
Ports for Objects in Concurrent Logic Programs�

Sverker Janson Johan Montelius Seif Haridi

Swedish Institute of Computer Sciencey�

July ��� ����

Abstract

We introduce ports� an alternative to streams� as communication support

for object�oriented programming in concurrent constraint logic programming

languages� From a pragmatic point of view ports provide e�cient many�to�

one communication� object identity� means for garbage collection of objects�

and opportunities for optimised compilation techniques for concurrent objects�

From a semantic point of view� ports preserve the monotonicity of the constraint

store which is a crucial property of all concurrent constraint languages�

We also show that the Exclusive�read� Exclusive�write PRAM model of par�

allel computation can be realised quite faithfully using ports in terms of space

and time complexity� thus allowing arbitrary parallel programs to be written

e�ciently�

Ports are available in AKL� the Andorra Kernel language� a concurrent logic

programming language that provides general combinations of don�t know and

don�t care nondeterministic computations�

� Introduction

In this paper we introduce an alternative to streams as the communication medium
for object�oriented programming in concurrent logic programming languages� This
alternative will be seen to provide us with e�cient many�to�one communication�
object identity� means for garbage collection of objects� and optimised compilation
techniques for objects� It will also provide us with means for mixing freely objects
and other data structures provided in concurrent logic programming languages�

We regard objects for concurrent logic programming languages as processes� as
�rst proposed by Shapiro and Takeuchi ���	� and later extended and re�ned in sys�
tems such as Vulcan� A
UM� and Polka ���� ��� 	 �Figure ��� Some of these systems
are embedded languages that make restricted use of the underlying language� We are
interested in full�strength combinations of the underlying language with an expres�
sive concurrent object�oriented extension� with all the problems and opportunities
this entails�

In this paper� we present an approach to communication between objects �and
processes in general�� which is both e�cient and useful in such a general setting� In
the next section� we will remind the reader of a number of problems with previous

�Also in Research Directions in Concurrent Object�Oriented Programming� MIT Press� �����
yBox ����� S���	 �
 KISTA� Sweden� E�mail� fsverker�jm�seifg�sics�se

�

m
m

m
m

m

m
m

m
mmmm

m

m

m

…

p([M|S], X) :-
 transform(M, X, X1),
 p(S, X1)
p([], X) :-
 terminate(X).

Figure �� Objects as stream�consuming recursive processes

approaches� and then� in the following sections� we introduce ports as a solution
to these problems� one which also adds entirely new possibilities� such as a simple
approach to optimised compilation of objects�

We will also show that the Exclusive�read Exclusive�write PRAM model of par�
allel computation can be realised quite faithfully� in terms of both space and time
complexity� using ports� This indirectly demonstrates that arbitrary parallel algo�
rithms can be expressed quite e�ciently�

� Background

In this section we present some of the background of our work� First we examine
some requirements on object�oriented systems� Then we discuss the notion of a
communication medium� and review a number of proposals that do not meet our
requirements� We also discuss the limitations of some existing systems that are
based on these proposals�

��� Requirements of Object�Oriented Systems

Our starting point is a number of requirements on object�oriented languages cur�
rently in use� such as Smalltalk and C��� and we will let these guide our work�
In so doing� we here only consider requirements on the object�based functionality�
including requirements on the interaction between the host language and the con�
current object�oriented extension� Other aspects of object�oriented languages� such
as inheritance� can be realised in this setting in many di�erent ways �e�g�� ��	��

Since our goal is the integration of concurrent object and logic programming�
we conform to the tradition of languages such as C��� where the object�oriented
aspects are added to the underlying language and� in particular� allow objects and
other data structures to be mingled freely� Thus� in a logic programming language�
it should be possible to have objects embedded in a term data structure �Figure ���
Since terms can be shared freely in concurrent logic programming languages� the
extra ability will allow concurrent objects to share� for instance� an array of con�
current objects� Higher�level object�oriented languages provide automatic garbage
collection of objects that are no longer referenced �Figure �� Programmers do not

�

distribution of embedded
references to objects

Figure �� Objects embedded in terms

have to think about when objects are no longer in use� nor do they have to deallo�
cate them explicitly� The high�level nature of logic programming languages makes
it desirable to provide garbage collection of objects� just as of other data structures�
Note that� in the goal�directed view of logic programming� an object is a goal� which

disconnected
object

X

Figure � Garbage�collectable object

has to be proved� it cannot just be thrown away� However likely the assumption
that a goal is provable without binding variables� there is no such guarantee� In a
concurrent object�oriented setting� another dimension is added� in that an object
may still be active� and a�ect its environment� although it is no longer referred to
by other objects� Even if there are no incoming messages� an object may wish to
perform some cleaning up before being discarded� Thus� garbage collection of ob�
jects in concurrent �logic� programs should involve notifying an object that it will
no longer receive messages� It is up to the object to decide to terminate�

In addition� an implementation of objects should provide

� light�weight message sending and method invocation� the cost of which should
preferably be similar to that of a procedure call�

� compact representation of objects� the size of which should be dominated by
the representation of instance variables�

� memory conservative behaviour� which means that a state transition should
only involve modifying relevant instance variables�objects are reused�

In this paper� we will address all but the last of the above requirements� The
last requirement is generally solved in concurrent logic programming languages by
providing a mechanism for detecting single references� and reusing the old instance
variables�

��� Communication Media

A communication medium is a data type that carries messages between processes
acting as objects �Figure ��� The medium is used as a handle to an object� and is

receiver
of messages

 communication
medium

references
to same medium

senders
of messages

Figure �� The communication medium

regarded as the object identi�er from a programmer
s point of view�
In the concurrent constraint view that we take� the communication medium is

managed �described and inspected� using constraints ��	� All constraints are added
to a shared constraint store� To send a message means to impose a constraint on the
medium which allows a process to detect the presence of a message� and receive the
message by inspecting its properties� A sender of messages is a writer of the medium�
A receiver of messages is a reader of the medium� A message that is received once
and for all is said to be consumed� A medium can be closed by imposing constraints
that disallow additional messages� A receiver can detect that a medium is closed�

An important property of the constraint store in concurrent logic programming
languages is that it is monotonic� Addition of constraints will produce a new con�
straint store that entails all the information in the previous one� This property is
important because it implies that once a process is activated by the receipt of a mes�
sage� this activation condition will continue to hold until the message is consumed
regardless of the actions of other processes�

����� Requirements on Communication Media

The discussion above leads us to the following requirements on our communication
medium�

� Any constraint�based solution should preserve the monotonicity of the con�
straint store�

�

� The number of operations required to send a message �make it visible to an end
receiver� should be constant �for all practical purposes�� independent of the
number of senders� All senders should be given equal opportunity� according
to a �rst come �rst served principle� We call this the constant delay property�

� When a part of the medium that holds a message has been consumed� it should
be possible to deallocate or reuse the storage it occupied� by garbage collection
or otherwise�

� To provide completely automatic garbage collection of objects� it should be
possible to apply the closing operation automatically �when the medium is no
longer in use��

� To enable sending multiple messages to embedded objects� it should be possible
to send multiple messages to the same medium�

The last requirement seems odd in conventional object�oriented systems� It is
however a problem in all single�assignment languages including the current concur�
rent logic programming languages�

����� Streams

The list is the by far most popular communication medium in concurrent logic
programming� In this context lists are usually called streams�

A message m is sent on the stream S by constraining S to a list pair S��mjS���
The next message is sent on the stream S�� The stream is closed by constraining
it to the empty list S���� The receiver� which should be waiting for S to become
constrained to either a list pair or the empty list� will then either successfully match
S against a list pair �MjR�� whereupon M will be bound to m and R to S�� in which
case the next message can be received on S�� or match S against ��� in which case
no further messages can be received� By the end�of�stream we mean a tail of the
stream that is not yet known to be a list pair or an empty list�

To achieve the e�ect of several senders on the same stream� there are two basic
techniques� ��� Several streams� one for each sender� are interleaved into one by a
process called merging� ��� The language provides some form of atomic �test�and�
set� uni�cation� which allows multiple writers to compete for the end�of�stream�

Merging is typically achieved either by a tree of binary mergers� or by a mul�
tiway merger� The binary merge tree is built by splitting a stream as necessary
�Figure ��� Clearly� this technique does not have the constant delay property as
the �best case� cost is O�logm� in the number of senders m� A multiway merger
is a single merger process that allows input streams to be added and deleted dy�
namically �Figure ��� A constant delay multiway merger cannot be expressed in
most concurrent logic programming languages �AKL is an exception ��	�� but it is
conceptually clean� and it is quite possible to provide one as a language primitive�
We will assume that all multiway mergers have constant delay�

A number of disadvantages of merging follow�

� A merger process has to be created whenever there is the slightest possibility
that several senders will send on the same stream� For many purposes this is
not a problem� Once a multiway merger is created� adding and deleting input

�

binary
mergers

M

M
M

Figure �� Binary merge network

multi-way
merger

M

Figure �� Multi�way merger

streams is fairly e�cient� Yet� needing one feels like an overhead in an object�
oriented context� where references to objects should be freely distributable�

� Explicit closing of all streams to all objects is necessary� since otherwise the
program will either eventually deadlock� or at least some objects will continue
to be suspended� forever occupying storage�

� The merger process itself occupies storage� it also wastes storage when creating
a new merged stream� and if it uses the standard mechanisms for suspension�
it is likely to be �comparatively� ine�cient�

� Messages have to be sent on the current end�of�stream variable� which is
changed for every message sent� To make it possible to use a stream that
is stored in some other data structure� the new end�of�stream variable has to
be stored in the data structure after one round of sending is completed� Usu�
ally this means copying parts of the data structure �but if some form of single
reference optimisation is employed by the language implementation ��� ��� �	�
this would not necessarily be the case�� Even worse� to enable sharing of this
data structure with another process�object� where the possibility of the other
object sending messages on the embedded streams cannot be excluded� two
copies of the data structure have to be created �allocating new memory for at
least one�� All the streams have to be split in two �by merging�� one for each
copy�

� A serious problem is the transparent message�distribution problem� A message
is usually a termm�C�����Cn� where the Ci
s are message components� Suppose

�

we want to implement a transparent message�distributor object� which when
it receives a message� of any kind� will distribute it to a list of other objects�
Without prior knowledge of the components of messages� the distributor object
cannot introduce the merging required for stream components�

An advantage with merging is that it allows list pairs to be reused in the merger and
deallocated by the receiver as soon as a message has been consumed� In some cases�
in a system with fairly static object�structure� explicit closing of all streams as a
means for controlled termination of objects can be considered an advantage� Another
general advantage of all stream communicating systems is the implicit sequencing
of messages from a source object to a destination� This simpli�es synchronisation
in many applications�

Multiple writers can only be expressed in some languages with atomic test�
and�unify� The drawbacks of multiple writers are summarised as follows�

� The cost for multiple writers is typically O�m� per message� when there are m
senders� and is therefore even further from the constant delay property than
merging�

� The delay is proportional to the number of messages that have been sent�

� An inactive sender may hold a reference to parts of the stream that have
already been consumed by the intended receiver� making deallocation impos�
sible�

� It is di�cult to close a stream� Some distributed termination detection tech�
nique� such as short�circuits or the like� has to be used� In practice� this
outweighs the advantages of multiple writers�

An advantage with multiple writers is that no merger has to be created� Moreover�
several messages can be sent on the same stream� and not only by having explicit
access to the end�of�stream variable�

Neither merging nor multiple writers provide a general solution to the
problem of automatic garbage collection of objects� There are special cases� as
exempli�ed by A
UM �see Section ���� where �acyclic structures of� objects are
terminated automatically�

It can be suspected that many of the problems described above are inherent
in the use of streams as communication channels� Thus� people have looked for
alternative data types�

����� Mutual References

Shapiro and Safra ���	 introduced mutual references to optimise multiple writers�
and as an implementation technique for constant delay multiway merging� The
mental model is that of multiple writers�

A shared stream S is accessed indirectly through a mutual reference Ref� which is
created by the allocate mutual reference�Ref� S� operation� Conceptually� the mutual
reference Ref becomes an alias for the stream S� The message sending and stream
closing operations on mutual references are provided as built�in operations� The
stream append�X� Ref� New Ref� operation will bind the end�of�stream of Ref to the

�

list pair �XjS��� and New Ref is returned as a reference to the new end�of�stream�
The stream S can be closed using the close stream�Ref� operation� which binds the
end�of�stream to the empty list ���

An advantage of this is that the mutual reference can be implemented as a
pointer the the end�of�stream� When a message is appended� the pointer is advanced
and returned� If a group of processes are sending messages on the same stream
using mutual references� they can share the pointer� and sending a message will
always be an inexpensive� constant time operation� Mutual references can be used
to implement a constant delay multiway merger� Another advantage is that an
inactive sender will no longer have a reference to old parts of the stream� This
makes it possible to deallocate or reuse consumed parts of the stream�

A disadvantage is that we cannot exclude the possibility that the stream has
been bound from elsewhere� and that stream append has to be prepared to advance
to the real end�of�stream to provide multiple writers behaviour�

Otherwise� mutual references have the advantages of multiple writers� but the
di�culty of closing the stream remains� It is also unfortunate that the mental model
is still that of competition instead of cooperation�

����� Channels

Tribble et al ���	 introduced channels to allow multiple readers as well as multiple
writers�

A channel is a partially ordered set of messages� The write�M� C�� C	� operation
imposes a constraint that� ��� the message M is a member of the channel C��
and ��� M precedes all messages in channel C	� The read�M� C�� C	� operation
selects a minimal ��rst� element M of C�� returning the remainder in a channel C	�
The empty�C� operation detects that a channel C is empty� The close�C� operation
imposes the constraint that a channel C is empty�

In the intended semantics� messages have to be labeled to preserve message
multiplicity� Also� since the constraints do not specify which messages are not in
the channels� only minimal channels satisfying the constraints are considered�

Channels seem to share most of the properties of multiple writers on streams�
Thus� all messages have to be retained on an embedded channel� in case someone
might read it� An inactive sender causes the same problem� Closing is just as explicit
and problematic� The multiple readers ability can be achieved by other means� For
example� a process can arbitrate requests for messages from a stream conceptually
shared by several readers�

����� Bags

Kahn and Saraswat ���	 introduced bags for the languages Lucy and Janus�
Bags are multi�sets of messages� They are like streams in that subsequent mes�

sages are sent on subsequent bags� but there is no need for user�de�ned merging� as
this is taken care of by the Tell constraint bag�union B � B� � � � � � Bn� A message
is sent using the Tell constraint B � fmg� A combination of these two operations�
B � fmg � B�� corresponds to sending a message on a stream� but without the
order of messages given by the stream� A message is received by the Ask constraint
B � fmg � B� �

�

Note that bags can be implemented as streams� with a multiway merger as bag�
union� The single�reference property of Janus then makes it possible to reuse list
pairs in the multiway merger� and to deallocate �or reuse� list pairs when a bag is
consumed�

Therefore� it is not surprising that bags have most of the disadvantages of streams
with multiway merging� The host languages Lucy and Janus only allow single�
referenced objects and therefore su�er less from these problems�

��� Object�Oriented Concurrent Logic Programming

Most proposals for object�oriented embedded languages in� and object�oriented ex�
tensions of� concurrent logic programming languages� are limited by their commu�
nication medium� streams�

Vulcan is a pure object�oriented embedded language ���	� It apparently does not
allow embedding objects in terms� has no special provisions for termination� and
su�ers from the transparent message distributor problem�

A�UM is also a pure object�oriented embedded language ���	� It provides auto�
matic termination� by reference counting of objects implemented in the host lan�
guage� and solves the transparent message distributor problem by restricting all
components of a message to be streams to other objects� This� of course� restricts
the language�

Polka is a language extension of Parlog �	� It does apparently allow arbitrary
mixtures of objects and terms� in a style not entirely unlike what we are aiming for�
but it does not solve any of the problems of stream merging�

� Ports

We propose ports as a solution to the problems with previously proposed communi�
cation media�

��� Ports Informally

A port is a connection between a bag of messages and a corresponding stream of
these messages �Figure ��� A bag which is connected via a port to a stream is
usually identi�ed with the port� and is referred to as a port� The open port�P� S�
operation creates a bag P and a stream S� and connects them through a port� Thus�
P becomes a port to S� The send�P� M� operation adds a message M to a port P� A
message which is sent on a port is added to its associated stream with constant delay�
When the port becomes garbage� its associated stream is automatically closed� The
port�P� operation recognises ports� A �rst simple example follows�

� open port�P� S�� send�P� a�� send�P� b��

P � �some printed representation of a port��
S � �a�b�

�

AKL port

P

Figure �� AKL port

Here we create a port and a related stream� and send two messages� The order in
which the messages appear could just as well have been reversed�

Ports solve all of the problems mentioned for streams and others�

� No merger has to be created� a port is never split�

� Several messages can be sent on the same port� which means that ports can
be embedded�

� Message sending delay is constant�

� Senders cannot refer to old messages� and thus prevent garbage collection�

� A port is closed automatically when there are no more potential senders� thus
notifying the consumer of messages�

� The transparent forwarding problem is solved� since messages can be dis�
tributed without inspection�

� Messages can be sequenced� as described in Section ��

��� Ports as Constraints

We can provide a sound and intuitive interpretation of ports as constraints as follows�
Ports are bags� in other words multi�sets� The open port and send operations on
ports are constraints with the following reading� The open port constraint states
that all members in the bag are members in the stream and vice versa� with an
equal number of occurrences� The send constraint states that an object is a member
of the bag�

Our method for �nding a solution to these constraints is don
t care nondeter�
ministic� Like the commit operation in concurrent logic programming languages� we
are happy with any solution� Therefore� the interpretation in terms of constraints
is not a complete characterisation of the behaviour of ports� just as Horn clauses do
not completely characterise the behaviour of commit guarded clauses� In particular�
it does not account for message multiplicity� nor for their �relevance�� i�e�� it does
not �minimise� the ports to the messages that appear in a computation�

A logic with resources could possibly help� e�g�� Linear Logic ��	� The don
t care
nondeterministic and resource sensitive behaviour of ports can easily be captured
by LL� The automatic closing requires much more machinery� If such an exercise
would aid our understanding remains to be seen�

��

��� Solving Port Constraints

We now de�ne the operational semantics of ports in terms of rewrites on �parts of�
a constraint store�

Observe that the rewrite rules will strictly accumulate information in the con�
straint store� the right hand side always implies the left hand side� The �rst rule
adds an annotation only� The second and third rules add constraints on the stream�
Thus� we preserve the desirable monotonicity property�

The �rst rule annotates the open port constraint� for control purposes� We need
an index to keep track of where in the stream S we are putting new messages�

open port�P� S�� open port�P� S�S

The second rule consumes a send to a port� moving the message to its associated
stream� Observe that this rule monotonically adds information to the constraint
store� Although the send constraint is removed� it is still implied by the presence of
the message in the stream�

open port�P� S�S�� send�P�m��
S� � �m j S ��	� open port�P� S�S��

The third and �nal rule closes the associated stream when the port P satis�es the
garbage condition with respect to the computation state �see below��

open port�P� S�S� � S� � �	� open port�P� S�S�

The garbage condition for a port holds in a computation state if there exists a
garbage collected state in which the port only occurs in a single open port constraint
and in consumed send constraints�

We will attempt to give a de�nition of a kind of a garbage collected state� which�
although quite an intuitive notion� is fairly operational in nature� and therefore
di�cult to �t into the notion of a constraint store�

Let us assume� to keep our de�nition simple� that our host language is a de�
terminate concurrent constraint language� with ports and with syntactic equality
constraints of the form X � Y or X � f�Y�� � � � � Yn�� where variables may be ports�
Note that this combination of ports and equality is not accounted for by the con�
straint solving rules� and that the system presented here is incomplete in this regard�

A computation state consists of a conjunction of constraints and agents� The idea
is that we may throw away constraints that no longer restrict variables reachable
from agents� because the resulting constraint store is logically equivalent�

A computation state A is garbage collected wrt another computation state B if
��� they have the same agents� ��� the constraints in A are a subset of the constraints
in B� and �� the conjunction � of constraints in A is equivalent to the conjunction
� of constraints in B� modulo the existential quanti�cation of variables v�� � � � � vn
occurring in constraints but not in agents� i�e�

�v� � � � �vn�� � �v� � � ��vn��

For example� if �p�X�� X � f�Y�� Z � g�W� X�� is a state� then �p�X�� X � f�Y��
is garbage collected wrt that state� since

�Y�Z�W�X � f�Y� � Z � g�W� X�� � �Y�Z�W�X � f�Y��

��

This also corresponds to our intuition� Note that for some constraint systems a
more involved notion of simpli�cation than the deletion of individual constraints is
necessary�

��� Implementation

There are advantages in the implementation of ports� and of objects based on ports�
which we �rst discuss in this section and then return to in Section ��

The implementation of ports can rely on the fact that a port is only read by
the open port�	 operation� and that the writers only use the send�	 and port��
operations on ports� which are both independent of previous messages�

Therefore� there is no need to store the messages in the port itself� It is only
necessary that the implementation can recognize a a port� and add a message sent
on a port to its associated stream� This can be achieved simply by letting the
representation of a port point to the stream being constructed� In accordance with
the rewrite rules� adding a message to a port then involves getting the stream�
unifying the stream with a list pair of the message and a new �end�of�stream�� and
updating the pointer to refer to the new end�of�stream� Closing the port means
unifying its stream with the empty list� Note that the destructive update is possible
only because the port is �write only��

In this respect� ports are similar to mutual references� But� for ports there is
conceptually no such notion as advancing the pointer to the end�of�stream� We are
constructing a list of elements in the bag� and if the list is already given� it is uni�ed
with what we construct�

Other implementations of message sending are conceivable� e�g�� for distributed
memory multi�processor architectures�

That a port has become garbage is detected by garbage collection� as suggested
by the de�nition� If a copying garbage collector is used� it is only necessary to make
an extra pass over the ports in the old area after garbage collection� checking which
have become garbage �i�e�� were not copied�� Their corresponding streams are then
closed�

From the object�oriented point of view� this is not optimal� as an object cannot
be deallocated in the �rst garbage collection after the port becomes garbage� which
means that it survives the �rst generation in a two�generation generational garbage
collector� Note that for some types of objects� this is still acceptable� as their termi�
nation might involve performing some tasks� e�g�� closing �les� For other objects� it
is not� In Section � we discuss compilation techniques based on ports that allow us
to di�erentiate between these two classes of objects� and treat them appropriately�

Reference counting is more incremental� and is therefore seemingly nicer for our
purposes� but the technique is ine�cient� it does not rhyme well with parallelism�
and it does not reclaim cyclic structures� MRB and compile�time GC are also of
limited value ��� �	� as we often want ports to be multiply referenced�

� Concurrent Objects

Returning to our main objective� object�oriented programming� we develop some
programming techniques for ports� and discuss implementation techniques for ob�
jects based on ports�

��

Given ports� it is natural to retain the by now familiar way of expressing an
object as a consumer of a message stream� and use a port connected to this stream
as the object identi�er�

create object�P� Initial� �
open port�P� S��
object handler�S� Initial��

In the next two sections we address the issues of synchronisation idioms� and of
compilation of objects based on ports� as above�

��� Synchronisation Idioms

We need some synchronisation idioms� How do we guarantee that messages arrive
in a given order� We can use continuations� as in Actor languages�

The basic sequencing idiom is best expressed by a program �which is written in
AKL� using the conditional �if�then�else� guard operator �����

open cc port�P� S� �
open port�P� S���
call cont�S�� S��

call cont���� S� �
� S � ���

call cont���M � C�jS��� S� �
� S � �MjS���

call�C��
call cont�S�� S���

call cont��MjS��� S� �
� S � �MjS���

call cont�S�� S���

The �Message � Continuation� operator guarantees that messages sent because of
something which happens in the continuation will come after the message� For
example� it can be used as follows�

� open cc port�P� S�� send�P� �a � Flag � ok��� p�Flag� P��

The procedure p�	 may then choose to wait for the token before attempting to send
new messages on the port P�

The above synchronisation technique using continuations can be implemented
entirely on the sender side� with very little overhead� A goal send�P� �m � C��
is compiled as �send�P� m�� C�� with the extra condition that C should only begin
execution after the message has been added to the stream associated with the port�
It should be obvious that this is trivial� even in a parallel implementation�

Another useful idiom is the three�argument send� de�ned as follows�

send�P�� m� P� �
send�P�� �m � P � P����

which is useful if several messages are to be sent in sequence� If this is very common�
a send�list operation can be useful�

�

send list�P� ��� �
� true�

send list�P�� �MjS�� �
� send�P�� M� P���

send list�P�� S��

��� Objects based on Ports

If messages are consumed one at a time by the object message�handler� and the input
stream is not manipulated in other ways� as can be guaranteed by an object�oriented
linguistic extension� then it is possible to compile the message handler using message
oriented scheduling ���	� Instead of letting messages take the indirect route through
the stream� this path can be shortcut by letting the message handling process pose
as a special kind of port� which can consume its messages directly� There is then
no need to save messages to preserve stream semantics� It is also easy to avoid
creating the �top�level structure� of the message� with suitable parameter passing
conventions� The optimisation is completely local to the compilation of the object�

Looking also at the implementation of ports from an object�oriented point of
view� an object compiled this way poses as a port with a customised send�method�
This view can be taken further by also providing customised garbage collection
methods that are invoked when a port is found to have become garbage� If the
object needs cleaning up� it will survive the garbage collection to perform this duty�
otherwise the GC method can discard the object immediately�

Object�types in common use� such as arrays� can be implemented as built�in
types of ports� with a corresponding built�in treatment of messages� This may
allow an e�cient implementation of mutable data�structures� Ports can also serve
as interfaces to objects written in foreign languages�

Ports and built�in objects based on ports are available in the AKL Programming
System �AKL�PS� ��	� An interesting example is that an AKL engine is provided as
a built�in object� A user program can start a computation� inspect its results� ask
for more solutions �AKL is don
t know nondeterministic�� and� in particular� re ect
on the failure or suspension of this computation� This facility is especially useful in
programs with a reactive part and a �don
t know nondeterministic� transformational
part� where the interaction with the environment in the reactive part should not be
a�ected by nondeterminism or failure� as exempli�ed by the AKL�PS top�level and
some programs with graphical interaction� In the future� this facility will also be
used for debugging of AKL programs and for meta�level control of problem solving�

� Modelling PRAM with Ports

Shapiro ���	 discusses the adequacy of concurrent logic programming for two families
of computer architectures by simulating a RAM �Random Access Machine� and a
network of RAMs in FCP �Flat Concurrent Prolog�� However� a simulator for shared
memory multi�processor architectures� PRAMs �Parallel RAMs�� is not given�

We conjecture that PRAMs cannot be simulated in concurrent logic program�
ming languages without ports or a similar construct� This limitation could� among

��

other things� mean that array�bound parallel algorithms� such as many numerical
algorithms� cannot always be realised with their expected e�ciency in these lan�
guages�

In the following we will show the essence of a simulator for an Exclusive�read
Exclusive�write PRAM in AKL using ports�

��� PRAM with Ports

A memory cell is easily modelled as an object�

cell�P� �
open cc port�P� S��
cellproc�S� ��

cellproc���� � �
j true�

cellproc��read�V��jS�� V� �
j V� � V�
cellproc�S� V��

cellproc��write�V�jS�� � �
j cellproc�S� V��

cellproc��exch�V�� V	�jS�� V� �
j V	 � V�
cellproc�S� V���

PRAM is achieved by creating an array of ports to cells �Figure ���

memory�M� �
M � m�C�� � � � � Cn��
cell�C��� � � � � cell�Cn��

Any number of processes can share this array and send messages to its memory cells
in parallel� updating them and reading them� The random access is achieved through
the random access to slots in the array� and the fact that we can send to embedded
ports without updating the array� Sequencing is achieved by the processors� using
continuations as above�

��� RAM without Ports

Most logic programming languages do not even allow modelling RAM� as a conse�
quence of the single�assignment property� Shapiro
s simulator for a RAM depends
on a built�in n�ary stream distributor to access cell processes in constant time as
above� In KL� the MRB scheme allows a vector to be managed e�ciently� as long
as it is single�referenced ��	�

memory�M� � new vector�M� n��

A program may access �read� the vector using the

vector element�Vector� Position� �Element� �NewVector�

��

parallel
random access

P

P

P

vector of ports

“memory cell
processes”

“processor
processes”

Figure �� PRAM with AKL ports

operation �which preserves the single�reference property�� Sequencing is achieved
through continuing access on NewVector� Similarly� a program may modify �write�
the array using the

set vector element�Vector� Position� �OldElement� NewElement� �NewVector�

operation �which also preserves the single�reference property�� Sequencing can be
achieved as above�

��� PRAM without Ports�

If MRB �or n�ary stream distributors� and multiway merging are available� they can
be used to model PRAM� but with a signi�cant memory overhead� Each processor�
process is given its own vector of streams to the memory cells� All streams referring
to a single memory cell are merged� Sequencing is achieved as above� Thus we need
O�nm� units of storage to represent a PRAM with n memory cells and m processors�

The setup of memories is correspondingly more awkward�

memories�M�� � � � � Mm� �
memvector�M�� C��� � � � � C�n��
memvector�M	� C	�� � � � � C	n��
� � � �
memvector�Mm� Cm�� � � � � Cmn��
cell�C��� � � � � cell�Cn��
merge�C��� � � � � C�m� C���
merge�C	�� � � � � C	m� C	��
� � � �
merge�Cn�� � � � � Cnm� Cn��

cell�S� � cellproc�S� ���

memvector�M� C�� � � � � Cn� �
new vector�M�� n��
set vector element�M�� �� � C�� M	��

��

set vector element�M	� 	� � C	� M���
� � � �
set vector element�Mn� n� � Cn� M��

Memory is accessed and modi�ed as in a combination of the two previous models
�Figure ��� A stream to a memory cell is accessed using the KL� vector operations�
A message for reading or writing the cell is sent on the stream� and the new stream
is placed in the vector� An isomorphic structure can also be achieved using n�ary
stream distributors�

one vector
per “processor”

M

M

M

multi-way
mergers

Figure �� PRAM without AKL ports

� Examples

In the following� examples are shown� due to Barth� Nikhil� and Arvind ��	� which
exhibit the need for parallel random access functionality in a parallel programming
language� The two examples� histogramming a tree of samples and graph traversal�
exemplify basic computation structures common to many di�erent settings�

Barth� Nikhil� and Arvind contrast random access solutions with pure functional
programs� showing clearly that the former are an improvement both in terms of the
total number of computation steps and in terms of the length of the critical path �in
�maximally� parallel executions�� The compared programs can be expressed in AKL
with and without ports� respectively� Only the parallel random access solution with
ports is shown� its alternatives without ports can be expressed in many di�erent
ways�

	�� Histogramming a Tree of Samples

Given a binary tree in which the leaves contain numbers in the range �� � � � � n� count
the occurrences of each number�

In our solution� the number of occurrences are collected in a table of counters�
with indices in the given range� Assume that the memory agent de�ned in the
previous section returns a memory of this size� The program traverses the tree�

��

incrementing the counter corresponding to a number� To guarantee that all nodes
have been counted� the program performs the computation in a guard� and returns
the table upon its completion�

hist�T� M� �
memory�M���
count�T� M��
� M � M��

count�leaf�I�� M� �
� arg�I� M� C��

send�exch�K� K���� C��
count�node�L�R�� M� �

� count�L� M��
count�R� M��

	�� Graph Traversal

Given a directed graph in which the nodes contain unique identi�ers and numbers�
compute the sum of the numbers in nodes reachable from a given node� Assume
that the identi�ers are numbers in the range �� � � � � n� Any number of computations
on the same graph can be done concurrently�

In our solution� the nodes which have been traversed are marked in a separate
array� For simplicity we assume this to have the indices in the given range� whereas
a better solution would employ hashing to reduce its size� Assume that the memory
agent returns a memory of this size� A graph node is an expression of the form

node�I� K� Ns�

where I is the unique node identi�er� K is a number �to be summed�� and Ns is a list
of neighbouring nodes� �Note that cyclic structures are not a problem in the given
constraint system of rational trees��

sum�N� G� S� �
memory�M��
traverse�N� G� M� S��

traverse�node�I� K� Ns�� M� S� �
arg�I� M� C��
send�exch��� X�� C��
� X � � � S � �
� traverse list�Ns� M� S� ��

traverse list���� � S� �
� S � ��

traverse list��NjNs�� M� S� �
� traverse�N� M� S���

traverse list�N� M� S	��
S � S� � S	�

��

� Discussion

We have argued that the communication medium ports solves a number of prob�
lems with the interpretation of processes as objects� It provides e�cient many to
one communication� object identity� means for garbage collection of objects� and
opportunities for optimised compilation techniques for objects�

Ports are available in the AKL Programming System being developed at SICS�
The prototype is available without charge for research purposes� �Contact any of
the authors��

The Andorra Kernel Language �AKL� is a general combination of search�orien�
ted nondeterministic languages� such as Prolog� and the process�oriented commit�
ted�choice and concurrent constraint languages ���� ��� �	� For an introduction to
the language from this perspective� see ��	� For a formal treatment� see ��	�

In AKL interesting combinations of object�oriented and constraint solving pro�
grams are possible� partly thanks to ports� but that is the topic of another paper�

Acknowledgements

This work was in part sponsored by ESPRIT Project ���� ��PEPMA��� SICS is
a non�pro�t research foundation� sponsored by the Swedish National Board for In�
dustrial and Technical Development �NUTEK�� Asea Brown Boveri AB� Ericsson
Group� IBM Svenska AB� NobelTech Systems AB� the Swedish Defence Material
Administration �FMV�� and Swedish Telecom�

References

��	 Paul S� Barth� Rishiyur S� Nikhil� and Arvind� M�structures� extending a
parallel� non�strict� functional language with state� In Functional Programming
and Computer Architecture ���� �����

��	 T� Chikayama and Y� Kimura� Multiple reference management in at GHC�
In Proceedings of the Fourth International Conference on Logic Programming�
volume �� pages ���!��� MIT Press� �����

�	 Andrew Davison� POLKA� A Parlog Object�Oriented Language� PhD thesis�
Department of Computing� Imperial College� London� May �����

��	 Ian Foster and Will Winsborough� Copy avoidance through compile�time analy�
sis and local reuse� In Logic Programming� Proceedings of the ���� International
Symposium� San Diego� California� October ����� MIT Press�

��	 Torkel Franz"en� Logical aspects of the Andorra Kernel Language� SICS Re�
search Report R������ Swedish Institute of Computer Science� October �����

��	 J��Y� Girard� Linear logic� Theoretical Computer Science� �������!���� �����

��	 Yaron Goldberg and Ehud Shapiro� Logic programs with inheritance� In Pro�
ceedings of the International Conference on Fifth Generation Computer Systems

����� Omsha Ltd� June �����

��

��	 Sverker Janson and Seif Haridi� Programming paradigms of the Andorra Ker�
nel Language� In Logic Programming� Proceedings of the ���� International
Symposium� San Diego� California� October ����� MIT Press�

��	 Sverker Janson and Johan Montelius� Design of a sequential prototype im�
plementation of AKL� SICS research report� Swedish Institute of Computer
Science� �����

���	 Kenneth M� Kahn and Vijay A� Saraswat� Actors as a special case of concurrent
constraint programming� In Norman Meyrowitz� editor� OOPSLA�ECOOP ��	

Conference Proceedings� ACM�SIGPPLAN� �����

���	 Kenneth M� Kahn� Eric Dean Tribble� Mark S� Miller� and Daniel G� Bobrow�
Vulcan� Logical concurrent objects� In P� Shriver and P� Wegner� editors�
Research Directions in Object�Oriented Programming� MIT Press� �����

���	 Michael J� Maher� Logic semantics for a class of committed choice programs�
In Proceedings of the Fourth International Conference on Logic Programming�
MIT Press� �����

��	 Vijay A� Saraswat� Concurrent Constraint Programming Languages� PhD the�
sis� Carnegie�Mellon University� January �����

���	 Ehud Shapiro� A test for the adequacy of a language for an architecture� In
Concurrent Prolog� Collected Papers� MIT Press� �����

���	 Ehud Shapiro and Shmuel Safra� Multiway merge with constant delay in Con�
current Prolog� Journal of New Generation Computing� �������!���� �����

���	 Ehud Shapiro and Akikazu Takeuchi� Object�oriented programming in Concur�
rent Prolog� Journal of New Generation Computing� �������!��� ����

���	 Eric Dean Tribble� Mark S� Miller� Kenneth Kahn� Daniel G� Bobrow� Curtis
Abbott� and Ehud Shapiro� Channels� A generalisation of streams� In Pro�
ceedings of the Fourth International Conference on Logic Programming� MIT
Press� �����

���	 Kazunori Ueda� Guarded horn clauses� Technical Report TR���� ICOT� June
�����

���	 Kazunori Ueda and Masao Morita� A new implementation technique for at
GHC� In Proceedings of the Seventh International Conference on Logic Pro�

gramming� MIT Press� �����

���	 K� Yoshida and T� Chikayama� A
UM�a stream�based concurrent object�
oriented language� In Proceedings of FGCS�

� ICOT� Tokyo� �����

��

