
Concurrent Constraint Programming at SICS
with the Andorra Kernel Language

�Extended Abstract�

Seif Haridi Sverker Janson

Johan Montelius Torkel Franz�en Per Brand

Kent Boortz Bj�orn Danielsson Bj�orn Carlson

Torbj�orn Keisu Dan Sahlin Thomas Sj�oland

SICS� Box ����� S���	 �
 KISTA

Tel �	��
��� � ��� Fax �	��
��� �� ��

E�mail fseif� sverkerg�sics�se

Abstract

SICS is investigating a new generation of languages for symbolic processing that are based on the
paradigm of concurrent constraint programming� A wide range of pertinent topics are being studied� In
particular our e�orts are devoted to producing a high quality programming environment based on the
Andorra Kernel Language �AKL�� a general purpose concurrent constraint language�

� Introduction

Concurrent constraint programming �CCP� is a powerful paradigm for programming with constraints while
being based on simple concepts ��� ���� A set �or conjunction� of constraints� regarded as formulas in 	rst

order logic� forms a constraint store� A number of agents interact with the store using the two operations tell�
which adds a constraint to the store� and ask� which tests if the store either entails or disentails the asked con

straint� otherwise waiting until it does� Telling and asking correspond to sending and receiving �messages��
thereby providing the basic means for communication and synchronisation for concurrent programming�

The Andorra Kernel Language �AKL� is a concurrent constraint programming language which generalises the
above functionality using a small set of powerful combinators ��� The basic paradigm is still that of agents
communicating over a constraint store� but the combinators make possible also other readings� depending
on the context� where agents compute functions or relations� serve as user
de	ned constraints� or as objects
in object
oriented programs� A major point of AKL is that its paradigms can be combined� For example� it
is quite natural to have a reactive process
 or object
oriented top
level in a program� with other components
performing constraint solving using don�t know nondeterminism� The nondeterminism can be encapsulated�
so that it does not a�ect the process component�

Nondeterminism in AKL is controlled using stability� a generalisation of the Andorra principle� which has
proven its usefulness in the context of constraint programming �see e�g�� �����

AKL o�ers a large potential for parallel execution� no less than that of logic programming languages and
data�ow languages ����� Arbitrary parallel algorithms can be programmed in AKL� which is exempli	ed by
its ability to simulate a PRAM� This ability is given by ports� an extension of the language for process com

munication� but in the spirit of concurrent constraint programming ���� Pure functional and logic languages
do not have this ability�

SICS is currently developing a programming environment for AKL ���� Among our goals are to� ��� develop
the necessary implementation technology for e�cient �sequential and parallel� execution� ��� develop an

execution model which allows di�erent constraint systems to be easily incorporated� ��� o�er good interoper

ability with conventional languages such as C� and ��� investigate large scale applications where combinations
of paradigms naturally occur�

Our e�orts are divided into the following main lines of activities�

Language Design A language meeting our requirements has been designed� AKL� Possible extensions
and generalisations are being investigated� AKL features

� Combinators for �parallel� composition� hiding� conditional choice� nondeterminate choice� committed
choice� and solution aggregation

� Improved control and synchronisation� e�g�� encapsulation of nondeterminism controlled by stability

� Subsumption of Prolog� CLP� and committed
choice languages such as GHC� Parlog� and Strand

� Support for concurrent object
oriented programming

� Support for arbitrary parallel algorithms

Current and future work includes investigation of maximizing �minimising� combinators� and engines� which
provide an AKL computation with the ability to inspect and control another computation�

Implementation A prototype implementation of full AKL has been developed� Experiments indicate
that performance� using an optimising compiler being developed� will be no less than that of state of the art
implementations of Prolog �e�g�� SICStus Prolog�� The implementation consists of the following main parts�

� A compiler �written in AKL� to an abstract machine

� A threaded emulator �written in C�

� A Prolog
style debugger

Current and future work includes developing an optimising compiler and a parallel implementation�

Constraint Systems A number of di�erent constraint systems are being considered� The prototype
implementation is parameterised with constraint systems� which may be added as separate modules� The
following constraint systems are addressed� �See also the following section��

� Herbrand and rational trees serve as a foundation�

� Feature trees have been implemented�

� Finite domains are being investigated�

� Complete Herbrand �closed under logical combinators� is being designed�

Current work also includes the de	nition of a generic constraint interface�

Formal Aspects Soundness and completeness results for a logical interpretation of AKL have been shown
and a proof system for programs is being investigated�

Analysis and Transformation Program analysis by abstract interpretation and program transformation
by partial evaluation are studied� both with the aim to improve performance�

In the remainder of this paper a short section will 	rst summarise the constraint systems that have been
considered� and the rest is devoted to an explanation of AKL� since it is assumed that this language is largely
unknown to the present readership�

� Constraint Systems

A constraint system for AKL may in principle be any 	rst
order theory� closed under conjunction and
existential quanti	cation� for which decision procedures for satsi	ability and entailment can be provided� Of
course� a large body of work on practically motivated constraint systems exists� We have so far considered
Herbrand and rational trees� feature trees� 	nite domains� and complete Herbrand� This investigation will
surely be extended to other systems in the future�

��� Herbrand and Rational Trees

Herbrand is a theory of equality of terms �the Clark equality theory�� The di�erence between Herbrand and
rational trees is that the latter provides solutions to constraints of the form �X � f�X��� Traditionally� logic
programming is based on Herbrand or rational trees�

For example �T � tree�I�L�R�� and �L � ������jS��� as may be found in Prolog programs� are Herbrand
constraints�

��� Feature Trees

Feature trees are formed from constraints of the form �X f Y�� where �f� is a feature� a feature being anything
which may serve as a label ���� Intuitively� the feature constraint associates with X a �property� f having
the value Y� thus regarding X as a map from properties to values�

��� Finite Domains

Finite domain constraints encodes e�ciently properties for 	nite sets ���� ����

For example� �X in ���� restricts X to be in the range � to � �Z in ����� correspondingly for Z� and by adding
�X � Z�� we may conclude �X � � and �Z � ���

��� Complete Herbrand

Complete Herbrand is Herbrand closed under the usual �	rst
order� logical combinators ���� This makes the
decision procedures for satis	ability and entailment considerably more complex� while o�ering� among other
things� the potential for a more powerful treatment of negation�

� Language Design

In this section AKL is introduced step by step� introducing one language construct at a time� also explaining
its behaviour� There is no space for a formal de	nition of the computation model �even though it is fairly
concise�� An explanation of solution aggregates has also been omitted for reasons of space�

For a formal computation model see ��� and ��� which also de	nes the logical interpretation� Observe that
these are based on a clausal syntax which is equivalent to the current combinator syntax� Both are available
in the AKL programming system�

��� Basic Constructs

The agents of concurrent constraint programming correspond to statements being executed concurrently�

Constraints� as discussed in the previous section� appear as atomic statements known as constraint atoms
�or just constraints��

A program atom of the form

hnamei�X�� � � � � Xn�

is a de	ned agent� For example�

plus�X� Y� Z�

is a �plus��� atom�

The behaviour of atoms is given by �agent� de�nitions of the form

hnamei�X�� � � � � Xn� �� hstatementi�

The variables X�� � � � � Xn must be di�erent� During execution� any atom matching the left hand side will
be replaced by the statement on the right hand side� For example�

plus�X� Y� Z� �� Z � X � Y�

is a de	nition �of plus����

A composition statement of the form

hstatementi� � � � � hstatementi

builds a composite agent from a number of agents� Its behaviour is to replace itself with the concurrently
executing agents corresponding to its components�

A hiding statement of the form

X�� � � � � Xn � hstatementi

introduces variables with local scope� The behaviour of a hiding statement is to replace itself with its
component statement� in which the variables X�� � � � � Xn have been replaced by new variables�

The conditional choice statement

� hstatementi � hstatementi
� � � �
� hstatementi � hstatementi �

is used to express conditional execution� Its components are called �guarded� clauses and the components of
a clause guard and body� A clause may be enclosed in hiding�

The behaviour of a conditional choice statement is as follows� Its guards are executed with corresponding
local constraint stores� If the union of a local store with the external stores is unsatis	able� the guard
fails� and the corresponding clause is deleted� If all clauses are deleted� the choice statement fails� If the
	rst �remaining� guard is successfully reduced to a store which is entailed by the union of external stores�
the conditional choice statement is replaced with the composition of the constraints with the body of the
corresponding clause�

If a variable Y is hidden in a clause� then� when testing for entailment� the local constraint store is preceded
by the expression �for some Y� �or logically� ��Y��� For example� in

X � f�a�� � Y � X � f�Y� � q�Y� �

the asked constraint is ��Y �X � f�Y��� ��for some Y� X � f�Y���� which is entailed� since there exists a Y
�namely �a�� such that X � f�Y� is entailed�

It is now time for a 	rst small example� illustrating the nature of concurrent computation in AKL� The
following de	nitions will create a list of numbers� and add together a list of numbers� respectively�

list�N� L� ��
� N � � � L � ��
� L� � N � � � L � �NjL��� list�N
 �� L�� ��

sum�L� N� ��
� L � �� � N � �
� M� L�� N� � L � �MjL�� � sum�L�� N��� N � N� � M ��

The following computation is possible� In the examples� computations will be shown by performing rewriting
steps on the state �or con	guration� at hand� unfolding de	nitions and substituting values for variables� etc��
where appropriate� which should be intuitive� In this example we avoid details by showing only the relevant
atoms and the collection of constraints on the output variable N� Intermediate computation steps are skipped�
Thus�

list��� L�� sum�L� N�

is rewritten to

list��� L��� sum���jL��� N�

by unfolding the list atom� executing the choice statement� and substituting values for variables according
to equality constraints� This result may in its turn be rewritten to

list��� L��� sum���jL��� N��� N � � � N�

by similar manipulations of the list and sum atoms� Further possible states are

list��� L��� sum���jL��� N��� N � � N�
sum���� N��� N � � � N�
N � �

with 	nal state N � ��

The list�� agent produces a list� and the sum�� agent is there to consume its parts as soon as they are
created� If the tail of the list being consumed by the sum�� call is unconstrained� the sum�� agent will wait
for it to be produced �in this case by the list�� agent��

The simple set of constructs introduced so far is a fairly complete programming language� quite comparable
in expressive power to� e�g�� functional programming languages�

In the following sections� we will introduce constructs that address the speci	c needs of important program

ming paradigms� such as processes and process communication� object
oriented programming� relational
programming� and constraint satisfaction� In particular� we will need the ability to choose between alterna

tive computations in a manner more �exible than that provided by conditional choice�

��� Don�t Know Nondeterminism

Many problems� especially frequent in the 	eld of Arti	cal Intelligence� and also found elsewhere� e�g�� in
operations research� are currently solvable only by resorting to some form of search� Many of these admit
very concise solutions if the programming language abstracts away the details of search by providing don�t
know nondeterminism�

For this� AKL provides the nondeterminate choice statement�

� hstatementi � hstatementi
� � � �
� hstatementi � hstatementi �

The symbol ��� is read wait� The statement is otherwise like the conditional choice statement�

The behaviour of a nondeterminate choice statement is as follows� Its guards are executed with corresponding
local constraint stores� If the union of a local store with the external stores is unsatis	able� the guard fails�
and the corresponding clause is deleted� If all clauses are deleted� the choice statement fails� If only one clause
remains� and its guard is successfully reduced to a store which is consistent with the union of external stores�
the choice statement is said to be determinate� Then� the nondeterminate choice statement is replaced with
the composition of the constraints with the body of the corresponding clause� Otherwise� if there is more
than one clause left� the choice statement is said to be nondeterminate� and it will wait� Subsequent telling
of other agents may make it determinate� If eventually a state is reached in which no other computation
step is possible� each of the remaining clauses may be tried in di�erent copies of the state� The alternative
computation paths are explored concurrently�

Let us 	rst consider a very simple example� an agent that accepts either of the constants a or b� and then
does nothing�

p�X� ��
� X � a � true
� X � b � true ��

The interesting thing happens when the agent p is called with an unconstrained variable as an argument�
That is� we expect it to produce output� Let us call p together with an agent q examining the output of p�

q�X� Y� ��
� X � a � Y � �
� true � Y � � ��

Then the following is one possible computation starting from

p�X�� q�X� Y�

First p and q are both unfolded�

� X � a � true � X � b � true ��
� X � a � Y � � � true � Y � � �

At this point in the computation� the nondeterminate choice statement is nondeterminate� and the conditional
choice statement cannot establish the truth or falsity of its condition� The computation can now only proceed
by trying the clauses of the nondeterminate choice in di�erent copies of the computation state� Thus�

X � a� � X � a � Y � � � true � Y � � �
Y � �

and

X � b� � X � a � Y � � � true � Y � � �
Y � �

are the two possible computations� Observe that the nondeterminate alternatives are ordered in the order
of the clauses in the nondeterminate choice statement�

The constructs introduced so far give us �constraint� logic programming in addition to functional program

ming� Nondeterminism is introduced only lazily� Propagation of known constraints is always given priority�
This simple functionality gives us means to solve many constraint satisfaction problems e�ciently ����

Up to this point� the constructs introduced belong to the strictly logical subset of AKL� which has a straight

forward interpretation in 	rst
order logic both in terms of success and failure�

��� Don�t Care Nondeterminism

In concurrent programming� processes should be able to react to incoming communication from di�erent
sources� In constraint programming� constraint propagating agents should be able to react to di�erent
conditions� Both of these cases can be expressed as a number of possibly non
exclusive conditions with
corresponding branches� If one condition is satis	ed� its branch is chosen�

For this� AKL provides the committed choice statement

� hstatementi j hstatementi
� � � �
� hstatementi j astatementn �

The symbol �j� is read commit� The statement is otherwise like the conditional choice statement�

The behaviour of a committed choice statement is as follows� Its guards are executed with corresponding
local constraint stores� If the union of a local store with the external stores is unsatis	able� the guard fails�
and the corresponding clause is deleted� If all clauses are deleted� the choice statement fails� If any of
the �remaining� guards is successfully reduced to a store which is entailed by the union of external stores�
the committed choice statement is replaced with the composition of the constraints with the body of the
corresponding clause�

List merging may now be expressed as follows� as an example of an agent receiving input from two di�erent
sources�

merge�X� Y� Z� ��
� X � �� j Z � Y
� Y � �� j Z � X
� E� X�� Z� � X � �EjX�� j Z � �EjZ��� merge�X�� Y� Z��
� E� Y�� Z� � Y � �EjY�� j Z � �EjZ��� merge�X� Y�� Z�� ��

A merge agent can react as soon as either X or Y is given a value� In the last two guarded statements�
hiding introduces variables that are used for �matching� in the guard� as discussed above� These variables
are constrained to be equal to the corresponding list components�

��� Encapsulated Computations

To avoid unwanted interactions between don�t know nondeterministic and process
oriented parts of a pro

gram� the nondeterministic part can be encapsulated in a statement that hides nondeterminism� Nondeter

minism is encapsulated in the guard of a conditional or committed choice and in the solution aggregation
constructs provided by AKL�

The scope of don�t know nondeterminism in a guard is limited to its corresponding clause� New alternative
computations for a guard will be introduced as new alternative clauses� This will be illustrated using the
following simple nondeterminate agent�

or�X� Y� ��
� X � � � true
� Y � � � true ��

Let us start with the statement

� or�X� Y� j q �

The or atom is unfolded� giving

� � X � � � true � Y � � � true � j q �

Since no other step is possible� we may try the alternatives of the nondeterminate choice in di�erent copies
of the closest enclosing clause� which is duplicated as follows�

� X � � j q
� Y � � j q �

Other choice statements are handled analogously�

Before leaving the subject of don�t know nondeterminism in guards� it should be clari	ed exactly when
alternatives may be tried� A �possibly local� state with agents and their store is �locally� stable if no
computation step other than splitting a nondeterminate choice is possible� and no such computation step
can be made possible by adding constraints to external constraint stores �if any�� Splitting may then be
applied to the leftmost possible nondeterminate choice in a stable state�

��� Ports for Concurrent Objects

The combinators mentioned above are adequate to model concurrent objects in a style known from concurrent
logic programming� A standard example of an object de	nition is a bank account providing services such as
withdrawals� deposits� etc�

make bank account�S� �� bank account�S����

bank account�Ms� State� ��
� Ms � �� � true
� A�R � Ms � �withdraw�A�jR� �

bank account�R� A
State�
� A�R � Ms � �deposit�A�jR� �

bank account�R� A�State�
� A�R � Ms � �balance�A�jR� �

A � State� bank account�R� State���

However it known from experience that communication between objects using streams and merger agents is
very awkward�

In AKL we use another communication medium between objects� called ports� A port is a binary constraint
on a bag �a multiset� of messages and a corresponding stream of these messages� It simply states that they
contain the same messages in any order� A bag connected to a stream by a port is usually identi	ed with the
port� and is referred to as a port� The open port�P�S� operation relates a bag P to a stream S� and connects
them through a port�

The stream S will typically be connected to an object of the above form� Instead of using the stream to
access the object� we will send messages by adding them to the port� The constraint send�P�M� sends the
message M to the port P� To satisfy the port constraint� a message sent to a port will immediately be added
to its associated stream� 	rst come 	rst served� In this sense the port constraints have the same status as the
committed choice statement by committing to a single arbitrary order of messages in the stream associated
with the port constraint�

When a port is no longer referenced from other parts of the computation state� when it becomes garbage�
it is assumed that it contains no more messages� and its associated stream is automatically closed� When
the stream is closed� any object consuming it is thereby noti	ed that there are no more clients requesting
its services�

A simple example follows�

open port�P�S�� send�P�a��send�P�b�

yields

P � �a port�� S��a�b�

Ports solve a number of problems that are implicit in the use of stream� Here is a summary� for a detailed
description of these see ����

� Several clients can access the same objects without the need to explicitly merge messages into a single
stream�

� Objects can be embedded freely in other data structures provided by AKL�

� Message sending conceptually takes constant time in the computational model of AKL�

� Automatically closing the stream associated to a port� when the port is no longer accessible� provides
a good method for garbage collecting concurrent objects�

��� Ports for State and Parallel Algorithms

Ports provide AKL with means to incorporate various types of mutable data structures� such as arrays and
hashtables� These structures are modelled in AKL as objects connected to a port� but may be implemented
very e�ciently at a lower level�

For example� a memory cell can be modelled in AKL as an object connected to a port that accepts the
messages read�V�� write�V�� and exchange�V��V��� to read a value V� to write a value V� and to atomically
exchange the current value V� with V�� respectivley�

This ability allows us to model a parallel random access memory� or parallel access to hash tables in the lan

guage� and as a consequence allows us to write many parallel algorithms that cannot be e�ciently expressed
in pure functional and concurrent logic languages� The following is a typical example�

First we de	ne a shared memory as follows�

memory�M� ��
M � m�C�� ���� Cn��
cell�C��� ���� cell�Cn��

where cell�� agents are speci	ed as above� M becomes a tuple of ports to cells�

The problem is to� given a binary tree in which the leaves contain numbers in the range �� � � � � n� count the
occurrences of each number by a parallel algorithm �as parallel �as possible��� In our solution the occurrences
are collected in a table of counters� with indices in the given range� Assume that the memory agent de	ned
above de	nes a memory of this size� The program traverses the tree� incrementing the counter corresponding
to each number found� To guarantee that all nodes have been counted� the programperforms the computation
in a guard� making the table visible to other agents only when the computation has completed�

histogram�T� M� ��
memory�M�� count�T� M� � true�

count�Tree� Table� ��
�I�C�K � Tree � leaf�I� �

arg�I� M� C�� send�exchange�K�K����C�
� L�R � Tree � node�L�R� �

count�L�M��count�R�M���

This example is due to ����

� Concluding Remarks

Current and planned topics at SICS include e�cient sequential and parallel implementations parametrised
with user
de	nable constraint systems �in C�� implementations of various constraint systems� extensions of

the basic framework� such as engines for meta
level programming� program analysis and program transfor

mation� inter
operability with conventional languages and operating systems� and investigation of formal
properties�

An experimental AKL programming system is available from SICS for research purposes� The system consists
of a compiler �in AKL� from AKL to an abstract machine� an emulator written in C �including a copying
garbage collector�� and a Prolog style debugger�

References

��� Hassan A it
Kaci� Andreas Podelski� and Gert Smolka� A feature
based constraint system for logic
programming with entailment� In Proceedings of the International Conference on Fifth Generation
Computer Systems ����� ICOT� �����

��� Paul S� Barth� Rishiyur S� Nikhil� and Arvind� M
structures� extending a parallel� non
strict� functional
language with state� In Functional Programming and Computer Architecture ���� �����

��� Torkel Franz!en� Logical aspects of the Andorra Kernel Language� SICS Research Report R������
Swedish Institute of Computer Science� October �����

��� Steve Gregory and Rong Yang� Parallel constraint solving in Andorra
I� In Proceedings of the Interna�
tional Conference on Fifth Generation Computer Systems ����� ICOT� �����

�� Sverker Janson and Seif Haridi� Programming paradigms of the Andorra Kernel Language� In Logic
Programming	 Proceedings of the ���� International Symposium� MIT Press� �����

��� Sverker Janson� Seif Haridi� and Johan Montelius� Research Directions in Concurrent Object�Oriented
Programming� chapter Ports for Objects in Concurrent Logic Programs� MIT Press� ����� To appear�

��� Sverker Janson and Johan Montelius� The design of the AKL�PS ��� prototype implementation of the
Andorra Kernel Language� ESPRIT deliverable� EP ���� �PEPMA�� Swedish Institute of Computer
Science� �����

��� Torbj orn Keisu� Hcl� SICS research report� Swedish Institute of Computer Science� ����� Fortcoming�

��� Michael J� Maher� Logic semantics for a class of committed choice programs� In Logic Programming	
Proceedings of the Fourth International Conference� MIT Press� �����

���� Remco Moolenaar and Bart Demoen� A parallel implementation of AKL� CW
report� Department of
Computer Science� Katholieke Universiteit Leuven� �����

���� Vijay A� Saraswat� Concurrent Constraint Programming Languages� PhD thesis� Carnegie
Mellon
University� January ����� To be published by MIT Press�

���� Pascal Van Hentenryck� Constraint Satisfaction in Logic Programming� MIT Press� �����

���� Pascal Van Hentenryck� Vijay Saraswat� and Yves Deville� Constraint processing in cc�fd�� Technical
report� Computer Science Department� Brown University� �����

