
An evaluation of Penny�

a system for �ne�grain implicit parallelism

Johan Montelius and Seif Haridi

Swedish Institute of Computer Science

Box ����� S���� �� Kista� Sweden

jm� seif	sics
se

Abstract

The Penny system is an implementation of AKL� a con�
current constraint language with deep guards� on shared�
memory multiprocessors� It automatically extracts paral�
lelism in arbitrary AKL programs� No user annotations are
required nor there is any compiler support to extract par�
allelism� We give an overview of the system and present
empirical evaluation results from a set of benchmarks with
varying characteristics� The evaluation shows that it is pos�
sible to build a system that automatically exploits �ne�grain
parallelism for a wide range of programs�

� Introduction

The Penny system is an implementation of AKL� a concur�
rent constraint language with deep guards� The system has
been implemented on a high�performance shared�memory
multiprocessor and is able to outperform C implementations
of algorithms with complex dependencies without any user
annotations�

In this paper we describe a performance evaluation of
the system� Extensive measurements were done using both
smaller benchmarks as well as real�life programs� The eval�
uation uses detailed instruction�level simulation� including
cache�performance� to explain the behavior of the system�

Section � of the evaluation shows the performance of the
system for di�erent classes of benchmarks� The tests include
simple recursive� stream parallel and non�deterministic bench�
marks� The next two section show the limitations of the
system when the granularity of work decreases� In Section �
a simple recursive program is used while Section �� uses a
�ne�grain concurrent program�

Section � shows that the system can outperform a C
implementation of algorithms with complex dependencies�
Section 	 shows how the system performs when running its
own compiler� This is a real�life program that has not be
optimized for parallel execution�

We conclude that it is possible build a system that au�
tomatically exploits �ne�grain parallelism in a satisfactory
way for a wide class of programs� In order to achieve this

we have used the following design strategies

� task creation for parallel execution is demand driven�

� local scheduling of woken tasks is lazy�

� global scheduling is performed by the idle workers� and

� cache performance is always considered�

We �rst summarize the basic features of the language and
the structure of the implementation� A complete description
of the language can be found in �
� ���

��� Agents Kernel Language

An AKL program consists of a set of procedure de�nitions�
Procedures can either be in compositional de�nitional form�
or in clausal form similar to concurrent logic languages� We
describe here only the clausal form which is used in the
Penny system�

A procedure de�nition consists of a set of guarded clauses
having the same guard operator � and the same procedure
name p�n�

p�X�� � � �Xn�
� G � B�
G is called the guard of the clause� and B is the body�

The guard and body of a clause are �possibly empty� se�
quences of goals� A goal is either a constraint� a procedure
call� or an aggregate call� �set�of� bag�of� etc�� The guard op�
erator � is one of �� �� and j� and its corresponding clause
is either conditional� nondeterminate� and committed�choice
clause respectively� AKL di�ers from other existing con�
current constraint languages in that the guards may have
arbitrary procedure and aggregate calls� This leads to a
deep�guard language� having computations that may result
in a hierarchy of constraint stores� Penny implements only
constraints on rational trees with the equality constraint�
operator� Therefore we restrict our description to rational
trees�

A computation starts by an initial sequence of goals and
an empty constraint store called the main and�node� Ex�
ecuting a procedure call creates� in general� a choice�node
having as immediate children an ordered sequence of and�
nodes� one for each guard� The order of the and�nodes cor�
responds to the order of clauses of the procedure being ex�
ecuted� Variables always belong to one and�node� Initially
each variable belongs to the node where it is introduced�
Variables belonging to an and�node A are visible to all the
and�nodes in the subtree rooted at A�

When a constraint is executed it is added to the and�
node� A constraint in an and�node A on a nonlocal variable

is called a conditional constraint� A constraint is only visible
in the and�nodes in the subtree rooted at A� An and�node
may fail if the union of constraints that exist in the path
from the root node to� and including� the and�node is in�
consistent� Failed and�nodes are removed from their parent
choice�node�

Conditional constraints in an and�node that are logically
entailed by the union of constraints that exist in the path
from the root node to the current and�node are removed
from the and�node� A non�failed and�node that is fully ex�
ecuted� i�e� no calls are left in it� is a solved and�node� A
solved and�node that has no conditional constraints is an
entailed and�node�

Execution of a procedure call de�ned by a conditional
procedure proceeds by creating the corresponding choice�
node� and its and�nodes� and thereafter committing to the
leftmost entailed and�node� i�e� committing to the leftmost
entailed guard� Execution of a procedure call de�ned by
committed�choice procedure commits to an arbitrary en�
tailed and�node� i�e� to arbitrary entailed guard� In both
cases commitment merges the constraint store of the guard
with the constraint store of the parent and�node� Also the
goals in the body of the corresponding clause replaces the
choice�node in the parent and�node� the body is promoted�
Merging also implies that the variables created during guard
execution are promoted to belong to the parent and�node�

An aggregate procedure follows the same rules as a con�
ditional procedure with the exception that the promoted
body does not replace the choice�node but is added to the
left of the node� the body is collected� A collected body is
also given access to a variable where the solution can be
recorded�

Execution of a procedure call de�ned by a nondetermi�
nate procedure proceeds by creating a corresponding choice�
node� and its and�nodes� The execution commits to an and�
node only when there is a single solved and�node left� This
is called determinate promotion� Notice that there is no
requirement that the and�node should be entailed�

The execution rules described so far are the determinate

rules� When all determinate rules have been applied in a
subtree rooted at an and�node A� and no conditional con�
straints on variable above A exist in the subtree formed by
A� then the node A becomes stable�

Nondeterminate execution proceeds on a stable and�node
A by �� selecting the leftmost innermost nondeterminate
choice�node C� with a parent and�node P � and splitting it
into two choice�nodes C� with the �rst child and�node of C�
and C� with the remaining children of C� �� creating a copy
P� �clone� of P with disjoint constraint stores and disjoint
variables� C� belonging to the clone P�� and C� replacing C
in the original and�node P � Since C� holds a single and�node
it is now eligible for determinate promotion�

As can be deduced from this brief description� and�parallel�
ism corresponds to parallel executions of goals in various
and�nodes� whereas the cloning of and�nodes in a nonde�
terminate execution step introduces or�parallelism� Parallel
execution of di�erent deep guards as well as the execution
of aggregate calls� allows multiple search problems to be ex�
ecuted in parallel� This feature is novel in the AKL as well
as in the Penny system�

��� The Penny abstract machine

The Penny compiler transforms AKL programs to abstract

machine instructions� The Penny compiler is itself written
in AKL� and consists of about three thousand lines of AKL

code that can in turn be executed on Penny itself� with good
parallel performance� The emulator is relatively small since
the current abstract machine only consists of sixty�three in�
structions� Most of the instructions are register�based WAM
style instructions �����

When a program is executed� a �xed set of workers are
created� The number of workers determines the level of par�
allelism� so there is no advantage in creating more workers
than the available number of processors� Each worker is dy�
namically assigned work during an execution� If a worker
runs out of work it steals a task from another worker� This
approach has successfully been used in other system� for ex�
ample JAM and MultiLisp ��� ����

��� The execution state

During an execution the workers build and modify a shared
execution state� The execution state is a tree structure
of choice�nodes� and�nodes and continuations� The choice�
nodes and and�nodes corresponds to those of the AKL com�
putation model and represent goals that are under evalua�
tion� The continuations represent sequences of untried goals�

An and�node represents a guard computation� It holds
a mixed sequence of choice�nodes and continuations that
represents the goals of the guard� a continuation that rep�
resents the body� and a list of bindings that represents the
conditional constraints of the and�node� As conditional con�
straints are quite rare� a binding scheme that keeps these
explicitly represented works very well �����

When a nondeterministic step is performed� an and�node
is completely duplicated� No structures are shared between
the two copies so there is no need to keep track of di�er�
ent binding environments because of nondeterminism� The
binding scheme only needs to keep track of the bindings in
di�erent levels in the execution state�

��� Scheduling

Each choice�node in the execution state is either ready to be
executed or suspended on some AKL variable� In a similar
manner� an and�node can be suspended on variables external
to the node� Suspended nodes are registered on the variables
that cause the suspension� A worker that adds a new binding
to a variable also creates a wake task for each suspended
node that is to be re�scheduled�

When a continuation is executed the �rst procedure call
is selected and removed from the continuation� A continu�
ation task is then created that refers to the updated con�
tinuation� If the procedure was the last procedure in the
continuation the continuation is removed�

All tasks that were created in an and�node belongs to
the and�node and are handled before the worker leaves the
and�node� The tasks are kept in two stacks the wake stack�

and the continuation stack� Each worker has its own stacks�
When a new task is selected the continuation tasks are

given priority over the wake tasks� Tasks are also executed
fully i�e� there is no task preemption� This leads to a lazy

execution strategy where woken nodes are not scheduled for
execution as soon as feasible� but rather executed later when
a worker runs out of continuation tasks� This lazy strategy
has proved to be very stable since it increases the locality of
work available to a worker�

�The wake tasks are actually divided into tasks that refer to and�
nodes and tasks that refer to choice�nodes� these types have separate
stacks�

Selecting a new task is in the simple case very cheap� A
new continuation task is rescheduled in about the same time
as a proceed instruction in a Prolog system� A wake task
is more expensive since the worker has to install itself in the
woken and�node�

A worker that runs out of tasks can steal a task from
another worker� The busy workers are examined and a task
is stolen from the bottom of a task stack� Priority is given
to wake tasks over continuation tasks�

��� Memory management

The data structures that are used to represent the execution
state can be explicitly reclaimed by a worker� This improves
cache performance since the same cache�lines can be reused
immediately� AKL terms cannot be explicitly reclaimed and
are therefore allocated on a heap� shared between all workers�
that is subject to garbage collection�

A parallel stop�and�copy garbage collector is used� It
is important that the garbage collector is parallel since the
garbage collection time would otherwise completely domi�
nate the execution time� Not only does the parallel execu�
tion decrease the execution time but the amount of garbage
may also increase� Therefore� a sequential garbage collector
does not only increase the proportional time spent in the
collector but also increases the total time spent on garbage
collection�

The collector has a hard time keeping up with the over�
all increased performance but the garbage collection time
normally stays well below ��� even for parallel executions�

There are two sources for parallelism in the collector�
First of all the execution state is divided among the workers�
The workers are then responsible for copying their part� A
worker that runs out of work steals work from other work�
ers� If no worker has any nodes available the AKL terms
are divided into segments that can be distributed among
workers ���� This kind of parallelism is necessary since some
programs use very few nodes in the execution state with few
but very large AKL terms�

��� The target machine

Our target machine for the implementation is a SPARC�
center ���� �SC����� multiprocessors with �� processors�
The SC���� is a bus�based shared�memory multiprocessor
from Sun Microsystems�

The SC�����s processors� ��MHz Supersparcs� have a
�Kbytes direct mapped �rst level data cache with �� byte
long cache lines � The instruction cache is ��Kbytes� ��way
associative with 	� byte cache lines�

The processors connect to an o��chip cache� the second
level cache� which on the SC���� is �Mbytes� direct�mapped
with 	��byte cache lines� These caches are connected to a
bus� whereby they can communicate with the main mem�
ory and�or other caches with a peak sustainable read�write
throughput of ���Mbytes per second ����

Accessing data that resides in the �rst level cache is done
in one clock cycle� Accesses to the second level takes ��
�� cycles� whereas accessing the main memory takes ���	�
cycles� A high cache hit rate is therefore crucial for good
performance� The system has been designed in a way that
takes this into account� Data structures have been carefully
aligned to avoid false sharing� All data structures that are

�The data cache is normally ��Kbytes� four way set�associative
but on the machine we are using only one of the four sets is used�

used to represent the execution state �except AKL terms�
use one cache�line each�

The SimICS instruction level simulator has been used
to evaluate the cache performance of the system ����� The
simulator accurately simulates a multiprocessor sparc archi�
tecture and can provide valuable statistics� The read miss
�gures that are presented in this paper is the ratio between
the read operation that miss the second level cache and all
read operations�

Each worker is running as a Solaris thread directly mapp�
ed to a Solaris LWP ����� The threads share the same ad�
dress space and have full access to all data structures in the
system� this makes the distribution of tasks very easy� The
system currently runs under SunOS ��� but should not be
hard to port to other operating systems� The emulator is a
threaded code emulator implemented in C using the GNU C
compiler �version ���� where labels can be handled as data�

The execution time does not include the initialization
of the system� The clock is started when all memory areas
have been allocated� code loaded and all workers prepared to
enter the scheduler� The clock was stopped when the threads
that implement the workers terminated� All timings are wall
time� measured by the Solaris gettimeofday�� system call�

The initial value for heap and free lists were set so that
there would be no overhead for allocating new blocks dur�
ing runtime� The execution times reported contain� if not
explicitly stated� the garbage collection time�

� Performance

The Penny system is about two to three times slower than
emulated SICStus v�� This is when comparing small bench�
marks that do not use any of the special features of the
SICStus implementation nor of the Penny implementation�
This means an execution speed � of about �	�K LIPS on
a Sun sparcstation ��� Emulated SICStus v� executes at
about �	�K LIPS on the same machine�

The slower performance of the Penny system compared
to SICStus v� is mainly due to its unoptimized compiler� If
the code is hand optimized to mimic a normal Prolog com�
piler� the execution speed is about ���K LIPS� This is with�
out changing the existing instruction set� A new compiler
for a sequential AKL system shows �gures that are as good
as emulated SICStus v�� The compiler was not available
when the Penny system was constructed�

The parallel performance is harder to evaluate� It is of
course very dependent on the application� In this section
we examine the parallel performance of the system using a
benchmark suite with varying characteristics�

��� Simple recursive programs

In the �rst test we have chosen benchmarks that should
show good parallel performance� The benchmarks are simple
to analyze and should have a predictable behavior� These
benchmarks are a �rst test of the system� Good performance
is a necessary but not su�cient condition for the validation
of the system� The benchmarks are often used in the logic
programming community�

matrix� A ������� matrix of �oats multiplied by a vector�
The program spawns a sequential task of �xed size in
each recursion�

�The old naive�reverse of a thirty element list

Workers � � � �� �	 ��
matrix ��
	 ���� ���
 ���� ���� ����
hanoi ���� ���� ���� ���� ���� ����
�b ��

 ���� ���� ���� ���� ����
tak ���� ���� ���� ���� ���� ����

Table �
 Simple benchmarks� speedup

hanoi� The towers of Hanoi using �� bricks� The program
divides into two identical subtasks in each recursion�

�b� The Fibonacci function calculating �b����� The pro�
gram divides into two subtasks of di�erent size in each
recursion�

tak� The Takeushi function calculating tak���������� The
program creates four subtasks of very di�erent sizes in
each recursion�

The Fibonacci and Takeushi benchmarks are numerical
benchmarks� so they do not create any data structures other
than variables and integers� The matrix benchmark creates
lists to represent both the matrix and the vector� The hanoi
benchmark creates a list of length ����

Figure � shows the minimum and maximum execution
time of a hundred runs� As clearly seen they all behave well�
The maximum execution time is less than ��� higher than
the minimum execution time when eight workers are used�
The di�erence is signi�cantly larger �up to ���� when four�
teen workers are used but even then are remarkably stable�
When more than eighteen workers are used almost anything
can happen but the minimum execution time does still de�
crease� In the following sections only the execution time up
to eighteen workers is reported�

If we look at the speedup �gures in Table �� based on
the median execution time� we see that the system performs
very well when eight workers are used� The system then
performs slightly worse and gives a total speedup of about
thirteen to fourteen� If the minimum execution times are
compared� the �nal speedup for twenty workers are for all
benchmarks above �fteen�

Table � shows the read miss rate of the second level cache�
The matrix benchmark has a signi�cantly higher miss rate�
this probably pertains to the initial reading of the matrix�
The high miss rate for the Fibonacci and Takeushi bench�
marks initially very low but then increases when sixteen
worker are used� There are� in both benchmarks� dependen�
cies between the arithmetic operations� The dependencies
cause suspensions which in turn cause read misses� The
hanoi benchmark has the lowest miss rate� this benchmark
is completely free of dependencies that could cause suspen�
sions�

The read miss rate are for all benchmarks very low and
does not severely limit the obtained speedup� These �gures
serve as a reference when cache performance is evaluated for
the benchmarks in the following sections�

The creation of tasks is di�erent in each program� The
binary spawn� in Hanoi� is the most pro�table since it very
quickly divides the available work into equal size tasks� The
scheduler does not guarantee that the initial allocation is
perfect but the available work is rapidly balanced as workers
run out of tasks� The linear spawning of tasks in the matrix
program has a disadvantage that we investigate further in
section ��

Workers � � � �	
matrix ����� � ����� � ���	� � ����� �
hanoi ����� � ����� � ����� � ����� �
�b ����	 � ����� � ����� � ����� �
tak ����	 � ����
 � ����� � ����� �

Table �
 Simple� read cache performance

Workers � � � �� �	 ��
mastermind ��
� ���� ���� ���� ���
 ����
kkqueen ��
� ���� ���� ���� ���� ����
turtles ���� ���� ��	� ���� ���� ����
qsort ���	 ���� ��	� 	��� 	��� 	���

Table �
 Stream parallel� speedup

��� Stream parallel programs

In the stream and�parallel programs there is a �ow of infor�
mation between the goals� Goals can be executed in parallel
but there are dependencies between goals that causes goals
to suspend� The set of programs that we have chosen for
this evaluation can all be executed from left to right with�
out any suspension� i�e� they can all be executed in a Prolog
system�

The benchmarks are

mastermind� The mastermind puzzle by E� Tick� using
two guesses and three colors�

kkqueen� The candidates�non�candidates queens program
by K� Kumon�E� Tick� using
 queens�

turtles� The turtles puzzle by E� Tick using layered streams�

qsort� Quick�sort of the �rst ������ four digit numbers
extracted from the decimals of �

The benchmarks execute on one processor in between two
and four seconds� As shown in Table � the system behaves
well but not as good as for the simple recursive benchmark
in the preceding section� The most noticeable is the limited
speedup in the quick�sort and turtles benchmarks�

There is a sequential component in the quick�sort pro�
gram� Any execution must traverse the initial list once and
this can only be done sequentially� The n steps required to
partition the initial list sets a lower limit on the execution
time regardless of the number of workers� The turtles pro�
gram has no comparable sequential component that could
explain the poor speedup�

The sequential component is however not the limiting
factor in these benchmark� If this was the case the speedup
would be about twice as good� If we run the benchmarks
using SimICS we get the statistics listed in Table ��

The read cache performance is clearly worse for the quick�
sort and turtles benchmarks� When eight or sixteen workers
are used the miss rate is almost a magnitude higher than for
the mastermind benchmark� This is signi�cant and severely
limits the obtainable speedup�

Notice that the cache miss rate is not improved in a
system with explicit parallelism� The �best� annotation in
the quick�sort program would allocate the �rst worker to do
the initial partitioning while two other workers would do the
recursive sorting� This results in a high miss rate since the

100

200

300

400

600

800

1000

1400

2000

3000

4000

6000

8000

1 2 3 4 6 8 10 12 14 16 18 20

T
im

e
(m

ill
is

ec
on

ds
)

No. of workers

Simple benchmarks

matrix
hanoi

fib
tak

Figure �
 Simple recursive benchmarks

Workers � � � �	
mastermind ����� � ����
 � ����� � ���� �
kkqueen ����� � ����
 � ����� � ���� �
turtles ���� � ���
 � ���� � ��	� �
qsort ����� � ���� � ���	 � ��
� �

Table �
 Stream parallel� read cache performance

recursive sort procedures would have to read the input lists
from the cache of the �rst worker� High cache miss rate is
inherent in the stream and�parallel programs and it is not
solved by explicit allocations of goals to processors�

��� Non�deterministic programs

One of the bene�ts of AKL is that one can implement both
and� and or�parallelism� Or�parallelism can be exploited in
all situations where more than one guard of a goal is evalu�
ated� In the Penny system guards are evaluated lazily and
are only evaluated in parallel in nondeterministic programs�

Parallel execution in a nondeterministic program is either
very simple or very hard� It is very simple if all solutions
to a problem are needed� The workers can divide the work
in independent parts and do very little communication to
synchronize their activities� If only one solution is needed
the situation is much harder� If the leftmost solution is
wanted and the solution is at the far left in the search tree
two worker will not �nd the solution faster than one worker�
The second worker will only do speculative work�

In a system that is targeted to or�parallel execution the
ability to avoid doing speculative work is crucial ���� In the
Penny system very little has been done to minimize spec�
ulative work� The scheduler is in fact unaware of the fact
that some task pertain to nondeterministic executions� The

Workers � � � �� �	 ��
queens ���� ���� ���� 	��� 	��
 	���
f�queens ��
� ��	� 	�
� ��	� ���	 ����
scanner ���
 ���	 ���� 	�
� ���� 	���

Table �
 Or�parallel speedup

speedup for benchmarks where the �rst solution is wanted
can therefore vary from nil to good�

If we are looking for all solutions the speedup is more
predictable� The following benchmarks use various kinds of
programming techniques to solve puzzles�

queens An implementation of the queens puzzle ��� queens�
using a short circuiting technique� The benchmark
needs �
�� split operations�

f�queens A simple but very fast Prolog like implementation
of the queens puzzle ��� queens�� Does not make use
of concurrency to minimize the search space� Needs
����� split operations but the copied state is very
small�

scanner Finds a pattern in a grid given information of
the number of �lled squaes in each line� Uses a ad�
vanced short circuiting technique where ports are used
to communicate between processes ����� The bench�
mark needs ���	 split operations�

Table � shows the speedup given the median execution
time from �� runs� The benchmark all behave well when
using up to twelve workers� They are then stable and drop
slightly in performance when eighteen workers are used�

These �gures are with garbage collection included� if the
garbage collection is excluded the �gures become slightly

Workers � � � �� �	 ��
queens ��	� ���� ���
 ���� ���� ���	
f�queens ���� ���� ���� ���� ���� ����
scanner ���� ��
� ���� ���� ���� ����

Table 	
 Multiple nondeterminism� speedup

but not dramatically better� The speedup for the scanner
benchmark reaches a maximum of ���� if garbage collection
is omitted� Since the execution state increases in size as
more workers are added �a larger part of the search tree must
be explicitly represented� the parallel garbage collector has
a hard time keeping up with the increased performance�

For the scanner benchmark this is a sever limitation� The
garbage collection time increases from about three�hundred
milliseconds to twelve hundred milliseconds� Compared to
the total execution time this is an increment from less than
a percent to seventeen percent�

When garbage collection is performed the workers have
to traverse the whole execution state� The cache perfor�
mance of this operation is very poor� The scanner bench�
marks has a read miss rate of 	��� when eight workers are
used� The miss rate of the �rst worker� that is responsible
for dividing up the execution state� is as high as ����

��� Multiple nondeterminism

Good speedup could be expected in a program with many
smaller nondeterministic calculations� To test this the same
three benchmarks were used to solve one hundred puzzles�
selecting only the �rst solution� in parallel� Since each puzzle
is encapsulated in a guard they can be solved independently
of each other�

As shown in Table 	 the speedup is quite disappointing�
The reason for this is that the global scheduler favors wake
tasks on the expense of continuation tasks� Since the wake
tasks also are the keys to nondeterministic computations
the result is that workers collaborate in each computation
instead of selecting their own computation�

A solution to the problem would be to give priority to
tasks at the main level� This could aid the workers so that
they spread out in the execution state� It would of course
also mean that the execution state becomes larger which in
turn might hamper the garbage collector�

��� Deep programs

A Penny program can of course be arbitrary deep� Non�
deterministic programs always encapsulates a computation
inside a guard but this is not the only reason for working
with deep guards� The compiler� for example� uses �ve levels
without doing any search�

When computations are deep� the system needs to be
able to distribute tasks at arbitrary levels in the computa�
tion� Distribution of a deep task is a complex operation that
might reduce the speedup�

To test this feature the knights benchmark was used�
This is an implementation of the �touring knight� i�e� place
a chess knight in one corner of a board and jump to all
squares without touching any square twice� The benchmark
searches for all solutions ����� on a �ve times �ve board�
This benchmark behaves very well and a speedup of twelve
is reached using eighteen workers�

Workers � � � �� �	 ��
Level �
 �� ��� �	
 ��� ���
Level � ��� ��� ���� ���
 	��� 	���
Level 	 � �
 �	� ��� ��
� ����
Level
 � �
 ��� ��� ���
Level � �� � �� ��

Table �
 Stolen tasks at di�erent levels

multiply���� �� Result���
�� Result � ��	

multiply��V�Rest�� Vector� Result���
�� Result � �R�Product��

vmul�Vector� V�
� R��
multiply�Rest� Vector� Product�	

Figure �
 Matrix multiplication

Table � shows the number of tasks stolen by workers on
the di�erent levels in the execution state� The majority of
all tasks are stolen at level two� this is the level where the
di�erent solutions are collected� but a substantial amount of
tasks are collected at the third level� The collection of tasks
at the fourth and �fth level shows that there is parallelism
to exploit at all levels�

Scheduling of deep tasks adds to the complexity of the
scheduler� A system where only tasks are distributed at the
main level would be simpler to implement but would also
limit the obtainable speedup� We have chosen to implement
a scheduler that handles deep guards since the programmer
otherwise would have to be aware of the limitations in the
scheduler to get good performance�

� Granularity

The matrix multiplication benchmark creates a vector and
a matrix and then multiplies the vector and the matrix�
The de�nition of the multiplier is shown in Figure �� A
worker that executes the multiply�� de�nition creates a
continuation task in each call of vmul��� The continuation
task is the key to the parallelization of the process�

To investigate how the granularity of tasks can change
the performance� four benchmarks were executed� The bench�
marks multiplied a matrix of size M � N with a vector of
length N � The product M �N is equal for all benchmarks
so the number of �oating point operations is equal in all
benchmarks�

The median execution time of one hundred runs is shown
in Figure �� There are four important observations that can
be made

� the execution time using one worker is almost identical
for all benchmarks�

� the execution time using two workers is signi�cantly
di�erent�

� the speedup from two to six workers is almost constant�
and

� a sharp knee is reached when using 	� �� and �� work�
ers�

100

120

140

160
180
200

250

300

400

500

600

800

1000

1200

1400

1 2 3 4 6 8 10 12 14 16 18

T
im

e
m

se
c(

M
ed

ia
n

R
un

tim
e)

No. of workers

Consumed time ()

4800x20
2400x40
1200x80
600x160

Figure �
 Matrix multiplication

Benchmark N T� C V

�

x�
 �� ���� �	 ���	
�

x

 �� ���� �
 ����
��

x�
 �� ��	� �� ����
�

x��
 �	� ���� � ����

Table �
 Time to do one vector multiplication in milliseconds

The explanation to this is to �nd in number of scheduling
operations and the size of the tasks�

��� Initial overhead

Given the time to create the initial matrix and vector C�
and the total execution time using one worker T�� the time
to do one vector multiplication can be calculated� Table
� shows the measured time C and calculated time V for
one vector operation� for each benchmark� The time C� to
create the matrix and vector� is almost directly proportional
to M � �N � since the same vector is used for all rows in
the matrix� i�e only one vector is actually created for the
matrix� The calculated time V is as expected almost directly
proportional to N � the number of columns�

We then investigate the execution time when using two�
three� four and six workers� Table
 shows the total overhead
OW when more than one worker is used� The overhead is
calculated as

OW � TW � �T��W �

where TW is the median execution time using W workers�
The �gure for the �rst benchmark using six workers has been
omitted since it is a�ected by limitations explained in the
following section�

Since the overhead is partly induced by the scheduling
operations it should be possible to describe it as a function

Workers O� O� O� O�

�

x�
 ��� ��� �	�
�

x

 ���
� �
 ��
��

x�
 		 �� �� ��
�

x�
 �� �� �� ��

Table

 Matrix multiplication� overhead compared to ideal

Workers � � � 	
SW ����� ���� ���� ����
BW �� �� �� 	

Table ��
 Matrix multiplication� scheduling overhead

of the number of rows executed by each worker�

OW � �M�W �SW �BW

Given the samples of OW in Table
 we can estimate the
values of the constants SW and BW � If we omit the six�
worker �gure for the �rst benchmark� we get a perfect �����
correlation using the values shown in Table ���

We know that the structure of the matrix benchmark in�
duces a scheduling operation for each of the M rows in the
matrix� When one worker is used this is a local operation
but when several workers are used a global scheduling oper�
ation is performed� This global scheduling operation takes
SW milliseconds� The calculated value of SW increases as
the number of workers increase� This is natural since the
searching for a task in the scheduler is more complicated as
the number of workers increase� The equation

SW � �����W � �����

correlates exactly to the obtained values�
The scheduling overhead when two workers are used is

thus ���� milliseconds but increases with ����� milliseconds
for each worker that is added� The total execution time is
given by

TW � �T��W � � �M�W �������W � ������ �BW

where the value of BW is found in Table ���
Apart from the �gure BW we have a perfect description

of the overhead when up to six workers are used for all but
the �rst benchmark� The �rst benchmark is limited by other
factors when six workers are used� The parameter BW is
complex to analyze since it is related to how the matrix is
created� initial cost of running in parallel etc� The parameter
constitute less than two percent of the execution time�

Even if we have successfully understood the di�erence in
execution time when two to six workers are used there is still
one question that is unanswered� Why does the execution
time level�out� and why does it level�out at di�erent levels�

��� The limiting factor

It is the scheduling overhead that explains the initial di�er�
ence between the benchmarks but it does not explain the
di�erence in minimal execution time� To explain this we
have to understand the scheduling operation in detail�

When a worker executes the vmul�� procedure call it
also adds a continuation task on its own stack� This task is
referring to the recursive multiply�� procedure call and is
the key to the rest of the multiplication� A worker that steals
the task has to initiate the call to the vector multiplier for
the next row before a new continuation task is produced�
This continuation can then be stolen by another worker�
Observe that there is a single continuation task in the whole
system that is moving around� The time duration between
the two steal operations in the system is called the turn�
around time D� The turn�around time D and the time to
multiply one vector V � shown in Table � sets a limit on
how many workers that can productively take part in the
execution to be roughly d�V �D��De� If more workers are
allocated they will only wait for the continuation task to be
passed around�

If we divide the obtained minimal execution time �as
shown in Figure �� with the number of rows in the matrix�
we get an estimate of the turn�around time for the given
benchmarks to be ������ ���
� ����� ���
� respectively� The
�gure for the last benchmark is overestimated since we did
not reach the limit of the system with the available twenty
processors� Following the reasoning in the previous para�
graph we see that the useful number of workers to perform
the benchmark increases as the granularity increases�

The smallest granularity of work that is pro�table to use
is thus depending on the number of workers that should
productively take part in the execution� In a two proces�
sor system the granularity can be small whereas a twenty
processor system need larger granularity to keep the work�
ers busy� This is of course only applicable if the tasks are
scheduled sequentially�

��� Remedy

In building the system it is clear that the scheduling over�
head must be as low as possible however it is also possible
to rewrite programs to generate larger task� For other tech�
niques to transform sequential programs see the articles by
Debray and Jain �	� and Hermenegildo and Carro ����

cell�
� State� Last� This� �� �� �� �� �� �� �� ����
�� Last � State�

This � ��	
cell�G� State� Last� This�

�NW�NWr�� �N�Nr�� �NE�NEr��
�W �Wr�� �E �Er��
�SW�SWr�� �S�Sr���SE�SEr�� ��

�� G� is G�� �
T is NW�N�N�W�E�SW�S�SE�
change�State� T� New��
This � �New�Rest��
cell�G�� New� Last� Rest�

NWr� Nr� NEr�
Wr� Er�
SWr� Sr� SEr�	

Figure �
 A cell in life

The basic problem we faced was generally due to the
bottleneck in producing global tasks to get workers busy�
The Penny system will not magically be able to reduce this
bottleneck for the matrix program� However a small change
to the program does the trick� If we represent the matrix
as a tree instead of a list we can write the following matrix
multiplier�

m�multiply�v�V
�� V�� R
� R���
�� R
 � �V�R��

v�multiply�V
� V�� V�	
m�multiply�m�ML�MR�� V� R
� R���

�� m�multiply�ML� V� R
� R���
m�multiply�MR� V� R�� R�	

Written in this way the system has no di�culties in ob�
taining good speedup even for matrices with small rows�

� Communicating processes

The benchmark that we examine in this section is extreme
in the ratio of communication over calculation� This means
that the dominating factor of the execution time does not
originate from the instruction decoding but rather from the
suspension and scheduling mechanism�

In the �game of life� benchmark each cell in the grid is
implemented by an AKL process� The grid has the shape
of a toroid so there are no borders that have to be treated
specially� The program consists of two parts
 the building
of the toroid and the communication between cells� The
building phase only takes about �� of the execution time
and shows in itself good speedup� The building phase is
of course executed in parallel with the computation of the
�rst generation� Each cell is implemented by the cell���
process listed in Figure �� The �rst argument is the number
of generations� the second and third are the current and
�nal state� the fourth the outgoing stream of the history
cell state and the remaining arguments are the incoming
streams from the neighbors� The process suspends� waiting
for information from all of its neighbors� and then calculate
its own next state�

The smallest benchmark uses a toroid of size ����� and
computes �� generations� In the larger benchmarks either

Workers � � � �� �	 ��
�
 	
x	
 ��
� ���� ��		 ���� ��	
 ��	�
�
 �
x�
 ��
	 ���� ���� ���� ���� ��	

�
 ��
x��
 ��
� ���
 ���� ��	� ���� ��	�

 	
x	
 ��
� ���� ���� ���� ���� ����
��
 	
x	
 ���
 ���� 	��� ��
�
���
��

Table ��
 Speedup �excluding gc� for the game of life

Workers � � � �	
�
 	
x	
 �� ��	 ��� ���
�
 �
x�
 �	 	�� ��� ���
�
 ��
x��
 �� 	�� ��� ��

 	
x	
 �� �� �� ���
��
 	
x	
 ��� �� �	 ��

Table ��
 Ratio of executed�stolen tasks

the toroid or the number of generations is increased� The
execution time is directly proportional to the number of gen�
erations and the size of the toroid� Garbage collection was
invoked only in the two largest benchmarks and constituted
only one percent of the total runtime�

Table �� shows the speedup� based on the median execu�
tion time excluding garbage collection time� of twenty runs�
As clearly seen the speedup is not very good� except for the
two last benchmarks�

��� Stolen tasks

The reason for the nonlinear speedup is partly to be found in
the ratio between the number of executed and stolen tasks�
When one worker is used each cell is in average suspended on
four of its neighbors� Since in average four of the neighbors
have already calculated their generation only four neighbors
remain� This means that in average four wake tasks have
to be handled before the next generation can be computed�
The tasks are however not identical� the �rst three tasks
only remove a constraint whereas the fourth wakes and ex�
ecutes the suspended and�node� produces new wake tasks
and suspends the goal of the next generation� As the num�
ber of workers increase the number executed tasks decrease
but only marginally�

The time to handle one task is in average ���� millisec�
onds� If there is a ��� millisecond penalty to steal a task it
is of course crucial that more than one task gets executed�
Table �� lists the number of executed tasks per stolen task
during the execution for di�erent numbers of workers� The
ratio correlates well to the obtained speedup�

��� Cache performance

Running the benchmarks in SimICS gives very interesting
�gures on the read miss rate shown in Table ��� The miss
rate increases as expected when the number of workers grow�
The �nal miss rates of the ��� x ��� benchmarks are very
high� The �gures are higher than for the quick�sort bench�
mark and more than twice the miss rate of the turtles bench�
mark�

It is also interesting to notice that the miss rate is better
for the benchmarks with larger grid� This indicates that
the workers spread in the grid and the larger grid reduces

Workers � � � �	
�
 	
x	
 ���� � ���� � ��
� � ���
 �
�
 �
x�
 ���� � ���� � ���� � ��
� �
�
 ��
x��
 ���� � ���� � ���� � ��	� �

 	
x	
 ���� � ���
 � ���� � ���	 �
��
 	
x	
 ���� � ��		 � ��

 � ���� �

Table ��
 Life� read cache performance

the con�icts� Notice that the miss rate actually decreases in
the ��� ���x���� benchmark when going from two to four
workers� This could be a consequence of having more cache
memory in total when running on four processors�

How signi�cant is the cache performance� The total
number of read operations in the ��	� ��x��� benchmark
when using two workers is about ��� million� When sixteen
workers are used the total is also ��� million� the extra num�
ber of workers do not increase the number of read operations�
The nonlinear speedup could of course be explained by an
unbalance in the distribution of work but apart from the
�rst worker that performs some extra work during garbage
collection� the workers all perform �� million read opera�
tion and di�er only by �� thousand operations� The �rst
worker performs ���
 million operations� only 	� more op�
erations than the worker with the lowest read count� The
work is thus extremely balanced and there is no overhead
in the number of operations that can explain the nonlinear
speedup�

In earlier experiments we have found a correlation be�
tween the execution time and the number of read opera�
tions� The following equation has a ��
	 correlation to the
obtained execution time

��� � Reads � ���� � Read�missesL� � �� � Read�missesL�

We know from that about ��� of all read operations misses
the �rst level cache� If we insert the �gures for the ��	�
��x��� benchmark using sixteen workers� we get the �gure
�	�� milliseconds where the actual execution time is� in�
cluding garbage collection� ���
 milliseconds� If we assume
a second level read miss rate of ������ which is the miss
rate when running on one worker� we get an estimated ex�
ecution time of ���� milliseconds i�e� a speedup of thirteen
instead of seven� The cache miss rate is thus for the ���x���
benchmarks a limiting factor�

In an experiment with a ��	� ���x���� benchmark the
ratio of executed to stolen tasks was �� when sixteen work�
ers were used� The speedup� excluding garbage� collection
was ����� The execution time for one worker was about ��
minutes� Running this benchmark in SimICS would take
about a �� hours�

� Competing with C

We have shown that the parallel performance of the Penny
system is very good but that the limiting factor is often the
cache performance� How will a optimized Penny system per�
form� We know that we can double the initial performance
of the system with a better compiler and a native code com�
piler will double that �gure again� When the performance
increase the number of read operations might be concen�
trated in time and limit the performance even further� Will

Workers � � � 	 � �	 ��
����	� ���	 ���	
�
 	�� �
	 ��� ��	
�
��
 ��	� ���� ��	 �
	 ��
 ��	 ��

������ ���� �			 ��� �
� ��	 ��	 ���

���� ���	 �	�� �	� 	�� ��� ��� �
�
����� ���� ����
�� 	�� ��� ��� ���

Table ��
 Smith�Waterman� execution time in milliseconds

the cache performance stop us from executing at the speed
of C�

To test this we selected a benchmark that originates from
a practical problem� The Smith�Waterman algorithm ��	�
computes a value that is a measurement of how good two
DNA sequences align� It can be visualized as calculating the
value in the lower right corner of a matrix where each ele�
ment is depending on its west� north�west and north neigh�
bors� The uppermost row is given by one sequence and the
leftmost column by the other sequence� The execution ob�
viously has to begin in the upper left corner and can then
proceed towards the lower right corner�

The program was originally written in Prolog and only
small changes were needed to make it run in parallel in the
Penny system� The original problem was to match one se�
quence of size �� to each of one hundred sequences of equal
size and to select the best� The parallelism was obvious since
the matching operation are independent� In the Penny ver�
sion not only the independent matches can be calculated in
parallel but the matching procedure itself is used to extract
parallelism�

To mimic the e�ect of a optimized Penny system the
arithmetic operation that calculates the value of a position
was implemented as a built�in� In order to do this a new data
type was needed� This was easily done with the generic ob�
ject interface� The new data type holds four integers and is
used to represent the value of a position� Only four builtin
operations were de�ned
 a recognizer� a constructor� a selec�
tor and the arithmetic function� The resulting program is
about six times faster than the pure Penny program faster
than SICStus v� native code�

Table �� shows the execution time of the program for dif�
ferent data sets N�M where N is the number of sequences
in the database and M the length of the sequences� Since
the algorithm is quadratic we have reduced the number of
sequences with four as the length is doubled� The bench�
marks performs very well for all values of N and M� The
best speedup is reached in the 	��	� benchmark where the
�nal speedup is thirteen�

The limited speedup in the ��	��� benchmark could be
a result of several workers that compete inside one compu�
tation instead of selecting there own sequences�

The execution time for a well written C program com�
piled with gcc 	O� is shown in table ��� The increasing
numbers for the C program can only be explained with a
decreased cache performance� As the sequences grow larger
the data structures do not �t into the cache� This is veri�ed
by running the C program in SimICS� the cache miss rate
grows from ����� to ����� This is a penalty that is taken
by the Penny system in almost all benchmarks�

The Penny program executes at about the same speed
as the C program when three to six workers are used� The
�nal execution time for the 	� � 	� benchmark is ��
 mil�
liseconds which is ��� times better than the C program� The

Benchmark �	���� 	��	� �	���� ����	 �����
C ms�� �
� 	�� 	�� ��� ����
Penny ms�� ��	 ��
 ��� �
� ���
C�Penny � ��� ��� ��� ��� ���

Table ��
 Smith�Waterman� C vs� Penny using �� proces�
sors

Workers � � � 	 �� �	

including output
time �s�� ���� ���	 ���� ���� ���� ���

speedup� � ��� ��� ��� ��� ���

excluding output
time �s� �
��
��� ���� ��
� ��
� ����
speedup� � ��� ��� ��
 ��
 ���

Table �	
 The compiler compiling itself

� � ��� benchmarks is almost four times faster then the C
program� The cache performance did not severely limit the
performance even though we optimized the Penny program
to mimic a native code compiler�

� The compiler

The Penny compiler can of course be executed in the Penny
system itself� It consists of about �	� de�nitions using ����
clauses� all in all about ���� lines of AKL code including
parser and output routines� It compiles itself in about thirty
seconds using one worker� The parallel performance is ini�
tially very good but then levels out at about thirteen sec�
onds when six workers are used� A total speedup of little
more than two is of course nothing to be proud of � what is
happening�

If we look at the number of stolen tasks and the average
execution time for each stolen task the �gures do not indi�
cate that the number of scheduling operations would cause
a problem� The scheduling operations are quite few and the
average execution time for each stolen task is quite high�
The average idle time is however very high� This indicates
that the workers have a hard time �nding available work�

The amount of parallelism during the execution is how�
ever not constant� In Figure � the average number of work�
ers that are actually busy �in each ��� ms� intervals� during
the execution is shown for three runs with �� � and 	 work�
ers� As clearly seen the parallelism is very high in the initial
phase of the execution but after a couple of second only one
worker is active�

The reason is found in the output procedure� This pro�
cedure is completely sequential and cannot be parallelized�
Moreover the output routine is very poorly optimized� it is
coded in AKL down to the output of atoms� strings and in�
dividual characters� When the output routine is excluded
the execution time and speedup is� as shown in Table �	�
improved�

Given the �gures with the output routine excluded we
see that the routine was responsible for eleven seconds of
the total execution time� Given that this sets a limit on
the minimal execution time it is not that bad when the ac�
tual minimal execution time is ����� It does however not
explain why the minimal execution time is not reached al�

0

1

2

3

4

5

6

7

8

0 2000 4000 6000 8000 10000 12000 14000 16000 18000 20000

N
um

be
r

of
 b

us
y

w
or

ke
rs

Execution time ms

500 ms intervals

2 workers
4 workers
6 workers

Figure �
 Number of busy workers during an execution

ready when three workers are used� If two workers can do
the actual compilation in less than ten seconds �the �rst def�
inition is compiled in a couple of milliseconds� there is no
reason why the output routine should not be completed by
a third worker in much the same time�

The output routine must� to minimize the execution time
be scheduled as soon as data is available� The scheduler has
of course no knowledge of this and schedules work that is not
critical i�e� the compilation� All workers could be assigned
to do the compilation while no one is scheduled to the output
routine�

We are actually lucky that the output routine is sched�
uled at all� since the compilation phase can keep six workers
busy� In a six worker run� all six workers could be assigned
to the compilation and only when this work was exhausted
would the output routine be scheduled� This would mean
that the six worker run would complete the whole execu�
tion in ��
 � ���� � ���
 seconds instead of the actual ����
seconds�

The good thing is that the output routine is in practice
scheduled� The bad things is that if it was not� there would
be very little we could do about it� By making parallelism
transparent to the programmer we have also removed all
possibilities to control it� This is a big drawback if one sees
the system as a parallel programming language�

	 The enterprise

The Penny system was developed on a SPARCcenter�����
A machine that has been a good representative for mod�
ern cache�based shared�memory architecture� This changed
last year when Sun released their Enterprise series of Ul�
tra based machines� The �	�MHz UltraSPARC processor
is about three times faster than the ��MHz SuperSPARC
processor that are found in the SPARCcenter����� The
question is how this a�ects the cache performance of the
system� We have shown that cache performance can be one

Workers � � �
matrix ��
� ��		 ���	
hanoi ���� ���	 ��
�
�b ���� ��
� ����
tak ��
� ��	� ����
mastermind ���
 ���
 ����
kqueens ��
� ���� ����
turtles ��
� ���
 	���
qsort ��
� ���� 	���
��
 	
x	
 ��
� ���� 	���
����� ���� ���� 	��

Table ��
 Speedup on Enterprise �	� MHz

of the limiting factors and faster processors can make the
situation even worse�

Preliminary results show that the Penny system performs
even better on the Enterprise� Table � show the speedup
based on the median execution time of eleven runs� The
same Penny binary was used� no changes were made for the
UltraSPARC 	�bit architecture� One possible reason for the
improved �gures is that the buss architecture on the Enter�
prise is more than three times better than the bus archi�
tecture on the SPARCcenter� The reason for the limited
performance of the SPARCcenter could be an indication
on that the bus is saturated� The bus architecture on the
Enterprise is much better and this seams not to be problem�

 Conclusions

An implicit parallel system relieves the programmer from
the burden of explicitly having to deal with parallelism� On
the other hand the programmer has little control over the
parallel execution� In a �ne�grain system the overhead for

managing the parallelism can become larger than the gain
of running on more processors� If this is the case there is
little the programmer can do about it�

The limiting factor in a program is �rst of all sequential
threads that can not be broken up into smaller task� The
limit in speedup is then just a consequence of Amdahl�s
law� Although there are no control primitives in the Penny
system it manages to extract the parallelism but there are of
course no guarantees that system �nds the optimal solution�
It is however not easy even in an explicit parallel system to
obtain the best possible speedup�

In programs that divide up into more or less independent
parts there is little gain in doing an explicit allocations of
goals to processors� The Penny system does a very good job
in managing the tasks� The stream and�parallel programs
are mainly limited by their cache performance and this is
not solved by explicit allocation or granularity control�

Implicit parallelism also works well in programs with
very �ne�grain tasks� The scheduling overhead is about
��� milliseconds and this does set a limit on the obtain�
able speedup but even a program with a task size of ���	
millisecond shows a speedup of ��� on six processors� A se�
quential thread in the scheduling operation is a more serious
threat� The turn�around time between two scheduling op�
erations limits both the execution time and the number of
workers that can productively take part in an execution�

Our conclusion is that implicit parallelism works very
well but good cache performance can not be overestimated�
In a parallel system it is vital that miss rate of the second
level cache is kept to a minimum� The Penny system has
been designed with cache performance in consideration� All
structures that are used in the execution state use their own
cache lines to avoid false sharing� Since the AKL terms are
use in a program to communicate between AKL processes
they are often produced by one worker and later read by
another worker� It is therefore very hard to minimize this
source of cache misses�

Acknowledgments The parallel implementation of AKL has
been developed using the AGENTS ��� ���� system as a
starting point� Haruyasu Ueda did much of the implementa�
tion and analysis of the scheduler� Galal Atlam and Khayri
Ali� designed and implemented the garbage collector ����

Thanks to Peter Fritzson at Link!oping University for ac�
cess to a ���processor SC���� for the Penny timings�

Various parts of this work have been sponsored the Eu�
ropean Commission in the ACCLAIM Esprit project� EP
��
� and SICS�

References

��� Ali� K� A� M� A parallel copying garbage collection
scheme for shared�memory multiprocessors� New Gen�
eration Computing ��� � �December �

���

��� Ali� K� A� M�� and Karlsson� R� The MUSE or�
parallel Prolog model and its performance� In North

American Conference on Logic Programming �October
�

��� MIT Press�

��� Atlam� G� A� M� A� Parallel Garbage Collection in a

Multiprocessors Implementation of a Concurrent Con�
straint Programming System� Phd thesis� Menou�a Uni�
versity� Egypt� Jan� �

��

��� Catanzaro� B� Multiprocessor System Architecture�
SunSoft Press� �

��

��� Crammond� J� Implementation of Committed Choice
Logic Languages on Shared Memory Multiprocessors�
Phd thesis� Heriot�Watt University� �
���

�	� Debray� S�� and Jain� M� A simple program trans�
formation for parallelism� In Proceedings of the ����
International Logic Programming Symposium �Ithaca�
�

��� M� Bruynooghe� Ed�� ALP� MIT Press�

��� Fanz�en� T�� Hairidi� S�� and Jansson� S� An
overview of AKL� In ELP��� Extensions of Logic Pro�
gramming ��

��� no� �
	 in LNAI� Springer�Verlag�

��� Hermenegildo� M�� and Carro� M� Relating data�
parallelism and �and�� parallelism in logic programs� In
Lecture Notes in Computer Science� ��� �August �

���
Springer�Verlag� pp� �� ���

�
� Janson� S� AKL
 A multiparadigm programming lan�
guage� Uppsala Thesis in Computing Science �
� SICS
Dissertation Series ��� Uppsala University� SICS� �

��

���� Janson� S�� and Montelius� J� The design of the
AKL�PS ��� prototype implementation of the An�
dorra Kernel Language� ESPRIT deliverable� EP ����
�PEPMA�� Swedish Institute of Computer Science�
�

��

���� Janson� S�� Montelius� J�� and Haridi� S� Ports

for Objects in Concurrent Logic Programs� MIT Press�
�

�� ch� �� pp� ��� ����

���� Lewis� B�� and Berg� D� J� Threads Primer� SunSoft
Press� �

	�

���� Magnusson� P�� and Werner� B� E�cient Memory
Simulation in SimICS� In Proceedings of the 	
th An�

nual Simulation Symposium ��

���

���� Mohr� E�� Kranz� D�� and Halstead� R� Lazy task
creation
 A technique for increasing the granularity of
parallel programs� IEEE Transactions on Parallel and

Distributed Systems �
���

���� Montelius� J�� and Ali� K� A� M� An and�or�parallel
implementation of AKL� New Generation Computing

��� � �December �

���

��	� Smith� T� F�� and Waterman� M� S� Identi�cation of
common molecular subsequences� Journal of Molecular
Biology ��� ��
���� �
� �
��

���� Warren� D� H� D� An abstract Prolog instruction set�
Tech� Rep� ��
� SRI International� �
���

