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Abstract: : The random utility model (RUM) is a fundamental notion in studies of human
decision-making. However, RUM relies on the calibration of its choice function’s weight
parameter, usually interpreted as a rationality parameter, resulting in a case-dependence that
undermines both interpretability and predictability of choices across experimental settings. We
addressed this limitation by normalizing utilities in RUM and deriving a new choice parameter
0, independent of case-specific prospects. Drawing from a novel interpretation of § in terms
of the lowest perceived probability of unlikely events, we conducted an experimental survey in
Swedish universities to infer 8 distributions, capturing the variability of probability perception
among decision-makers. We tested these statistical models for 5 on two independent datasets
exploring the framing effect. The results showed that the predictions align with the observed
experimental data (Pearson’s correlation greater than 94%), thereby indicating that the novel

characterization of the choice parameter strengthens the predictive capabilities of RUM.
Copyright © 2024 The Authors. This is an open access article under the CC BY-NC-ND license

(https://creativecommons.org/licenses/by-nc-nd/4.0/)
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1. INTRODUCTION

Predicting human choices is a challenging problem with
implications well beyond behavioral economics, ranging
from economics (Tversky and Kahneman (1992)) to pol-
itics (Fontan and Altafini (2021)), from transportation
(Annaswamy and Yildiz (2020)) to lifestyle choices (Far-
jadnia et al. (2023)), and in its most general formulation
the problem can be expressed in the form of the question
How do people make choices among different alternatives?
A standard hypothesis in the literature, consistent with,
e.g., expected utility theory (Bernoulli (1953)) or ran-
dom utility theory (McFadden (1976)), is that a decision-
maker chooses the alternative among two prospects that
maximizes their utility, usually expressed in monetary
units. This decision-making process considers two types of
variables: exogenous variables, which are observable, such
as attributes on the alternatives that can be expressed
in terms of outcomes and associated probabilities; and
endogenous variables, which are not observable and vary
among decision-makers (Ben-Akiva and Lerman (1985)).
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Distinguished Professor Grant 2017-01078, by the Knut and Alice
Wallenberg Foundation Wallenberg Scholar Grant, by the Knut and
Alice Wallenberg Foundation Wallenberg AI, Autonomous Systems
and Software Program, and by the KTH Digital Futures research
program Humanizing the Sustainable Smart City.

A framework used to model discrete choices under the
assumption of utility-maximizing behavior is given by the
Random Utility Model (RUM), a cornerstone of behavioral
economics for decisions on alternatives with uncertain out-
comes (McFadden (1976)). The key assumption of RUM
is that decision-makers’ preferences can be described by a
utility function depending on exogenous and endogenous
attributes, the latter randomizing the actual choice; hence,
RUM computes the probability of choosing a given alter-
native. In the standard RUM formulation, this probability
is computed by a Logit function of the difference in utilities
of the alternatives, scaled by a scalar parameter 3, typi-
cally calibrated for the set of data at hand (Train (2016)).

We argue that the current treatment of 5 in the liter-
ature lacks coherency and limits the predictive power of
RUM. First, there does not seem to be consensus in the
notation. 3 is referred to in the literature in different ways,
e.g., sensitivity parameter in Rieskamp (2008), steepness
of S-shaped function in Wang and Busemeyer (2021), free
sensitivity parameter in Glickman et al. (2019), precision
parameter in McKelvey and Palfrey (1995), inverse ratio-
nality parameter in Rosenfeld and Kraus (2018), strength
of preference parameter in Erev et al. (2002). Moreover,
this diverse nomenclature indicates that 8 is understood
as an endogenous parameter, even if in the common RUM
formulation ( is explicitly dependent on exogenous vari-
ables, i.e., the magnitude and units of the utilities. In other
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words, neither the range of § values nor its interpretation
can be transferred from one experiment to another.

In this work, we claim that separation of exogenous and
endogenous variables is crucial, not only for improving
predictability of choices, but also for their interpretability.
This can be achieved by adopting a normalization of the
utilities (which can then be considered exogenous) in RUM
(Train (2009)), thus obtaining a novel (dimensionless and
endogenous) parameter §, which we name the choice pa-
rameter. The normalization also allows for a new interpre-
tation of § as control parameter: § = 0 indicates indecision
between two alternatives, equivalent to a probability of
choice equal to 0.5, and 3 — 400 indicates a sure choice
of an alternative, or, equivalently, a sure disregard of the
opposite option, with a probability of choice equal to 0.

