
Using SimICS to Evaluate the Penny
System

Johan Montelius� Peter Magnusson
Swedish Institute of Computer Science

Box ����� SE���� �� Kista� SWEDEN

fjm�psmg	sics
se
http���www�sics�se�

Abstract

We demonstrate the bene�ts of instruction�set simulation in the evaluation
of a parallel programming system� Penny� The simulator is a reliable tool
in exploring design alternatives for improving performance and can greatly
help in understanding program behavior� The results obtained improved the
performance of Penny and highlighted the importance of the caches�

� Introduction

Instruction�set simulation is a useful tool both for performance debugging
and for explaining the behavior of a system� In this paper we show how
the instruction set simulator SimICS is used to improve and explain the
performance of Penny� an implicit parallel programming system�

A tool such as SimICS can provide a wide range of statistics on hardware
events triggered by software activity� including data cache hits and misses�
instructions executed� and virtual memory performance� It can relate these
events to particular lines of code� greatly simplifying the task of understand�
ing the performance of software systems and� hopefully� improving it�

The simulator shows that the Penny system would scale almost perfectly
if only the number of executed instructions are taken into account� i�e� for an
idealized multiprocessor� The total number of executed instructions when
sixteen processors are used increase only by ��� compared to the one pro�
cessor execution� This would indicate a speedup of ��� in contrast to the
actual speedup of 	�	� The study shows how important good cache perfor�
mance is to a system such as Penny� and demonstrates how an instruction
set simulator can relate cache events to program code�

��� The Penny system

The Penny system
��� is a implementation of AKL
	� on a shared memory
architecture� It will automatically extract parallelism in an AKL program�
No user annotations are required� thus relieving the programmer from adding
explicit information to control parallelism� The system can utilize both
and� and or�parallelism in the program� There is no compiler support to

extract parallelism� All detection and scheduling of parallel tasks is done
automatically at runtime� Penny is complete with a parallel garbage collector
and� for an experimental system� is quite stable�

The heart of the system is a threaded code emulator implemented in
C using the GNU C compiler version ��x� where labels can be handled as
data� The machine only de�nes sixty�three abstract machine instructions so
the emulator itself is rather small� The instruction set is very similar to the
instruction set used in the WAM
����

When a program is executed� a �xed set of workers are created� The
number of workers will determine the level of parallelism� so there is no
advantage to create more workers than available number of processors� Each
worker will dynamically be assigned work during an execution� If a worker
runs out of work it will steal tasks from another worker�

During an execution the workers build and modify a shared execution

state� The execution state consists of a tree structure of goals and continu�

ations� and a set of AKL terms� Each goal in the execution state is either
ready to be executed or suspended on some AKL variable� When a variable
is assigned a value the goals suspended on the variable will be scheduled for
execution� It is the worker that assigned the value that is responsible for
executing the goals�

Continuations represents sequences of un�executed goals and are in the
same way owned by a particular worker� The right to execute a goal or
to select a goal from a continuation can be stolen by another worker� The
whole execution state is therefore accessible to all workers�

The data structures that are used to represent goals and continuations
can be explicitly reclaimed by the workers� This improves cache performance
since the same cache�lines can be reused immediately� AKL terms are not
explicitly reclaimed although work on compile time analysis shows that this
is quite possible
��� The terms are therefore allocated on a heap that is
subjected to garbage collection� A parallel stop�and�copy garbage collector
is used� It is important that the garbage collector is parallel since the garbage
collection time would otherwise increase in proportion to the execution time�

The Penny compiler compiles AKL programs to abstract machine in�
structions� The Penny compiler is itself written in AKL and consists of
about three thousand lines of AKL code� that can in turn be executed on
Penny itself with good parallel performance�

��� The SimICS Simulator

There are a large number of techniques and tools available to analyzing the
behavior of a software system� Regardless of how it is done� we need to solve
three problems� First� we need to execute the actual instructions speci�ed
by the executable binary� Second� we need to perform the system services
required by the program� if any� The �rst two problems thus involve recre�
ating the execution environment� Third� we need to generate information

about the execution over and above the actual program result�
There are essentially three starting�point strategies�
Instruction set simulation� also called instruction�level or program�driven

simulation� is the naive brute�force approach� whereby each instruction in
the program is simulated one at a time� This provides an accessible and
in some sense correct target machine model for instrumentation� and places
minimum restrictions on the architectural relationship between the host and
target� Program�driven simulation is probably the oldest strategy
���

Execution�driven simulation� also called program augmentation� involves
running a modi�ed program binary� The modi�cations can be induced at
any stage during generation of the binary� either by modifying intermedi�
ate program formats source code� assembly code� object �le� or executable
binary� or any of the compiler tools preprocessor� compiler� assembler� or
linker�� Traditional pro�lers generally fall into this category�

Host�supported simulation� historically called emulation� requires hard�
ware monitors or other special host hardware features which provide tools
to gather statistics or otherwise control the execution of a program�

Naturally� as with any arti�cial taxonomy� the above classi�cation is by
no means strict�mixing methods is common�

It is beyond the scope of this paper to go into any detailed discussion
of trade�o�s between the various strategies� Simply put� instruction set
simulation is the slowest and most �exible� host�supported simulation is
the converse fast but in�exible�� and execution�driven simulation holds the
middle ground�

SimICS
�� ��� ��� is an instruction set simulator that has borrowed many
design principles from g��
��� SimICS takes the brute force approach� mod�
elling the target architecture on an instruction�by�instruction level� This re�
sults in a lower performance compared to execution�driven or host�supported
systems�namely a slow�down of approximately ��� ��� per simulated pro�
cessor compared to the real execution�� We also need to deal with a signi��
cantly more complex software engineering problem in building the simulator�
This e�ect is� of course� di�cult to quantify� but it is signi�cant�

On the plus side� SimICS provides full pro�les�both of execution in�
structions�� data cache events� and virtual memory events�and does so
within a traditional debugger environment� This allows a detailed� interac�
tive analysis of parallel programs�

��� Our Target Machine

Our workhorses for Penny timings and SimICS runs� have been two sparc�
center ���� SC����� multiprocessors with � and �� processors� respectively�

�Thus if an execution takes two seconds using one processor and one second using
two processors the simulation will in both cases take between �� and ��� seconds� i�e� a
slowdown of �� � ��� per processor�

The SC���� is a bus�based shared�memory multiprocessor from Sun Mi�
crosystems� Figure � is a sketch of a generic shared�memory multiprocessor�
though the SC���� is considerably more complex� the �gure serves to high�
light some principal features�

Each processor has two on�chip caches� one for instructions and one
for data� These are generally small� because on�chip area is a scarce re�
source� On the SC�����s processors� ��MHz Supersparcs� the data cache is
��Kbytes� four�way associative with �� byte long cache lines� The instruc�
tion cache is ��Kbytes� ��way associative with �� byte cache lines� Despite
their small size� the �rst level caches consume half of the Supersparc�s �
million transistors�

The processors connect to an o��chip cache� the second level cache� which
on the SC���� is �Mbytes� direct�mapped with ���byte cache lines� These
caches are connected to a bus� whereby they can communicate with the main
memory and�or other caches� This communication is controlled by Super�
Cache controllers and �Bus Watcher� chips� There are actually � buses on
the SC����� dual ��MHz XDBuses� with an e�ective read�write throughput
of ���Mbytes per second�

CPU 1

I$ D$

$$$$$$$$

I$ D$

$$$$$$$$

CPU 3

I$ D$

$$$$$$$$

CPU 4

I$ D$

$$$$$$$$

M M M

first level
instruction cache

first level
data cache

processor

second level
combined cache

main memory

bus

Figure �� Generic shared�memory multiprocessor

A throughput of ���Mbytes per second may sound high� but each Su�
persparc processor is capable of executing three instructions per cycle� in�
cluding supplying �� bits per cycle from memory� so a ���processor SC����
could conceivably request � billion bytes per second from the memory sys�
tem� Hence two layers of caches� The �rst level� being on�chip� can react
with new data in one cycle� The second level takes ���� cycles� whereas
accessing the main memory takes ����� cycles� A high cache hit rate is
therefore crucial to good performance�

SimICS emulates the cache hierarchy in �gure �� which is close enough to
real life to give a good prediction of performance of an application� In fact�
during our pro�ling we initially had signi�cant discrepancies between pre�
dicted performance and measured values� until we discovered that both the

SC���� machines we used for timing measurements had faulty Supersparc
processors with only �Kbyte caches� not ��Kbyte� The faulty processors had
gone unnoticed for several years� despite the machine being used extensively
for benchmarking of parallel programs� To remain comparable to available
hardware at the time of this study autumn ������ all simulated values in
this paper assume a �Kbyte �rst�level data cache with ���byte cache lines�
and a �Mbyte second�level integrated cache with ���byte cache lines� both
direct�mapped� Instruction cache behavior is irrelevant in this study as the
core interpreter in Penny is small��

� Using SimICS

In this section� we show how we used SimICS to study Penny from various
perspectives� As input to Penny we used an implementation of the Smith�
Waterman algorithm� The algorithm is used to compare DNA sequences
and the benchmark has good parallel performance�

�gdb�simics� prof�weight �� ��

Weighted profiling results�

Physical Virtual � source �

�x���ac�	� �x����
�	� �pid ����� ��������

�x���aca	� �x����
a	� �pid ����� ��������

�x���a	�a� �x������a� �pid ����� ��������

�x���a���� �x�������� �pid �����
������

�x���a���� �x�������� �pid �����
������

Total profiled� �	����
�� ��	��

Not shown� ��	
�	��� �����

Figure �� prof�weight listing

��� Performance debugging

The main concern when improving the performance of a system is to locate
the code that consumes the most resources� SimICS allows di�erent costs to
be assigned to events and can then generate statistics and display the most
expensive parts of the program� Figure � shows the output from one such
command�

�Interpreters in general have the e�ect of converting instruction cache pressure to data
cache pressure�

For our benchmark set and on our target machine the second�level data
cache and TLB misses turn out to be the most important events�� These
misses easily stall the CPU if the result is needed soon� which is often the
case� The output in �gure � is from running the benchmark with � workers�
The cost of a TLB miss and a read miss was set to � and a write miss to ��
The �gure lists the � most expensive blocks of instructions where each block
is �� bytes long � sparc instructions��

�x����� � � ����� �	�� �	���
 ld � �i� � �� �o�

�x����c � � � � �����
 cmp �o��

�x����� � � � � �����
 be�a �x����c

�x����� � � �
 �
 ld � �i� �� �i�

�x����� � � � � �����
 cmp �o��

�x����c � � � � �����
 bcs�a �x����c

�x����� � � 	��
 		 �����
 ld � �i� �� �i�

�x����� � � � �
���
 cmp �o�� �

�x����� � � � � ���
 bne�a �x����c

�x����c � � �
 �
 ld � �i� �� �i�

�x����� � � 	� � ���
 ld � �i� � �� �l�

Figure �� Assembler listing of the most expensive block

��� � ��� ��
��� � for�tc � ta��trd� tc �� NULL� tc � tc��nxt� �

���

��� � ��
�� ���	 	�����
� switch�tc��type� �

��� case DEAD�CELL�

��
 break�

���

��	 case FREE�CELL�

��� break�

���

��� case CHB�CELL� �

��� � 	� � ���
 templc � tc��box�chb�

Figure �� Source code listing of the most expensive block

The listing shows that almost ��� of the cost is found in the block
starting at virtual address �x������ The assembler listing of the block in
�gure � gives us� the number of write misses� the number of read misses� the

�The Translation Lookaside Bu�er 	TLB
� also known as the Address Translation
Cache 	ATC
� caches virtual�to�physical translations to improve the performance of virtual
memory�

number of TLB misses� and the approximate number of times the instruction
was executed and whether ���� the instruction was decoded��

As the listing makes evident� the ld instruction on address �x�����

causes a read miss almost every time it is executed� The instruction corre�
sponds to the source code shown on line �	� in �gure � where the pro�ling
data has been accumulated for each source line�

The source code in �gure � is from the garbage collector� and implements
part of the algorithm for distributing tasks among workers� The read misses
severely decreased overall performance� since the code is a part of a sequential
phase of the garbage�collector�

Many pro�lers would have identi�ed the procedure as a potential perfor�
mance problem� but would not have explained why�namely that one line
of assembler traversing a list misses the second�level cache over ��� of the
time� and misses the TLB almost �� of the time� This in turn was caused
by the creation of the list having been spread across multiple processors�
and would not have been a performance problem in a sequential version of
Penny�

An implementation technique that avoids building the list had been
sketched out a year earlier� but the previous benchmarking techniques had
not seen the traversal as a potential problem� Making this correction to
Penny improved performance signi�cantly� as seen in �gure ��

1000 ms

2000 ms

4000 ms

6000 ms

8000 ms

10000 ms

12000 ms

1 4 8 12 16

E
xe

cu
tio

n
tim

e

Workers

Execution time, Smith-Waterman

Original
Modified

Figure �� Improvements of the Smith�Waterman benchmark� following re�
moval of sequential bottleneck in garbage collection note� log�log scale�

��� Deciding on prefetching

By generating annotated source code the emulator could be studied in detail�
We noticed an exceptionally high read miss rate in the decoding of the unify

�This corresponds closesly with having been prefetched�

instructions�
The unify instructions are used to access the components of an AKL

term� Terms are represented by tagged pointers and are accessed by �rst
executing a get instruction� The get instruction will �rst look at the tag of
the term and only after having veri�ed the tag will it follow the pointer to
verify the functor� A unique tag is used for list terms� so in this case only
the tag needs to be veri�ed� The following unify instructions will then access
the arguments of the term�

The reason for the high miss rate in the unify instructions was that when
the instructions were used they were often reading AKL terms that had been
constructed by another worker� The terms had thus been constructed in one
cache but were often read by another processor� forcing communication over
the bus�

The remedy to this problem was to add a prefetch instruction coded
in C� in all get and unify instructions� The prefetch would read the next
argument position so that the following unify instruction would �nd the
value in the cache� The time to read the argument would hopefully overlap
with useful work�

The �x did not work as expected� The read misses in the unify instruc�
tions did decrease but we had added a large number of read instructions�
most of which contributed nothing since the data was already in the �rst�
level cache� The net e�ect was slower execution�

The reason for this was obvious� When a functor or argument of a term
was inspected the following argument would in seven cases out of eight be
in the same cache line of the �rst level cache� The same would hold for
any prefetch instruction in the unify instructions� The only place where a
prefetch instruction would make any sense was in the get instruction that
was responsible for verifying a list cell� The get instruction itself would only
read the tagged pointer to the cell but not the car nor cdr of the cell�

Removing all but the one e�ective prefetch left us with an overall per�
formance improvement of ���� for several of the workloads�

In this example� we were able to use SimICS both to follow where the
cache misses moved to� and to quickly quantify the overhead induced by the
�x� Note that an optimizing compiler could not have identi�ed this prefetch�
since it wouldn�t know about the restrictions placed on the sequences of
abstract instructions�this required the intervention of the Penny designer�
using SimICS to explore trade�o�s�

��� The danger of locking

The Penny system uses locks in two di�erent situations� The �rst is in the
internals when workers move between di�erent parts of the execution state
or steal tasks from each other� The second situation is when AKL variables
are locked in order to add a new binding or suspension�

Both of these situations could cause a hot�spot in the implementation�

Since all locks are spin locks� a worker stalls if a lock is held by another
worker� so it is interesting to know how often the locks are actually missed
and how long it takes for a worker to acquire a missed lock�

To get an idea how often locks are missed� SimICS counters were placed
around the lock primitives� A SimICS counter is a special sparc instruction
inserted in the source code that the hardware the �real� processor� will
treat as a no�op� but which SimICS uses to start or stop event accumulators�
The technique is thus similar to execution�driven simulation� but with much
lower perturbation�

Counter ��

Number of times counter activated� �����

Total tick count spent in counter�
������

Detailed counts�

read operations ������

write operations
�����

xmem �swap� operations �

��

read cache misses �	

write cache misses ����

xmem �swap� cache misses ����

cache replacements
��

cache net invalidates ����

number of TLB misses ���

Counter ��

Number of times counter activated�

Total tick count spent in counter� �

Detailed counts�

read operations �

cache net invalidates

Figure �� Example of a statistics vector reported by counters�

We ran the Smith�Waterman benchmark with sixteen workers� The AKL
variable lock counter statistics for one CPU are listed in �gure �� Counter �
was entered when a worker examined a potential variable and counter �
was entered if there was a collision� As we can see almost eighty�thousand
variables were examined resulting in more than forty�thousand lock swap�
operations� In only one �� case does a collision occur� The results were
similar for all kinds of locks in the system�

These �gures indicate that the locks in the Penny machinery are not a

performance bottleneck� In fact� it might be worthwhile redesigning some of
these locks to be more aggressive in assuming low contention�

The use of SimICS counters in this analysis greatly simpli�ed instrumen�
tation of the locks� We added half a dozen di�erent types of counters� to
a few dozen di�erent procedures and macros� Though it required modi�ca�
tion in the source code and re�compilation� the binary can run on the real
machine unchanged with an insigni�cant e�ect on performance� In fact� in
the real execution this instrumentation adds less than � no�op instructions
for every ����� �real� instructions� Thus there is no real need to maintain
separate versions�

� The limiting factor

Though we managed to improve both the initial performance and speedup
parallelism� of the Penny system� there remains a signi�cant sequential
element that could not be easily explained� As seen earlier in �gure � the
speedup is not linear� but decreases� The limiting factor could of course be in
the Smith�Waterman algorithm itself but there are no sequential components
in the benchmark that could explain the limited speedup� The answer lies
in the cache performance of the Penny system�

��� Perfect parallelism

Table � shows statistics gathered from executing the benchmark on the im�
proved Penny system� The reported numbers are the sum of events generated
by all the processors� The cache statistics are for a �Mbyte cache� i�e� our
target machines� second level cache�

Number of workers

� � � ��
runtime 	ms
 ���� ��� ���� ��� ���

read operations 	x���
 ��� ��� ��� ��� ���

read cache misses 	x���
 ��� ��� �� �� ���

write operations 	x���
 ���� ���� ���� ��� ���
write cache misses 	x���
 ��� ��� ��� ��� ��

executed instr� 	x���
 ��� ��� ��� ��� ���

Table �� Pro�ling and timing for all processors

As the table shows� the increased number of processors does not induce
a large overhead in the number of executed instructions� The instruction
count only increases by ��� when sixteen workers are used and the number
of read and write instructions increase even less�

In Table � we show the actual reduction in execution time with each
doubling of workers� contrasted with the reduction in various operation types
per processor� For example� in going from � to � workers� execution time is

number of workers

��� ��� ��� ����

runtime ���� ���� ���� ��	�

read operations ���� ���� ���� ����

write operation ���� ���� ���� ����

executed instr� ���� ���� ���� ����

Table �� Actual execution time� contrasted with instruction counts�

cut by ���� whereas the number of read and write instructions are reduced
by ��� each and the instruction count is reduced by ���� all on a per�
CPU basis� In other words� the complexity and nature of the computation
on a coarse level does not change much� but becomes evenly spread over
an increasing number of workers� To account for the non�linear scaling of
performance� we need to look for other e�ects�

��� Cache misses

The explanation is partly found in the number of read and write misses� Ta�
ble � shows estimated reduced execution time based on the cache misses only�
When going from one to two workers the number of read misses increases
dramatically� which represents a small number of capacity misses changing
to a large number of coherency misses caused by inter�processor communi�
cation� The write miss count also increases but not as dramatically� The
increased number of read and write misses explains why the initial speedup
is only ��� and not closer to ��� as indicated by the operation count�

number of workers

��� ��� ��� ����

runtime ���� ���� ���� ��	�

read misses �� ���� ���	 ����

write misses ���� ���� ��	� ����

Table �� improvements of cache performance

Once the initial penalty of running in parallel has been taken the miss
rate increases less dramatically� When going from two to four or from four
to eight workers the increased miss rate appears su�cient to explain the
actual limited speedup� But� when going from eight to sixteen workers the
increased miss rate alone cannot explain the poor performance�

��� Explaining overall performance

We ran various combinations of Penny�using eight versions of Penny itself
with di�erent improvements and modi�cations�� several benchmark inputs
in addition to Smith�Waterman� and three levels of parallelism �� �� and ��

0 ms

1000 ms

2000 ms

3000 ms

4000 ms

5000 ms

0 ms 1000 ms 2000 ms 3000 ms 4000 ms 5000 ms

M
ea

su
re

d

Explained

Measured Runtime vs Simple Model

16 Procesors
 8 Processors
 4 Processors

Figure 	� Results of explaining performance using a simple best��t

workers�� We measured the median time out of �� runs� giving us �� timing
points� For each point� we used SimICS to generate �� aggregate values�
covering the di�erent cache and TLB miss types in the target system� for
one of the processors�

We next selected three variables that we presumed to be important for
explaining performance� A multiple regression of these variables against the
database� and fudging� results in the following relation between the explained
time T in milliseconds� read operations R� �rst�level read misses L�� second�
level read misses L��

T � ����R� ����� L� � ��� L�

In �gure 	 we have plotted the explained time T against the measured
time� The correlation is ����� not exceptional but clearly a good indicator�
Observing the �gure� we note that the performance of large con�gurations
�� processors� is overestimated and� conversely� the small con�guration �
processors� is underestimated� We suspect the reason for this is that we are
lacking a fourth coe�cient to measure bus contention� an issue that becomes
signi�cant as the number of communicating processors increase�

Misses to the second level cache cause the bus load to increase� The bus
is a globally shared resource� so when it approaches saturation it stalls new
accesses� As we increase parallelism� the miss rate of reads and writes both
increase� which is natural since we are spreading work and communicating
more� At the same time� execution time is decreasing� compounding pressure

on the bus� This could explain the abnormally high coe�cient for read misses
to the second level cache ���� which of course is the one of the three closest
correlated with bus contention and thus has to carry the bus contention load
in the regression�

The conclusion is that the bus capacity starts a�ecting overall perfor�
mance at �� workers something we could con�rm over a year later by run�
ning the same benchmark on the next generation sparc multiprocessor with
a faster bus��

In this analysis� SimICS reports su�cient detail to help us reconstruct
what is causing speedup to begin trickling o�� We now know that for larger
con�gurations� we should focus on second�level cache misses� Many of the
data structures in Penny have been optimized to be cache�line aligned� etc�
The SimICS� source�line pro�ling of second�level cache misses could be used
to evaluate di�erent design changes aimed at reducing the amount of data
communicated�

� Concluding remarks

The brief examples in this paper have been anecdotal� and were intended to
underline SimICS� ability to zoom in on and study performance problems�
or to explore design alternatives� The criteria we used for deciding what
was �good� were a small number of characteristics� essentially the type of
data listed in the counters example in �gure �� That these relatively simple
statistics are good guidelines can be shown by correlating them against a
large number of performance measurements from the real target machine�
The cache performance is so important for the overall performance of the
system that it is very hard to tune a system without having access to cache
miss statistics�

A parallel system can have a perfectly scalable behavior with respect
to the number of instructions executed and still not show linear speedup�
Only when the cache misses are taken into account can the performance of
the system be understood� We have shown a strong correlation between the
actual execution time and read operations� It indicates that a second level
read miss is two order of magnitudes more expensive than a �rst level hit�
This in turn suggests that a read miss rate of the second level cache of over
one percent will dominate the execution time�

Analysis of cache performance of logic programming systems is not new
��
but our approach is quite di�erent� We have analyzed the performance of
a parallel system on an existing parallel architecture� The analysis is done
not through a generated trace �le of selected read and write operations but
from all operations actually performed by the system�� The number of read
and write operations performed by the larger benchmarks is over ��� mil�

�We have restricted ourselves to a user�level study� i�e� excluding the e�ects of an
operating system�

lion� The total number of instructions executed is for some benchmarks over
��� million� SimICS also allows us to do interactive performance debug�
ging since hot�spots are easily located� We know not only the overall cache
performance but can pinpoint the instructions that generate misses�

In general� we note the importance of pro�ling tools keeping abreast
of what hardware events are actually triggered by the software� why� and
roughly what cost they correspond to� For the architecture modelled in this
study� the performance of the memory hierarchy data caches�� the virtual
memory system TLB�� and instruction count was adequate� Subsequent
generations of parallel architectures will undoubtably introduce new events�
For example� we would expect future large parallel machines to exhibit more
complex memory hierarchy behavior� in which case we would need to extend
SimICS to maintain separate pro�les for a larger family of memory hierarchy
events�

Acknowledgments

The parallel implementation of AKL has been developed using the AGENTS
���
�� system as a starting point� Haruyasu Ueda did much of the imple�
mentation and analysis of the scheduler
���� Gallal Atlam and Kahyri Ali�
designed and implemented the garbage collector
�� ���

Bengt Werner co�designed much of the SimICS front�end semantics� An�
ders Landin has been an enthusiastic supporter of SimICS and has con�
tributed much to the discussion of what a user needs to know about pro�
gram�architecture interaction� David Samuelsson wrote much of the sparc
V� interpreter� Henrik Forsberg wrote much of the Unix emulation�

Thanks to Peter Fritzson at Link oping University for access to a ���
processor SC���� for the Penny timings�

Various parts of this work have been sponsored by Ellemtel in the En�
terprise and Hubble projects� Sun Microsystems in the SOS project� the
European Commission in the GPMIMD project� ACCLAIM Esprit project�
EP 	��� and SICS�

References

�� K� A� M� Ali� A parallel copying garbage collection scheme for shared�
memory multiprocessors� New Generation Computing� ����� December
�����

�� G� A� M� A� Atlam� Parallel garbage collection in a multiprocessor

implementation of a concurrent constraint programming system� Phd
thesis� Menou�a University� Egypt� January ���	�

�� R� C� Bedichek� Some e�cient architecture simulation techniques� In
Proceedings of Winter ��� USENIX Conference� pages ��!��� January
�����

�� P� Brand� D� Sahlin� and T� Sj oland� Assessment of a storage optimiza�
tion tool for AKL� Esprit� PARFORCE deliverable� D�WP������M��

�� S� Gill� The diagnosis of mistakes in programmes on the EDSAC� In
Proceedings of the Royal Society Series A� Mathematical and Physical

Sciences� volume �������	� pages ���!���� Cambridge University Press�
May �����

�� M� Hermenegildo and E� Tick� Memory referencing characteristics and
caching performance of and�parallel prolog on a shared�memory multi�
processor� New Generation Computing� 	�����	!��� �����

	� S� Janson� AKL a multiparadigm programming language� Uppsala
Thesis in Computing Science ��� SICS Dissertation Series ��� Uppsala
University� SICS� �����

�� S� Janson and J� Montelius� The design of the AKL�PS ��� prototype
implementation of the Andorra Kernel Language� ESPRIT deliverable�
EP ��	� PEPMA�� SICS� �����

�� P� S� Magnusson� A design for e�cient simulation of a multiprocessor�
In Proceedings of MASCOTS� pages ��!	�� January �����

��� P� S� Magnusson� E�cient instruction cache simulation and execution
pro�ling with a threaded�code interpreter� In Proceedings of the ���

Winter Simulation Conference� ���	� to appear��

��� P� S� Magnusson and B�Werner� E�cient memory simulation in SimICS�
In Proceedings of the ��th Annual Simulation Symposium� pages ��!	��
�����

��� J� Montelius� Exploiting fine�grain parallelism in concurrent constraint
languages� Uppsala Thesis in Computing Science ��� SICS Dissertation
Series ��� Uppsala University� SICS� ���	�

��� H� Ueda and J� Montelius� Dynamic scheduling in an implicit parallel
system� In Ninth International Conference on Parallel and Distributed

Computing Systems� September �����

��� D� H� D� Warren� An abstract prolog instruction set� Technical Report
���� SRI International� �����

