Timey: time based concurrency control
Johan Montelius

October 2, 2016

Introduction

In this session you will implement a transaction server using time based
concurrency control. You will also learn how to implement a updatable data
structure in Erlang that can be accessed by concurrent, possibly distributed,
processes. Before you start you should know how time based concurrency
control.

1 The architecture

The architecture consist of a server having access to a store. The store con-
sist of a set of entries, each holding a committed value and a list of suspended
read and write operations. An entry is responsible for the concurrency con-
trol and will, as we will see, have quite complex state transitions.

A client starts a transaction by requesting a transaction handler from the
server. The transaction handler is given a unique time stamp when created
and will keep track of all write operations performed during the transaction.
When the client request the transaction to be committed the handler makes
sure that all write operation are also committed.

1.1 an entry

An entry is, as you will see, the most complex part. We will describe it
gradually, adding requirements as we realize the important role it serves.
To start, the entry has four values:

e committed: the value that has been committed.
e written: the time this value was committed.
e read: the last time (highest time stamp) this value was read.

e susp: an ordered list of suspended read and write operations.

We will have four messages that the entry must be able to handle. All
messages are from a transaction handler. This is a short description of the
protocol.



e Read: a read request containing a time stamp. The handler should
be given a committed value when available. If the request is too late
the reply is a abort message.

e Write: a write request containing a time stamp The handler is sent a
ok or abort message.

e Commit: a commit request specifying a earlier write request. The
write request, if not previously aborted, is promoted to a committed
value. No reply is sent back to the handler.

e Abort: am abort request specifying a earlier write request. The write
request, if not previously aborted, is aborted. No reply is sent back to
the handler.

In the implementation we will of course see how to connect requests to
replies and how to keep track of which commit and abort request belong to
which write operations but we will go through the general idea first.

1.2 a read request

We will start by looking at the read request and solve the easy case. When
a read request is received by an entry it will check if the time of the read
request is later than the currently committed value. If not it means that
the read operation came too late and an abort reply is sent to the handler.

If the request was not to late we must check the suspension list. It could
be that there is a suspended write operation, not yet committed, that has
a time stamp value that is earlier than the read operation. If this is the
case the read operation must be inserted behind the write operation in the
suspension lists. A special case occur if we find a write operation with the
same time stamp. This would mean that a client first writes a value to an
entry and then reads the same entry. The client should of course read its
writes so we must return the written value even if this is only a tentative
value.

If the suspension list is empty or only contains suspended write opera-
tions that have time stamps later than the read operation we can safely read
the current value. We then send a reply to the handler and also update the
read time of the committed value.

1.3 a write request

A write request is almost simpler. We must first examine the read time
of the current value. If the read time is later than the time of the write
operation there is not much to do, we have to abort. Assuming that this is
not the case; examine the write time of the current value. If the write time
is later than the time of the write operation we could simply forget that this



operation was ever done. If a value has been written (and committed) at
time 14 but no one has read the value since time 10, then what difference
can a write operation at time 12 do? We can simply report to the handler
that the operation has been handled.

If the write operation is later than the current write time we must do
some bookkeeping. We can of course not replace the current value straight
away, instead we must suspend the operation as a tentative write operation.
The write operation is thus inserted into the list of suspended operations.
The handler is of course informed that the operation has been correctly
handled.

1.4 a commit request

Now for the tricky part; what should we do when a write operation later
is committed? If a write operation to be committed is the first operation
in the suspension list we should remove it from the list and promote the
tentative value to current value of the entry.

If the write operation was followed by a sequence of suspended read
operations these can now be scheduled and the committed value is sent back
as a reply. This will of course also update the read time of the committed
value.

Now assume that the first operation in the list is another write operation
and the operation to be committed is somewhere down the list. We should
promote the value to become a committed value but the operation is still in
the list of suspended operation. The list would then contain tentative write,
committed writes and suspended read operations.

Having committed values in the suspension list changes how a write
operation is committed. If the write operation to be committed is the first
element in the list and all following read operations have been removed, it
could be that the next element is a committed value. This operation must
now be promoted to the current value of the entry; a process that might
trigger even more read operations.

1.5 the handler

The role of the handler becomes quite simple since most of the concurrency
control is handled by the entries. The handler need only keep track of a
time stamp and attache this to all read and write operations that it sends
to the entries. Read request and read replies are thus very simple to handle.
Write requests have to be stored so that the handler can schedule commit
requests when the client wants to commit. The handler should also keep
track of which write request that have been successfully handled. If any
write request has to abort the whole transaction must abort.



It’s important to understand that the commit request that the transac-
tion is sending to all entries that have been involved in write requests does
not return any message. The handler knows that the write operations have
succeeded if they all return an ok message when issued. The ok message
means that the request is added as an tentative write operation and nothing
can make this operation fail. The commit request will promote the value to
a committed value but nothing can prevent this from happening.

