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Abstract—This paper presents a decentralized controller
for sharing primary AC frequency control reserves through
a multi-terminal HVDC grid. By using passivity arguments,
the proposed controller is shown to stabilize the equilibrium of
the closed-loop system consisting of the interconnected AC and
HVDC grids, given any positive controller gains. The static
control errors resulting from the proportional controller are
quantified and bounded by analyzing the equilibrium of the
closed-loop system. The proposed controller is applied to a test
grid consisting of three asynchronous AC areas interconnected
by an HVDC grid, and its effectiveness is validated through
simulation.

I. INTRODUCTION

Transmitting power over long distances with minimal
losses is one of the greatest challenges in today’s power
transmission systems. The strong rising share of renew-
ables increased the distances between power generation
and consumption. This is a driving factor behind long-
distance power transmission. One such example are large-
scale off-shore wind farms, which often require power to
be transmitted in cables over long distances to the mainland
power grid [4]. High-voltage direct current (HVDC) power
transmission is a commonly used technology for long-
distance power transmission. Its higher investment costs
compared to AC transmission lines are compensated by its
lower resistive losses for sufficiently long distances [15]. The
break-even point, i.e., the point where the total construction
and operation costs of overhead HVDC and AC lines are
equal, is typically 500-800 km [16]. However, for cables,
the break-even point is typically less than 50 km [19].
Increased use of HVDC for electrical power transmission
suggests that future HVDC transmission systems are likely
to consist of multiple terminals connected by several HVDC
transmission lines [11]. Such systems are referred to as
Multi-terminal HVDC (MTDC) systems in the literature.
The main technical obstacle to overcome in order to realize
such MTDC is the development of a DC breaker [10]. There
are a few advanced ideas to realize this device in the near
future [5].
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Maintaining an adequate DC voltage is the single most
important practical control problem for HVDC transmission
systems. If the DC voltage deviates too far from the nominal
operational voltage, equipment could be damaged, resulting
in loss of power transmission capability and high costs.

Many existing AC transmission grids are connected
through HVDC links, usually used for bulk power transfer
between the AC areas. The fast operation of the DC con-
verters however would also enable frequency regulation of
one of the connected AC grids through the HVDC link. One
practical example of this is the island of Gotland in Sweden,
which is only connected to the main Nordic grid through an
HVDC cable [3]. However, since the main Nordic AC grid
has orders of magnitudes higher inertia than the AC grid
of Gotland, the influence of the frequency regulation on the
main grid will be negligible.

By connecting several AC grids by an MTDC system,
primary frequency regulation reserves may be shared, which
reduces the need for frequency regulation reserves in the
individual AC systems [13]. In [8], distributed control al-
gorithms have been applied to share primary frequency
control reserves of asynchronous AC transmission systems
connected through an MTDC system. However, the proposed
controller requires a slack bus to control the DC voltage,
defeating the purpose of distributing the primary frequency
regulation reserves. In [2], [1], distributed controllers for
secondary voltage control of MTDC systems are proposed,
which do not rely on a slack bus. Both of the aforementioned
controllers however rely on the presence of a communication
network. While a communication network might already be
present, it introduces the issue of time delays, due to large
geographical distances in MTDC systems, and has a certain
outage risk. The impacts of delays have been analyzed in
[8], and have been found to seriously degrade performance
and destabilize the power system. A distributed controller
without the need of a slack bus is proposed in [7]. Stability
of the equilibrium is guaranteed in the absence of com-
munication delays. However, the voltage dynamics of the
HVDC system are neglected. Moreover, the implementation
of the controller is not realistic, as every local controller
needs to access the DC voltages of all terminals. In [9] and
[17], decentralized controllers are employed to share primary
frequency control reserves. In [17] no stability analysis of
the closed-loop system is performed, whereas [9] guarantees
stability of the equilibrium provided that the connected AC
areas have identical parameters. In [18], optimal decen-
tralized controllers for AC systems connected by HVDC



systems are derived. In all aforementioned references the
voltage dynamics of the HVDC system are neglected.

Due to the inherent difficulties of time-delays, we pro-
pose a decentralized proportional controller for distributing
primary frequency control reserves, which relies only on
local measurements. The controller is shown to distribute the
primary frequency control reserves between the connected
AC systems, while maintaining an adequate DC voltage. In
contrast to [9], we prove that the equilibrium of the closed-
loop system is globally asymptotically stable for any set of
system parameters and controller gains by using passivity
arguments. We also explicitly model the voltage dynamics
of the MTDC system, and extend our result to AC systems
consisting of multiple generators in simulations. Due to
inherent properties of proportional controllers, the steady-
state values of the voltages and frequencies will deviate
from their reference values. We quantify these deviations
by provable upper bounds.

The remainder of this paper is organized as follows. In
Section II, the mathematical notation is defined. In Section
III, the system model and the control objectives are defined.
In Section IV, a decentralized proportional controller for dis-
tributing primary frequency control is analyzed. In Section
V, the equilibrium of the closed-loop system is analyzed.
In Section VI, simulations of the distributed controller on a
four-terminal MTDC test system are provided, showing the
effectiveness of the proposed controller. The paper ends with
a discussion and concluding remarks in Section VII.

II. PRELIMINARIES

Let G be a graph. Denote by V = {1, . . . , n} the vertex
set of G, and by E = {1, . . . ,m} the edge set of G. Let Ni

be the set of neighboring vertices to i ∈ V . Denote by B the
vertex-edge incidence matrix of G, and let LW = BWBT
be the weighted Laplacian matrix of G, with edge-weights
given by the elements of the diagonal matrix W . We denote
the space of real-valued n ×m-valued matrices by Rn×m.
Let C− denote the open left half complex plane, and C̄− its
closure. We denote by cn×m a vector or matrix of dimension
n×m, whose elements are all equal to c. For a symmetric
matrix A, A > 0 (A ≥ 0) is used to denote that A is
positive (semi) definite. In denotes the identity matrix of
dimension n. For simplicity, we will often drop the notion
of time dependence of variables, i.e., x(t) will be denoted x
for simplicity. Let ‖·‖∞ denote the maximal absolute value
of the elements of a vector.

III. MODEL AND PROBLEM SETUP

We will here give a unified model for an MTDC system
interconnected with several asynchronous AC systems. We
consider an MTDC transmission system consisting of n con-
verters, each connecting to an AC system, denoted 1, . . . , n.
The converters are assumed to be connected by an MTDC
transmission grid. The dynamics of converter i is assumed
to be given by

CiV̇i = −
∑
j∈Ni

1

Rij
(Vi − Vj) + I inj

i , (1)

where Vi is the voltage of converter i, Ci > 0 is its
capacitance, I inj

i is the injected current from an AC grid

connected to the DC converter. The constant Rij denotes
the resistance of the HVDC transmission line connecting
the converters i and j. The graph corresponding to the
HVDC line connections is assumed to be connected. The AC
system is assumed to consist of a single generator which is
connected to the corresponding DC converter, representing
an aggregate model of the AC grid. The dynamics of the
AC system are given by the swing equation [14]:

miω̇i = −Kdroop
i (ωi − ωref) + P nom

i + Pm
i − P

inj
i , (2)

where ωi is the frequency of the generator, ωref is the
reference frequency and mi > 0 is its moment of inertia.
The constant P nom

i is the nominal generated power of
generator i, Pm

i is the uncontrolled deviation from the
nominal generated power, P inj

i is the power injected to the
DC system through the converter and Kdroop

i > 0 is the gain
of the frequency droop controller of the generator. We define
P droop
i = −Kdroop

i (ωi−ωref), and state the control objective.

Objective 1. The primary frequency control action should
be distributed fairly amongst the generators, i.e.

lim
t→∞

∣∣∣∣∣∣P droop
i (t) +

1

n

n∑
i=1

Pm
i

∣∣∣∣∣∣ ≤ edroop ∀i = 1, . . . , n,

where edroop is a given scalar. Furthermore, the frequencies
of the AC systems, as well as the converter voltages, should
not deviate too far from their nominal values, i.e.

lim
t→∞

|Vi(t)− V ref
i | ≤ e

V ∀i = 1, . . . , n

lim
t→∞

|ωi(t)− ωref| ≤ eω ∀i = 1, . . . , n,

where V ref
i is the reference DC voltage of converter i, ωref

is the reference frequency and eV and eω are given scalars.

IV. DECENTRALIZED MTDC CONTROL

In this section we propose a decentralized controller for
the frequency control of AC systems connected through an
MTDC network. This controller does not rely on a single
voltage regulator for the MTDC system, but the voltage
regulation is distributed among all converters. The local
controller governing the power injections into the MTDC
network is given by

P inj
i = P inj, nom

i +Kω
i (ωi − ωref) +KV

i (V ref
i − Vi), (3)

where P inj, nom
i is the nominal injected power, and Kω

i > 0
and KV

i > 0 are positive controller gains for all i =
1, . . . , n. The HVDC converter is assumed to be perfect and
instantaneous, i.e., injected power on the AC side is imme-
diately converted to DC power without losses. Furthermore
the dynamics of the converter are ignored, implying that
the converter tracks the output of controller (3) perfectly.
This assumption is reasonable due to the dynamics of the
converter typically being orders of magnitudes faster than
the AC dynamics. The relation between the injected HVDC
current and the injected AC power is thus given by

ViI
inj
i = P inj

i . (4)



By assuming that all voltages are at the same nominal value,
i.e., Vi = V nom for all i = 1, . . . , n in the above equation,
the following linear relation is obtained

V nomI inj
i = P inj

i . (5)

Combining the voltage dynamics (1), the frequency dynam-
ics (2), the voltage controller (3) and the power-current rela-
tionship (5), we obtain the following closed-loop dynamics[

ω̇

V̇

]
=

[
−M(Kω +Kdroop) MKV

1
V nomCK

ω −C
(
LR + KV

V nom

)]
︸ ︷︷ ︸

,A

[
ω
V

]

+

[
M
(
(Kω +Kdroop)ωref1n×1 −KV V ref

)
C
(

1
V nomK

V V ref − ωref

V nomK
ω1n×1

) ]
(6)

+

[
M(Pm + P nom − P inj, nom)

1
V nomCP

inj, nom

]
where ω = [ω1, . . . , ωn]T , V = [V1, . . . , Vn]T ,
M = diag(m1

−1, . . . ,mn
−1), D = diag(d1, . . . , dn),

C = diag([C−11 , . . . , C−1n ]), Kω = diag([Kω
1 , . . . ,K

ω
n ]),

Kdroop = diag([Kdroop
1 , . . . , Kdroop

n ]), KV =
diag([KV

1 , . . . ,K
V
n ]), P nom = [P nom

1 , . . . , P nom
n ]T ,

P inj, nom = [P inj, nom
1 , . . . , P inj, nom

n ]T , Pm =
[Pm

1 , . . . , P
m
n ]T , and LR is the weighted Laplacian

matrix of the graph representing the HVDC transmission
lines, denoted GR, whose edge-weights are given by the
conductances 1

Rij
. The following assumption is made on

the nominal generated power and the nominal injected
power.

Assumption 1. P nom = P inj, nom.

Remark 1. Assumption 1 implies that the reference fre-
quency and reference voltages define an equilibrium of the
closed-loop system when the deviation from the nominal
power generation is zero.

We define the incremental frequencies and voltages as

ω̂ = ω − ωref1n×1 (7)

V̂ = V − V ref . (8)

By Assumption 1, the decentralized MTDC control system
given by (6), can be written as[

˙̂ω
˙̂
V

]
=

[
−M(Kω +Kdroop) MKV

1
V nomCK

ω −C
(
LR + KV

V nom

)][ω̂
V̂

]
+

[
MPm

0n×1

]
. (9)

By decomposing (9) into two subsystems, we obtain
˙̂ω = −M(Kdroop +Kω)ω̂ +MKV u1

y1 =
1

V nomK
ωω̂

(S1)
˙̂
V = −C

(
LR +

1

V nomK
V

)
V̂ + Cu2

y2 = V̂ ,

(S2)

where (S1) and (S2) are interconnected through
u1 = y2 + (KV )−1Pm, u2 = y1. The interconnection

S1+

S2

y1

y2

(KV )−1Pm

Figure 1. Block diagram of the interconnected system.

structure is shown in Figure 1. We will use passivity
arguments to show that the equilibrium of the interconnected
system is asymptotically stable. First, we show that both
(S1) and (S2) are strictly passive.

Lemma 1. The system (S1) is strictly passive.

Proof: Consider the storage function W1 =
1

2V nom ω̂
T
(
Kω(KV )−1M−1

)
ω̂.. Differentiating W1 with

respect to time along trajectories of (S1) yields

Ẇ1 =
1

V nom ω̂
T
(
Kω(KV )−1M−1

)
˙̂ω

=
1

V nom ω̂
TKω(KV )−1

(
−(Kdroop +Kω)ω̂ +KV u1

)
= − 1

V nom ω̂
TKω(KV )−1(Kdroop +Kω)ω̂ + yT1 u1,

which shows that (S1) is strictly passive.

Lemma 2. The system (S2) is strictly passive.

Proof: Consider the storage function W2 =
1
2 V̂

TC−1V̂ .. Differentiating W2 with respect to time
along trajectories of (S2) yields

Ẇ2 = V̂ TC−1
˙̂
V = V̂ T

(
−
(
LR +

1

V nomK
V

)
V̂ + u2

)

= −V̂ T

(
LR +

1

V nomK
V

)
V̂ + yT2 u2,

which shows that (S2) is strictly passive.

Theorem 1. The equilibrium of the decentralized MTDC
control system given by (9) is globally asymptotically stable.

Proof: The equilibrium of the interconnection of any
two strictly passive systems is asymptotically stable [12],
if the input is zero. The non-zero input of (9) can be
removed by introducing incremental states which are zero
at the equilibrium of (9). The details of this construction
are straightforward but rather tedious, and are thus omitted
here and throughout the paper. Since the storage functions
W1 and W2 are radially unbounded, the stability of the
equilibrium of (9) is global.

Remark 2. Note that Theorem 1 only guarantees the sta-
bility of the equilibrium. It does however not guarantee that
Objective 1 is fulfilled.



V. EQUILIBRIUM ANALYSIS

We will now study the globally asymptotically stable
equilibrium of (9), in order to bound the asymptotic voltage
and frequency deviations from the reference values. We will
furthermore show that the generated power in the AC grids
will be shared fairly amongst the generators. We make the
following additional assumptions on the controller gains, in
order to draw conclusions about the equilibrium of (9).

Assumption 2. The controller gains satisfy Kω
i =

kω,Kdroop
i = kdroop,KV

i = kV ∀i = 1, . . . , n.

With the previous assumptions made, and having pro-
vided necessary stability conditions for the closed-loop sys-
tem (6), we are ready to analyze its equilibrium.

Theorem 2. Assume that Assumptions 1 and 2 hold, then
Objective 1 is satisfied for the following coefficients

egen =
kdroop maxi P

m
i

kdroop + kω

(n− 1) +
kV

V nom

n∑
i=2

1

λi(LR)


eV =

kω |11×nPm|
nkdroopkV

+
kω maxi

∣∣Pm
i

∣∣
(kω + kdroop)V nom

n∑
i=2

1

λi(LR)

eω =
1

nkdroop

∣∣∣∣∣∣
n∑

i=1

Pm
i

∣∣∣∣∣∣
+

maxi |Pm
i |

kdroop + kω

(n− 1) +
kV

V nom

n∑
i=2

1

λi(LR)

 .

Remark 3. The error bounds edroop and eω can simulta-
neously be made arbitrarily small by choosing appropriate
controller gains. However, the voltage error bound eV is
lower bounded by a constant. This is of course due to the
necessity of a relative voltage drop for having a power flow
between in an HVDC line.

Proof: Consider the equilibrium of (6). Let ω̂ and V̂
be defined by (7) – (8). By Assumption 1, we obtain the
following expression[
−(Kω +Kdroop) KV

Kω −(KV + V nomLR)

] [
ω̂

V̂

]
=

[
−Pm

0n×1

]
.