Given this new interpretation of 3, we hypothesize that
suitable psychological evidence should be sufficient to infer
a distribution for . To this end, we ask the following
question: If, as per RUM, sure disregard of a prospect is
theoretically described by a probability of choice equal to
0, obtained when 5 — +o00, what is the value of 5 when we
consider what humans perceive as near-zero probability,
or, equivalently, the probability that an event is unlikely?
There is ample evidence that people tend to mentally
discount events they deem “too unlikely” to affect them
(McClelland et al. (1993); Schade et al. (2012)); it is un-
clear however what numerical probability best represents
our perceptions of unlikely events. Previous research on
the subjective meaning of probability terms generally dealt
with more moderate probabilities, typically restricting the
scale to preclude very low probabilities (Stewart et al.
(2006); Wallsten et al. (1986). In our study, we admin-
istered a survey to students in Swedish universities to
estimate what probability best represents the subjective
boundary for an unlikely event, as well as the distribution
of this subjective boundary across the population.

Our main contributions can be stated as follows: (i) From
an experimental survey on human perception of unlikely
events, we infer distributions for the choice parameter (;
(ii) We validate these models using independent data on
framing effect experiments and show that they represent
well variability of rationality among decision-makers across
different experimental settings. We derive our concept of
rationality from the work of De Martino et al. (2006) on
the framing effect, associating the “most rational” behav-
ior with complete indifference to framing manipulation.

The paper is organized as follows. Section 2 introduces
technical preliminaries and the notation. Section 3 pro-
poses the novel choice parameter. Sections 4 and 5 present
the main results. Section 6 offers conclusive remarks.

2. TECHNICAL PRELIMINARIES

This section introduces the notions of subjective valuations
(or utilities) of prospects (Section 2.1), choice probability
(Section 2.2), and framing effect (Section 2.3).

2.1 Computation of valuation by Prospect Theory

We first explain how to compute utilities using Prospect
Theory (PT) from prospect data, in a setting where a
decision-maker chooses between two alternative prospects
A and B (Tversky and Kahneman (1992) for details).

Let A : {(Ya,,7a), Ya,, 1—7a)} and B : {(YB,, mB), (VB,,
1 — mg)}, where Yy, and Yj, are outcomes for A with
probabilities mp and 1 — w4, respectively, and similarly
for B. A decision-maker chooses a prospect based on the
subjective values of alternatives A and B, namely, Va and
VB. As per PT, the utilities Vo and Vg are computed by:

[ UM)w(m) +U(Yz) (1 —w(nw)), gain/loss
V= { UMY w(m)+UYe)w(l —7), mixed (12)
RO S D
v = { “AY, Y)Y <Y, (1b)

w(m) = (x7) /(77 + (1 = m)")/7, (1c)
where Y) is a reference value and V', Y7, Y5, and 7 pertain
to A or B. Gain prospects are defined as Y7 > Y5 > Y, > 0,
loss prospects as Y7 < Yy < Yy < 0, and mixed prospects
as Y7 < Yy < Y. In this work, we use Yy = 0 and we
consider mainly gain/loss prospects. The functions U(Y)
and w(m) are called the utility and the weighting function,
respectively, and we choose the functionals proposed in
Tversky and Kahneman (1992). While the general formu-
lation of U(Y") includes two different parameters for gain
(6%) and loss (67 ) prospects, here we assume that §+ =
0~ = 6. Selection of the positive PT parameters (A, d,)
quantifies different risk and valuation biases. Specifically,
(A, 0,7) = (1,1,1) implies a simple expected value without
any biases, (\,0,7) = (> 1,< 1,1) implies an expected
utility model without accounting for the risk bias, whereas
(A d,7) = (> 1,< 1,< 1) includes both value and risk
biases. In the PT literature, these parameters are inferred
from experiments. We use the standard PT parameters
(7,9, A) = (0.65,0.88,2.25), from the calibration proposed
in the classical work by Tversky and Kahneman (1992)!.

2.2 Computation of choice probabilities from prospect data

The utility assigned to each alternative can be conceptu-
alized as a random variable, depending both on observable
and unobservable attributes, with a zero-mean disturbance
term (Ben-Akiva and Lerman (1985)). Hence, while we
are not able to model choices with certainty, we can com-
pute a probability of the decision-maker choosing a given
prospect. In this work, we calculate the expected utilities
Va and Vg for discrete prospects, A and B, respectively,
using PT (Section 2.1), and we use the RUM to express
the choice probability through a Logit function:

Py=(1+exp(—B(Va—V8)))"", Pa=1-Pa, (2)
where 3 is a weight or calibration parameter.

2.8 The Framing Effect

The framing effect describes the difference in behavior by
decision-makers observed when the prospects are given
in different frames. It is subject of many experimental
studies, e.g., De Martino et al. (2006); Diederich et al.
(2020); McDonald et al. (2021); Nabi et al. (2020). Our
current interpretation of rationality follows De Martino
et al. (2006), where the “most rational” decision-makers
exhibit the lowest values of framing effect whereas the
“least rational” decision-makers exhibit the highest values.

1 The work identifies v = 0.61 for loss prospects and v = 0.69 for
gain prospects. For simplicity and to keep a low no. of parameters, we
use v = 0.65, i.e., the average value, as the standard PT parameter.
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The definition adopted in this work is the following. Let
A and B indicate a risky and a sure prospect, respectively.
The framing effect of a decision-maker is the difference in
probabilities of choosing the risky prospect between the
loss (L) and the gain (G) frame, i.e., Pa, — Pa. Given a
set of IV trials in which a decision-maker needs to choose
between a risky prospect A; and a sure prospect B;, i =
1,..., N, the observed framing effect for a decision-maker
is the percentage of trials in which the risky prospect is
chosen in the loss vs the gain frame, while the estimated

framing effect is defined as Zﬁvzl(PA . — Pa,.)/N.

3. CONTEXTUALIZATION BY MEANS OF
NORMALIZATION IN RUM

In spite of its wide use, the expression in (2) of the
logistic model for binary choices is limited by the context-
dependent parameter . There is no obvious value of
that can be used for predicting choices across experimental
settings, where nominal values significantly vary. We claim
that by using (L1) normalization in RUM we can propose
a context-independent, i.e., endogenous, parameter 3. In-
stead of the raw utilities, Vo and Vg in (2), we consider
the normalized utilities Vi /(|Va| + |VB|) and Vi/(|Va| +
|[VB|), which we interpret as attitudes of a decision-maker
towards prospect A and prospect B, respectively. In line
with RUM, the probability by a decision-maker of choosing
prospect A over prospect B can be rewritten as:

Va — VB -
P = 1 —_—
A ( —l—exp( Va] |‘,B|>) ) (3)

and analogously Pg = 1 — P5. Comparing (2) and (3),
the novelty lies in the normalization as a method to draw
comparisons between the attitudes towards the alternative
prospects. Notably, in (3) 8 > 0 is a dimensionless scalar,
which we name the choice (or control) parameter. 5 can
be interpreted to quantify how sure a decision-maker is
when making a choice: f — 0 implies Py = Pg = % and
B — +oo implies Py — 1, P — 0 or P» — 0, Pg — 1.

3.1 The choice parameter

A sure choice of prospect A, defined as choice associated
with sure probabilities P» = 1, Pg = 0, is represented
by Va/(IVal + |Vi|) = 1, Vi/([Va| + [Vi]) = 0, yielding
B(Va/(IVa| + [Vil) — Vis/([Val + IVil)) = 8. Similarly,
a sure choice of prospect B, defined as choice associated
with sure probabilities P» = 0, Pg = 1, is represented
by Va/(IVal + [Vil) = 0, Vis/([Va| + [Vi]) = 1, yielding
BVa/(IVal+1VB|) — VB /([Va| + |VB|) = —B. That is, the-
oretically using (3), the interval [—f, 3] is associated with
the interval [0,1] for the probability of choosing prospect
A over B as § — +o0. However, in practice, the definition
of zero probability depends on what humans perceive as
near-zero probability or probability of an unlikely event.

Let Py be the observed probability of an unlikely event
gathered from human-social probability perception evi-
dence, and (Va — VB)/(|Val+|V|) = —1 be the difference
of the normalized utilities associated with Pa:= Fy. In-
verting (3), one obtains the following expression for 3 as
a function of Ppy:

B =log((1-Fo)/Fo) = 0. (4)
Given experimental data on Py, we use (4) to infer a
statistical model for 5 (Section 4).

3.2 Analysis of the framing effect for the normalized RUM

Before proceeding with the main results, namely, the
design of the survey to estimate Py and infer 3 (Section 4),
and the validation of the inferred models for 8 on datasets
on variability of the framing effect (Section 5), we present
an analysis of the framing effect within the normalized
RUM. We first formulate the choice probabilities for the
normalized RUM in the gain and loss frames (Theorem 1).
Insights from the associated analysis of the framing effect
are valuable to interpreting the collected data on the
observed framing effect (Section 5).

Theorem 1. Let the prospects in a gain and loss frame be
defined as follows, where Y > 0 and 7 € [0, 1]:

{(y, ) (0 1-m}, gain frame N
A { {(=Y 7),(0,1 —m)}, loss frame (5a)
{(YW 1) (0,0)}, gain frame
B { {(-Y(1=m),1),(0,0)}, loss frame, (5b)

where the sure prospect B is created to match the
expected value of the gamble A, depending on framing.
Then, the probabilities of choosing the risky prospect A in
the gain (Pa,) and loss (Pa, ) frames are given by:

o= (1ve (5202

Pa, = (1 +exp (—B _wuél_ﬂ? :((11_7:;3;»_1 . (6b)

(6a)

Proof. We use PT ((1) with 6~ =61=6) to compute the
valuations Va and Vp for the prospects A and B in (5), in
both frames. Calculations held:

[ (ul), vird)
(VA7VB) = { (_/\Y(Sw(l _ 71—), —)\Y6(1 - 71')5)

Y (70 4+ w(T)) gain
AYS (w(l —m) 4+ (1—m)°) loss.

The normalized utilities (L1 normalization) are given by:

(Va/(Val +1VaD, Va/(Val +[Va))

gain
loss

VAl + |VB| = {

wir) ol ) ain
w(m)+7% w(m)+m’ g

w(l—7) (1—m)?
Twl—m) (=)’ _w(l—Tr)+(1—7r)5) loss
_71—5 .
Va-Ve |G gain
[Val + VB w(l-m—(1-m)" 1 oo

Tw(d—m)+(1—n)3
Therefore, using (3), the probabilities of choosing the risky
prospect A in the gain (Pa.) and loss (P, ) frames can
be expressed as in (6).

Given the PT parameters §,, using Theorem 1 we can
compute the values of 7 associated with a positive framing
effect (Fig. 1a). When v = 0.65 and 6 = 0.88 (standard
PT parameters), we obtain that Py, > 0.5 > P, for
7 € (0.245,0.755) and Pa, —Pa, > 0 for 7 € (0.128,0.872)
(Fig. 1b). We can draw the following observations.

(i) The probabilities of choosing the risky prospect A in
the gain (Pa,) and loss (Pa, ) frames do not depend
on the amount Y and are given by (6);

(ii) According to PT with standard PT parameters, the
framing effect is positive for all = € (0.128,0.872).
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4. DERIVATION OF A STATISTICAL MODEL FOR
THE CHOICE PARAMETER

According to the interpretation provided in Section 3.1,
we use human-social probability perception evidence (Sec-
tion 4.1) to infer a statistical model for 5 (Section 4.2).

4.1 Design of the survey to estimate Py

The survey was administered to university students at
Uppsala University and the Royal Institute of Technology
in Sweden, in connection with regular lectures. Access to
the survey was provided through a QR-code. Participation
was entirely voluntary and no compensation was offered.
Before starting the survey, respondents were given infor-
mation on the subject and purpose of the survey, as well
as ethical aspects such as anonymity and the voluntary
nature of the survey. Respondents then answered three
background questions regarding age, gender, and subject
area of their university studies, before responding to the
main question, described below. A total of 319 respondents
participated in the survey, comprising 144 males, 171 fe-
males, and 4 who preferred not to disclose their gender. In
terms of education, 268 respondents were from science and
technology, 48 from social sciences, and 3 from humanities.

Respondents chose between six predetermined options
of Py, selected to allow for a wide distribution of possible
values while representing meaningful points of comparison
(11in 10, 1 in 100, 1 in 1000, 1 in 10000, 1 in 100000, and
1 in 1000000). To control for potential context effects,
the following question was administered both without any
specified context and with the additional instructions to
consider what an unlikely event means in an economic,
digital, weather-related, or medical context (see text inside
brackets): “With this question, we would like to know what
you think counts as an unlikely event [when associated with
economic collapse/ malware/ destructive weather/ illness].
You do not need to estimate the probability of any particu-
lar event, just what unlikely means to you [in this context].
Please choose the option that you think best represents the
probability of an unlikely event [where you are financially
affected by an economic collapse/ malware infects any of
your digital devices/you are directly affected by a destruc-
tive weather occurrence/ you develop a rare illness].” Each
respondent was randomized to one of the five conditions
(no context, economic context, digital context, weather-
related context, medical context).

The collected data on observed variability of P, (aggre-
gating all contexts) is illustrated in Fig. 2 (left panel).

4.2 Inferring a distribution for the choice parameter

Variability in a population can be captured by assuming
a statistical model for § with pdf defined on (0,+00).
In this work we consider two potential distributions. A
log-normal distribution, i.e., § ~ LN|[u,o] where > 0
and o > 0, or, equivalently, 8 = exp(u + 0Z) where
Z ~ NJ[0,1], and a normal distribution truncated from
below, i.e., 8 ~ N to0)[tt; 0] where > 0 and o > 0. The
following distributions (illustrated in Fig. 2, right panel)
are fit to the data using maximum likelihood estimation
(with unbiased estimation of the o parameter):

B~ LN[2.0,04], B~ N 1o0)[8:3,3.1]. (7)

v
framing

effect >0
\
\

1
\

0
2

Fig.

1. (a): Values of 7 that satisfy Pa, — Pa, = 0 as a
function of v and §. The values of w s.t. Pa, —Pa, >0
(blue line) correspond to a positive framing effect
for standard PT parameters (v = 0.65, § = 0.88).
(b): Difference in normalized utilities as a function
of m (standard PT parameters). The framing effect
is positive only when the curve corresponding to the
gain frame is below the one for the loss frame.

Fig. 2. Survey data. The left panel illustrates the histogram
of the observed probability of unlikely events. The
right panel presents the choice parameter calculated
using (4), and associated fitted distribution (log-
normal LN and truncated normal N ;o))

5. APPLICATION: EXPERIMENTAL RESULTS ON
DISCRETE CHOICES DATASETS

In this work we assume that the novel choice parameter 8
is endogenous, which suggests transferability across exper-
imental settings. To validate this hypothesis, we test the
models (7) for the choice parameter 8 using an indepen-
dent set of data. In other words, we want to investigate
whether the inferred distributions can capture choice het-
erogeneity among decision-makers in distinct experiments,
involving different problem sets, contexts, and participant
demographics than those examined in Section 4.1. To this
end, we consider discrete choice experiments evaluating
variability of framing effect across decision-makers (Sec-
tion 5.1), and the findings are presented in Section 5.2.

5.1 Data description

We consider the studies by De Martino et al. (2006) and
Diederich et al. (2020), which we denote by DS-FR1 and
DS-FR2, respectively. For each experiment, the informa-
tion collected includes two sets of problems and, for each
problem, the description of each alternative structured as
economic prospects (i.e., outcomes associated with prob-
abilities of winning/losing) and the observed response of
each decision-maker. The problems across the two sets are
the same, but are posed in different frames (gain vs loss).
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DS-FR1  The work of De Martino et al. (2006) presents
experimental data that combine framing and heterogeneity
effects, obtained by studying variation between 20 partici-
pants. The prospects presented during the experiments are
defined according to (5), from the following 16 combina-
tions of outcomes Y and probabilities :

Y; = (£25, £50, £75, £100)
7= (02,04, 0.6, 0.8), foralli,j=1,2,3,4.
The framing effect reported in De Martino et al. (2006)

varies between 6.1% for the “least rational” to 38.4% for
the “most rational” participant (Fig. 3 (left panels)).

DS-FR2  For completeness, we decided to test our mod-
els for 8 on the data collected by Diederich et al. (2020),
which is a bigger dataset than DS-FR1, both in terms
of number of subjects and set of problems. The number
of participants is 54, but we exclude data from one par-
ticipant due to a high number of undefined responses.
In the second experiment described in Diederich et al.
participants had to choose between a gamble and a sure
prospect, with the sure prospect presented in either a gain
or a loss frame, similarly to the study by De Martino et al.
(2006). Four initial amounts, flanked by +1 point amounts,
and four probabilities of winning the gamble were selected
and paired together to form 48 combinations:
Y, = (19€,20€,21€,39€,40€, 41 €,
59€,60€,61€,79€,80€,81€),

