be
zero only when both constantsαn0 , β

n
0 are zero.

On the other hand we can calculateI with the help of residues

I = −2πi
N∑
n=1

(
Ψ0

3(kn∗ ) resk=kn∗Ψ
0
1 + Ψ0

3(−ikn∗ ) resk=−ikn∗Ψ
0
1

)
.

By analogy with (3.7) and (3.8) we can obtain

resk=kn∗Ψ
0
4(k) = cn Ψ0

2(kn∗ ) + dn Ψ0
3(kn∗ )

resk=kn∗Ψ
0
1(k) = c̃n Ψ0

2(kn∗ ) + d̃n Ψ0
3(kn∗ ).

Hence

I = −2πi
N∑
n=1

(
2bn |Ψ0

2(kn∗ )|2 + 2Im(cn (Ψ0
2(kn∗ ))

2)
)
.

Applying Lemma 4.1 we obtain

I = −ip̂, p̂ > 0,

which contradicts the equalityI = ip, p ≥ 0. �

We have now proved the following result.

Theorem 4.1.LetL be a fourth order differential operator defined by(2.1).
Assume thatL hasN negative eigenvaluesλn∗ , n = 1, 2, . . . , N . Then for
an arbitrary family of parameterscn and dn, cn ∈ C, dn = ibn, bn >
|cn|, n = 1, 2, . . . , N , there exists a unique pair of real potentialsu andv,
such that the operatorL is reflection free. Each of the eigenvaluesλn∗ is of
multiplicity two.

5. REFLECTIONLESS POTENTIALS CORRESPONDING TO A POSITIVE

EIGENVALUE

The scheme used in the previous section can be applied to constructing
reflectionless potentials corresponding to a positive eigenvalue belonging
to the continuous spectrum. Note that for a fourth order operatorL the
eigenvalues embedded into the positive continuous spectrum are always of
multiplicity one.

Let k4
∗, k∗ > 0 be such an eigenvalue. Then functiona(k) = a2(k)a3(k)

has a simple zero at the pointk∗. Using Lemma 2.3 anda2(k) = a4(k), for
k > 0, (see Lemma 2.4) we obtain thata2(k) anda4(k) are both analytic
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and nonzero atk∗, while a3(k) has simple zero atk∗ anda1(k) has simple
pole atk∗. Using asymptotics with respect tok → ∞ we arrive at the
following expression forΨ1(x, k):

Ψ1(x, k) = ekx
(

1 +
γ(x)

k − k∗

)
,

and using invariance underk 7→ ik we get

Ψ2(x, k) = eikx
(

1 +
γ(x)

ik − k∗

)
,

Ψ3(x, k) = e−kx
(

1 +
γ(x)

−k − k∗

)
,

Ψ4(x, k) = e−ikx
(

1 +
γ(x)

−ik − k∗

)
.

Let Ψ̃1(x, k) be the solution of (2.1) such that

Ψ̃1(x, k) = ekx(1 + o(1)), x→ −∞,

Ψ̃1(x, k) = ekxO(1), x→ +∞.
Then by using uniqueness (cf. (3.2))

Ψ1(x, k) = a1(k)Ψ̃1(x, k).

FunctionΨ̃1(x, k) satisfies a Volterra integral equation for{|Im k| < Rek}
and therefore is analytic atk∗. Moreover, functions̃Ψ1(x, k∗) andΨ3(x, k∗)
are the only decaying solutions at−∞ and+∞ respectively. Sincek4

∗ is an
eigenvalue of multiplicity one we obtain that there exists a constantĉ 6= 0
such that

Ψ̃1(x, k∗) = ĉΨ3(x, k∗),

and therefore

(5.1) resk=k∗Ψ1(x, k) = cΨ3(x, k∗),

wherec = ĉ resk=k∗a1(k). Substituting expressions forΨ1(x, k), Ψ3(x, k)
into (5.1) we obtain

γ(x) = c

(
e2k∗x +

c

2k∗

)−1

.