(10)

By multiplying the last n rows of (10) with kω+kdroop

kω and
adding to the first n rows of (10), we obtain by Assumption 2(

(kω + kdroop)V nom

kω
LR +

kdroopkV

kω
In

)
︸ ︷︷ ︸

,A1

V̂ = Pm. (11)

We write V̂ =
∑n

i=1 a
1
i v

1
i , where v1i is the ith eigenvector

of A1, with the corresponding eigenvalue λ1i . Note that the
coefficients a1i are unique, since A1 is symmetric, implying
that its eigenvectors form an orthonormal basis. Substituting
the eigenvector decomposition of V̂ in (11) yields

A1V̂ = A1

n∑
i=1

a1i v
1
i =

n∑
i=1

λ1i a
1
i v

1
i = Pm,

which implies

a1i =
(v1i )TPm

λ1i
.

Let the eigenvalues be ordered by their increasing values.
Clearly λ11 = kdroopkV

kω and v11 = 1√
n

1n×1. This implies

V̂ =
kω11×nP

m

nkdroopkV
1n×1 +

n∑
i=2

(v1i )TPm

λ1i
v1i . (12)

By noting that

λ1i =
(kω + kdroop)V nomλi(LR) + kdroopkV

kω

≥ (kω + kdroop)V nomλi(LR)

kω
,

(13)

where λi(LR) is the ith eigenvalue of LR, we obtain the
following bound on V̂

∥∥∥V̂ ∥∥∥
∞
≤ kω |11×nPm|

nkdroopkV
+

maxi

∣∣Pm
i

∣∣ kω
(kω + kdroop)V nom

n∑
i=2

1

λi(LR)

≤
kω
∣∣∑n

i=1 P
m
i

∣∣
nkdroopkV

+
maxi

∣∣Pm
i

∣∣
V nom

n∑
i=2

1

λi(LR)
.

From the first n rows of (10), and by substituting the
expression for V̂ from (12), we have

ω̂ =
kV V̂ + Pm

kω + kdroop =
1

kω + kdroop

(
kω11×nP

m

nkdroop 1n×1

+

n∑
i=2

kV (v1i )TPm

λ1i
v1i + Pm

)
.

(14)

By using the bound on λ1i from (13), we obtain

‖ω̂‖∞ ≤
1

kdroop

(∣∣∑n
i=1 P

m
i

∣∣
n

+ max
i
|Pm

i |

(
1 +

kV

V nom

n∑
i=2

1

λi(LR)

))
.

Consider now the power generated by the voltage droop
controller. By (14) we obtain

P droop +
1

n

n∑
i=1

Pm
i 1n×1 = −kdroopω̂ +

11×nP
m

n
1n×1

=
kdroop

kω + kdroop

(
− 1

n

n∑
i=1

Pm
i 1n×1 + Pm

+

n∑
i=2

kV (v1i )TPm

λ1i
v1i

)
.



Table I. HVDC GRID LINE PARAMETERS

From To Resistance [p.u.] Reactance [p.u.]

1 2 0.0015 0.01
1 3 0.0045 0.03
2 3 0.0015 0.01

Table II. CONTROLLER PARAMETER

Kω
1 Kω

2 Kω
3 Kdroop

1 Kdroop
2 Kdroop

3

501 501 501 667 667 667

By using the bound on λ1i in (13), we obtain∥∥∥∥∥∥P droop +
1

n

n∑
i=1

Pm
i 1n×1

∥∥∥∥∥∥
∞

≤ kdroop

kω + kdroop

(

max
i
|Pm

i |

1 +

n∑
i=2

kω

(kω + kdroop)V nomλi(LR)

)

≤ kdroop

kω + kdroop max
i
|Pm

i |

(
1 +

1

V nom

n∑
i=2

1

λi(LR)

)
,

which completes the proof.

VI. SIMULATIONS

In this section, we simulate the proposed controller on
an MTDC grid connecting three asynchronous AC areas,
whose main purpose is bulk power transfer between the AC
areas. The test grid consists of tree 6 bus AC grids, described
in detail in [20], connected with a 3 bus MTDC grid. In
Figure 2, the topology of the interconnected MTDC-AC grid
is shown.

     =

Gen 1

Gen 2

Gen 3

     =

Gen 1

Gen 2

Gen 3

Gen 1 Gen 2

Gen 3

   
  =

AC Area 1

AC Area 2

AC Area 3

HVDC 
Grid

Converter 1

Converter 2

Converter 3

Figure 2. Test grid consisting of 3 AC areas, connected by an MTDC grid
consisting of 3 converter stations and 3 DC lines.

Each converter station is controlled with (3). While the
converter dynamics are ignored due to their fast nature,
the nonlinear relation (4) is used to relate the injected
AC powers with the HVDC currents. The physical system
parameters and the controller parameters are given in Table

I, II, respectively. The simulation was conducted by using
an extended version of MatDyn [6], taking also the HVDC
dynamics into account. The simulation starts in steady-state,
and at time 1 s an immediate change in load from 0.7 p.u.
(per-unit) to 0.8 p.u. occurs at bus 4 in the AC area 1.
The local frequency controllers at the generators will react
immediately to the resulting frequency drop, and start to
accelerate. The frequencies of the generators are shown in
Figure 3. After a few second all generator frequencies within
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Figure 3. Frequencies of the generator areas.

the same AC area synchronize, and after about 30 s the
frequencies converge to the new equilibrium. The frequency
deviation is larger in AC area 1 than in the remaining AC
areas, but the differences are rather small, in accordance
with Theorem 2. Figure 4 shows the changes in the power
output of the generators. The disturbance is shared along
all generators. The injected powers through the converter
are shown in Figure 5. Since the converter dynamics are
much faster than the AC systems, they are neglected in the
simulation and it is assumed that the converter power tracks
the controller output perfectly. Due to the increased load,
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Figure 4. Incremental generator power levels.

the DC voltages of all converters increase, see Figure 6.
However, as predicted by Theorem 2, both the absolute and
relative voltage deviations are bounded.
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Figure 5. Injected power levels at the converters.
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Figure 6. Voltages of the DC converters.

VII. DISCUSSION AND CONCLUSIONS

In this paper we have proposed a decentralized pro-
portional controller for sharing primary frequency control
reserves in asynchronous AC systems connected through an
MTDC system. The controller uses the local frequency in
the AC grid and the local DC voltage as inputs in order
to control the power injections into the MTDC grid. The
resulting equilibria of the closed-loop system is shown to be
globally asymptotically stable by using passivity arguments,
regardless of the controller parameters. It is also shown that
the DC voltages and AC frequencies at the equilibrium are
close to their nominal values. Furthermore the generated
power from the primary frequency control is approximately
shared fairly between the AC areas. The deviation from
perfectly fair power sharing is quantified. The proposed
controller was simulated on a test system consisting of 3
AC areas combined with an MTDC grid to demonstrate
its effectiveness. The paper constitutes a first step towards
utilizing the increased flexibility which future MTDC grids
will provide to the connected AC systems. Future work will
focus on extending the primary proportional controller with
secondary controllers, where communication and integral

action will be necessary to eliminate static control errors. An
extensive simulation study on more realistic grid topologies
and dynamical models is also ongoing work.

REFERENCES

[1] M. Andreasson, D. V. Dimarogonas, H. Sandberg, and K. H. Johans-
son. Control of MTDC transmission systems under local information.
In IEEE Conference on Decision and Control, Dec. 2014.

[2] M. Andreasson, M. Nazari, D. V. Dimarogonas, H Sandberg, K. H.
Johansson, and M. Ghandhari. Distributed voltage and current control
of multi-terminal high-voltage direct current transmission systems. In
IFAC World Congress, Aug. 2014.

[3] U. Axelsson, A. Holm, C. Liljegren, M. Aberg, K. Eriksson, and
O. Tollerz. The Gotland HVDC light project-experiences from trial
and commercial operation. In Electricity Distribution, 2001. Part 1:
Contributions. CIRED. 16th International Conference and Exhibition
on (IEE Conf. Publ No. 482), volume 1, pages 5–pp. IET, 2001.

[4] P. Bresesti, W.L. Kling, R.L. Hendriks, and R. Vailati. HVDC
connection of offshore wind farms to the transmission system. IEEE
Transactions on Energy Conversion, 22(1):37–43, March 2007.

[5] M. Callavik, A. Blomberg, J. Häfner, and B. Jacobson. The hybrid
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