An evaluation of Penny:

a system for fine-grain implicit parallelism

Johan Montelius and Seif Haridi
Swedish Institute of Computer Science
Box 1263, 5-164 28 Kista, Sweden
jm, seif@sics.se

Abstract

The Penny system is an implementation of AKL, a con-
current constraint language with deep guards, on shared-
memory multiprocessors. [t automatically extracts paral-
lelism in arbitrary AKL programs. No user annotations are
required nor there is any compiler support to extract par-
allelism. We give an overview of the system and present
empirical evaluation results from a set of benchmarks with
varying characteristics. The evaluation shows that it is pos-
sible to build a system that automatically exploits fine-grain
parallelism for a wide range of programs.

1 Introduction

The Penny system is an implementation of AKL, a concur-
rent constraint language with deep guards. The system has
been implemented on a high-performance shared-memory
multiprocessor and is able to outperform C implementations
of algorithms with complex dependencies without any user
annotations.

In this paper we describe a performance evaluation of
the system. Extensive measurements were done using both
smaller benchmarks as well as real-life programs. The eval-
uation uses detailed instruction-level simulation, including
cache-performance, to explain the behavior of the system.

Section 2 of the evaluation shows the performance of the
system for different classes of benchmarks. The tests include
simple recursive, stream parallel and non-deterministic bench-
marks. The next two section show the limitations of the
system when the granularity of work decreases. In Section 3
a simple recursive program is used while Section 77 uses a
fine-grain concurrent program.

Section 5 shows that the system can outperform a C
implementation of algorithms with complex dependencies.
Section 6 shows how the system performs when running its
own compiler. This is a real-life program that has not be
optimized for parallel execution.

We conclude that it is possible build a system that au-
tomatically exploits fine-grain parallelism in a satisfactory
way for a wide class of programs. In order to achieve this

we have used the following design strategies:
e task creation for parallel execution is demand driven;
o local scheduling of woken tasks is lazy;
e global scheduling is performed by the idle workers; and
e cache performance is always considered.

We first summarize the basic features of the language and
the structure of the implementation. A complete description
of the language can be found in [9, 7].

1.1 Agents Kernel Language

An AKL program consists of a set of procedure definitions.
Procedures can either be in compositional definitional form,
or in clausal form similar to concurrent logic languages. We
describe here only the clausal form which is used in the
Penny system.

A procedure definition consists of a set of guarded clauses
having the same guard operator % and the same procedure
name p/n.

p(X1, ... Xn) -G % B.

G is called the guard of the clause, and B is the body.
The guard and body of a clause are (possibly empty) se-
quences of goals. A goal is either a constraint, a procedure
call, or an aggregate call, (set-of, bag-of, etc). The guard op-
erator % is one of —, 7, and |, and its corresponding clause
is either conditional, nondeterminate, and committed-choice
clause respectively. AKL differs from other existing con-
current constraint languages in that the guards may have
arbitrary procedure and aggregate calls. This leads to a
deep-guard language, having computations that may result
in a hierarchy of constraint stores. Penny implements only
constraints on rational trees with the equality constraint-
operator. Therefore we restrict our description to rational
trees.

A computation starts by an initial sequence of goals and
an empty constraint store called the main and-node. Ex-
ecuting a procedure call creates, in general, a choice-node
having as immediate children an ordered sequence of and-
nodes, one for each guard. The order of the and-nodes cor-
responds to the order of clauses of the procedure being ex-
ecuted. Variables always belong to one and-node. Initially
each variable belongs to the node where it is introduced.
Variables belonging to an and-node A are visible to all the
and-nodes in the subtree rooted at A.

When a constraint is executed it is added to the and-
node. A constraint in an and-node A on a nonlocal variable

is called a conditional constraint. A constraint is only visible
in the and-nodes in the subtree rooted at A. An and-node
may fail if the union of constraints that exist in the path
from the root node to, and including, the and-node is in-
consistent. Failed and-nodes are removed from their parent
choice-node.

Conditional constraints in an and-node that are logically
entailed by the union of constraints that exist in the path
from the root node to the current and-node are removed
from the and-node. A non-failed and-node that is fully ex-
ecuted, i.e. no calls are left in it, is a solved and-node. A
solved and-node that has no conditional constraints is an
entailed and-node.

Execution of a procedure call defined by a conditional
procedure proceeds by creating the corresponding choice-
node, and its and-nodes, and thereafter committing to the
leftmost entailed and-node, i.e. committing to the leftmost
entailed guard. Execution of a procedure call defined by
committed-choice procedure commits to an arbitrary en-
tailed and-node, i.e. to arbitrary entailed guard. In both
cases commitment merges the constraint store of the guard
with the constraint store of the parent and-node. Also the
goals in the body of the corresponding clause replaces the
choice-node in the parent and-node; the body is promoted.
Merging also implies that the variables created during guard
execution are promoted to belong to the parent and-node.

An aggregate procedure follows the same rules as a con-
ditional procedure with the exception that the promoted
body does not replace the choice-node but is added to the
left of the node; the body is collected. A collected body is
also given access to a variable where the solution can be
recorded.

Execution of a procedure call defined by a nondetermi-
nate procedure proceeds by creating a corresponding choice-
node, and its and-nodes. The execution commits to an and-
node only when there is a single solved and-node left. This
is called determinate promotion. Notice that there is no
requirement that the and-node should be entailed.

The execution rules described so far are the determinate
rules. When all determinate rules have been applied in a
subtree rooted at an and-node A, and no conditional con-
straints on variable above A exist in the subtree formed by
A, then the node A becomes stable.

Nondeterminate execution proceeds on a stable and-node
A by 1) selecting the leftmost innermost nondeterminate
choice-node €| with a parent and-node P, and splitting it
into two choice-nodes C'1 with the first child and-node of C,
and C2 with the remaining children of C; 2) creating a copy
P1 (clone) of P with disjoint constraint stores and disjoint
variables, C'1 belonging to the clone P1, and C2 replacing C'
in the original and-node P. Since C'1 holds a single and-node
it is now eligible for determinate promotion.

As can be deduced from this brief description, and-parallel-
ism corresponds to parallel executions of goals in various
and-nodes, whereas the cloning of and-nodes in a nonde-
terminate execution step introduces or-parallelism. Parallel
execution of different deep guards as well as the execution
of aggregate calls, allows multiple search problems to be ex-
ecuted in parallel. This feature is novel in the AKL as well
as in the Penny system.

1.2 The Penny abstract machine

The Penny compiler transforms AKL programs to abstract
machine instructions. The Penny compiler is itself written
in AKL, and consists of about three thousand lines of AKL

code that can in turn be executed on Penny itself, with good
parallel performance. The emulator is relatively small since
the current abstract machine only consists of sixty-three in-
structions. Most of the instructions are register-based WAM
style instructions [17].

When a program is executed, a fixed set of workers are
created. The number of workers determines the level of par-
allelism, so there is no advantage in creating more workers
than the available number of processors. Each worker is dy-
namically assigned work during an execution. If a worker
runs out of work it steals a task from another worker. This
approach has successfully been used in other system, for ex-
ample JAM and MultiLisp [5, 14].

1.3 The execution state

During an execution the workers build and modify a shared
execution state. The execution state is a tree structure
of choice-nodes, and-nodes and continuations. The choice-
nodes and and-nodes corresponds to those of the AKL com-
putation model and represent goals that are under evalua-
tion. The continuations represent sequences of untried goals.

An and-node represents a guard computation. It holds
a mixed sequence of choice-nodes and continuations that
represents the goals of the guard, a continuation that rep-
resents the body, and a list of bindings that represents the
conditional constraints of the and-node. As conditional con-
straints are quite rare, a binding scheme that keeps these
explicitly represented works very well [15].

When a nondeterministic step is performed, an and-node
is completely duplicated. No structures are shared between
the two copies so there is no need to keep track of differ-
ent binding environments because of nondeterminism. The
binding scheme only needs to keep track of the bindings in
different levels in the execution state.

1.4 Scheduling

Each choice-node in the execution state is either ready to be
executed or suspended on some AKL variable. In a similar
manner, an and-node can be suspended on variables external
to the node. Suspended nodes are registered on the variables
that cause the suspension. A worker that adds a new binding
to a variable also creates a wake task for each suspended
node that is to be re-scheduled.

When a continuation is executed the first procedure call
is selected and removed from the continuation. A continu-
ation task is then created that refers to the updated con-
tinuation. If the procedure was the last procedure in the
continuation the continuation is removed.

All tasks that were created in an and-node belongs to
the and-node and are handled before the worker leaves the
and-node. The tasks are kept in two stacks the wake stack'
and the continuation stack. Each worker has its own stacks.

When a new task is selected the continuation tasks are
given priority over the wake tasks. Tasks are also executed
fully i.e. there is no task preemption. This leads to a lazy
execution strategy where woken nodes are not scheduled for
execution as soon as feasible, but rather executed later when
a worker runs out of continuation tasks. This lazy strategy
has proved to be very stable since it increases the locality of
work available to a worker.

1The wake tasks are actually divided into tasks that refer to and-
nodes and tasks that refer to choice-nodes, these types have separate
stacks.

Selecting a new task is in the simple case very cheap. A
new continuation task is rescheduled in about the same time
as a proceed instruction in a Prolog system. A wake task
is more expensive since the worker has to installitself in the
woken and-node.

A worker that runs out of tasks can steal a task from
another worker. The busy workers are examined and a task
is stolen from the bottom of a task stack. Priority is given
to wake tasks over continuation tasks.

1.5 Memory management

The data structures that are used to represent the execution
state can be explicitly reclaimed by a worker. This improves
cache performance since the same cache-lines can be reused
immediately. AKL terms cannot be explicitly reclaimed and
are therefore allocated on a heap, shared between all workers,
that is subject to garbage collection.

A parallel stop-and-copy garbage collector is used. It
is important that the garbage collector is parallel since the
garbage collection time would otherwise completely domi-
nate the execution time. Not only does the parallel execu-
tion decrease the execution time but the amount of garbage
may also increase. Therefore, a sequential garbage collector
does not only increase the proportional time spent in the
collector but also increases the total time spent on garbage
collection.

The collector has a hard time keeping up with the over-
all increased performance but the garbage collection time
normally stays well below 10% even for parallel executions.

There are two sources for parallelism in the collector.
First of all the execution state is divided among the workers.
The workers are then responsible for copying their part. A
worker that runs out of work steals work from other work-
ers. If no worker has any nodes available the AKL terms
are divided into segments that can be distributed among
workers [1]. This kind of parallelism is necessary since some
programs use very few nodes in the execution state with few
but very large AKL terms.

1.6 The target machine

Our target machine for the implementation is a SPARC-
CENTER 2000 (SC2000) multiprocessors with 20 processors.
The SC2000 is a bus-based shared-memory multiprocessor
from Sun Microsystems.

The SC2000°s processors, 50MHz SupersPaRcs, have a
4Kbytes direct mapped first level data cache with 32 byte
long cache lines > The instruction cache is 20Kbytes, 5-way
associative with 64 byte cache lines.

The processors connect to an off-chip cache, the second
level cache, which on the SC2000 is 2Mbytes, direct-mapped
with 64-byte cache lines. These caches are connected to a
bus, whereby they can communicate with the main mem-
ory and/or other caches with a peak sustainable read /write
throughput of 500Mbytes per second [4].

Accessing data that resides in the first level cache is done
in one clock cycle. Accesses to the second level takes 5-
10 cycles, whereas accessing the main memory takes 20-60
cycles. A high cache hit rate is therefore crucial for good
performance. The system has been designed in a way that
takes this into account. Data structures have been carefully
aligned to avoid false sharing. All data structures that are

?The data cache is normally 16Kbytes, four way set-associative
but on the machine we are using only one of the four sets is used.

used to represent the execution state (except AKL terms)
use one cache-line each.

The SMICS instruction level simulator has been used
to evaluate the cache performance of the system [13]. The
simulator accurately simulates a multiprocessor SPARC archi-
tecture and can provide valuable statistics. The read miss
figures that are presented in this paper is the ratio between
the read operation that miss the second level cache and all
read operations.

Each worker is running as a Solaris thread directly mapp-
ed to a Solaris LWP [12]. The threads share the same ad-
dress space and have full access to all data structures in the
system, this makes the distribution of tasks very easy. The
system currently runs under SunOS 5.4 but should not be
hard to port to other operating systems. The emulator is a
threaded code emulator implemented in C using the GNU C
compiler (version 2.7) where labels can be handled as data.

The execution time does not include the initialization
of the system. The clock is started when all memory areas
have been allocated, code loaded and all workers prepared to
enter the scheduler. The clock was stopped when the threads
that implement the workers terminated. All timings are wall
time, measured by the Solaris gettimeofday() system call.

The initial value for heap and free lists were set so that
there would be no overhead for allocating new blocks dur-
ing runtime. The execution times reported contain, if not
explicitly stated, the garbage collection time.

2 Performance

The Penny system is about two to three times slower than
emulated SICStus v3. This is when comparing small bench-
marks that do not use any of the special features of the
SICStus implementation nor of the Penny implementation.
This means an execution speed ® of about 260K LIPS on
a Sun sPARCstation 20. Emulated SICStus v3 executes at
about 560K LIPS on the same machine.

The slower performance of the Penny system compared
to SICStus v3 is mainly due to its unoptimized compiler. If
the code is hand optimized to mimic a normal Prolog com-
piler, the execution speed is about 380K LIPS. This is with-
out changing the existing instruction set. A new compiler
for a sequential AKL system shows figures that are as good
as emulated SICStus v3. The compiler was not available
when the Penny system was constructed.

The parallel performance is harder to evaluate. It is of
course very dependent on the application. In this section
we examine the parallel performance of the system using a
benchmark suite with varying characteristics.

2.1 Simple recursive programs

In the first test we have chosen benchmarks that should
show good parallel performance. The benchmarks are simple
to analyze and should have a predictable behavior. These
benchmarks are a first test of the system. Good performance
is a necessary but not sufficient condition for the validation
of the system. The benchmarks are often used in the logic
programming community.

matrix: A 500x500 matrix of floats multiplied by a vector.
The program spawns a sequential task of fixed size in
each recursion.

3The old naive-reverse of a thirty element list

Workers 2 4 8 12 16 18
matrix 1.96 | 3.80 | 7.39 | 10.2 | 12.7 | 13.8

hanoi 2.05 | 3.87 | 7.74 | 11.1 | 13.3 | 14.0
fib 1.99 | 3.85 | 7.74 | 10.7 | 13.0 | 13.5
tak 2.02 | 4.01 | 7.85 | 11.1 | 13.5 | 14.1

Table 1: Simple benchmarks, speedup

hanoi: The towers of Hanoi using 18 bricks. The program
divides into two identical subtasks in each recursion.

fib: The Fibonacci function calculating fib(27). The pro-
gram divides into two subtasks of different size in each
recursion.

tak: The Takeushi function calculating tak(20,10,4). The
program creates four subtasks of very different sizes in
each recursion.

The Fibonacci and Takeushi benchmarks are numerical
benchmarks, so they do not create any data structures other
than variables and integers. The matrix benchmark creates
lists to represent both the matrix and the vector. The hanoi
benchmark creates a list of length 2'¢.

Figure 1 shows the minimum and maximum execution
time of a hundred runs. As clearly seen they all behave well.
The maximum execution time is less than 10% higher than
the minimum execution time when eight workers are used.
The difference is significantly larger (up to 27%) when four-
teen workers are used but even then are remarkably stable.
When more than eighteen workers are used almost anything
can happen but the minimum execution time does still de-
crease. In the following sections only the execution time up
to eighteen workers is reported.

If we look at the speedup figures in Table 1, based on
the median execution time, we see that the system performs
very well when eight workers are used. The system then
performs slightly worse and gives a total speedup of about
thirteen to fourteen. If the minimum execution times are
compared, the final speedup for twenty workers are for all
benchmarks above fifteen.

Table 2 shows the read miss rate of the second level cache.
The matrix benchmark has a significantly higher miss rate,
this probably pertains to the initial reading of the matrix.
The high miss rate for the Fibonacci and Takeushi bench-
marks initially very low but then increases when sixteen
worker are used. There are, in both benchmarks, dependen-
cies between the arithmetic operations. The dependencies
cause suspensions which in turn cause read misses. The
hanoi benchmark has the lowest miss rate, this benchmark
is completely free of dependencies that could cause suspen-
sions.

The read miss rate are for all benchmarks very low and
does not severely limit the obtained speedup. These figures
serve as a reference when cache performance is evaluated for
the benchmarks in the following sections.

The creation of tasks is different in each program. The
binary spawn, in Hanoi, is the most profitable since it very
quickly divides the available work into equal size tasks. The
scheduler does not guarantee that the initial allocation is
perfect but the available work is rapidly balanced as workers
run out of tasks. The linear spawning of tasks in the matrix
program has a disadvantage that we investigate further in
section 3.

Workers 2 4 8 16
matrix 0.028 % | 0.042 % | 0.060 % | 0.121 %
hanoi 0.007 % | 0.007 % | 0.013 % | 0.024 %
fib 0.006 % | 0.007 % | 0.024 % | 0.111 %
tak 0.006 % | 0.009 % | 0.030 % | 0.210 %

Table 2: Simple, read cache performance

Workers 2 4 8 12 16 18
mastermind | 1.92 | 3.81 | 7.34 | 10.1 | 11.9 | 12.4
kkqueen 1.94 | 3.81 | 7.42 | 10.1 | 11.2 | 11.5
turtles 1.82 | 3.38 | 5.68 | 7.00 | 7.18 | 7.43
gsort 1.86 | 3.48 | 5.67 | 6.70 | 6.51 | 6.37

Table 3: Stream parallel, speedup

2.2 Stream parallel programs

In the stream and-parallel programs there is a flow of infor-
mation between the goals. Goals can be executed in parallel
but there are dependencies between goals that causes goals
to suspend. The set of programs that we have chosen for
this evaluation can all be executed from left to right with-
out any suspension, i.e. they can all be executed in a Prolog
system.
The benchmarks are:

mastermind: The mastermind puzzle by E. Tick, using
two guesses and three colors.

kkqueen: The candidates/non-candidates queens program
by K. Kumon/E. Tick, using 9 queens.

turtles: The turtles puzzle by E. Tick using layered streams.

gsort: Quick-sort of the first 10.000 four digit numbers
extracted from the decimals of 7

The benchmarks execute on one processor in between two
and four seconds. As shown in Table 3 the system behaves
well but not as good as for the simple recursive benchmark
in the preceding section. The most noticeable is the limited
speedup in the quick-sort and turtles benchmarks.

There is a sequential component in the quick-sort pro-
gram. Any execution must traverse the initial list once and
this can only be done sequentially. The n steps required to
partition the initial list sets a lower limit on the execution
time regardless of the number of workers. The turtles pro-
gram has no comparable sequential component that could
explain the poor speedup.

The sequential component is however not the limiting
factor in these benchmark. If this was the case the speedup
would be about twice as good. If we run the benchmarks
using SIMICS we get the statistics listed in Table 4.

The read cache performance is clearly worse for the quick-
sort and turtles benchmarks. When eight or sixteen workers
are used the miss rate is almost a magnitude higher than for
the mastermind benchmark. This is significant and severely
limits the obtainable speedup.

Notice that the cache miss rate is not improved in a
system with explicit parallelism. The “best” annotation in
the quick-sort program would allocate the first worker to do
the initial partitioning while two other workers would do the
recursive sorting. This results in a high miss rate since the

Simple benchmarks

8000

mati =

hanoi +++-

6000 fr---~

fib
tak

X8

4000 k

3000

2000

1400

1000

800

Time (milliseconds)

600

400

300

200

100

4
No. of workers

8 10 12 14 16 18 20

Figure 1: Simple recursive benchmarks

Workers 2 4 8 16
mastermind | 0.021 % | 0.029 % | 0.057 % | 0.15 %

kkqueen 0.017 % | 0.019 % | 0.030 % | 0.11 %
turtles 0.11% | 019% | 037% | 0.65%
qsort 0.051 % | 0.20% | 0.46 % | 0.97 %

Table 4: Stream parallel, read cache performance

recursive sort procedures would have to read the input lists
from the cache of the first worker. High cache miss rate is
inherent in the stream and-parallel programs and it is not
solved by explicit allocations of goals to processors.

2.3 Non-deterministic programs

One of the benefits of AKL is that one can implement both
and- and or-parallelism. Or-parallelism can be exploited in
all situations where more than one guard of a goal is evalu-
ated. In the Penny system guards are evaluated lazily and
are only evaluated in parallel in nondeterministic programs.

Parallel execution in a nondeterministic program is either
very simple or very hard. It is very simple if all solutions
to a problem are needed. The workers can divide the work
in independent parts and do very little communication to
synchronize their activities. If only one solution is needed
the situation is much harder. If the leftmost solution is
wanted and the solution is at the far left in the search tree
two worker will not find the solution faster than one worker.
The second worker will only do speculative work.

In a system that is targeted to or-parallel execution the
ability to avoid doing speculative work is crucial [2]. In the
Penny system very little has been done to minimize spec-
ulative work. The scheduler is in fact unaware of the fact
that some task pertain to nondeterministic executions. The

Workers 2 4 8 12 16 18
queens 1.83 | 3.40 | 5.74 | 6.74 | 6.49 | 6.33
f-queens | 1.92 | 3.65 | 6.91 | 8.67 | 8.36 | 7.88
scanner 1.89 | 3.46 | 5.88 | 6.91 | 7.00 | 6.84

Table 5: Or-parallel speedup

speedup for benchmarks where the first solution is wanted
can therefore vary from nil to good.

If we are looking for all solutions the speedup is more
predictable. The following benchmarks use various kinds of
programming techniques to solve puzzles.

queens Animplementation of the queens puzzle (10 queens)
using a short circuiting technique. The benchmark
needs 5904 split operations.

f-queens A simple but very fast Prolog like implementation
of the queens puzzle (10 queens). Does not make use
of concurrency to minimize the search space. Needs
35538 split operations but the copied state is very
small.

scanner Finds a pattern in a grid given information of
the number of filled squaes in each line. Uses a ad-
vanced short circuiting technique where ports are used
to communicate between processes [11]. The bench-
mark needs 2426 split operations.

Table 5 shows the speedup given the median execution
time from 40 runs. The benchmark all behave well when
using up to twelve workers. They are then stable and drop
slightly in performance when eighteen workers are used.

These figures are with garbage collection included, if the
garbage collection is excluded the figures become slightly

Workers 2 4 8 12 16 18
queens 1.64 | 2.20 | 2.79 | 3.50 | 4.07 | 4.16
f-queens | 1.25 | 1.53 | 2.55 | 3.27 | 3.58 | 3.70
scanner 1.55 | 2.93 | 4.52 | 4.73 | 4.04 | 4.03

Table 6: Multiple nondeterminism, speedup

but not dramatically better. The speedup for the scanner
benchmark reaches a maximum of 8.35 if garbage collection
is omitted. Since the execution state increases in size as
more workers are added (alarger part of the search tree must
be explicitly represented) the parallel garbage collector has
a hard time keeping up with the increased performance.

For the scanner benchmark this is a sever limitation. The
garbage collection time increases from about three-hundred
milliseconds to twelve hundred milliseconds. Compared to
the total execution time this is an increment from less than
a percent to seventeen percent.

When garbage collection is performed the workers have
to traverse the whole execution state. The cache perfor-
mance of this operation is very poor. The scanner bench-
marks has a read miss rate of 6.5% when eight workers are
used. The miss rate of the first worker, that is responsible
for dividing up the execution state, is as high as 11%.

2.4 Multiple nondeterminism

Good speedup could be expected in a program with many
smaller nondeterministic calculations. To test this the same
three benchmarks were used to solve one hundred puzzles,
selecting only the first solution, in parallel. Since each puzzle
is encapsulated in a guard they can be solved independently
of each other.

As shown in Table 6 the speedup is quite disappointing.
The reason for this is that the global scheduler favors wake
tasks on the expense of continuation tasks. Since the wake
tasks also are the keys to nondeterministic computations
the result is that workers collaborate in each computation
instead of selecting their own computation.

A solution to the problem would be to give priority to
tasks at the main level. This could aid the workers so that
they spread out in the execution state. It would of course
also mean that the execution state becomes larger which in
turn might hamper the garbage collector.

2.5 Deep programs

A Penny program can of course be arbitrary deep. Non-
deterministic programs always encapsulates a computation
inside a guard but this is not the only reason for working
with deep guards. The compiler, for example, uses five levels
without doing any search.

When computations are deep, the system needs to be
able to distribute tasks at arbitrary levels in the computa-
tion. Distribution of a deep task is a complex operation that
might reduce the speedup.

To test this feature the knights benchmark was used.
This is an implementation of the “touring knight” i.e. place
a chess knight in one corner of a board and jump to all
squares without touching any square twice. The benchmark
searches for all solutions (304) on a five times five board.
This benchmark behaves very well and a speedup of twelve
is reached using eighteen workers.

Workers 2 4 8 12 16 18
Level 1 9 42 110 169 255 333
Level 2 143 | 303 | 1555 | 3289 | 6501 | 6557
Level 3 5 29 168 737 | 1494 | 2025
Level 4 _ 4 49 133 288 308
Level 5 _ _ 15 8 34 35

Table 7: Stolen tasks at different levels

multiply([], _, Result):-
-> Result = [].
multiply([V | Rest], Vector, Result):-
-> Result = [RIProduct],
vmul(Vector, V, 0, R),
multiply(Rest, Vector, Product).

Figure 2: Matrix multiplication

Table 7 shows the number of tasks stolen by workers on
the different levels in the execution state. The majority of
all tasks are stolen at level two, this is the level where the
different solutions are collected, but a substantial amount of
tasks are collected at the third level. The collection of tasks
at the fourth and fifth level shows that there is parallelism
to exploit at all levels.

Scheduling of deep tasks adds to the complexity of the
scheduler. A system where only tasks are distributed at the
main level would be simpler to implement but would also
limit the obtainable speedup. We have chosen to implement
a scheduler that handles deep guards since the programmer
otherwise would have to be aware of the limitations in the
scheduler to get good performance.

3 Granularity

The matrix multiplication benchmark creates a vector and
a matrix and then multiplies the vector and the matrix.
The definition of the multiplier is shown in Figure 3. A
worker that executes the multiply/3 definition creates a
continuation task in each call of vymul/4. The continuation
task is the key to the parallelization of the process.

To investigate how the granularity of tasks can change
the performance, four benchmarks were executed. The bench-
marks multiplied a matrix of size M x N with a vector of
length N. The product M x N is equal for all benchmarks
so the number of floating point operations is equal in all
benchmarks.

The median execution time of one hundred runs is shown
in Figure 3. There are four important observations that can
be made:

e the execution time using one worker is almost identical
for all benchmarks,

e the execution time using two workers is significantly
different,

e the speedup from two to six workers is almost constant,
and

e a sharp knee is reached when using 6, 10 and 14 work-
ers.

1400

Consumed time ()

4800%20; <

1200

2400%x40; —+--
1200x80: -B8--

1000

800

600X160; -

600

500

400

300

250

Time msec(Median Runtime)

200
180

160

140

120

100

4
No. of workers

8 10 12 14 16 18

Figure 3: Matrix multiplication

Benchmark N 11 C Vv
4800x20 20 | 1313 | 36 | 0.26
2400x40 40 | 1280 | 19 | 0.52
1200x80 80 | 1261 | 12 | 1.04
600x160 160 | 1250 8 | 2.07

Table 8: Time to do one vector multiplication in milliseconds

The explanation to this is to find in number of scheduling
operations and the size of the tasks.

3.1 Initial overhead

Given the time to create the initial matrix and vector C,
and the total execution time using one worker 71, the time
to do one vector multiplication can be calculated. Table
8 shows the measured time C' and calculated time V' for
one vector operation, for each benchmark. The time C, to
create the matrix and vector, is almost directly proportional
to M + 2N, since the same vector is used for all rows in
the matrix, i.e only one vector i1s actually created for the
matrix. The calculated time V' is as expected almost directly
proportional to N, the number of columns.

We then investigate the execution time when using two,
three, four and six workers. Table 9 shows the total overhead
Ow when more than one worker is used. The overhead is
calculated as

Ow =Tw — (T /W)

where Ty is the median execution time using W workers.
The figure for the first benchmark using six workers has been
omitted since it is affected by limitations explained in the
following section.

Since the overhead is partly induced by the scheduling
operations it should be possible to describe it as a function

Workers | O, [Os | O4 | Og
4800x20 | 212 | 177 | 167
2400x40 | 114 93 89 77
1200x80 66 53 52 41
600x60 41 33 32 24

Table 9: Matrix multiplication, overhead compared to ideal

Workers 2 3 4 6
SVV 0.081 | 0.10 | 0.13 | 0.18
By 17| 12| 13| 6

Table 10: Matrix multiplication, scheduling overhead

of the number of rows executed by each worker.
Ow = (M/W)SW + Bw

Given the samples of Ow in Table 9 we can estimate the
values of the constants Sw and Bw. If we omit the six-
worker figure for the first benchmark, we get a perfect (1.0)
correlation using the values shown in Table 10.

We know that the structure of the matrix benchmark in-
duces a scheduling operation for each of the M rows in the
matrix. When one worker is used this is a local operation
but when several workers are used a global scheduling oper-
ation is performed. This global scheduling operation takes
Sw milliseconds. The calculated value of Sw increases as
the number of workers increase. This is natural since the
searching for a task in the scheduler is more complicated as
the number of workers increase. The equation

Sw = 0.024W 4 0.032

correlates exactly to the obtained values.

The scheduling overhead when two workers are used is
thus 0.08 milliseconds but increases with 0.024 milliseconds
for each worker that is added. The total execution time is
given by

T = (T3 /W) + (M/W)(0.024W + 0.032) + By

where the value of Bw is found in Table 10.

Apart from the figure Bw we have a perfect description
of the overhead when up to six workers are used for all but
the first benchmark. The first benchmark is limited by other
factors when six workers are used. The parameter By is
complex to analyze since it is related to how the matrix is
created, initial cost of running in parallel etc. The parameter
constitute less than two percent of the execution time.

Even if we have successfully understood the difference in
execution time when two to six workers are used there is still
one question that is unanswered. Why does the execution
time level-out, and why does it level-out at different levels?

3.2 The limiting factor

It 1s the scheduling overhead that explains the initial differ-
ence between the benchmarks but it does not explain the
difference in minimal execution time. To explain this we
have to understand the scheduling operation in detail.

When a worker executes the vmul/4 procedure call it
also adds a continuation task on its own stack. This task is
referring to the recursive multiply/3 procedure call and is
the key to the rest of the multiplication. A worker that steals
the task has to initiate the call to the vector multiplier for
the next row before a new continuation task is produced.
This continuation can then be stolen by another worker.
Observe that there is a single continuation task in the whole
system that is moving around. The time duration between
the two steal operations in the system is called the turn-
around time). The turn-around time D and the time to
multiply one vector V', shown in Table 8 sets a limit on
how many workers that can productively take part in the
execution to be roughly [(V + D)/D]. If more workers are
allocated they will only wait for the continuation task to be
passed around.

If we divide the obtained minimal execution time (as
shown in Figure 3) with the number of rows in the matrix,
we get an estimate of the turn-around time for the given
benchmarks to be (0.08, 0.09, 0.12, 0.19) respectively. The
figure for the last benchmark is overestimated since we did
not reach the limit of the system with the available twenty
processors. Following the reasoning in the previous para-
graph we see that the useful number of workers to perform
the benchmark increases as the granularity increases.

The smallest granularity of work that is profitable to use
is thus depending on the number of workers that should
productively take part in the execution. In a two proces-
sor system the granularity can be small whereas a twenty
processor system need larger granularity to keep the work-
ers busy. This is of course only applicable if the tasks are
scheduled sequentially.

3.3 Remedy

In building the system it is clear that the scheduling over-
head must be as low as possible however it is also possible
to rewrite programs to generate larger task. For other tech-
niques to transform sequential programs see the articles by
Debray and Jain [6] and Hermenegildo and Carro [8].

cell(0, State, Last, This, _, _, _, _, _, _, _, _)=-
-> Last = State,
This =]

cell(G, State, Last, This,
[NWINWr], [NINr], [NEINE-r],
[W IWr], [E IE1],
[SWISWr], [SISr],[SEISEY]) -
-> G1is G-1,
T is NW4+N+N+W-+E+SWHS+SE,
change(State, T, New),
This = [New|Rest],
cell(G1, New, Last, Rest,
NWr, Nr, NEr,
Wr, Er,
SWr, Sr, SEr).

Figure 4: A cell in life

The basic problem we faced was generally due to the
bottleneck in producing global tasks to get workers busy.
The Penny system will not magically be able to reduce this
bottleneck for the matrix program. However a small change
to the program does the trick. If we represent the matrix
as a tree instead of a list we can write the following matrix
multiplier.

m_multiply(v(V0), V1, RO, R)-
-> RO = [VIR],
v_multiply(V0, V1, V).
m_multiply(m(ML,MR), V, RO, R):-
-> m_multiply(ML, V, RO, R1),
m_multiply(MR, V, R1, R).

Written in this way the system has no difficulties in ob-
taining good speedup even for matrices with small rows.

4 Communicating processes

The benchmark that we examine in this section is extreme
in the ratio of communication over calculation. This means
that the dominating factor of the execution time does not
originate from the instruction decoding but rather from the
suspension and scheduling mechanism.

In the “game of life” benchmark each cell in the grid is
implemented by an AKL process. The grid has the shape
of a toroid so there are no borders that have to be treated
specially. The program consists of two parts: the building
of the toroid and the communication between cells. The
building phase only takes about 5% of the execution time
and shows in itself good speedup. The building phase is
of course executed in parallel with the computation of the
first generation. Each cell is implemented by the cell/12
process listed in Figure 4. The first argument is the number
of generations, the second and third are the current and
final state, the fourth the outgoing stream of the history
cell state and the remaining arguments are the incoming
streams from the neighbors. The process suspends, waiting
for information from all of its neighbors, and then calculate
its own next state.

The smallest benchmark uses a toroid of size 30 x 30 and
computes 10 generations. In the larger benchmarks either

Workers 2 4 8 12 16 18
10 30x30 1.90 | 3.10 | 4.66 | 5.38 | 5.69 | 5.62
10 60x60 1.96 | 3.24 | 4.81 | 5.58 | 5.77 | 5.69
10 120x120 | 1.97 | 3.29 | 4.87 | 5.64 | 5.82 | 5.68
40 30x30 1.90 | 3.42 | 5.88 | 7.51 | 8.10 | 8.21
160 30x30 1.89 | 3.54 | 6.15 | 7.95 | 9.00 | 9.19

Table 11: Speedup (excluding gc) for the game of life

Workers 2 4 8| 16
10 30x30 15 | 7.6 | 4.5 | 3.8
10 60x60 16 | 6.8 | 4.2 | 3.5
10 120x120 17 | 6.5 | 4.1 | 2.9
40 30x30 58 23 10 | 8.5
160 30x30 232 53 16 11

Table 12: Ratio of executed/stolen tasks

the toroid or the number of generations is increased. The
execution time is directly proportional to the number of gen-
erations and the size of the toroid. Garbage collection was
invoked only in the two largest benchmarks and constituted
only one percent of the total runtime.

Table 11 shows the speedup, based on the median execu-
tion time excluding garbage collection time, of twenty runs.
As clearly seen the speedup is not very good, except for the
two last benchmarks,

4.1 Stolen tasks

The reason for the nonlinear speedup is partly to be found in
the ratio between the number of executed and stolen tasks.
When one worker is used each cell is in average suspended on
four of its neighbors. Since in average four of the neighbors
have already calculated their generation only four neighbors
remain. This means that in average four wake tasks have
to be handled before the next generation can be computed.
The tasks are however not identical, the first three tasks
only remove a constraint whereas the fourth wakes and ex-
ecutes the suspended and-node, produces new wake tasks
and suspends the goal of the next generation. As the num-
ber of workers increase the number executed tasks decrease
but only marginally.

The time to handle one task is in average 0.07 millisec-
onds. If there is a 0.1 millisecond penalty to steal a task it
is of course crucial that more than one task gets executed.
Table 12 lists the number of executed tasks per stolen task
during the execution for different numbers of workers. The
ratio correlates well to the obtained speedup.

4.2 Cache performance

Running the benchmarks in SIMICS gives very interesting
figures on the read miss rate shown in Table 13. The miss
rate increases as expected when the number of workers grow.
The final miss rates of the “30 x 30” benchmarks are very
high. The figures are higher than for the quick-sort bench-
mark and more than twice the miss rate of the turtles bench-
mark.

It is also interesting to notice that the miss rate is better
for the benchmarks with larger grid. This indicates that
the workers spread in the grid and the larger grid reduces

Workers 2 4 8 16
10 30x30 020% [053 % [093 % | 1.59 %
10 60x60 014 % | 032 % | 0.47 % | 0.91 %
10 120x120 | 0.25 % | 0.18 % | 0.42 % | 0.65 %
40 30x30 033% | 059% | 1.02% | 1.36 %
160 30x30 041 % | 066 % | 099 % | 1.42 %

Table 13: Life, read cache performance

the conflicts. Notice that the miss rate actually decreases in
the “10 120x120” benchmark when going from two to four
workers. This could be a consequence of having more cache
memory in total when running on four processors.

How significant is the cache performance? The total
number of read operations in the “160 30x30” benchmark
when using two workers is about 225 million. When sixteen
workers are used the total is also 225 million; the extra num-
ber of workers do not increase the number of read operations.
The nonlinear speedup could of course be explained by an
unbalance in the distribution of work but apart from the
first worker that performs some extra work during garbage
collection, the workers all perform 14 million read opera-
tion and differ only by 25 thousand operations. The first
worker performs 14.9 million operations, only 6% more op-
erations than the worker with the lowest read count. The
work is thus extremely balanced and there is no overhead
in the number of operations that can explain the nonlinear
speedup.

In earlier experiments we have found a correlation be-
tween the execution time and the number of read opera-
tions. The following equation has a 0.96 correlation to the
obtained execution time:

0.1 * Reads 4+ 0.33 * Read-missesy1 + 10 * Read-misses 1,2

We know from that about 10% of all read operations misses
the first level cache. If we insert the figures for the “160
30x30” benchmark using sixteen workers, we get the figure
3650 milliseconds where the actual execution time is, in-
cluding garbage collection, 3439 milliseconds. If we assume
a second level read miss rate of 0.15%, which is the miss
rate when running on one worker, we get an estimated ex-
ecution time of 1888 milliseconds i.e. a speedup of thirteen
instead of seven. The cache miss rate is thus for the “30x30”
benchmarks a limiting factor.

In an experiment with a “160 120x120” benchmark the
ratio of executed to stolen tasks was 23 when sixteen work-
ers were used. The speedup, excluding garbage, collection
was 12.5. The execution time for one worker was about 12
minutes. Running this benchmark in SIMICS would take
about a 20 hours.

5 Competing with C

We have shown that the parallel performance of the Penny
system is very good but that the limiting factor is often the
cache performance. How will a optimized Penny system per-
form? We know that we can double the initial performance
of the system with a better compiler and a native code com-
piler will double that figure again. When the performance
increase the number of read operations might be concen-
trated in time and limit the performance even further. Will

Workers 1 2 4 6 8 16 18
256/32 3586 | 1846 | 939 | 641 | 496 | 357 | 356
64/64 3361 | 1718 | 876 | 596 | 459 | 276 | 259
16/128 3258 | 1666 | 853 | 598 | 456 | 286 | 272
4/256 3206 | 1648 | 863 | 632 | 507 | 318 | 298
1/512 3215 | 1785 | 945 | 670 | 534 | 370 | 358

Table 14: Smith-Waterman, execution time in milliseconds

the cache performance stop us from executing at the speed
of C?

To test this we selected a benchmark that originates from
a practical problem. The Smith-Waterman algorithm [16]
computes a value that is a measurement of how good two
DNA sequences align. It can be visualized as calculating the
value in the lower right corner of a matrix where each ele-
ment i1s depending on its west, north-west and north neigh-
bors. The uppermost row is given by one sequence and the
leftmost column by the other sequence. The execution ob-
viously has to begin in the upper left corner and can then
proceed towards the lower right corner.

The program was originally written in Prolog and only
small changes were needed to make it run in parallel in the
Penny system. The original problem was to match one se-
quence of size 32 to each of one hundred sequences of equal
size and to select the best. The parallelism was obvious since
the matching operation are independent. In the Penny ver-
sion not only the independent matches can be calculated in
parallel but the matching procedure itself is used to extract
parallelism.

To mimic the effect of a optimized Penny system the
arithmetic operation that calculates the value of a position
was implemented as a built-in. In order to do this a new data
type was needed. This was easily done with the generic ob-
ject interface. The new data type holds four integers and is
used to represent the value of a position. Only four builtin
operations were defined: a recognizer, a constructor, a selec-
tor and the arithmetic function. The resulting program is
about six times faster than the pure Penny program — faster
than SICStus v3 native code.

Table 14 shows the execution time of the program for dif-
ferent data sets N/M where N is the number of sequences
in the database and M the length of the sequences. Since
the algorithm is quadratic we have reduced the number of
sequences with four as the length is doubled. The bench-
marks performs very well for all values of N and M. The
best speedup is reached in the 64 x 64 benchmark where the
final speedup is thirteen.

The limited speedup in the 256/32 benchmark could be
a result of several workers that compete inside one compu-
tation instead of selecting there own sequences.

The execution time for a well written C program com-
piled with gcc -04 is shown in table 15. The increasing
numbers for the C program can only be explained with a
decreased cache performance. As the sequences grow larger
the data structures do not fit into the cache. This is verified
by running the C program in SIMICS, the cache miss rate
grows from 0.02% to 0.4%. This is a penalty that is taken
by the Penny system in almost all benchmarks.

The Penny program executes at about the same speed
as the C program when three to six workers are used. The
final execution time for the 64 x 64 benchmark is 259 mil-
liseconds which is 2.5 times better than the C program. The

Benchmark | 265/32 | 64/64 | 16/128 | 4/256 | 1/512
C ms.: 590 650 680 820 1330
Penny ms.: 356 259 272 298 358
C/Penny : 1.7 2.5 2.5 2.8 3.7

Table 15: Smith-Waterman, C vs. Penny using 18 proces-
sors

Workers | 1] 2] 4] 6] 10] 16]
including output

time (s): | 30.2 [17.6 | 14.8 [12.7 | 12.8 | 12.9
speedup: 1 1.7 2.0 2.4 2.4 2.3

excluding output
time (s) 19.2 | 9.78 | 5.24 | 3.91 | 3.91 | 4.00
speedup: 1 2.0 3.7 4.9 4.9 4.8

Table 16: The compiler compiling itself

1 x 512 benchmarks is almost four times faster then the C
program. The cache performance did not severely limit the
performance even though we optimized the Penny program
to mimic a native code compiler.

6 The compiler

The Penny compiler can of course be executed in the Penny
system itself. It consists of about 260 definitions using 1400
clauses, all in all about 3000 lines of AKL code including
parser and output routines. It compiles itself in about thirty
seconds using one worker. The parallel performance is ini-
tially very good but then levels out at about thirteen sec-
onds when six workers are used. A total speedup of little
more than two is of course nothing to be proud of - what is
happening?

If we look at the number of stolen tasks and the average
execution time for each stolen task the figures do not indi-
cate that the number of scheduling operations would cause
a problem. The scheduling operations are quite few and the
average execution time for each stolen task is quite high.
The average idle time is however very high. This indicates
that the workers have a hard time finding available work.

The amount of parallelism during the execution is how-
ever not constant. In Figure 5 the average number of work-
ers that are actually busy (in each 500 ms. intervals) during
the execution is shown for three runs with 2, 4 and 6 work-
ers. As clearly seen the parallelism is very high in the initial
phase of the execution but after a couple of second only one
worker 1s active.

The reason is found in the output procedure. This pro-
cedure is completely sequential and cannot be parallelized.
Moreover the output routine is very poorly optimized, it is
coded in AKL down to the output of atoms, strings and in-
dividual characters. When the output routine is excluded
the execution time and speedup is, as shown in Table 16,
improved.

Given the figures with the output routine excluded we
see that the routine was responsible for eleven seconds of
the total execution time. Given that this sets a limit on
the minimal execution time it is not that bad when the ac-
tual minimal execution time is 12.7. It does however not
explain why the minimal execution time is not reached al-

500 ms intervals

4 [b
/! B H
/ ' \

Number of busy workers
(4]
=1

3 F i |

T T T T T
2 workers <—
4 workers -+--
6 workers -0--

O 1 1 1 1

| ® X\&\x
. \\
1k Hﬂﬂﬂﬁﬂﬂ%ﬁ%&&ﬁ&ﬁ&ﬁw

- .
D=
\
\
\
\
\

\
| - 1 1

0 2000 4000 6000 8000

10000 12000 14000 16000 18000 20000

Execution time ms

Figure 5: Number of busy workers during an execution

ready when three workers are used. If two workers can do
the actual compilation in less than ten seconds (the first def-
inition is compiled in a couple of milliseconds) there is no
reason why the output routine should not be completed by
a third worker in much the same time.

The output routine must, to minimize the execution time
be scheduled as soon as data is available. The scheduler has
of course no knowledge of this and schedules work that is not
critical i.e. the compilation. All workers could be assigned
to do the compilation while no one is scheduled to the output
routine.

We are actually lucky that the output routine is sched-
uled at all, since the compilation phase can keep six workers
busy. In a six worker run, all six workers could be assigned
to the compilation and only when this work was exhausted
would the output routine be scheduled. This would mean
that the six worker run would complete the whole execu-
tion in 3.9+ 11.0 = 14.9 seconds instead of the actual 12.7
seconds.

The good thing is that the output routine is in practice
scheduled. The bad things is that if it was not, there would
be very little we could do about it. By making parallelism
transparent to the programmer we have also removed all
possibilities to control it. This is a big drawback if one sees
the system as a parallel programming language.

7 The enterprise

The Penny system was developed on a SPARCCENTER2000.
A machine that has been a good representative for mod-
ern cache-based shared-memory architecture. This changed
last year when Sun released their Enterprise series of Ul-
tra based machines. The 167TMHz UltraSPARC processor
is about three times faster than the 50MHz SuperSPARC
processor that are found in the SPARCCENTER2000. The
question is how this affects the cache performance of the
system. We have shown that cache performance can be one

Workers 2 4 8
matrix 1.97 | 3.66 | 7.46
hanoi 2.00 | 3.86 | 7.97
fib 2.00 | 3.91 | 7.72
tak 1.98 | 3.60 | 7.73
mastermind | 1.79 | 3.59 | 7.42
kqueens 1.97 | 3.77 | 7.47
turtles 1.90 | 3.29 | 6.20
gsort 1.90 | 3.55 | 6.43
160 30x30 1.93 | 3.35 | 6.41
1/512 2.01 | 3.75 | 6.79

Table 17: Speedup on Enterprise 167 MHz

of the limiting factors and faster processors can make the
situation even worse.

Preliminary results show that the Penny system performs
even better on the Enterprise. Table 7 show the speedup
based on the median execution time of eleven runs. The
same Penny binary was used; no changes were made for the
UltraSPARC 64bit architecture. One possible reason for the
improved figures is that the buss architecture on the Enter-
prise is more than three times better than the bus archi-
tecture on the SPARCCENTER. The reason for the limited
performance of the SPARCCENTER could be an indication
on that the bus is saturated. The bus architecture on the
Enterprise is much better and this seams not to be problem.

8 Conclusions

An implicit parallel system relieves the programmer from
the burden of explicitly having to deal with parallelism. On
the other hand the programmer has little control over the
parallel execution. In a fine-grain system the overhead for

managing the parallelism can become larger than the gain
of running on more processors. If this is the case there is
little the programmer can do about it.

The limiting factor in a program is first of all sequential
threads that can not be broken up into smaller task. The
limit in speedup is then just a consequence of Amdahl’s
law. Although there are no control primitives in the Penny
system it manages to extract the parallelism but there are of
course no guarantees that system finds the optimal solution.
It is however not easy even in an explicit parallel system to
obtain the best possible speedup.

In programs that divide up into more or less independent
parts there is little gain in doing an explicit allocations of
goals to processors. The Penny system does a very good job
in managing the tasks. The stream and-parallel programs
are mainly limited by their cache performance and this is
not solved by explicit allocation or granularity control.

Implicit parallelism also works well in programs with
very fine-grain tasks. The scheduling overhead is about
0.1 milliseconds and this does set a limit on the obtain-
able speedup but even a program with a task size of 0.26
millisecond shows a speedup of 3.3 on six processors. A se-
quential thread in the scheduling operation is a more serious
threat. The turn-around time between two scheduling op-
erations limits both the execution time and the number of
workers that can productively take part in an execution.

Our conclusion is that implicit parallelism works very
well but good cache performance can not be overestimated.
In a parallel system it is vital that miss rate of the second
level cache is kept to a minimum. The Penny system has
been designed with cache performance in consideration. All
structures that are used in the execution state use their own
cache lines to avoid false sharing. Since the AKL terms are
use In a program to communicate between AKL processes
they are often produced by one worker and later read by
another worker. It is therefore very hard to minimize this
source of cache misses.

Acknowledgments The parallel implementation of AKL has
been developed using the AGENTS 1.0 [10] system as a
starting point. Haruyasu Ueda did much of the implementa-
tion and analysis of the scheduler. Galal Atlam and Khayri
Ali, designed and implemented the garbage collector [3].

Thanks to Peter Fritzson at Linkoping University for ac-
cess to a 20-processor SC2000 for the Penny timings.

Various parts of this work have been sponsored the Eu-
ropean Commission in the ACCLAIM Esprit project, EP
7195 and SICS.

References

[1] AL, K. A. M. A parallel copying garbage collection
scheme for shared-memory multiprocessors. New Gen-
eration Computing 13, 4 (December 1995).

[2] AL, K. A. M., aAND KARLssON, R. The MUSE or-
parallel Prolog model and its performance. In North
American Conference on Logic Programming (October

1990), MIT Press.
[3] AtLaM, G. A. M. A. Parallel Garbage Collection in a

Multiprocessors Implementation of a Concurrent Con-
straint Programming System. Phd thesis, Menoufia Uni-
versity, Egypt, Jan. 1997.

[4] CATANZARO, B. Multiprocessor System Architecture.
SunSoft Press, 1994.

[5] CRAMMOND, J. Implementation of Commitied Choice
Logic Languages on Shared Memory Multiprocessors.
Phd thesis, Heriot-Watt University, 1988.

[6] DEBRAY, S., AND JAIN, M. A simple program trans-
formation for parallelism. In Proceedings of the 199/
International Logic Programming Symposium (Ithaca,

1994), M. Bruynooghe, Ed., ALP, MIT Press.

[7] Fanzen, T., HAmIDI, S., AND JANSSON, S. An
overview of AKL. In ELP’91 Extensions of Logic Pro-
gramming (1992), no. 596 in LNAI, Springer-Verlag.

[8] HERMENEGILDO, M., AND CARRO, M. Relating data-
parallelism and (and-) parallelism in logic programs. In
Lecture Notes in Computer Science, 966 (August 1995),
Springer-Verlag, pp. 27-41.

[9] JansoN, S. AKL: A multiparadigm programming lan-
guage. Uppsala Thesis in Computing Science 19, SICS
Dissertation Series 14, Uppsala University, SICS, 1994.

[10] JansoN, S., AND MoNTELIUS, J. The design of the
AKL/PS 0.0 prototype implementation of the An-
dorra Kernel Language. ESPRIT deliverable, EP 2471
(PEPMA), Swedish Institute of Computer Science,
1992.

[11] JansoN, S., MoNTELIUS, J., AND HARIDI, S. Ports

for Objects in Concurrent Logic Programs. MIT Press,
1993, ch. 8, pp. 211-231.

[12] LEwis, B., AND BERG, D. J. Threads Primer. SunSoft
Press, 1996.

[13] MaGNUSsON, P., AND WERNER, B. Efficient Memory
Simulation in SIMICS. In Proceedings of the 28th An-
nual Simulation Symposium (1995).

[14] MoHR, E., KraNZ, D., AND HALSTEAD, R. Lazy task
creation: A technique for increasing the granularity of
parallel programs. IEFE Transactions on Parallel and
Distributed Systems (90).

[15] MonTELIUS, J., AND ALI, K. A. M. An and/or-parallel
implementation of AKL. New Generation Computing
13, 4 (December 1995).

[16] SmiTH, T. F.; AND WATERMAN, M. S. Identification of
common molecular subsequences. Journal of Molecular
Biology 147 (1981), 195-197.

[17] WARREN, D. H. D. An abstract Prolog instruction set.
Tech. Rep. 309, SRI International, 1983.