Obviously, ifc > 0 thenγ(x) 6= 0 for all x ∈ R.
If, for example,c = 2k∗ then by insertingΨ3(x, k) into equation (2.1)

we obtain the following pair of reflectionless potentials

(5.2) uk∗(x) =
4k2
∗

cosh2(k∗x)
, vk∗(x) =

8k4
∗ sinh2(k∗x)

cosh4(k∗x)
.
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Such a pair corresponds to a single positive eigenvaluek4
∗ with an

eigenfunctioncosh−1(k∗x). Note that the operatorL with potentials
uk∗(x), vk∗(x) can be obtained as a square of the Schrödinger operator
H = −d2/dx2 − 2 k2

∗ cosh−2(k∗x).
The same result also holds true in a more general case.

Theorem 5.1. Let L be an operator(1.1) with real-valued reflectionless
potentialsu and v satisfying(1.2). Let the operatorL has only spectral
singularities corresponding to the positive eigenvalues(kn∗ )

4, kn∗ > 0, n =
1, . . . , N . Then this operator is equal to the square of a Schrödinger op-
erator with some real-valued reflectionless potentialw corresponding to
negative eigenvalues−(kn∗ )

2, n = 1, . . . , N .

Proof. Repeating arguments used for the case of one positive eigenvalue we
obtain the following expressions forΨ1(x, k), Ψ3(x, k)

(5.3) Ψ1(x, k) = ekx

(
1 +

N∑
n=1

γn(x)

k − kn∗

)
,

(5.4) Ψ3(x, k) = e−kx

(
1 +

N∑
n=1

γn(x)

−k − kn∗

)
,

satisfying the system of equations

(5.5) resk=kn∗Ψ1(x, k) = cn Ψ3(x, kn∗ ), cn 6= 0, n = 1, . . . N.

Note now that the equations (5.3) - (5.5) coincide with the corresponding
expressions when solving the inverse problem for a Schrödinger equation,
see [5] ([7]). Therefore there is a reflectionless real-valued potentialw for
which the Schr̈odinger operator

HΨ(x, k) :=
(
− d2

dx2
+ w(x)

)
Ψ(x, k) = −k2Ψ(x, k)

has negative eigenvalues−(kn∗ )
2, n = 1, . . . , N . The condition of non-

singularity of the potentialw impliescn > 0 for all n = 1, . . . , N . We also
have

H2Ψ3(x, k) = k4Ψ3(x, k)

and thusH2 = L. �

6. NON-SPECTRAL SINGULARITIES

Let us now consider reflectionless operatorL for which the corresponding
Riemann-Hilbert problem has non-spectral singularities. For such a prob-
lem singular points of the functionsal(k) satisfy some symmetries.
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6.1. Structure of poles and zeros of solutionsΨl. Let, for example,a1(k)
has a simple pole at pointk∗ ∈ Ω1. Then (see (2.9)) the functiona3(k) has
a simple zero atk∗.

Now, we would like to show thata2(k) has a simple pole and conse-
quently (see (2.9))a4(k) has a simple zero atk∗. In order to prove this we
need the following below two simple statements.

Lemma 6.1. There exist solutions{ϕl(x, k)}, l = 1, 2, 3, 4, of equation
(2.1)which are analytic ink ∈ Ω1 and satisfy the boundary conditions

(6.1) ϕl(x, k) = eklx(1 + o(1)), x→ +∞, l = 1, 2, 3, 4.

For a proof of this Lemma see, for example, [6].

The following fact is trivial.

Lemma 6.2. Let k ∈ Ω1. Then for any solutionΦ(x, k) of the equation
(2.1) there exists a pair(l, l′) l, l′ ∈ {1, 2, 3, 4}, such thatΦ(x, k) satisfies
the boundary conditions

Φ(x, k) = eklx(%1(k) + o(1)), x→ +∞,

Φ(x, k) = ekl′x(%2(k) + o(1)), x→ −∞,
with some%1 6= 0, %2 6= 0.

Comparing the asymptotics at+∞ we find thatϕ3(x, k) = Ψ3(x, k) for
k ∈ Ω1. From Lemmas 6.1 and 6.2 we have

(6.2) ϕ2(x, k) = e−kx(%(k) + o(1)), x→ −∞, k ∈ Ω1,

where%(k) is an analytic ink function. Here we do not know a priori that
% 6= 0. From (2.2), (2.8), (6.1) and (6.2) we obtain that

(6.3) Ψ2(x, k) = ϕ2(x, k)− %(k)

a3(k)
Ψ3(x, k), k ∈ Ω1.

Let us show that

(6.4) %(k∗) 6= 0.

Indeed, if we assume that%(k∗) = 0, then Ψ2(x, k) is regular atk∗.
Clearly, bothΨ2(x, k∗) and Ψ3(x, k∗) are exponentially decaying func-
tions asx → +∞. From (2.8) it follows thatΨ2(x, k∗) = O(eik∗x).
Sincea3(k∗) = 0 then by using (2.8) and Lemma 6.2 we also obtain that
Ψ3(x, k∗) = O(eik∗x). This means that there is a linear combination of
Ψ2(x, k∗) andΨ3(x, k∗) which crosses out the termsO(eik∗x) and therefore
exponentially decays asx → −∞. Thus,k4

∗ must be an eigenvalue ofL
and this contradicts the selfadjointness ofL.
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From (2.8) and (6.3), (6.4) we obtain thata2(k) has a simple pole atk∗.
Using invariance underk 7→ ik we arrive at a complete picture of poles for
functionsΨl(x, k):

(6.5) Ψ1(x, k) = ekx
(

1 +
α(x)

k − k∗
+

β(x)

k − ik∗
+

γ(x)

k − k∗
+

δ(x)

k + ik∗

)
,

(6.6)

Ψ2(x, k) = eikx
(

1 +
α(x)

ik − k∗
+

β(x)

ik − ik∗
+

γ(x)

ik − k∗
+

δ(x)

ik + ik∗

)
,

(6.7)

Ψ3(x, k) = e−kx
(

1 +
α(x)

−k − k∗
+

β(x)

−k − ik∗
+

γ(x)

−k − k∗
+

δ(x)

−k + ik∗

)
,

(6.8)

Ψ4(x, k) = e−ikx
(

1 +
α(x)

−ik − k∗
+

β(x)

−ik − ik∗
+

γ(x)

−ik − k∗
+

δ(x)

−ik + ik∗

)
.

From (6.3) we immediately observe that

(6.9) resk=k∗Ψ2(x, k) = d1Ψ3(x, k∗).

Similar arguments give us three more identities

(6.10) resk=k∗Ψ1(x, k) = d3Ψ4(x, k∗),

(6.11) resk=k∗
Ψ4(x, k) = d2Ψ3(x, k∗),

(6.12) resk=k∗
Ψ1(x, k) = d4Ψ2(x, k∗).

By Lemma 2.2 we have

(6.13) d2 = d1, d4 = d3.

Lemma 2.1 and asymptotics at+∞ (2.2) imply (cf. (3.11))

4ik3
∗resk=k∗Ψ1(x, k) = resk=k∗W [Ψ2(x,−k),Ψ3(x,−k),Ψ4(x,−k)].

Combining the latter identity with (2.2), (6.9) and (6.10) and computing the
residue of the Wronskian we obtain

(6.14) d3 = id1.

If we insert the expressions (6.5)-(6.8) into (6.9)-(6.12) we arrive at a system
of four algebraic equations for the coefficientsα(x), β(x), γ(x) andδ(x)

Aζ = i0,
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where
A(x) =

=


1

k∗(1+i)
+ ek∗x(1+i)

d3

−i
2k∗

1
ik∗+k∗

−i
k∗−k∗

1
2k∗

1
k∗(1+i)

− i ek∗x(1+i)

d1

1
k∗+k∗

1
k∗−ik∗

1
k∗−ik∗

−i
k∗−k∗

1
k∗(1−i)

+ ek∗x(1−i)

d4

i
2k∗

1
k∗+k∗

1
ik∗+k∗

i
2k∗

1
k∗(1−i)

+ i e
k∗x(1−i)

d2



ζ =


α
β
γ
δ

 , i0 =


1
1
1
1

 .

6.2. Solvability. In order to prove that there exists a unique solution of this
system of equations we consider the following statement.

Lemma 6.3. Determinant∆(x) = detA(x) is a non-degenerate function
for all x ∈ R.

Proof. The proof is based on a theorem of uniqueness for the corresponding
Riemann-Hilbert problem (see [1], [10]). Some of the arguments below
were already used in Lemmas 4.1 and 4.2.

Let us assume that there isx0 such that

∆(x0) = 0.

Then at this point we can find a nontrivial solutionα0, β0, γ0, andδ0 of the
homogeneous system of equations

(6.15) Aζ = 0.

Let us introduce the following four functions:

Ψ0
1(k) = ekx0

(
α0

k − k∗
+

β0

k − ik∗
+

γ0

k − k∗
+

δ0

k + ik∗

)
,

Ψ0
2(k) = eikx0

(
α0

ik − k∗
+

β0

ik − ik∗
+

γ0

ik − k∗
+

δ0

ik + ik∗

)
,

Ψ0
3(k) = e−kx0

(
α0

−k − k∗
+

β0

−k − ik∗
+

γ0

−k − k∗
+

δ0

−k + ik∗

)
,

Ψ0
4(k) = e−ikx0

(
α0

−ik − k∗
+

β0

−ik − ik∗
+

γ0

−ik − k∗
+

δ0

−ik + ik∗

)
.

By using the fact that(α0, β0, γ0, δ0) is a solution of (6.15) we conclude that
Ψl satisfy the equations (6.9) - (6.12) and therefore

(6.16) resk=k∗Ψ
0
2(k) = d1Ψ0

3(k∗),
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(6.17) resk=k∗Ψ
0
1(k) = d3Ψ0

4(k∗),

(6.18) resk=k∗
Ψ0

4(k) = d2Ψ0
3(k∗),

(6.19) resk=k∗
Ψ0

1(k) = d4Ψ0
2(k∗).

As in Lemma 4.2 we find that

I :=

∫ +i∞

−i∞
Ψ0

1(k)Ψ0
3(k)dk =

∫ +i∞

−i∞
|Ψ0

1(k)|2dk.

The latter integral can be zero only if all the constantsα0, β0, γ0 andδ0 are
zero. ComputingI with help of residues we find

I = −2πi
(

Ψ0
3(k∗) resk=k∗Ψ

0
1 + Ψ0

3(k∗) resk=k∗
Ψ0

1 + Ψ0
1(ik∗) resk=ik∗

Ψ0
3

+Ψ0
1(−ik∗) resk=−ik∗Ψ

0
3

)
.

Equations (6.16) - (6.19) imply

resk=k∗Ψ
0
1 = d3Ψ0

4(k∗),

resk=k∗
Ψ0

1 = d4Ψ0
2(k∗),

resk=ik∗
Ψ0

3 = i resk=k∗
Ψ0

4 = i d2Ψ0
3(k∗),

resk=−ik∗Ψ
0
3 = −i resk=k∗Ψ

0
2 = −i d1Ψ0

3(k∗).

Therefore

(6.20) I = −2πi
(
d3Ψ0

3(k∗)Ψ
0
4(k∗) + d4Ψ0

3(k∗)Ψ
0
2(k∗)

+i d2Ψ0
2(k∗)Ψ

0
3(k∗)− id1Ψ0

4(k∗)Ψ
0
3(k∗)

)
.

Taking into account (6.13) and (6.14) we arrive atI = 0 which gives us a
contradiction. Lemma is proved. �

Remark 1.Cancellations appearing in the right hand side of (6.20) has been
already observed in [1] in a somewhat more general situations.
Remark 2.In this Section we consider only a one-soliton case. However,
it is not difficult to generalize this approach to the case when there are2N
non-spectral singularities (cf. Section 4).

Namely, let{kn∗ }Nn=1 is a set of points from sectorΩ1. Then the solutions
Ψj can be represented as follows:

Ψ1(x, k) = ekx

(
1 +

N∑
n=1

(
αn(x)

k − kn∗
+

βn(x)

k − ikn∗
+

γn(x)

k − kn∗
+

δn(x)

k + ik
n

∗

))
,

Ψ2(x, k) = eikx

(
1 +

N∑
n=1

(
αn(x)

ik − kn∗
+

βn(x)

ik − ikn∗
+

γn(x)

ik − kn∗
+

δn(x)

ik + ik
n

∗

))
,
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Ψ3(x, k) = e−kx

(
1 +

N∑
n=1

(
αn(x)

−k − kn∗
+

βn(x)

−k − ikn∗
+

γn(x)

−k − kn∗
+

δn(x)

−k + ik
n

∗

))
,

Ψ4(x, k) = e−ikx

(
1 +

N∑
n=1

(
αn(x)

−ik − kn∗
+

βn(x)

−ik − ikn∗
+

γn(x)

−ik − kn∗
+

δn(x)

−ik + ik
n

∗

))
.

Therefore
resk=kn∗Ψ2(x, k) = dn1 Ψ3(x, kn∗ ),

resk=kn∗Ψ1(x, k) = dn3 Ψ4(x, kn∗ ),

resk=k
n
∗
Ψ4(x, k) = dn2 Ψ3(x, k

n

∗ ),

resk=k
n
∗
Ψ1(x, k) = dn4 Ψ2(x, k

n

∗ ).

with constants
dn2 = d

n

1 , dn4 = d
n

3 , dn3 = idn1 .

Using these identities we can obtain a system of equations for the func-
tionsαn(x), βn(x), γn(x), andδn(x) (n = 1, 2, 3...N ). Solvability of this
system can be proven in the same way as in Lemma 6.3.

Remark 3.It has become clear that the existence of non-spectral solitons is
important for analyzing trace formulae for a fourth order differential oper-
ator. In particular, this explains the main result of the paper [3], where the
authors construct a counter example to some functional inequality.

Let

(6.21) Q[u, v] =

7 · 2−11

∫
R

(
48 v2 +

5

4
u4 − 12u2 v − 40u′′ v +

13

2
u2 u′′ + 9u′′2

)
dx.

The expression appearing in the right hand side of (6.21) is a point-wise
quadratic form of(u2, u′′, v). This quadratic form has two positive eigen-
values and one relatively small negative eigenvalue. There was a hope that
after integration this quadratic form, the functionalQ would become non-
negative. However, it has been recently shown in [3] that there is a pair
(u, v) which violate such a positivity.

Let now(u, v) be a pair of reflectionless potentials corresponding a non-
spectral singularityk∗ ∈ Ω1. Assume also for simplicity thatL does not
have any other spectral or non-spectral singularities. In this case one can
show (see [13]) that the following trace formula is true

Q[u, v] = Rek7
∗ + Im k7

∗.

This immediately implies that if3π/28 < argk∗ < π/4, then the right hand
side of the latter equality is negative. In particular, this give an example of
exponentially decaying potentialsu andv violating the inequalityQ[u, v] ≥
0.
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7. NONLINEAR SYSTEM ASSOCIATED WITH THE OPERATORL

Let us consider a system of time dependent non-linear equation studied
in [9]

(7.1) Lt = [L,M ].

Here

M = 8
d3

dx3
+ 6u

d

dx
+ 3u′,

u = u(x, t), v = v(x, t) andLt Ψ = ∂ ut ∂Ψ + vt Ψ. Equation (7.1) is
equivalent to the following nonlinear system

ut = 10u′′′ + 6uu′ − 24v′,

vt = 3(u′′′′′ + uu′′′ + u′u′′)− 8v′′′ − 6uv′.

Let us consider a 1-soliton solution which corresponds to some negative
eigenvaluek4

∗, k∗ = (1 + i)s∗, s∗ > 0. Here we give a description of the
dynamics of the coefficientsc andd introduced in (3.7).

Differentiating the equationLΨ4 = k4Ψ4 with respect tot we obtain

(L− k4)tΨ4(x, k, t) + (L− k4)(Ψ4(x, k, t))t = 0.