1.6 a client

The client is happily unaware of what is going on. It will contact the server
and request a new transaction handler. It then communicates with the
transaction handler and sends read and write request. When it is done it
will send a commit request and wait for a result.

The client does not receive a message for each write request. The handler
will check that all write requests are handled properly and only report on
the transaction as a whole.

2 The Implementation

Let’s start with the most complicated part, the implementation of the entry
process.

2.1 the entry

The process will have a state consisting of: the current value, its write time,
last time it was read and the list of suspended operations. Let’s call the
module entry and prepare to export the procedures we need and also some
for testing that our implementation works.

-module(entry) .

-export ([new/1]) .
-export ([suspend_read/4, suspend_write/4, suspend_commit/2, abort_write/2]).

new(Value) ->
spawn_link(fun() -> init(Value) end).

init(Value) ->
entry(Value, 0, 0, [1).

entry(Value, Written, Read, Susp) ->
receive
{read, Ref, Time, Handler} ->



{write, Ref, Time, Tentative, Handler} ->
{commit, Ref} ->
{abort, Ref} —>

stop —->
ok
end.

The entry procedure will go into a loop and wait for request from any
transaction handler. Request from the transaction handler will be tagged
with unique references so that the handler can properly identify the reply
from the entry. The handler will operate asynchronously and might have
several outstanding requests.

2.1.1 a read request

The first message to handle is a read request. The request contains a unique
reference, the time stamp of the request and the process identifier of the
handler so that we can reply. We will make use of a supporting function
called suspend_read/4. This function will, if necessary, insert a read oper-
ation in the list of suspended operation and then return the updated list.
If however, there is no tentative write operation in the list with lower time
stamp then the current value of the entry is read.

{read, Ref, Time, Handler} -—>

if
(Time >= Written) ->
case suspend_read(Time, Ref, Handler, Susp) of
no ->
Handler ! {reply, Ref, {ok, Valuel}},
entry(Value, Written, Time, Susp);
Susp2 ->
entry(Value, Written, Read, Susp2)
end;
true ->
Handler ! {reply, Ref, abort},
entry(Value, Written, Read, Susp)
end;



2.1.2 a write request

The write request is equally simple; the request consist of a unique reference,
a time stamp, the tentative value and a process identifier of the handler. We
first check that the request is not too late i.e. that a read operation has read
the value at a “later” time.

{write, Ref, Time, Tentative, Handler} ->

if
Time >= Read —>
if
(Time >= Written) ->
Susp2 = suspend_write(Time, Ref, Tentative, Susp),
Handler ! {ok, Ref},
entry(Value, Written, Read, Susp2);
true ->
Handler ! {ok, Ref},
entry(Value, Written, Read, Susp)
end;
true ->
Handler ! {abort, Ref},
entry(Value, Time, Read, Susp)
end;

We make use of a supporting function called suspend write/4 that will
insert the write operation at the right position in the suspension list. As op-
posed to the insertion of a read operation, the write operation will always be
inserted the list. The suspended write request contains the unique reference
so that we can identify it later when the handler wants to commit.

When we report back to the handler we of course tag the reply with the
unique reference so that the handler can match the request to the reply.

Note that the write request will always result in a reply directly. We
know if the operation was too late or arrived in time. For the read request
we only replied directly if it was possible to read the committed value. If
not, the reply comes when a commit request triggers the suspended read
operation to be scheduled.

2.1.3 a commit request

The commit request contains a reference that identifies a previous issued
write request. As we discussed there are two cases that we must take care
of; either it is the first write operation in the list or it is somewhere down
the list (or not in the list at all).

A suspended write operation is represented with a tuple containing the
reference so it is easy to identify it. If it is the first write operation that



should be promoted we should of course also schedule all suspended read
operations (and possibly also suspended commit operations). We could have
made use of a function also in this case but it turns out to be more practical
to call a procedure commit/4 that when it has done its job will call the
entry/4 procedure with the right state.

{commit, Ref} ->
case Susp of
[{Time, {write, Ref, Tentative}}|Susp2] ->
commit (Tentative, Time, Read, Susp2);
-
Susp2 = suspend_commit(Ref, Susp),
entry(Value, Written, Read, Susp2)
end;

If it is not the most recent write operation that should be committed
we promote a suspended write operation somewhere down the list. For this
we use the function suspend commit/2 that will simply transform a write
operation to a commit operation.

2.1.4 a abort request

The abort request is trivial. The request contains a reference that identifies
a write request that should be removed.

{abort, Ref} ->
Susp2 = abort_write(Ref, Susp),
entry(Value, Written, Read, Susp2);

2.1.5 committing

The procedure commit/4 is called when we have received a commit request
and the first suspended write operation in the list was identified as the
operation to commit. We call the procedure with the committed value,
the time this was written, the last time the entry was read and the list of
suspended operations.

Before we continue we must schedule and remove and suspended read
operations. If there are no operations in the list we can of course call the
entry/4 procedure directly with the parameters we have at hand. If the
first operation is a read operation we send a reply with the current value
to the handler that issued the request. When we continue down the list we
update our read time stamp.

If the first operation is a committed value it means that this value is now
the current value so we should continue to remove read operations but now
with the committed value as the current value. We also update the write
time stamp.



commit(Value, Written, Read, Susp) ->
case Susp of
-
entry(Value, Written, Read, []);
[{R, {read, Rf, Handler}}|Susp2] ->
Handler ! {reply, Rf, {ok, Valuel}},
commit(Value, Written, R, Susp2);
[{W, {committed, Committed}}|Susp2] ->
commit (Committed, W, Read, Susp2);
_ >
entry(Value, Written, Read, Susp)
end.

If the first operation is not a read nor a commit we have done our job
and continue by calling the entry/4 procedure.

2.1.6 supporting functions

The only thing that remains is writing the supporting functions. The list of
suspended operations is represented using the following tuples:

e {Time, {read, Reference, Handler}}: a read operation at Time
with a unique Reference issued by a Handler.

e {Time, {write, Reference, Tentative}}: a write operation at Time
with a unique Reference and a Tentative value.

{Time, {committed, Committed}}: a committed write operation at
Time with a Committed value.

The description of the supporting functions is as follows:

e suspend read(Time, Ref, Handler, Susp): if there is a write oper-
ation in Susp that is earlier than Time then insert the read operation
{read, Time, Handler} in the list. If there is a write operation at
Time then reply to the Handler with the value of the write operation
and return Susp. If neither holds true, return no.

e suspend write(Time, Ref, Tentative, Susp): insert the write op-
eration {Time, {write, Ref, Tentative}} in Susp.

e suspend _commit(Ref, Susp): if there exist a write operation {Time,
{write, Ref, _}} in Susp then replace it with {Time, {committed
Tentative}}.

e abort write(Ref, Susp): if there exist a write operation {Time,
{write, Ref, _}} in Susp then remove it.

The implementation is left as an exercise.



2.2 the store

The store is simple a tuple of process identifiers of entries to which the
handler can send read and write requests. We create it by first constructing
a list of all the process identifiers and then turning this list into a tuple. The
handler, that will access the store, need only use the interface lookup/2 to
get the right process identifier.

-module (store) .
-export ([new/1, stop/1, lookup/2]).

new(N) —->
list_to_tuple(entries(N, [1)).

stop(Store) ->
lists:foreach(fun(E)-> E ! stop end, tuple_to_list(Store)).

lookup(I, Store) ->
element (I, Store). % this is built-in

entries(N, Sofar) —>

if
N==20 ->
Sofar;
true ->
Entry = entry:new(0),
entries(N-1, [Entry|Sofar])
end.

2.3 the handler

The transaction handler will be started by the client and is given a unique
identifier, a unique time stamp and a store. The identifier is used to report
the result of the transaction back to the client. The identifier allows a client
to have more than one transaction open.

The job of the handler is mainly to accept request from the client and to
forward them to the right entry. It will also keep track of all write operations
and thus keep two extra parameters: the set of unconfirmed write operations
and the set of confirmed write operations.

-module (handler) .

-export ([start/4]).



start(Client, Id, Time, Store) ->
spawn(fun() -> init(Client, Id, Time, Store) end).

init(Client, Id, Time, Store) —->
handler(Client, Id, Time, Store, [1, [1).

handler(Client, Id, Time, Store, Unconf, Conf) ->
receive

Error ->
io:format("strange message “w™n", [Error])
end.

Read operations are forwarded directly to the right entry with the han-
dler as the sender. The replies are returned to the client and one could ask if
it is really necessary to send these first to the handler and then to the client;
why not send them to the client directly? We will discuss these questions
later but for now it’s fine to do the simple things.

Note that the handler does not care if a read operation fails. It simply
passes the result back to the client.

{read, Ref, N} —>
Entry = store:lookup(N, Store),
Entry ! {read, Ref, Time, self()},
handler(Client, Id, Time, Store, Unconf, Conf);

{reply, Ref, {ok, Value}} ->
Client ! {Ref, {ok, Valuel}},
handler(Client, Id, Time, Store, Unconf, Conf);

{reply, Ref, abort} ->
Client ! {Ref, abort},
handler(Client, Id, Time, Store, Unconf, Conf);

The write operations must be handler with a bit more care. When
the client wish to commit we must know if all write operations could be
committed. We will thus save the reference of a write operation in the
list of unconfirmed operations. When a ok message arrives the operation
is removed from the set of unconfirmed to the set of confirmed operations.
Since we later have to send a message to the same entry we

If an abort message is returned then the whole transaction must abort
and the client is informed by an abort message tagged with the identifier of
the transaction.

10



{write, N, Value} ->
Ref = make_ref(),
Entry = store:lookup(N, Store),
Entry ! {write, Ref, Time, Value, self()},
handler(Client, Id, Time, Store, [{Ref, Entry}|Unconf], Conf);

{ok, Ref} —>
{value, Op} = lists:keysearch(Ref, 1, Unconf),
Unconf2 = lists:keydelete(Ref, 1, Unconf),
handler(Client, Id, Time, Store, Unconf2, [Opl|Confl);

{abort, _Ref} —>
Client ! {abort, Id};

When the handler is asked to commit the transaction it will send commit
messages to all write operations issued during the transaction. It will then
make sure that there are no unconfirmed transactions left. It does not have
to check if the commit operations succeeded since this is guaranteed by
protocol.

commit ->
lists:map(fun({Ref,Pid}) -> Pid ! {commit, Ref} end, Unconf),
lists:map(fun({Ref,Pid}) -> Pid ! {commit, Ref} end, Conf),
case commit(Unconf) of
commit ->
Client ! {committed, Id};
abort ->
Client ! {abort, Id}
end;

An abort message from the client will simply result in abort messages to
all outstanding write operations.

abort ->
lists:map(fun({Ref,Pid}) -> Pid ! {abort, Ref} end, Unconf),
lists:map(fun({Ref,Pid}) -> Pid ! {abort, Ref} end, Conf);

To complete the handler we need one procedure that is waiting for the
last ok messages. If all unconfirmed write operations have confirmed that
they will be able to commit the transaction s a whole can commit .

commit([]) ->
commit;

commit (Unconf) ->
receive

11



{abort, _Ref} —>
abort;
{ok, Ref} —>
commit (lists:keydelete(Ref, 1, Unconf))
end.

2.4 the server

The server simply keeps track of the store and the current time stamp.
A client will call open/1 to get access to newly created transaction handler
with the correct time stamp, access to the store and and a unique transaction
identifier.

-module (server) .
-export ([start/1, open/1, stop/1]).

start(N) ->
spawn (fun() -> init(N) end).

init(N) ->
Store = store:new(N),
server (1, Store).

open(Server) ->
Server ! {open, self()},
receive
{transaction, Time, Store} ->

Id = make_ref(),
Handler = handler:start(self(), Id, Time, Store),
{Id, Handler}

end.

stop(Server) ->
Server ! stop.

We have a option here; should the transaction handler be started by the
server or by the client. In the code listed, the handler is started by the client
and thus will reside at the node of the client. This means that the tuple
that represents the store has to be copied, possibly to another machine. If
the handler was created by the server the store would also be copied but
then only between processes on the same Erlang node. The approach chosen
have some advantages in that once we have started the handler it will not
place any burden on the node of the server.

12



server(Time, Store) ->
receive
{open, Client} ->
Client ! {transaction, Time, Storel,
server (Time+1, Store);
stop —>
store:stop(Store)
end.

3 Evaluation and discussion

3.1 performance

How well does the transaction handler perform? We can run some simple
test with a couple of read and write operations to see how long time a
singe transaction takes. We can then extend the tests to have several clients
running on individual machines and run transaction concurrently to see how
many transaction we could handle per second.

The number of failed transactions does of course depend on the number
of read and write operations of each transaction and how large the store is
compared to the number of concurrent transactions. The smaller the store
the more likely it is that two transaction collide and one of them turns up
to late.

One can also do experiment to see how long the lists of suspended oper-
ations are. Is it worth the trouble to optimize the handling of large lists or
it is something else that we can do to increase performance?

3.2 read short-cut

One question that we skipped over was how come the handler ignores if a
read operation had to abort. The reasoning is as follows. Assume that a
client issues two read operation and is informed that one of them could not
be handled but had to abort. The client has not seen an old value nor a
value that is not yet committed so the client can not violate the consistency
constraints by continue the transaction and later commit. It is thus up to
the handler to decide what to do.

This of course also means that the reply from an entry could be sent
directly to the client form the entry. Change the code and see if there is any
advantages in performance.

3.3 advanced bookkeeping

Assume that transactions are long lived; a client might open a transaction
and keep it open for minutes. Now if one transaction commits a value at

13



time 17 but this value is still not the current value of the entry (there is a
tentative value at time 14). Now what will happen if we have a read request
to the entry at time 187 In our current implementation this request will be
suspended but we could of course also send a reply back since we know what
the value will be.

Design a scheme where read request can be replied to even if a committed
value is yet not the current value of entry. You have to be careful; what
would happen if we reply to a read request with time stamp 22 and then
later receives a write request at time stamp 19.

14



