REFLECTIONLESS POTENTIALS FOR AN ORDINARY
DIFFERENTIAL OPERATOR OF ORDER FOUR

A. LAPTEV, R. SHTERENBERG, V. SUKHANOV AND JOSTENSSON

ABSTRACT. The aim of this paper is to construct exact formulae for re-
flectionless potentials for ordinary differential operators of order four.
They lead to soliton type solutions which are well known for one di-
mensional Sclirdinger operators. Such solitons are solutions of some
non-linear integrable systems appeared in [8] (see also [9]).

1. INTRODUCTION

Let us consider a fourth order selfadjoint differential operator

d* d d
1.1 L=—+— — )
(3.1) dx* * dxu(x)d:c (@)

We assume that potentialgx) and v(z) are real-valued, smooth and
rapidly decaying functions satisfying the property

(1.2) lu(z)|, |v(z)| < const exp(—e|x]|)

for somes > 0.

This article could be considered as a natural continuation of the study
started in [9] (see also [13], where some of the result of this paper were
presented). Namely we shall give a full description of potentiaésd v
which the operatoL is reflection free. Naturally such a class of potentials
is related to the discrete spectrum which in the case of fourth order operators
can be either negative or embedded into the continuous spectrum. However,
we find at least two following surprising facts. We prove that if a reflection-
less operatol. has a negative eigenvalue, then this eigenvalue has to be of
multiplicity two. The second fact concerns reflectionless potentials which
create a positive eigenvalue embedded into the continuous spectrum. In this
case we prove that the operafois equal to square of a Sdidinger oper-
ator with the soliton type potentiabsh~2. Of course such an eigenvalue is
of multiplicity one. In the end we also include so-called non-spectral singu-
larities and obtain a non-trivial class of reflectionless operators which does
not generate any eigenvalue.
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Compare with [9] where most of the main results were obtained by guess-
ing and using complicated computations applying Darboux transforms, in
this paper we are able to present full description of reflectionless potentials
by systematically studying a Riemann-Hilbert problem. Such an approach
has shown to be very fruitful in the study of higher order operators [1], [10],
where soliton type solutions were not considered. Notice that the Riemann-
Hilbert approach was also used in a number of related papers [2], [4], [5],
[6], [11] and [12].

Considering non-spectral singularities we are able to clarify the recent
result from [3], where the authors constructed an example violating a func-
tional inequality related to a trace formula for the operator (1.1) (see Re-
mark 3, Section 6).

2. REMANN-HILBERT PROBLEM

2.1. Reduction to an integral equation. Here we would like to remind
a formulation of the Riemann-Hilbert problem adapted to a fourth order
differential operator (see [1] and [10]).
Let us introduce the following four solutions,(x, k), | = 1,2,3, 4, of
the spectral equation

(2.1) LV = d—4\If 1 iui\If + 0¥ = kM
dzt dr dx

such that

(2.2) Uy (2, k) = (1 + o(1)), = — +oo,

and

(2.3) (2, k) = e*0(1), © — —o0,

wherek;, = kexp(in(l — 1)/2), 1 = 1,2,3,4. Notice thatk, = k(k),
k € C. By using standard computations one can find that:, k) satisfy
the following Fredholm integral equations

(2.4) y(z, k) = eFo

1 / Do MOk uly) + ke () + o)) Vily. k)dy

= J:Re(kj)>Re(k;)

T / > () uly) + ki (y) + o(y) Wiy, k)dy.

oo J:Re(kj)<Re(k;)

Such solutions are meromorphic functions in sectgrsm = 1,...8,
Qp=A{k:m(m—-1)/4 <argk < mm/4}
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and have jumps on the set of rays
(2.5) Ym = {k :argk = mn/4}.

It is well known that functionsl,(z, k) might have singularities. Some of
them correspond to the spectrum of the operatand therefore lie on the
rays (2.5). However, there are poles which are usually called non-spectral
singularities and do not belong,. Both such singularities appear from the
fact that the equations (2.4) are of Fredholm type. Due to the condition (1.2)
the solutionsl,(x, k) have analytic continuation to some neibourhof¢js

of sectors?,,, where

Q. ={k: (m—1)n/4d—c <argk <mm/4+¢c}.

In particular, this means that the singularitieslofz, k) cannot have ac-
cumulating points belonging to the rays (2.5). From the equation (2.4) one
immediately derives that functiong,(x, k) satisfy the following asymp-
totics as|k| — oo uniformly with respect tac:

(2.6) y(z, k) = (1 + o(1)).

This allows us to conclude that the set of singularities of functions
{W(z, k) }1_, is finite.

Let us now consider asymptotics of the functidnsgz, k), asz — —oo,
and introduce

@7) a(k) =1+ 75 [ 0 ((R)Puly) + k() + o) Ty, K)dy.

Then the asymptotics (2.3) can be written in a more transparent form
(2.8) (2, k) = e"®(ar(k) + o(1)), © — —oco, kel _ Q.
Functions q;(k) have the same analytical properties as the functions
U, (x, k). In particular, they are meromorphic in sectors.

2.2. Some algebraic properties of¥,(x, k). Let us introduce a Wron-
skian of three functions

f g h
W3[fvgvh]: f/ g/ h/ .
f// g// K

Lemma 2.1.If f(z, k), g(z, k), h(z, k) are three solutions of the spectral
equation(2.1), then so is the following Wronskian

WS[f(x’ _E)7 g(l’, _E)v h(x7 _Eﬂ

This is a well-known statement which follows from Liouville’s formula.
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Lemma 2.2. Let L be the operator defined ifL.1) with real potentialsu
andwv. Then solutionsl,(z, k) defined by the boundary conditio(.2)
and (2.3) satisfy the following relations:

\111(17,]{7) = qll(lE,E), \Ijg(l‘, ]{3) = \113(I,E),

\IIQ(CL’, k?) = \114(1’,E), \Ill(ZL’, ]C) = \114($,Z'E>, \112($, ]{J) = \Ilg(x,ZE)

Proof. The left hand sides of all these relations are solutions of the equation
(2.1) and satisfy the same conditionsdato as the functions at the right
hand side. This implies that they must be equal. O

By using Lemma 2.2 and taking into account (2.2) and (2.8) we obtain
the following statement:

Lemma 2.3. Letq; (k) be the functions defined {&.7). Then
ar(k) = ar(k),  az(k) = az(k),

az(l{?) = 6L4(k‘), al(k) = a4(iE), CLQ(]{?) = 6L3(’LE)

Further interesting relations between the coefficientsere first found
in [13].

Lemma 2.4. The functionsy (k) satisfy the identities
(29) CL1<]{?) CL3(]€) = ]_, ag(k?) a4(k‘) =1.

Proof. The proofs of the two identities (2.9) are similar, so we consider only
the first one. Let us now introduce a Wronskian of two functions

(2.10) Walf, gl ="' = "9+ f'9" = fg".
Using (2.1) we obtain
Wo[ Wy, Ug]) = Wy — U U = (ul, W) — ul Wy)
and therefore
WhlWy, WUsl(c) — Wh[Uy, Us](—c) = (u¥ 05 — uW)Ws)|° ...
Due to (1.2), (2.2) and (2.3) the limit of right hand side of this equality
equals zero as — +oco. Thus
lim Wh[Wy, Us)(z, k) = $l_1£100 Wu Uy, Usl(x, k).

T——00

The latter equality together with asymptotics (2.2) and (2.8) (which hold
true even together with the derivatives with respeeaf)tcompletes the proof
of the lemma. O
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Let U := (U, Uy, U3, Uy)t. Denote byl ™™ (U~™) the limits of ¥ ask
approaches the ray,, such thatrg k — mm/4+0. LetG,, (k) be matrices
which connect vector-functiong*™ (x, k) and¥ " (x, k)

T (2, k) = G (B) U™ (2, k).

If m =0, then
ekac
0 eikac
VO (g, ) = (1+0(1), = — +oo,
e—ikx + ro(k,)ez’km
respectively
ekm
(—0) eik’x +W€_ikm
N4 (l’, k) = e—k;r (1 + 0(1))7 T — +09,

efzkx

wherer, can be found from (2.4) as

ro(k) = 4%{3 /_OO ™Y (ko) ?u(y) + kot (y) + v(y))Wa(y, k + i0) dy.

Therefore

1 0 O 0
Gk =g o1 o
0 79 0 1—1]rol?
If m =1, then
ekac
VD ak) = | e O e | o), @ oo,
e " 4 ry(k)e™
e~ 4 ro(k)eh®
and

6’“4‘%671’1{%
ikx (1 ,—kx
U k) = [ TR 14 01), 2o o,

e—k.t
efikx
where
1 [ ‘
TR / eV ((k2)*u(y) + ko' (y) + v(y)) Ws(y, ke'®) dy,
1 [ ‘
B T/ (k1) uly) + kv (y) + v(y)) Waly, ke™) dy.
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Thus
1 0 0 —T9
1o 1 -7 0
Gl(k) o 0 (&} 1-— |’f’1|2 0

9 0 0 1—|’I“2|2

By using the invariance of the equation (2.1) under transformdtien ik
one finds matrice&';s andG,

O = O
_ o O

Gry2(ik) = 0G(k)o™, o=

_— o O O
OO O

0 0
Itis natural to call the functiong (%), [ = 0, 1, 2, the reflection coefficients.

3. REFLECTIONLESS POTENTIALS GENERATED BY ONE NEGATIVE
EIGENVALUE

3.1. A negative eigenvalue is always of multiplicity two.We define re-
flectionless potentials as potentials for which all solutidngz, k) are
meromorphic ink functions. For such potentials jump conditionsyat
are trivial and reflection coefficients are equal to zero

ro(k) = r1(k) = ra(k) = 0.

Let us consider reflectionless case corresponding to one negative eigenvalue
A = k2 k. = (1 +1)s., s. > 0, and such that the functions(z, k) do
not have any other spectral and non-spectral singularities.

The boundary conditions (2.2), (2.8) #&ic imply aé_l)(k*) = 0 or
a(_l)(k;*) =0, Whereal(im) are the limits ofy; as argc — mm/440. Onthe

other hand from the integral equations (2.4) one obtainsltb%{f = \Ifé‘l).
Therefore by using (2.7) we find

(3.) a5 (k) = a5V (k).

Clearly ¥y(x, k.) and U3(z, k) are exponentially decaying functions as
x — +oo. It follows from (3.1) that the functions, (k) and as(k) are
meromorphic in the first quadragt : 0 < argk < 7/2} andk, is their
common zero. Thus (2.8) implies thét(z, k.) andWs(x, k,) are two lin-
ear independent eigenfunctions of the operator

In particular, since the multiplicity of the negative eigenvalue of the op-
erator cannot exceed two, this means thats a simple zero for each of
the functionsi, (k) andas(k).
We finally obtain that for a reflectionless pair of potentialsand v the
negative eigenvalug, of the operatorL is always of multiplicity two.
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3.2. Properties of eigenfuntions. Let us now consider meromorphic so-
lutions ¥, (z, k) at k.. If & € ~, then for the functionsl,(z, k) and
U3(z, k) the sum in the second integral in (2.4) disappears and therefore
these equations become \olterra’s integral equations. This fact implies that
both W, (z, k) andW3(x, k) are analytic ak,. Sincek, is a simple zero of
functionsay (k) andas(k), in view of Lemma 2.4 we find that; (k) and
a4(k) have simple poles of multiplicity one &t.

Let U, (z, k) be solutions of our differential equation (2.1) satisfying the
following boundary conditions atoo:

Ty, k) = (1 + 0(1)), @ — —oo,

Uy(z, k) = eP*0(1), = — +o0.
Then
Uy (x, k) = Mo+

ak3 / Z 10 (k) 2uly) + Ky (y) + v(y)) Wiy, k)dy

= J:Re(k;)>Re(kp)

R / ST Rk uly) + k() + o)) By, K)dy.
oo Jt Re(k;)<Re(k;)
If £ € v andl = 1 or 4 then in the latter equation the sum in the sec-
ond integral disappears afd (z, k) andW,(z, k) satisfy Volterra’s integral
equation. This implies that these functions are analytic-atk...
By using asymptotic formulae (2.2) and (2.8) we find that there is a nat-
ural relation betweef¥, (z, k) andW¥,(x, k) and our basic function®, and
vy

(3.2) Vi(z, k) = al(k)i’l@a k), Va(z, k)= a4(k’)¢’4(37> k).

Hence functionsl, (z, k) and¥,(z, k) have simple poles at poift. Us-
ing invariance under the transformatién— ik we obtain the complete
description of poles of functiong,(x, k):

(3.3) Uy (2, k) = ™ (1 + _;?(_xzk; * —lf(i)k‘ ) ’

o) | S

. U —eh (1



8 LAPTEV, SHTERENBERG, SUKHANOV ANDOSTENSSON
_' a(z) B(x)

3.6 Uy(z, k) =e " (1 :

(3.6) (k) =e (*ﬁk—mg+m+k*

We shall now compute the unknown functioméz) and 5(x). We know
that

\114(1‘, ]{3) = a4(k)\114(x, k’)

Clearly U,(z, k.) is a decaying function as — —oo. Therefore, I, can
be expressed as a linear combination of functipand s

@4(1’, k*) = Zl\IJQ(ZE, ]{5*) + 22\1’3(1', k’*)
So, we obtain that
(37) reﬁzk*\lu(ac,k:) = C‘IIQ(JJ, k*) +d\I}3(I,]€*),

where the constants= z; resczk*a4(k)~andd = 29 1€S.—x,a4(k). Similarly
we find that there exist constaritandd such that

(3.8) res_r., U1(z, k) = ¢ Us(z, k) + d Us(z, k. ).

Since ¥, and ¥, are linear independent we obtain that # éd. Selfad-
jointness of the operatdr and Lemma 2.2 imply that i € ~,, then

(39) \112(.1', k) = \113(513',’&']2'), \Ijl(xv k) = \I/4<£L',Z];I)
Thus by using (3.7), (3.8) and (3.9) we find
(3.10) ¢=1id, d=ic.

3.3. Some relations between the coefficienisand d. By using Lemma
2.1 we find that the WronskiaWs [V, (z, —k), Us(z, —k), Uy(x, —k)] is a
solution of the spectral equation (2.1). Comparing its behaviour as

+o0 with the asymptotic formulae (2.2) we obtain
4ik73\111(33, k’) = Wg[\pg(iﬁ, —E), \113(33, —E)7 \114(113, —E)]

In particular, this implies
(3.11)
42]{?3 resﬂzk*\Ifl(x, k’) = resﬁzk*W;), [\I’Q(l', —E), \Ijg(l‘, —E), \114(I, —E)]

Now, using identities (2.2), (3.7), (3.8) we obtain from (3.11kas +oo
4ik3 (¢ e cie_k*’”) = Wyl &ether 1 de ke e~ k] 4

+W3[€ik*x, €k*x, Ceik*x + defk*x] — J4iki’)efk*x + d4kiezk*:p
Finally, applying (3.10) we conclude that
(3.12) Rel = 0.
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Inserting expressions (3.3)-(3.6) into (3.7) and (3.8) we finally obtain the
system of two algebraic equations for coefficiemts) andj(z):

ik —kyx
alx —ce¥T — de =
(313) A(I) ( ) = S ik — —ksx |
B(x) —ide*™* — qee
where
y —ik*$ _ Ceik*m de_k*z Ceik*ﬂc de—k*m
_ e ik + (1—%)kx (1—i)kx + 2r
A(l‘) B de'Fx? T Toiksa ok | -
__de + ice” ek*z + zde- + ice
2k (1—9)kx (1—1)kx e

Letd = ib, b € R andk, = (1 + 7)s., then direct calculations show that

b2 — |cf? b
detA(z) = i <e2w + 783;' e =t \/EL sin (25,2 + arge + %)) |

In order to find the family of reflectionless potentials corresponding to the
eigenvalue\, we have to find solutions and of the equation (3.13). Itis
easy to verify that det(x) # 0 for all z € R if and only if

(3.14) b>|c|.

Example If ¢ = 0 andd = i 2v/2 s, then
—V25, — (1 +1i)s,e72
a(r) =
cosh(2zs,) + /2
V25, — (1 —i)s,e 225
B(a) = LoD
cosh(2xs,) + /2

Substituting¥, (z, k) given by (3.3) into the equation (2.1) we obtain po-
tentialsu(x) andv(x)

u(z) = 16s2(V2 W (z) — W3(z)),

v(z) = 16s3(V2 W () — 12W%(x) + 16V/2 W3 (2) — 8W4(z)),
where

Y

1
Wiz) = cosh(2s.z) + V2

The same solution was found in [9] with the help of a Hirota-type equation.

The next theorem summarizes the main results obtained in this Section.

Theorem 3.1.Let L be a fourth order differential operator defined (&:1).
Assume thaf. has one negative eigenvalug. For an arbitrary family of
parameters: andd, ¢ € C, d = ib, b > ||, there exists a unique pair of
real potentialsu and v, such that the operataf. is reflection free and has
A, as its negative eigenvalue of multiplicity two.



10 LAPTEV, SHTERENBERG, SUKHANOV ANDDSTENSSON

Remark.The potentials: andv can be found explicitly via solutions and
3 of the algebraic equation (3.13). In genem{y) and3(x) and conse-
quentlyu(z) andv(z) are rational functions af?*®, =25 cos(2s,x) and
sin(2s,x).

4. REFLECTIONLESS POTENTIALS GENERATED BY SEVERAL NEGATIVE
EIGENVALUES

4.1. Solutions corresponding to several eigenvaluesNe now consider
a more general situation. Namely, let a reflectionless opeiatoas N
negative eigenvalues! = (k™)*, n=1,2,...N.

In the previous Section we studied the properties of solutibpst
k.. Notice that such arguments (arguments concerning the behaviour of
U near k,) were local and have not assumed that there were no other
singular points. Therefore we find that eigenvaluésare all of multi-
plicity two and that the corresponding eigenfunctions ¥éx, k') and
U5 (z, k7). Similarly to (3.3)-(3.6) we obtain that the four independent so-
lutions {¥,(z, k) };_, are given in the following form:

@4.1) U (a, (1 +Z <_ _:I;/gn —inf/l”» ’

al B ()
(4.2)  Wy(z,k) 1+ —zk—zk:” ikt )|

=1

(4.3) Uy(x, k) = e <1 +> (k&j(zk?” * lf:—(k‘)")> ,

=1

N
@ wien - (103 (0 T0)

As we had before, the functionis;(z, k) satisfy the identities
(45) re%:qujél(xa k) =Cn \112(1‘7]{::}) +dn \113(1'7 k::})a

r€Si—n Uy (2, k) = &, Uo(z, k") + d,, 3(x, k7).
Besides, as in (3.10) and (3.12) we find

6y = idy, dy =iC,, Red,=0.
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4.2. Further properties of ¢, and d,. For one-soliton solution the in-
equality (3.14) followed from the explicit expression for the determinant
of the matrix A(z). For a N-soliton solution the corresponding determi-
nant is too complicated. Therefore in order to prove that the corresponding
system of equations is uniquely solvable we need two auxiliary statements.

Lemma 4.1. The constantd,, andc, introduced in(4.5) satisfy the follow-
ing relations

d, =ib,, b, >0, b,>|c,|, n=1,2..N.

Proof. Let us consider two function&,(z, k) and V;(z, k) satisfying the
spectral equation (2.1).
Differentiating the identityl Uy (z, k) = k"W, (z, k) with respect tdc we
arrive at
LUy(z, k) = 4k3Uy (2, k) + K* Ty (2, k).
Therefore for a fixed: = £’ we obtain
+00

W[, K, W (KIS = AR / Uy (o, KU (a, k)

—00

+oo
) [ s P

o0

where the latter equality follows fromiy(z, k) = Ws(z, ik).
From (4.2) and (4.3) we immediately find that

lim W[Ws(w, k), Wy(z, k)] = 0.
Let us consider the behaviour of the Wronskiah[Ws, ¥,] at —co. Ac-

cording to (2.4),¥,(x, k) and its derivative with respect tohave the fol-
lowing asymptotics ag — —oo:

Wy (z, k) = exp(ikz)(az(k)+o(1)), Wa(z, k") = exp(ik"z)(az(k™)+o0(1)).

SinceVy(z, k') andW¥;(x, k') are two linear independent eigenfunctions
they can be written as linear combinationsigfandw,

(4.6) Uy (2, k) = Ty (2, k) + enWy(a, k7,
(4.7) Uy (2, k) = ey (z, k) + ey 0y (z, k7),
where

(4.8) leb] # |en].

Finally we obtain

. +oo
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or

+oo
(4.9) i i) = [ Nl k)P,

Repeating this argument far, (z, k) instead of3(x, k), namely consider-
ing the Wronskianly(z, k) and ¥, (z, k), we obtain

+oo
(4.10) e (kM) = / (Wa(z, k")) 2da.
Therefore (4.9), (4.10) together with (4.8) imply
leT] > le3].
By Lemma 2.4
r€Se—n Wy(w, k) = Uy(w, k™) reS—gn as(k)
. 1
4.11 =VU " g ———.
( ) 4(:C7 k*) resk—k* CLQ(]{Z)

Moreover, from (4.6) and (4.7) we have

~ 1
Uy(z, k) = T (8 W + €' Us).
er]? — les]
Equations (4.11) and (4.9) lead us to
ZE? (_ES\IIQ + 6717";[13)

reS,—in Vy(x, k) =

(ler? = lez?) [ |Wa(x, ky)|2de

Thus
_ ilet?
(lerf? = les|?) [T (o, kp) Pdz”
—ieyey
Cn = n|2y [t n)|2

(let]* — les[?) S 1Wa(z, k2)|*dx
and therefore,, = ib,, with someb,, > 0 andb,, > |c¢,|,n =1,2,..., N.
The proof is complete. O

Inserting expressions (4.1)-(4.4) into (4.6) and (4.7) we obtain the system
of 2N algebraic equations for the coefficient$(x) ands" (z):

' ' [ a'(x) g(x)
—ie I (1) = cietF [ 1+ ( A + : )
@)= ; —ikl —ikr  —ik + kn

N
K o"(z) 8" (x) )
+dje ™ [ 1+ ( ’ + = ,
’ ( nzl k—ikr K+ kn
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M) = T e <1+i( a"(@) ) >)

—ikl —ikr  —ikl + kn

N
Ly a”(z) B"(x) )
+icie T 1+ : + = )
’ ( ;(ki—z’kzg ki + ko

4.3. Solvability of algebraic equations. Solvability of this system de-
pends on it's determinam(x).

Lemma 4.2. DeterminantA(z) of the matrix described by the above equa-
tions is non-degenerate for afl € R.

Proof. Let us assume tha(xy) = 0 for somez, € R. Then for thisz, we

have a non-trivial solutiofiy, 37) of our algebraic homogeneous system
of equations

_Z-efikixoa(])' — .otk ( ) i By >
=G E

S\ —ikd — ik —ikl+ kD

N
_i_d'e—kixo < 0 + 0 )7
’ 2 ki —ikn

— ki + ko

N n n
B I I

=\ —ikl —ikr  —ikl+ kn

N n mn
igge M0y ( % b > .
! ki —ikn

= ki 4 kp

Let us consider four functions

N n mn
Wiy =y (8 S
! —k —ikn ’

n=1 * —k + k:f
N n
\Ifo(k) ik Z ag 1 B3
2T LA\ Tk T ik k)
0 __—kxo al 068' ﬁ(’f)l
Uk =e™ ) T T i)
TL:1 * *

N n mn
PO () — e ikao Qg 5o '
(k) =e Z(ék—ikf+ik+kf

n=1
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It follows from Lemma 2.2 tha¥, (x, is) = U3(x,is), s € R. Thus

+i00 +i00
I::/ \y‘;(k)q;g(k)dk:/ OO (k)

We now observe that the value of the integkat ip, p > 0, and it can be
zero only when both constantg, 3 are zero.
On the other hand we can calculdtevith the help of residues

N
I =—2mi Z <\If§(k:f) reSe—p» Uy + W9 (—ik?) resfz_ikg\ll(l’)

n=1

By analogy with (3.7) and (3.8) we can obtain
reSe—pn W (k) = ¢, Uy(k7') + d,, V3 (k)
reSe—ip U0 (k) = &, US(K") 4 d,, WS (k™).

Hence
N
1= =2mi’ > (200 USRI + 2im(co (WH(R2))?)).
n=1

Applying Lemma 4.1 we obtain
I = —ip, p >0,
which contradicts the equality=ip, p > 0. 0
We have now proved the following result.

Theorem 4.1.Let L be a fourth order differential operator defined (&/1).

Assume thafl. has N negative eigenvalues}, n = 1,2,..., N. Then for
an arbitrary family of parameters, andd,, ¢, € C, d, = ib,, b, >

lenl, n = 1,2,..., N, there exists a unique pair of real potentialand v,

such that the operatot is reflection free. Each of the eigenvaluésis of
multiplicity two.

5. REFLECTIONLESS POTENTIALS CORRESPONDING TO A POSITIVE
EIGENVALUE

The scheme used in the previous section can be applied to constructing
reflectionless potentials corresponding to a positive eigenvalue belonging
to the continuous spectrum. Note that for a fourth order operattire
eigenvalues embedded into the positive continuous spectrum are always of
multiplicity one.

Let k!, k. > 0 be such an eigenvalue. Then functiait) = ay(k)as(k)
has a simple zero at the poift. Using Lemma 2.3 and, (k) = ay4(k), for
k > 0, (see Lemma 2.4) we obtain that(k) anda,(k) are both analytic
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and nonzero at,, while a3(k) has simple zero &t. anda, (k) has simple
pole atk,. Using asymptotics with respect to — oo we arrive at the
following expression fo/ (z, k):

Uy (2, k) = e (1 v ljﬁi) ,

and using invariance undér— ik we get

Uy (2, k) = (1+ (@) )

ik — k.,
sz, k)=e < + Ty

Let I, (z, k) be the solution of (2.1) such that
Uy (2, k) = (1 +0(1)),  — —o0,
Uy (x, k) = ¥0(1), = — 4oo0.
Then by using uniqueness (cf. (3.2))
Uy (2, k) = ay (k)T (2, k).

FunctionV, (z, k) satisfies a \Volterra integral equation fdfm k| < Rek}
and therefore is analytic &. Moreover, function®, (z, k,) andW¥s(z, k)
are the only decaying solutions-abo and+oco respectively. Sincé? is an
eigenvalue of multiplicity one we obtain that there exists a congtaat)
such that )

\1/1(([), k’*> = é\lf3<l', ]{3*),
and therefore
(5.1) res—r, Vi(z, k) = cVs(z, ki),

wherec = ¢res,—, a1 (k). Substituting expressions fdr, (z, k), V;(z, k)

into (5.1) we obtain
-1

Obviously, ifc > 0 theny(z) # 0 for all x € R.

If, for example,c = 2k, then by insertingl;(z, k) into equation (2.1)
we obtain the following pair of reflectionless potentials
4?2 _ 8k¥sinh®(k.z)

(5:2) )= a0 =
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Such a pair corresponds to a single positive eigenvdlfiewith an
eigenfunctioncosh ' (k,x). Note that the operatof. with potentials
ug, (), vy, () can be obtained as a square of the 8dhrger operator
H = —d?/dz® — 2k? cosh™?(k,x).

The same result also holds true in a more general case.

Theorem 5.1. Let L be an operator(1.1) with real-valued reflectionless
potentialsu and v satisfying(1.2). Let the operator. has only spectral
singularities corresponding to the positive eigenval(igs*, £ > 0, n =
1,..., N. Then this operator is equal to the square of a Sclimger op-
erator with some real-valued reflectionless potentiacorresponding to
negative eigenvalues(k™)?, n=1,..., N.

Proof. Repeating arguments used for the case of one positive eigenvalue we
obtain the following expressions fdr, (z, k), V3(z, k)

_ Lk = "}/n(l')
(5.3) Uy(z, k) =" [ 1+ E |
(5.4) Uy(z, k) = e §Nj7%(x)
: s(x, k) =e 1+ |

satisfying the system of equations
(5.5) res—in Uy (z, k) = ¢, V3(, k7)), ¢, #0, n=1,...N.

Note now that the equations (5.3) - (5.5) coincide with the corresponding
expressions when solving the inverse problem for a @tihger equation,
see [5] ([7]). Therefore there is a reflectionless real-valued potentiaf
which the Schiadinger operator

2

HY (2, k) == (—d— n w(x))lll(a:, k) = —k2W(z, k)

dz?
has negative eigenvalues(k”)?, n = 1,..., N. The condition of non-
singularity of the potentiak impliesc,, > 0foralln =1,..., N. We also
have

H*Vs(z, k) = k*Ws(z, k)
and thusH? = L. O

6. NON-SPECTRAL SINGULARITIES

Let us now consider reflectionless operatofor which the corresponding
Riemann-Hilbert problem has non-spectral singularities. For such a prob-
lem singular points of the functiong(k) satisfy some symmetries.
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6.1. Structure of poles and zeros of solution®,. Let, for exampleg, (k)
has a simple pole at poiit € ;. Then (see (2.9)) the functiony (k) has
a simple zero at,.

Now, we would like to show that,(k) has a simple pole and conse-
quently (see (2.9))4(k) has a simple zero dt.. In order to prove this we
need the following below two simple statements.

Lemma 6.1. There exist solution$y;(x, k)}, | = 1,2,3,4, of equation
(2.1)which are analytic irk € (2; and satisfy the boundary conditions

(6.1) oi(z, k) =" (1 +0(1)), ©— 400, 1=1,2,3 4.
For a proof of this Lemma see, for example, [6].
The following fact is trivial.

Lemma 6.2. Letk € ;. Then for any solutiorP(z, k) of the equation
(2.1) there exists a paitl,!') [,I' € {1,2,3,4}, such thatd(z, k) satisfies
the boundary conditions

®(a, k) = " (o1(k) +o(1)), @ — +oo,
®(z, k) = " (02(k) + 0(1)), 2 — —o0,
with someo; # 0, g, # 0.
Comparing the asymptotics ato we find thatps(z, k) = Y3(x, k) for
k € Q. From Lemmas 6.1 and 6.2 we have
(6.2) oz, k) = e (o(k) +0o(1)), x— —o0, k€ Qy,
wherep(k) is an analytic ink function. Here we do not know a priori that
o # 0. From (2.2), (2.8), (6.1) and (6.2) we obtain that

(6.3) Uo(z, k) = @ola, k) — 5((’“]3) Uy(z, k), ke Q.

Let us show that

(6.4) o(k.) # 0.

(
Indeed, if we assume that(k.) = 0, then Uy(x, k) is regular atk..
Clearly, bothWy(x, k,) and V5(x, k,) are exponentially decaying func-
tions asr — +oo. From (2.8) it follows thatW,(z, k) = O(e*?).
Sinceas(k.) = 0 then by using (2.8) and Lemma 6.2 we also obtain that
WUs(x, k) = O(e*=). This means that there is a linear combination of
Wy (z, k,) and¥s(z, k,) which crosses out the termxc*+*) and therefore
exponentially decays as — —oo. Thus,k* must be an eigenvalue df
and this contradicts the selfadjointnes<.of
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From (2.8) and (6.3), (6.4) we obtain that(k) has a simple pole dt..
Using invariance under — ik we arrive at a complete picture of poles for
functions¥,(z, k):

(6.5) Wﬂ%k):em(l+£%2 +k€ié‘%ﬁf2 +kii%)’

(6.6)
a(r) B(x) v(x) () )
k—ke ik—ike ik—Fk, ik+ik./)’

Uy(x, k) = ™ (1 + ; + + +

-1 (x) (z) (x) 5(x)
L alz Oz v(x T
s, k) = et (1+—k—k*+—k—ik‘*Jr—k—E*Jr—k:JriE*)’

(6.8) @) 8) () 5(x)
_ ik atr t ne -
Valz, k) = e (H3%>h+—M—m+—M—a+—M+%>'

From (6.3) we immediately observe that

(69) reg—g., \112(113, kf) = dl\llg(x, k?*)
Similar arguments give us three more identities
(610) reﬁ:k*qjl(‘ra k) - d3\114($, k*)a
(611) res_z, \1’4(1’, ]{3) = dg@g(l’, E*),
(612) re%zg*\ljl(w, k) = d4\112($, E*)
By Lemma 2.2 we have

(6.13) dy=dy, dy=ds.

Lemma 2.1 and asymptotics-abo (2.2) imply (cf. (3.11))

4ik2reS—p, VU1 (z, k) = r€S—p. W[Us(z, —k), Us(x, —k), Uy(z, —k)].
Combining the latter identity with (2.2), (6.9) and (6.10) and computing the
residue of the Wronskian we obtain
(6.14) dz = id;.
If we insert the expressions (6.5)-(6.8) into (6.9)-(6.12) we arrive at a system
of four algebraic equations for the coefficients:), 3(x), v(z) andd(x)

AC = o,
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where
Az) =
LI ekrz(+i) —i 1 —i
kv (1+4) ds 2k ik ks kv—Fk.
1 1 N Z.ek*z(1+i) 1 1
o 2k ks (1+4) d1 Eatke Koo —iks
— 1 _ —1,_ _ 1 + ek z(1—1) ’L_
kx—ike ko —kx e (1—13) dy 2.
1_ 1 _ L_ _ 1 ek*z(lfz)
kstke ikstk 2k kv (1—17) da
o 1
S T
- v ) 0 — 1
) 1

6.2. Solvability. In order to prove that there exists a unique solution of this
system of equations we consider the following statement.

Lemma 6.3. DeterminantA(z) = detA(x) is a non-degenerate function
forall z € R.

Proof. The proof is based on a theorem of uniqueness for the corresponding
Riemann-Hilbert problem (see [1], [10]). Some of the arguments below
were already used in Lemmas 4.1 and 4.2.

Let us assume that thereas such that
Then at this point we can find a nontrivial solution, 3y, ~o, andd, of the
homogeneous system of equations
(6.15) AC =0.
Let us introduce the following four functions:

)
TO(k) = o Qg n Bo 1 70_ 1 0_ ) :
i(k) =e (k_k* k—ik,  k—k, k+ik,

. )
TO(J) — pikao Qo Bo 70_ 0
2(k) = (w—m+wwm+m_m+MHm’

5
UO(k) = e koo o Bo o 0
s(k) =€ <—k:—k:*+—k—ik*+—k;—k:*+—k+ik* ’

4 )
\I]O k) = —ikxg Qo 50 Yo _ 0 _ .
(k) =e (—m—kg*wk—m;+_m_k;*4k+m*
By using the fact thato, 5o, 70, do) is a solution of (6.15) we conclude that
U, satisfy the equations (6.9) - (6.12) and therefore

(6.16) res_. UY(k) = dy U3 (k.),
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(6.17) res—x, U3 (k) = dzWi(k.),
(6.18) res_; Ui(k) = dy Wi (k.),
(6.19) res_z U0 (k) = da¥3 (k).

As in Lemma 4.2 we find that

+i00 +i0c0
[ / WO () O ()l — / DO (k)
The latter integral can be zero only if all the constaniss,, v, andd, are
zero. Computing with help of residues we find

I= —27m'<\11g(k:*) res—, V) + U (k,) res,_z. V) + U)(ik,) res,_z U9

+U)(—ik,) reS— ., \If%) .

Equations (6.16) - (6.19) imply

res.—, U9 = ds W (k.),

res,_y, V] = dyW5(k.),

reg,_z, U5 = ires_z Vi = i dy W3 (k.),
reSi— i, V9 = —ires— V9 = —id, U3(k,).

Therefore
(620) 1= —2ri(dyWS(k) W (k) + dyWE(F.) WY(E.)

i do W (R)UO(R,) — idl\llg(k*)\lfg(k*)>.

Taking into account (6.13) and (6.14) we arrive/at 0 which gives us a
contradiction. Lemma is proved. O

Remark 1 Cancellations appearing in the right hand side of (6.20) has been
already observed in [1] in a somewhat more general situations.
Remark 2.In this Section we consider only a one-soliton case. However,
it is not difficult to generalize this approach to the case when therg/ére
non-spectral singularities (cf. Section 4).

Namely, let{k"}Y_, is a set of points from sectél,. Then the solutions

n=1

U, can be represented as follows:

N
_ ke a(z)  pz) | () | 0"(z)
Uy (z, k) =e (H; <k_k3} Yom e i) )
N

Uz k) = ¢ [ 1+ (.O‘ @ , @) @) _n) ,
25 ( ; ih—ky ik —aiky ik —k, ik 4k,

*
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N n n n 5'”
Uy, k) = e (1 +3 (_C]i E“’])Cn + 7 _(“?kn + (_I)En L f%)) ,

n=1
(o) B"() 7" (x) 5" ()

Uy(z, k) =e (1 +; (—z’k iy —z’k+z’%f)) .
Therefore

reS—in Vo(x, k) = dyVs(z, k),

reS—in Vi (x, k) = dyWy(z, k),

res,_p Va(x, k) = dy Us(x, k),

res,_p W1 (x, k) = dy Us(z, k).

with constants

A =d;, d=d,, d=id}.
Using these identities we can obtain a system of equations for the func-
tionsa”(x), f"(x), v"*(z), ando™(z) (n = 1,2, 3...N). Solvability of this
system can be proven in the same way as in Lemma 6.3.

Remark 31t has become clear that the existence of non-spectral solitons is
important for analyzing trace formulae for a fourth order differential oper-
ator. In particular, this explains the main result of the paper [3], where the
authors construct a counter example to some functional inequality.

Let

(6.21) Qlu,v] =
1
7- 2_11/ (481}2 + §u4 — 12w v — 40" v + ;UQUH + 9u"2) dz.
R

The expression appearing in the right hand side of (6.21) is a point-wise
quadratic form of(u?, v”,v). This quadratic form has two positive eigen-
values and one relatively small negative eigenvalue. There was a hope that
after integration this quadratic form, the functiodalwould become non-
negative. However, it has been recently shown in [3] that there is a pair
(u,v) which violate such a positivity.

Let now (u,v) be a pair of reflectionless potentials corresponding a non-
spectral singularityt, € Q. Assume also for simplicity that does not
have any other spectral or non-spectral singularities. In this case one can
show (see [13]) that the following trace formula is true

Q[u,v] = Rek! +Imk’.

This immediately implies that 87 /28 < argk. < /4, then the right hand
side of the latter equality is negative. In particular, this give an example of
exponentially decaying potentialsandv violating the inequality [u, v] >

0.
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7. NONLINEAR SYSTEM ASSOCIATED WITH THE OPERATOR.
Let us consider a system of time dependent non-linear equation studied
in [9]
(7.1) L, =1L, M].

Here
3

d d
M = 8— + 6u— + 3u/
8$3 GUI 3u’,

u = u(z,t),v = v(z,t) and L; ¥ = du; OV + v, ¥. Equation (7.1) is
equivalent to the following nonlinear system
w, = 10u™ + 6un’ — 240/,
Ut — B(UI”N + uull/ + ulu//> _ 8UIH _ GU'U/.
Let us consider a 1-soliton solution which corresponds to some negative
eigenvaluek?, k, = (1 +1)s,, s, > 0. Here we give a description of the
dynamics of the coefficientsandd introduced in (3.7).
Differentiating the equation ¥, = k%W, with respect tad we obtain

(L — kY Wy(z, k,t) + (L — K" (Wy(z, K, 1) = 0.
Taking into account (7.1) the latter equation can be rewritten as
(7.2) My(z, k) + (Uy(w, k1)) = U(x, k1),

for some¥ (z, k, t) such that L — k*)¥ = 0.

Comparing the asymptotics @f,(x, k,t) and the left hand side of (7.2)
asz — too we find from (2.2) and (2.3) thaik3 W, (z, k, t) = U(x, k, 1)
and then automatically (see (2.8)),):(k,t) = 0. It follows from (3.7) that

reSo—r, Va(z, k,t) = c(t)Wa(x, ki, t) + d(t)Ws(x, ki, t)
and we can rewrite the equation (7.2) as
8(—ik,)? (c(t)Wo(w, ki, t) + d(t)Vs(z, Ky, t)) =
=M (c(t)Vy(z, ki, t) + d(t)Us(x, ks, t))
+ (c(t)Wao(z, ki, t) + d(t)Ws(x, ki, 1)), -

If we now instead ofl, and W3 substitute their asymptotics atoo (see
(2.2)) we obtain

8(—ik,)3c(t)e™® 4+ 8(—ik,)3d(t)e ™™ =
= 8(ik.)3c(t)e™® + 8(—k,)3d(t)e ™™ 4 ¢, (t)e™* 4 dy(t)e "
and consequently
(7.3)  c(t) = c(0) exp(—32s3t(1 +14)), d(t) = d(0)exp(—3253t).

This dynamics preserves the conditions of solvability of the system of equa-
tions (3.13) Rel = 0 and|d| > |c|. Therefore a nonsingular soliton remains
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to be nonsingular for alt though its shape might vary. A stationary solu-
tion (solution of a constant shape) exists only in the easd). In this case
u(x,t) = u(x + 16s%t) andv(z,t) = v(x + 1652t).
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