m; = (0.3,04,0.6,0.7), foralli,j=1,2,3,4
Remark 2. Diederich et al. (2020) tested the influence of
different experimental conditions on the framing effect,
i.e., 2 frames (gain, loss), 2 time limits (1s, 3s), 3 needs
(0, 2500, 3500), which we group in 7 cases. In this work,
we present results only for the 2nd case, whose data is
depicted in Fig. 5a. The 2nd case is the one with the least
no. of datapoints corresponding to negative framing effect,
i.e., the least no. of datapoints that are not consistent
with PT and thus with the approach taken in this work.
Indeed, according to the analysis presented in Section 2.3,
we expect Pp;, — Pag > 0 for all m;, j = 1,2,3,4,
since m; € [0.3,0.7] C (0.128,0.872) for all j = 1,2,3,4.
That is, observation of a positive framing effect (for each
participant) is consistent with PT (Section 3.2). However,
from the experimental study, some subjects exhibit a
nonpositive framing effect which is not consistent with
PT, even for the case we have selected (Fig. 5a, datapoints
highlighted in red). We expect these datapoints to be more
complex to explain/predict by our approach, which points
to a limitation that we will explore in future work.

5.2 Testing the inferred models for the choice parameter

This section describes the findings obtained on the
datasets DS-FR1 and DS-FR2.

DS-FR1  Fig. 3 illustrates how the statistical models
proposed in (7) reproduce the observed variability in
framing effect, evaluated in terms of Pearson correlation
coefficient and mean squared error (MSE). In both cases
we obtain values of correlation > 94% and MSE < 0.01.

DS-FR2  Similar to DS-FR1, the statistical models for
B in (7) reproduce the observed variability in the framing
effect well (correlation > 98%, MSE< 0.02, Fig. 5b).

To ensure a comprehensive analysis, we calibrate two

]
m Data from De Martino et al i corr = 0,084, MSE = 0.007

¢ with 3~ LN[2.0, 0.4]

1011121314151617 181920 ] o1 0.2 0.3 (
akers ordered Estimated [raming effec
weir framing effect With 3 ~ LN[2.0, 0.4

(a) B ~ LN[2.0,0.4]

corr = 0,946, MSE = 0.008 i

m Data from De Martino et al

0
81920 0 0.1 0.2 03 04
Estimated framing effect

With 3 ~ Mg, o) (83, 3.1]

15 6 78 910111213141516171
-makers ordered

according to their framing effect

(b) B~ '/\/—(O,er) 8.3,3.1]

Fig. 3. Testing the inferred models for the choice pa-
rameter 8 (7) on the dataset DS-FR1 (De Martino
et al. (2006)). The left panels show the framing effect
(observed and estimated) for each decision-maker.
The right panels show observed vs estimated framing
effect, and associated values of correlation and MSE.

additional distributions of the choice parameter (a log-
normal and a truncated normal) on the data in DS-FR2,

denoted by 3 ~ LN|j1,6] and 8 ~ N{g 4 o0)lfi, 6]. Then, we

compare the goodness of fit obtained for B (calibrated on
DS-FR2) and for § from (7) (calibrated on an independent
set of data). To obtain B, we partition the data in DS-FR2
into training and validation data (50%-50% partition).
Training data is used to find the optimal parameters (fi, &)
using mixed logit estimation (following Revelt and Train
(1998)) and a 2-fold cross-validation procedure. Validation
data is used to evaluate the predictive power of the cali-
brated statistical model B, by computing goodness of fit.
Goodness of fit is given in terms of correlation and MSE
between observed and estimated framing effect across all
decision-makers. The procedure is illustrated in Fig. 4. We
obtain the following calibrated distributions:

B~ LN[1.1,0.8], B~ N oo)d4,4.1]. (8)

The results along with goodness of fit of 3 from (8) and 8
from (7) are shown in Fig. 5c.

6. CONCLUSION

In this study, we proposed a novel interpretation of the
weight parameter in the RUM for human choices under
uncertainty. Specifically, by normalizing utilities in the
RUM’s choice function, we introduced a case-specific in-
dependent choice parameter, which we reframed in the
context of human probability perception of unlikely events.
To validate this reinterpretation, we first conducted a sur-
vey to experimentally infer statistical models explaining
variability in probability perception across a population.
Then, we tested these distributions on two distinct (and
independent) datasets on the variability of the framing
effect. Our approach showed strong predictive capabilities
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(MSE< 0.02), thus demonstrating the efficacy of the pro-
posed novel characterization of the choice parameter in
RUM. Future works will include a meta-analysis of dis-
crete choice experiments and sensitivity analysis to further
validate the choice parameter and an extension of the
experimental survey.
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the dataset DS-FR2. This procedure is used twice, to
calibrate a lognormal and a truncated normal distri-
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