Taking into account (7.1) the latter equation can be rewritten as

(7.2) MΨ4(x, k, t) + (Ψ4(x, k, t))t = Ψ̂(x, k, t),

for someΨ̂(x, k, t) such that(L− k4)Ψ̂ = 0.
Comparing the asymptotics ofΨ4(x, k, t) and the left hand side of (7.2)

asx → ±∞ we find from (2.2) and (2.3) that8ik3Ψ4(x, k, t) = Ψ̂(x, k, t)
and then automatically (see (2.8))(a4)t(k, t) = 0. It follows from (3.7) that

resk=k∗Ψ4(x, k, t) = c(t)Ψ2(x, k∗, t) + d(t)Ψ3(x, k∗, t)

and we can rewrite the equation (7.2) as

8(−ik∗)3 (c(t)Ψ2(x, k∗, t) + d(t)Ψ3(x, k∗, t)) =

= M (c(t)Ψ2(x, k∗, t) + d(t)Ψ3(x, k∗, t))

+ (c(t)Ψ2(x, k∗, t) + d(t)Ψ3(x, k∗, t))t .

If we now instead ofΨ2 andΨ3 substitute their asymptotics at+∞ (see
(2.2)) we obtain

8(−ik∗)3c(t)eik∗x + 8(−ik∗)3d(t)e−k∗x =

= 8(ik∗)
3c(t)eik∗x + 8(−k∗)3d(t)e−k∗x + ct(t)e

ik∗x + dt(t)e
−k∗x

and consequently

(7.3) c(t) = c(0) exp(−32s3
∗t(1 + i)), d(t) = d(0) exp(−32s3

∗t).

This dynamics preserves the conditions of solvability of the system of equa-
tions (3.13) Red = 0 and|d| > |c|. Therefore a nonsingular soliton remains
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to be nonsingular for allt though its shape might vary. A stationary solu-
tion (solution of a constant shape) exists only in the casec = 0. In this case
u(x, t) = u(x+ 16s2

∗t) andv(x, t) = v(x+ 16s2
∗t).
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would like to thank the Wenner-Gren Foundations for their financial sup-
port. All the authors are grateful to J.Hoppe for useful discussions.

REFERENCES

[1] R. Beals, P. Deift and C. Tomei,Direct and inverse scattering on the line, Mathemat-
ical surveys and monographs (AMS)28 (1988), 1-209.

[2] R. Beals, P. Deift and X. Zhou,The inverse scattering transform on the line. Important
developments in soliton theory, Springer Ser. Nonlinear Dynam., Springer, Berlin,
(1993), 7-32.

[3] R.D. Benguria, I. Catto, J. Dolbeault and R. Monneau,Oscillating minimizers of a
fourth-order problem invariant under scaling, J. Differential Equations205 (2004),
no. 1, 253-269.

[4] P. Deift, Inverse scattering on the line – an overview, Differential equations and
mathematical physics (Birmingham, AL, 1990), Math. Sci. Engrg., Academic Press,
Boston, MA,186(1992), 45-62.

[5] P. Deift and E. Trubowitz,Inverse scattering on the line, Comm. Pure Appl. Math.32
(1979), no. 2, 121-251.

[6] P. Deift and X. Zhou,Direct and inverse scattering on the line with arbitrary singu-
larities, Comm. Pure Appl. Math.44 (1991), no. 5, 485-533.

[7] L.D. Faddeev,The inverse problem in the quantum theory of scattering, Uspehi Mat.
Nauk (Russian),14 (1959), no. 4 (88), 57-119.

[8] I.M. Gelfand and L.A.Dikey,Fractional powers of operators, and Hamiltonian sys-
tems., Funct. Anal. and Appl. (Russian),10 (1976), no. 4 (88), 13-29.

[9] J. Hoppe , A. Laptev and J.̈Ostensson,Follytons and the removal of eigenvalues for
fourth order differential operators, Preprint math-ph/0311011

[10] V.V. Sukhanov,An inverse problem for a selfadjoint differential operator on the line.,
Mat. sbornik, (Russian),137(2), (1988) 242-259; translation in Math. USSR Sbornik,
65(1), (1990), 249-266.

[11] X. Zhou,Inverse scattering transform for systems with rational spectral dependence,
J. Diff. Eq.,115(1995), 277-303.

[12] X. Zhou,L2-Sobolev space bijectivity of the scattering and inverse scattering trans-
forms, Comm. Pure Appl. Math.,51 (1998), 697-731.
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