
Parallelization of Garbage Collection in a CCP

System� Penny

DRAFT

Galal Atlam

galal�sics�se

Johan Montelius

jm�sics�se

Abstract

An important property of logic� object�oriented� functional� and

other high�level programming languages is their automatic manage�

ment of dynamically allocated storage� These languages often take

the burden of memory management away from the programmer� The

language support system provides the programmer with a virtually

unlimited amount of storage by running a garbage collector to reclaim

storage no longer needed�

The goal of this article is to present implementation and evaluation

of a parallel garbage collection scheme used in a parallel concurrent

constraint programming system called� Penny� running on a shared

memory multiprocessors machine� Our parallel garbage collector em�

ploys multiple collectors working in parallel to make e�cient use of the

underlying architecture� Four strategies have been investigated� these

strategies range from a sequential strategy to a full parallel one�

� Introduction

Advanced programming environments such as functional� object�oriented�
logic and concurrent constraint programming environments are based on
dynamic object creation and automatic reclamation of storage during com�
putation� A common problem in realizing such advanced programming en�
vironments� is how to manage e�ciently the heap storage with automatic
garbage collection� A garbage collector retains a program�s data objects that
are in use �active� and reclaims the space occupied by data objects that the
running program can never access again �garbage�� In addition to reclaim�
ing storage� a garbage collector can also restore locality to fragmented data

�

by dynamically compacting it� thereby improving the performance of caches
and virtual memory systems and reducing memory requirements 	
� ����

Now processors are continually getting cheaper multiprocessor machines�
are widely in use� and a lot of researchers try to utilize this opportunity to
speed up the execution of programs�

Advanced programming environments have been implemented on di
er�
ent parallel architectures and the shared�memory multiprocessors are the
ones most used as a test makes the beds� It is important to develop a mem�
ory management system that e�ciently manage the storage allocated by the
parallel program and best use the underlying architecture�

One of the advanced programming enviroments is the Agents Kernel Lan�
guage �AKL�� being developed at SICS� It is a general purpose concurrent
constraint language 	���� It combines the programming paradigms of search�
oriented languages such as Prolog and Process�oriented languages such as
GHC� AKL also allows nondeterministic execution� The parallel AKL sys�
tem� Penny is implemented on a SparcCenter���� �a shared�memory multi�
processor with � processors� machine�

The subject of this article is to investigate di
erent ways for parallelizing
the memory management part and garbage collection of the AKL system�
Four strategies have been investigated� these strategies range from a sequen�
tial strategy to a full parallel one�

The article is organized as follows� Section � presents di
erent garbage
collection techniques and brie�y review a number of parallel garbage collec�
tors� Section � presents AKL as a CCP system and its parallel implementa�
tion� Penny� Section � describes the sequential and parallel garbage collec�
tors� The implementation of parallel garbage collection will be presented in
section �� Section
�� presents an investigation of di
erent garbage collec�
tion strategies� The performance and evaluation of the parallel implementa�
tion along with how to calculate garbage collection speedup and the speedup
results will be presented in Section
� Section � presents a new memory
management scheme� The conclusions will be presented in Section ��

� Garbage Collection Survey

There exist several criteria for classify garbage collection techniques� one of
them is the method used to identify garbage� directly or indirectly� Garbage
collection techniques that identify garbage indirectly are� the �mark�and�
sweep�� and the �copying� techniques� The other class which identify garbage

�

directly is the �reference counting� technique� These techniques will be dis�
cussed in the following section� In section ��� we will brie�y review a number
of parallel garbage collection schemes for shared memory multiprocessors�

��� Garbage Collection Techniques

In this section the three basic garbage collection techniques classi�ed ac�
cording to the garbage identi�cation criterion will be brie�y discussed�

� The mark�and�sweep technique 	��� identfy the garbage objects by
traverses and marks all objects reachable from root pointers� Then
all the objects in memory are examined in order of their addresses�
Unmarked objects are either put onto a free list� to be reused when
the running program allocates new objects� or rearranged in such a
way that all cells still in use appear in one compact mass at one end of
the area� The remaining space at the other end can then be recycled
by the program�

� The reference counting technique 	�� identfy the garbage objects
during program execution� Each object keeps with a counter speci�
fying the exact number of references to it� Each time a reference to
the object is created� the counter is incremented� Whenever an exist�
ing reference to the object is eliminated� the counter is decremented�
When the counter reaches zero� the object is no longer referenced by
the running program� And the space occupied by the object may be
reclaimed� The spaces occupied by garbage objects are linked in free�
list� to be reused�

� The copying technique 	
� requires two memory spaces of equal size
�old space and new space�� only one space is used at a time� The
collector picking out the worthwhile objects �live� amid the garbage
from the old space and copies these objects into a new space� A �ip
operation then reverses the roles of the two spaces�

Copying garbage collector is very attractive for systems that have a high
rate of garbage generation as in functional programming and the family con�
current logic programming� This because in the copying technique garbage
collection time is proportional to the amount of data in use by the system
�O�jlivej�� 	�
�� This is in contrast to the mark�and�sweep technique� which
has garbage collection time proportional the entire area �live and dead ob�
jects�� Reference counting technique avoids this problem by incremental

�

collection� but it has problems in dealing with cyclic garbage structures
and the reference counter themselves take up space� in addition to memory
fragmentation problem� Also copying garbage collector is able to reclaim
circular structures and reduces page thrashing as an e
ect of compacting
the living data�

��� Parallel Garbage Collection Schemes

A number of parallel garbage collection schemes based on the copying tech�
nique is brie�y reviewed in this section�

In ConcertMultilisp� Halstead 	�� parallelize Baker�s incremental garbage
collection scheme 	�� for shared�memory machines� He statically dividing
the heap area equally between workers� and each worker copies active objects
onto its private new heap area during program execution which improves lo�
cality of references� There is no dynamic garbage collection load distribution
among workers is given by Halstead 	�� scheme�

Like Halstead 	��� Ali 	�� presents a parallelization of Baker�s incremental
garbage collection scheme for shared�memory multiprocessors� The scheme
suitable for contiguous and non�contiguous memory heap blocks which al�
located dynamically to the processors on demand� Ali�s scheme supports
dynamic load balancing� Processors without computational work perform
garbage collection work� other processors continue with their computation�
He used a local and global queues for maintaining the garbage collection
works� These queues can implemented without space overhead by four words
as a queue header and the queue body moved into the heap cells�

Imai and Tick 	�� parallelized the stop�and�copy garbage collection scheme
of Cheney 	
� for shared�memory multiprocessors� They implemented the
algorithm within a concurrent logic programming system called� VPIM� Ob�
jects with equal size are allocated in the same memory block� The scheme
supports dynamic load balancing mechanism� that is any worker can garbage
collect objects in any memory� This implemented by a global stack for main�
taining garbage collection work that can be taken by any worker� Their
calculated garbage collection speedups are expected�

Ellis� li� and Appel 	�� proposed also the design and the implementation
of a concurrent copying garbage collector on a shared�memory multiproces�
sors� One processor reclaims all the garbage� while others proceed with their
normal computation� Heap area organized in pages� They using a memory
protections facilities provided by the hardware for operating system syn�
chronization between the collector and the mutators�

�

R� Sharma and M� L� So
a 	��� presents a parallel generational garbage
collection scheme� They used a shared�memory multiprocessors simulator
for implementation of their scheme� Heap area is represented by several
generation and the garbage collection of each generation can take place in
parallel� The preformance of their scheme evaluated by comparison with
Ellis� li� and Appel 	�� scheme�

We are implemented the scheme proposed by Ali 	�� which is a par�
allelization of a sequential stop�and�copy garbage collection scheme based
on traversing active data in a depth��rst manner� The heap area is non�
contiguous memory blocks with no extra space overhead� The non�con�
tiguous memory blocks organization of the storage heap is much more �ex�
ible than the one based on one large contiguous heap area� This is because
it is much easier to get a number of smaller memory blocks than to get one
big block from any operating system� The garbage collection load balanc�
ing depend upon the implemented strategy as we will see section
��� The
speedups calculated in our implementation are real speedups�

� A CCP system� AKL

To parallelize the garbage collection of the parallel AKL system� needs to
give a brief description of the parallel implementation of AKL�

AKL is a concurrent constraint logic programming language� The pro�
gram in AKL is a set of predicate de�nitions� where no two de�nitions
de�ne the same predicate� The predicate of every program atom occurring
in a clause in the program has a de�nition in the program� Each predicate
is de�ned by a set of guarded clauses consisting of a head� a guard� a guard
operator and a body� The head is a program atom� the guard and body con�
tain program atoms and constraint atoms� There are three types of guard
operators� wait� conditional and commit� All clauses of the de�nition has
the same type of guard operator�

��� Parallel Implementation

���� need more� a good introduction to AKL �������
The parallel AKL system� Penny� 	��� represents the execution state

information needed by a worker� The execution state of each worker repre�
sented by� the con�guration tree� a�registers and context stacks�

�

main

a_cont

free chb a_cont chba_cont

choice-node

root choice-box

list of amd-nodes

dead

Figure �� The con�guration tree�

binding list

suspension list

permanent registers

env-id

(a_cont.)body

Term

And-continuation And-node

parent choice-node

and-box

Figure �� The and�node and the and�continuation�

Con�guration tree

The con�guration tree� as shown in Figure �� consists of�

� and�node

� choice�node

The root of the tree is a dummy choice�node that does not represent any
goal but serves only as a sentinel� It holds an empty choice�continuation
and a single and�node �the main and�node��

choice_cont.

registers

tried and-node

Term

parent and-node

choice-box

Figure �� The choice�node� choice�box and choice�continuation�

And�node

It is the representation of a guarded goal� It contains a sequence of goals
�insertion points�� environment identi�er� a list of bindings� a body and some
status information� The environment identi�er is a reference to a cell used
by variables to identify the home and�box�

The sequence of goals in the and�node are represented by the list of
insertion points� Each insertion point is either dead referring to a choice�
box or an and�continuation� An and�continuation represents a sequence of
program atoms� It contains the a tuple of permanent registers� a code pointer
and the insertion point of the continuation� The And�node and The and�
continuation are shown in Figure ��

Choice�node

A choice�node represents a choice�box� It contains a sequence of and�nods
and choice�continuation� A choice�continuation represents a sequence of
guarded goals a copy of argument registers� The Choice�box and choice�
continuation are shown �gure ��

Binding lists

It represents constraints on external �conditional� variables Unconditional
bindings can never be removed and can therefore be recorded in place� Con�
ditional bindings must only visible in or below the and�box in which the

�

binding occurs and are therefore recorded in the binding list of the and�
node�

A binding list consists of an entry for each constrained external variable�
An entry contains� apart from a reference to the variable� the binding of the
variable or a list of suspensions� An entry that a list of suspensions is called
a suspension entry� The suspension entry does not constrain the variable�
its purpose is only to keep track of suspensions� An entry that is not a
suspension entry is a proper entry�

Term representation

Terms are represented as tagged pointers� one high bit reserved for mark�
ing during garbage collection� Variables use three primary tags� One for
the variable reference �REF�� which points to a variable cell� and two more
�UVA� CVA�� which may be used within a variable cell to mark it as an
unbound unconstrained or constrained variable� respectively� An uncon�
strained variable holds� apart from its tag� a reference to the home and�box�
this reference is called environment identi�er �envid�� A constrained vari�
able holds a reference to a structure holding the environment identi�er and
a list of suspensions� Atoms hold only an identi�er� typically a short integer
or an index to an atom table� Structure holds� apart from the functor and
its arguments� an environment identi�er� Special objects �Generic objects�
represented by a reference to a structure holding the reference to its method
table� environment identi�er and the object� Figure � shows di
erent type
of terms�

A variable is local to an and�box� referred to as the home of the variable�
Variables that have their home in the path from the root to the and�box are
external to the and�box�

Notice that the representation of variables is di
erent from the represen�
tation of variables in WAM 	��� where unbound variables are represented
by a self reference�

��� Memory Management

All run time terms are allocated on the heap� The heap is also used for choice�
boxes� choice�continuations� and�boxes� and�continuations� constraints and
suspensions allocation� The heap is automatically expanded if needed and
is subject to garbage collection�

The code area holds the instructions of de�nitions� It has a static size�

�

envid

suspensions

envid

ATM

(X,Y,Z) g

[H | T] H

T

g /3

X

Y

Z

variable

structure
arguments

UVA

REF

STR

LST

envid

CVA

GVA
method table

Object

variable

Unconstraint

Constraint

object
Generic

term

Figure �� Di
erent types of terms�

�

and is not subjected to garbage collection so once we run out of space there
is no other option but to restart the system�

The constant area is used to allocate structures that will not become
garbage during the execution �atoms� functor� de�nition names and load
time integers�� The constant area is not subject to garbage collection and
does not increase in size�

Storage heap organization

In the parallel implementation� the storage heap is represented by one global
pool of non�contiguous free memory blocks and a number of used memory
blocks associated with each worker� During computation workers get free
blocks from the global pool until certain threshold� whereupon the parallel
garbage collector will be invoked� Each worker has a separate heap and
when it creates new terms during execution it always places them on its own
heap� The garbage collection uses a copying strategy where the remaining
free blocks are used�

The segmented heap allows an e�cient implementation of incremental
heap space� If a larger heap is needed new blocks are requested from the
operating system�

Notice that at any time more memory blocks could be requested from
the operating system and added to the global free list� Memory blocks are
small and non�contiguous� so the chance of getting them from the system
is much higher than when requesting one big memory block for the entire
storage heap� The global free list could be accessed simultaneously by more
than one worker� using global lock prevents any possible con�icts� Every
worker can read or write to existing cells on any other heap� hence a worker
can create pointers to cells on the other worker�s heap�

Stacks

Each worker has its own context stacks to maintain its execution state� These
stacks are wake� recall� a�cont and task stacks� These stacks are divided
into segments� each segment referenced from context stack entry� Apart of
context stacks each worker has two stacks for maintaining garbage collection
work� and a stack for maintaining references to unbound variables� Memory
spaces of these three garbage collection stacks are returned to the operating
system in the end garbage collection cycle�

��

� Garbage Collection in AKL

The garbage collection of terms �variables � structures� lists� atoms� ��etc�
is� in the sequential system� implemented using a stop�and�copy garbage
collection scheme based on traversing active data depth��rst� That is� if the
current cell to be scanned in a copied structure A points to an uncopied
structure B� the next cell to be scanned will be the last cell in a copy of
B� The next cell in A will be scanned only when all cells of B and the new
copied structures accessible from B have been completely scanned� That
is� cells are scanned in last�copied��rst�scanned manner� 	��� Section ���
presents the idea of the depth��rst scanning scheme� Section ��� shows how
it can be parallelized� Section ��� presents how the garabge collctor in the
Penny system can use this scheme in its parallel implementation�

��� The Idea of Depth�First Scanning Scheme

The chains of cells to be scanned are maintained by two pointers� one points
to the current location �LOC� and the other points to the previous location
�PREV�LOC�� and a register �TAG� contains the tag of the current object�
Moreover� one bit of each cell �high�end bit� is used by the garbage collector
to mark the copied cells� There are two uses for this mark bit� one for
marking already copied data and the other for marking the last cell to be
scanned in the copy of an structure� That is� when a structure is copied� the
�rst cell of the old copy is marked and a pointer to the new location �forward
pointer� is overwritten in the same cell� Cells to be scanned are divided
into two chains� one for cells in the current structure and the other for all
remaining cells to be scanned� LOC is used to point to the beginning of the
�rst chain and PREV�LOC is used to point to the beginning of the second
chain� The �rst chain consist of consecutive memory cells and is terminates
by a marked cell whereas the other chain consist of linked structures that are
terminated by a dummy �DUMMY� cell� A link�reversal �reversal pointer�
technique� similar to the one described in 	��� ���� is used for managing
the latter chain� Each cell in an object O used to link objects contains also
the tag of O� The register TAG contains the tag type �STR or LST� of the
current object��

It is better to explain the scheme by a simple example� Assum a term
structure foo�g�a�X��b�� this structure is represented by a tagged pointer
�STR�address� pointing to an area of ����� contiguous cells �see structure

�Let us assume that we have two object types� STR �structure� and LST �list��

��

DUMMY STR

STR

TAG

NULL DUM.
LOC

bATM

STR

foo/2

LOC

OLD NEW

(b)

(a)

PREV_LOC TAG

PREV_LOC

STR

g/2

ATM a

UVA

ATM b

foo/2

STR

g/2

ATM a

UVA

OLD NEW

env

env

Figure �� �a� Step���� �b� Step����

representation in section ����� As shown in Figure ��a� the address part
of the tagged cell �STR�address� points to the OLD space� The scheme ex�
plained in the following steps�

Initially� the tagged pointer �STR�address� is the cell to be scanned and
points to a three contiguous cells in the OLD space� LOC points to this cell�
PREV�LOC is NULL and TAG is DUM� Figure ��a��

Step���� the strusture �functor and two arguments� pointed to by address is
copied into the NEW space� the �rst cell in the old strusture is marked
and a forward pointer to the new location of the strusture overwritten
in it� Mark the last cell to be scanned in the new copy �the �rst
argument�� Push the copied strusture �object� in the scavenger stack�
that is� PREV�LOC and TAG are saved into the cell pointed to by

��

DUMMY

TAGPREV_LOC

STR

UVA

ATM a

g/2

bATM

foo/2

STR

OLD NEW(a)

LOC

(b)

DUMMY

TAGPREV_LOC

STR

LOC

OLD NEW

UVA

ATM a

g/2

bATM

STR

foo/2

STR

env’

env’

Figure
� �a� Step���� �b�Step����

LOC� and set PREV�LOC to LOC� Set LOC to point to the �rst cell
be scanned and set TAG to type STR� Figure ��b��

Step���� the cell be scanned is an ATM cell �b�� then LOC is decremented
to point to the next cell to be scanned�

Step���� the current cell be scanned is a tagged pointer to the structure
�g���� Then repeat setp��� for the structure �g���� Figure
�a��

Step���� the cell be scanned is an unbound variable� �X� and it is not
marked as a last cell to be scanned in the current structure� Then
LOC is decremented to point to the next cell to be scanned�

Step���� the cell be scanned is an ATM cell with �a� value and this cell
was marked as a last cell to be scanned in the current structure g���

�During copying this variable� its �envid� is dereferenced and stored in the new copy�

��

TAGPREV_LOC

UVA

ATM a

g/2

bATM

foo/2

STR

OLD NEW

NULL DUM.STR
LOC

STR

env’

Figure �� Structure foo�g�a�X��b� after copying to the NEW space�

Then� pop the next object to be scanned �foo�� structure� from the
scavenger stack� that is� set LOC to PREV�LOC� PREV�LOC to its
contents and TAG to the tag stored in the contents of PREV�LOC�
The cell pointed to by LOC will be contained a tagged pointer the
previous values of LOC and TAG� Figure
�a��

TAG is not DUM and PREV�LOC is not NULL� this means that the
scavenger stack contains unscanned objects� from it�

Step�
�� LOC points to the marked cell� the last cell in the current object
�foo���� and the scavenger stack is not empty� Then � pop the next
object to be scanned as in step���� TAG is a DUM and PREV�LOC is
NULL� this means that scavenger stack is empty and there is no more
objects to be scanned�

Figure � shows the situation after the scanning is completed by copying
all structures �objects� accessible from the �STR�address� cell�

��� Parallelizing the Depth�First Scanning Scheme

In the above sequential scheme� cells to be scanned are maintained in two
chains� as shown in Figure ��a�� One chain for a contiguous sequence of cells
in the current object� pointed to by LOC� The second chain for all remaining
cells to be scanned� pointed to by PREV�LOC� Ali� in his paper 	�� proposes
the idea for parallelizing the scanning of cells� by dividing the latter chain
into a number of smaller sub�chains and to make them available to the other
workers� Each chain is a piece of work that can be processed by any worker�

��

Figure ��b� illustrates the idea of deviding the chain pointed to by
PREV�LOC into two chains� The �rst chain is pointed to by PREV�LOC
and the the second by Pi� Each chain ends with a dummy �DUMMY� cell�
Li contains the pointer to the last object in the chain pointed to by PREV�
LOC and the tag of this object� Pi and Li contain enough information
for any worker to scan this piece of work and also to link this chain with
its previous chain� Each worker maintains its chains into its own chain�
work stack� Idle workers during garbage collection can get work from other
workers with excess load by just getting a small amount of information �only
two words� describing the chain of cells to be scanned� If any worker gets a
piece of work from its own stack or from another worker� It sets its LOC to
Pi� and PREV�LOC and TAG by the information found in cell pointed to
by Pi� The worker scans each piece of work independently as in sequential
scheme�

Workers distribute work between themselves until all workers become
idle� Figure ��b�� shows how worker �W�� divids the chain of cells to be
scanned and maintains the sub�chains information in its chain�work stack�
For more details about� how to divide a chain of cells and how to distribute
work among workers with dynamic load balancing� see 	���

��� Parallelizing the Sequential System

Is it really the parallel garbage collection an alternative to a sequential
one�� The a�rmative answer of this question will be given in section
� To
parallelize the sequential system there are two di
erent schemes�

� parallelize the scanning of cells�

The idea proposed by Ali 	�� is attractive for parallelizing the cells to
be scanned in our parallel garbage collector� Figure ��a� shows the
chain of cells to be scanned in the sequential garbage collector and
how the pointers LOC and PREV�LOC and the tag register TAG are
used to maintain this chain� Figure ��b� shows how worker W� divids
this chain to sub�chains and maintains two references to describe this
sub�chain in its own stack�

� parallelize the con�guration tree�

The parallelization achieved in the level of the con�guration tree� di�
viding the tree and distribute it among the workers� One worker� for
instance W�� traverses the tree and pushes work into tree�work stack of

��

PREV_LOC

chain_work stack (W0)

(W0)

LOC (W0)

scanning

TAG (W0)

cells to be
scanned

scanned cells

DUMMY cell

pointer
reverse

Chain of

(b)

unscanned cells

Sub_chain of
unscanned cells

PREV_LOC

reverse
pointer

TAG

(a)

LOC

Li

Pi

Figure �� �a� Chain of cells to be scanned� �b� Dividing the chain of cells to
be scanned�

�

W0 W1 W2

Tree_work stacks

new rootroot

main

OLD HEAP NEW HEAP

Figure �� W� traverses the tree and distributes the work�

each worker� Each piece of work is maintained by two pointers� The
work either� and�continuation work or choice�node work� The and�
continuation work is copying and�continuation and garbage collect its
registers by copying all accessible data structures from it� The choice�
node work� is copying choice box and choice continuation �if any� and
garbage collect its registers�

When worker W� completes traversing the tree it signals all other
workers to garbage collect the work pushed in their stacks� Figure �
shows how the W� worker distribute works in the con�guration tree�

� Implementation

Parallelization of the sequential garbage collection process is not straightfor�
ward� There is a lot of problems need to be solved� For instance� managing
the workers during garbage collection� how to distribute work among the
workers� how to reduce the synchronization barriers as possible and avoid
simultaneous update of a cell in the old heap by more than worker�

During normal program execution when a worker has shortage of heap�

��

try to get a new heap memory block from the global pool� If the used
heap blocks reaches certain threshold� whereupon this worker signals all
other workers for garbage collection� All workers stop computation and
synchronize to enter garbage collection� Each worker� starting from its roots�
copies accessible data into free blocks taken from the global pool� One
worker� master� manages the garbage collection process by signal all other
workers� slaves�

There are two types of roots in the parallel implementation of AKL
system� Penny� one of them is a shared root� and the other is a local set of
roots� The shared root is the root of the con�guration tree� root choice�box�
The argument registers� a�registers� the context stacks and the reference
stack are considered the set of local roots� Copying the con�guration root
and all live nodes accessible from this root and the associated data structures
depend upon the used strategy� as we will see in section
� The data
structures �terms� copying process� is traverses each copied data structure
depth��rst� Special objects� for instance port� have their own method table�
When this object encountered the garbage collection method of this object
will be called�

After coping the con�guration tree� each worker scan its a�registers and
copy the trems referenced from these registers using depth��rst scheme�
In copying terms not all cells in the old copy are marked� The reason for this
is that the garbage collection process includes a dereferencing optimization
that changes REF cells to �LST or STR� pointers or ATM value�
The unbound �unconstraint� constraint� variables are handled like in sequen�
tial system 	��� When an unbound variable cell in the OLD referenced by
reference pointer �REF� address�� this cell has two states�

� Marked� this means that it is a part of data structure and this data
structure was copied� Then� address of the reference pointer updated
by the forward pointer in the marked cell�

� Unmarked� this means that it is not copied and may be it is part of
uncopied data structure and it may be copied latter� Then we need
to maintain a reference to the reference cell �REF� address� to be
investigated after the scanning and copying process �nished�

This scheme prevents multiple copies of the unbound variables cells� So�
each worker has a stack called reference stack similar to the one used in the
sequential garbage collector� This stack used to maintain a references to
REF cells pointing to uncopied unbound variables during scanning cells in

��

the NEW space�
After copying the con�guration tree and each worker scan its a�registers�
Then� each worker traverse its reference stack and copy all uncopied variable
referenced from it� and compact the context stacks� That is� remove the
entries which point to uncopied nodes� Variables and data structures hold
a reference to the home and�box� When updating this reference we ensured
that all and�boxes were copied� Also for compacting and update the context
stacks we ensured that con�guration tree was copied�

Then we can summarized the garbage collector task in the parallel AKL
system� Penny� as a three steps performed in order�

� garbage collect the con�guration tree and the associated terms�

� garbage collect the argument registers� and then

� garbage collect reference stack and compact the context stacks�

Apart from all workers must be synchronize for enter garbage collection
and for restart normal execution � there are two barriers� where all workers
must synchronize before proceeding�

� Garbage collect the con�guration tree must complete before start to
garbage collect their a�registers�

� All workers must complete garbage collect their a�registers before start
to garbage collect their reference and context stacks� and

In the end of garbage collection process the master worker return the old
heap memory blocks to the free�list and signals other workers to restart
execution�
We avoid the �rst barrier by update the term�s environment while compact
the context stacks� Figure �� shows the e
ect of eliminating this barrier on
the garbage collection time�

All data structures in the con�guration are allocated in a shared memory�
So� to avoid simultaneous update of a cell in the old heap by more than one
worker� a mechanism for supporting exclusive access to cell is needed�
Each worker has apart from its context stacks� two stacks for maintaining the
garbage collection work� tree�work and chain�work stacks� And has it�s own
LOC and PREV�LOC pointers and the tag register TAG� for maintaining
the chain of cells to be scanned �see section ����� The memory space of
these stacks along with reference stack are returned to the operating system
after garbage collection�

��

100

120

140

160

180

200

220

240

1 2 3 4 5 6 7 8

G
C

 T
im

e
(m

se
c)

No. of workers

matrix no (A-reg barrier)
matrix (A-reg barrier)

Figure ��� E
ect of removing a�registers barrier�

� Performance Evaluation

In the parallel AKL system� Penny� four di
erent versions of garbage col�
lection strategies have been investigated� These strategies range from a
sequential strategy to a full parallel strategy�

��� Garbage Collection Strategies

In the following descriptions we will talk about master and slave workers�
Any worker can potentially be the master since they all have the information
required� In the implementation one worker is the dedicated master�

Strategy �� Sequential Garbage Collection The master �rst garbage
collect the con�guration tree and the associated terms� The workers
then� one at a time� garbage collect its own argument registers� In the
�nal phase each worker traverses the reference stack and compact the
context stacks�

Strategy �� Parallelize the Scanning of Cells In this strategy the scheme
presented by Ali 	�� is implemented� The master will start to garbage
collect the con�guration tree while slaves� in parallel� garbage collect
their argument registers� The workers will� when they garbage collect
data structures� divide the cells to be scanned into chains� When a
worker�s amount of work reaches certain threshold� the worker set it�s
load �ag to allow other workers to disturb the worker� A worker that

��

runs out of work can steel pointer to chains from other workers that
have their load �ag set�

When all workers have run out of work they will traverse their reference
stacks and compact their context stacks�

Strategy �� Parallelize the Con�guration Tree In this strategy the load
distribution is achieved by dividing the con�guration tree� The mas�
ter worker� traverses the tree and copies the live insertion points� The
master will distribute the nodes in the con�guration on the tree�work
stacks of all workers� The nodes are thus evenly distributed among
the workers� While the master traverser the tree the slaves are free to
garbage collect their argument registers�

When the master has completed the traversal it will signal to other
workers that they are free to start the garbage collection of nodes
pushed on their tree�stack� When a worker runs out of work it becomes
idle� we have not implemented any dynamic load balancing although
this is quite possible� In the last phase the reference stacks and context
stacks are handled�

Strategy �� Full Parallel Garbage Collector This scheme is a combi�
nation of strategy � and strategy �� Strategy � is used to divide the
con�guration among workers but once workers are idle they are free
to steel work from the other workers chain�stacks� Strategy � is thus
responsible for the dynamic load balancing�

��� What does it cost

In a system garbage collection can be performed either sequentially or in
parallel� Performing garbage collection sequentially does not achieve the
property of using the available architecture e�ciently since workers will be
idle during the garbage collection� A parallel implementation does� however�
have a price� Barriers and locks adds to the price but there is normally a
price to pay even for distributing the work among processors�

When the e�ciency of parallel system is evaluated it is important to get
an estimation of how big the price is before the bene�ts are evaluated� In
the this section the overhead for maintaining locks and chains are evaluated�
We will also discuss how speedup is measured and give a evaluation of the
presented garbage collection schemes�

��

The overhead of locking operations is in one way easy to measure� execute
the parallel system on one worker with and without the instructions that
implements the locks� This is� however� not a very interesting �gure on
a modern cache based architecture� The locking operation is done in one
atomic swap instruction and since the memory cell that represents the lock
will most certainly be in the cache the extra instruction induces a very small
overhead� In the parallel implementation only �� of the garbage collection
time can be traceable to the lock operations�

A price is also paid when the cells are divided into chains� This is however
something that we can controll� We experimented with di
erent lengths on
he chains to get an estimate o
 the cost and bene�t of dividing the cells into
chains�

Figure �� shows the e
ect in garbage collection time for two programs�
�matrix�� which have many large data structures� and �life�� which have a
few larg data structures� Strategy � was used and all executions were made
with a �xed heap size�

In the matrix program we see that the cost of dividing the cells into
chains increase as the length of the chains decreases� When running the
program without dividing the cells at all the garbage collection time was
��� ms� for one worker� Setting the length to �� induces only a small
overhead while a length of � costs almost ���� A smaller length increases
the parallelism but there is also a penalty since idle workers have to interrupt
busy worker more often to steal work�

The life program is� as can be clearly seen� quite indi
erent to the length
of the chains� Most structures are small and are never divided� there is only
one large list in the con�guration� the decrease in garbage collection time is
almost entirely due to the e
ects of dividing the nodes of the con�guration
among workers�

There is of course no best length� since the best value depends on the
number of workers and the program being execute� but a length of �� cells
have been chosen as a default value�

��� TheMethod of Calculating Garbage Collection Speedups

The task of garbage collector in the parallel systems can be performed either
sequentially or in parallel� The execution state �data structures subjected
to garbage collection� can increase as the number of workers increase� The
sequential garbage collection time� �i�e�� the time taken by one worker to per�
form the entire garbage collection task� can increase with increasing number

��

80

90

100

110

120

130

140

150

160

1 2 3 4 5 6 7 8

G
C

 T
im

e
(m

se
c)

No. of workers

matrix_30
matrix_20

matrix_5

140

160

180

200

220

240

260

280

300

1 2 3 4 5 6 7 8

G
C

 T
im

e
(m

se
c)

No. of workers

life30
life20

life5

Figure ��� E
ect of changing chain length�

of workers�
Imai and Tick 	�� calculate GC speedup as following�

workload�Wi� � number of cells copied � number of cells scanned

speedup �
 ��i�nworkload�Wi�

max��i�n�workload�Wi��

The method of Imai and Tick 	�� assume an ideal scheduler for distributing
and processing work �without any overheads�� However� in a parallel system
it is di�cult to achieve an ideal scheduler� The speedup �gures in 	�� are
the expected �gures and not the measured �gures from a parallel system�

Our method for calculating speedups is as follows�

speedup �
sgctime

pgctime

where sgctime is the garbage collection time taken by the sequential collector
and pgctime is the garbage collection time taken by the parallel collector�

��� Evaluation of the Di�erent Strategies

Three simple benchmarks where chosen for the evaluation� �matrix�� naive
reverse� and �life�� The benchmarks are quite extreme in their structure�

Matrix is a simple matrix and vector multiplication� In the benchmark the
number of nodes in the con�guration is proportional to the number of

��

1

1.5

2

2.5

3

3.5

4

1 2 3 4 5 6 7 8

G
C

 S
pe

ed
up

 fo
r

m
at

rix

No. of workers

strategy 2
strategy 3
strategy 4

Figure ��� GC speedups for matrix�

workers� It has large data structures �the matrixes� that are ideal for
breaking up in to smaller chains� Each garbage collection only takes
about �� milliseconds so speed up is very hard to achieve�

Naive reverse needs no presentation� In the benchmark the number of
nodes quickly increases when more workers are added� The benchmark
has some large some data structures but not as many as the matrix
benchmark� Each garbage collection takes about �� milliseconds�

Life is the game of life were each cell is represented by a goal� In the
benchmark the number of nodes is fairly constant �but large� regardless
of how many workers that are used� The data structures are small and
mainly consists of lists of one or two elements� only one large list exists�
Each garbage collection takes about ��� milliseconds�

To make a reasonable comparison between multiprocessor and single
processor performance each program was executed with the same total heap
space� This is not an obvious choice since a system with more processors
will probably also have more memory available� but to evaluate the di
erent
strategies a �xed heap size is used�

Figures ��� �� and �� show the speedup obtained with strategies �� ��
and ��

Strategy �� Parallelize the scanning of cells The matrix program shows
a reasonable speedup using this strategy� The naive reverse program

��

1

1.5

2

2.5

3

3.5

4

1 2 3 4 5 6 7 8

G
C

 S
pe

ed
up

 fo
r

nr
ev

No. of workers

strategy 2
strategy 3
strategy 4

Figure ��� GC speedups for naive reverse�

1

1.5

2

2.5

3

3.5

4

4.5

1 2 3 4 5 6 7 8

G
C

 S
pe

ed
up

 fo
r

lif
e

No. of workers

strategy 2
strategy 3
strategy 4

Figure ��� GC speedup for life

��

does show a speedup but not as good as for the matrix program� but
the life program shows almost no speed up at all� This was expected
since only one data structure in the life program is divided up into
chains� Moreover� this data structure is a �at list and the dominating
time is spent by the worker that traverses the list and divides it in to
chans�

Strategy �� Parallelize the con�guration tree This strategy shows bet�
ter speedup than strategy �� The initial load balancing works well even
for naive reverse which has a very un�regular con�guration�

Strategy �� Full parallel garbage collection The combined strategies
give an increased speedup for all the programs� Even for the life
program where strategy � almost gave no speedup is the combined
strategy an improvement compared to strategy ��

The evaluation shows that the combined strategy works well and better
than either of the two strategies alone� Of strategy � and � the latter seams
to be the most important but it is of course easy to construct a program
where the reversed is true�

If only one was to be implemented strategy � would be the correct choice�
Most con�gurations grow when the number of workers increase and thus
guarantees that enough parallelism can be found� Strategy � is also easier
to implement and does not induce an overhead at all since the con�guration
is easy to divide� Strategy � could of course be extended to allow dynamic
balancing of nodes� This could increase the speedup even more�

Strategy � has a de�ciency in its handling of �at lists� Even though the
list is divided into chains the time it takes to traverse and copy the skeleton
of the list totally dominates the total garbage collection time of the list�
This is quite noticeable in programs where a single list constitutes a major
part of the living data structures� This is not uncommon and a problem
that must be addressed in future implementations�

One might be disappointed on the overall speedup obtained but the �g�
ures are acceptable� In the matrix program the total garbage collection time
running strategy � with six workers was ��� ms� There were �� garbage
collections which gives an average of � ms� per collection� The garbage
collection time is thus very sensitive for the slightest unbalance in the dis�
tribution of work� The time it takes the master to traverse the tree and for
workers to synchronize also becomes more dominating�

�

It is worth noticing that the speedup of the garbage collector need only be
as good as the speedup of the runtime excluding garbage collection� A better
�gure does of course not make any harm but it does not really contribute
to the overall speedup� If� on the other hand� the speed up of the garbage
collector is worse then the speedup of the remaining computation we will
run into trouble� The garbage collection time for larger programs is roughly
�� to ��� of the total execution time� If we don�t manage to reduce the
garbage collection time but reduce the remaining computation with a factor
four the total speedup� given a ��� garabage colection time� is only a factor
three� The garbage collection time in the naive revere and the life programs
show a speedup that is quite comparable with the overall speedup�

The main cause of reduced speedup arises as a result of many things in a
real system� For instance� unbalanced distribution of work� locking overhead�
synchronization but most important the decreased cache performance� The
next section introduces a new memory management scheme that improves
the cache performance of the system and also makes the update of context
stacks unnecessary�

� New Memory Management in AKL

One de�ciency in the presented implementation is that nodes of the con�g�
uration are allocated on the heap� This means that nodes must be copied in
each garbage collection� This is can be avoided if we are able to explicitly
reclaim nodes and allocate them in a free�list separated from the heap�

Another draw�back of the implementation is that the garbage collector
will �destroy� the data in the caches of the processors� A worker will during
execution �ll its cache with data that is relevant for the tasks of the worker�
after a garbage collection the data will be more or less randomly distributed
between workers� The workers must then invalidate the contents of the
caches of other workers before it can write to structure copied by other
workers� This can not completely be avoided but must be reduced as far as
possible�

	�� Reclaiming Nodes

When a node is reclaimed we must make sure that it is not referenced from
any part of the con�guration� In order to do this we must protect nodes
from direct references from living data structures�

��

envid hanger

entryand-node

Figure ��� The new representation of an and�node

And�continuations and choice�nodes do not constitute a problem since
these nodes are never referred to from any place in the con�guration or
any context stack once they are removed� And�nodes do however introduce
a problem� these nodes can still be referred to from variables even when
they are removed� An and�node is referenced �apart from the list of nodes�
from variables that are local to the and�node and entries of the and�node�
The entries of the and�node will not survive if the and�node is removed
but variables will survive if the and�node is promoted� The variables of a
promoted and�node is of course not interested in the and�node it self it only
needs the forward pointer to determine its new home� The entries of an
and�node are referenced from suspensions hanging both on variables and
from other entries� If an entry is reclaimed it must also be protected from
pointers�

To solve this problem we extract the forward pointer from the and�node
in a structure by its own� Each entry is also given a �hanger� that will
protect it from multiple references� The representation of an and�node and
a uni�er entry is shown in Figure ��� the exact representation and handling
of and�nodes is given in 	����

The new memory management scheme reduced the job of the garbage
collector to copy living data structures �not the whole con�guration� and
update the con�guration so it refers to the the new copies� The garbage
collection time is thus reduced but the total runtime is reduced even more�
This is a consequence of better cache performance during execution time�

	�� Cache Performance

To improve cache performance we make use of the property that a worker will
probably use and�continuations that are pointed to by its continuation tasks�
The garbage collection algorithm is changed so that and�continuations are

��

4000

6000

8000

10000

12000

14000

16000

18000

20000

22000

24000

1 2 3 4 5 6 7 8

T
ot

al
 e

xe
cu

tio
n

tim
e

(m
se

c)

No. of workers

life_new
life_old

250

300

350

400

450

500

550

600

650

700

1 2 3 4 5 6 7 8

G
C

 T
im

e
(m

se
c)

No. of workers

life_old
life_new

Figure �
� Total execution time and garbage collection time of the two
systems�

garbage collected by the worker that has a pointer to it on its stack� Notice
that all and�continuations are accessible from the stack of one of the workers�
there will not be any un�collected and�continuations in the con�guration
after a garbage collection�

	�� Preliminary Results

The new memory management scheme improve the total execution time and
garbage collection time for the matrix� naive reverse and life programs� The
total execution time �including garbage collection� and the garbage collec�
tion time for a life program is shown in Figure �
� The total execution time
in the new system compared with the old one is improved� The improved
execution time is not only due to the reduced garbage collection time but
also due to the improved cache performance during execution�

	 Conclusions

We have presented memory management and garbage collection in the paral�
lel AKL implementation� Two memory management systems have been de�
signed and implementated� Di
erent strategies for parallelizing the garbage
collection process have been investegated and their performance results have
been discussed� We have obtained reasonable speedups for a number of pro�
grams by exploiting two sources of parallelizem in the garbage collection

��

process�

References

	�� K� M� Ali� A parallel copying garbage collection scheme for shared mem�
ory multiprocessors� New Generation Computing� ������ August �����

	�� K� M� Ali� A parallel Real�time garbage collection scheme for shared
memory multiprocessors�! Submitted for publication in IEEE Transac�
tions on Parallel and Distributed System� Febraury �����

	�� Akira Imai� and Even Tick� Evaluation of parallel Copying Garbage
Collection on a Shared�Memory Multiprocessor� IEEE Transactions on
Parallel and Distributed Computing� ����� ����"����� September �����

	�� Henry� G� Baker� List Processing in Real Time on a Serial Computer�
Communications of the ACM� ������ �������� �����

	�� Bj#orn Danielsson� Sverker Janson� Johan Montelius� and Seif Haridi�
Design of a Sequential Prototype Implementation of the Andorra Kernel
Language� DRAFT� May �����

	
� C� J� Cheney� A nonrecursive list compacting algorithm� communica�
tions of the ACM� �������
��"
��� November �����

	�� George E� Collins� A method for overlapping and erasure of lists� com�
munications of the ACM� ������
��"
��� December ��
�

	�� J� R� Ellis� K� Li� and A� W� Appel� Real�time Concurrent Collection
on Stock Multiprocessors� SIGPLAN� 		 Conference on Programming
Language Design and Implementation� pages ������ June ����� Also
Digital SRC Research Report number ���

	�� R� H� Halstead Jr� Multilisp� A Language for Concurrent Symbolic
Computation� ACM Transactions Programming Languages and Sys�
tems� ����� �������� October �����

	��� S� Janson� AKL a Multiparadigm Programming Language� Uppsala
Thesis in Computing Science ��� SICS Dissertaion Series ��� Uppsala
University� SICS� �����

��

	��� D� E� Knuth� The art of computer programming� vol� I� Fundamental
algorithms� Addison�Wesley� Reading� Mass �����

	��� John McCarty� Recursive functions of symbolic expressions and com�
putation by machine� communications of the ACM� ����� ���"����
April ��
��

	��� J� Montelius� and K� M� Ali� An and�or�parallel abstract machine for
AKL �extended abstract�� In Technical Report CIS�TR������� Univer�
sity of Oregon� �����

	��� J� Montelius�
G� Atlam� and H� Ueda� The Penny System� ACCLAIM deliverable
����� June� ����� URL http� ��www�sics�se�ps�research�penny�html�

	��� J� Montelius� and H� Ueda� The Penny Abstract Machine� ACCLAIM
deliverable ����� June� �����

	�
� S� C� North� and J� H� Reppy� Concurent garbage Collection on Stock
Hardware� Proceeding of the Third Conference on Functional Program�
ming Languages and Computer Architecture� PP� �������� Portland�
OR� September �����

	��� R� R� Fenichel� and J� C� Yochelson� A Lisp garbage�collector for virtual
memory computer systems� communications of the ACM� �������
��"

��� November ��
��

	��� H� Schorr� and W� M� Waite� An e�cient machine�independent proce�
duer for garbage collection in various list structures� Communications
of the ACM� ������ ������
� August ��
��

	��� R� Sharma� and M� L� So
a� parallel Generational garbage Collection�
OOPSLA�
�� pp� �
����

	��� D� H� D� Warren� An abstract prolog instruction set� Technical Report
���� SRI International� �����

��

