Opty: optimistic concurrency control
Johan Montelius

October 2, 2016

Introduction

In this session you will implement a transaction server using optimistic con-
currency control. You will also learn how to implement a updatable data
structure in Erlang that can be accessed by concurrent, possibly distributed,
processes. Before you start you should know how optimistic concurrency
control with backwards validation works.

1 The architecture

The architecture consist of a server having access to a store and a validator.
The store consist of a set of entries, each holding a value and a unique ref-
erence. The reference is updated in each write operation so we can validate
that nothing has happened with the entry since we last read its value.

A client starts a transaction by creating a transaction handler that is
given access to the store and the validator process. The transaction server
is thus not involved in the transaction; it is simply a process from which we
can get access to the store and the validator process.

1.1 the handler

The transaction handler will handle read and write requests from the client
and will also to close the transaction. In each read operation the handler
keeps track of the unique reference of the entry that is read. It also keeps
the write operation in a local store so that the real store is not modified
until we want to close the transaction.

When the transaction is to be closed the handler send the read and write
sets to the validator.

1.2 the validator

The validation process will be able to tell if a value of an entry has been
changes since the transaction read the entry. If non of the entries have
changed the transacting can commit and the associated write operations
are performed.

Since there is only one validator in the system the validator is the only
process that actually writes anything to the store.



2 The Implementation

Since data structures in Erlang are not mutable (we can not change their
values), we need to do a trick. The store is represented by a tuple of process
identifiers. Each process is an entry and we can change its value by sending
it write messages.

A transaction handler is given a copy of the tuple when created but
the processes that represent the entries are of course not copied. The store
can thus be shared by several transaction handlers, all who can send read
messages to the entries.

The validator will not need access to the whole store since it will be
given the read and write sets from the transaction handlers. These sets will
contain the process identifiers of the relevant entries.

2.1 an entry

A process that implements an entry should only have a value and a unique
reference as its state. We will below call this reference “time stamp” but it
has nothing to do with time, it’s simply a unique reference. The reference
will be given to a reader of the value so that the validator later can determine
if the value has been changed. We could do without the reference but it has
its advantages.

-module (entry) .
-export ([new/1]) .

new(Value) ->
spawn_link(fun() -> init(Value) end).

init(Value) ->
entry(Value, make_ref()).

Note that we are using the primitive spawn_link/1. This is to ensure that
if the creator of the entry dies, then the entry should also die.
Three messages should be handled by an entry:

e {read, Ref, Handler}: aread request from a handler tagged with a
reference. We will return a message tagged with the reference so that
the handler can identify the correct message. The reply will contain the
process identifier of the entry, the value and the current time stamp.

e {write, Value}: changes the current value of the entry, no reply
needed. The time stamp of the entry will be updated.



e {check, Ref, Read, Handler}: check if the time stamp of the entry
has changed since we read the value (at time Read). A reply, tagged
with the reference, will tell the handler if the time stamp is still the
same or if it has to abort.

e stop: terminate.

We here talk about the handler and not the client, this will be clear later.
Why do we want the read message to include the process identifier? Not
quite clear at the moment but you will see that it makes it easy to write an
asynchronous transaction handler.

entry(Value, Time) ->
receive
{read, Ref, Handler} ->
Handler ! {Ref, self(), Value, Time},
entry(Value, Time);

{check, Ref, Read, Handler} —>
if
Read == Time ->
Handler ! {Ref, ok};
true ->
Handler ! {Ref, abort}
end,

entry(Value, Time);
{write, New} —->
entry(New, make_ref());
stop —>
ok
end.

2.2 the store

We will hide the representation of the store and provide only an API to
create a new store and to look-up an entry in the store. Creating a tuple is
done simply by first creating a list of all process identifiers and then turning
it into a tuple.

-module(store) .
-export([new/1, stop/1, lookup/2]).

new(N) ->
list_to_tuple(entries(N, [1)).



stop(Store) ->
lists:map(fun(E) -> E ! stop end, tuple_to_list(Store)).

lookup(I, Store) ->
element (I, Store). % this is a builtin function

entries(N, Sofar) —>

if
N=20->
Sofar;
true —>
Entry = entry:new(0),
entries(N-1, [Entry|Sofar])
end.

2.3 transaction handler

A client should never access the store directly. It will perform all operations
through a transaction handler. A transaction handler is created for a specific
client and holds the store and the process identifier of the validator process.

We will implement the handler so that a client can make asynchronous
reads to the store. If latencies are high there is no point in waiting for one
read operation to complete before initiating a second operation.

The task of the transaction handler is to record all read operations (and
at what time these took place) and make write operations only visible in
a local store. In order to achieve this the handler will keep two sets: the
read set (Reads) and the write set (Writes). The read set is a list of tuples
{Entry, Time} and the write set is a list of tuples {N, Entry, Value}.
When it is time to commit, the handler sends the read and write sets to the
validator.

When the handler is created it is also linked to its creator. This means
that if one dies both die. This sounds hard but it will be explained once we
implement the server.

-module (handler) .
-export ([start/3]).

start(Client, Validator, Store) ->
spawn_link(fun() -> init(Client, Validator, Store) end).

init(Client, Validator, Store) —>
handler(Client, Validator, Store, [], [1).

The message interface to the handler is as follows:



{read, Ref, N}: aread request from the client containing a reference
that we should use in the reply message. The integer N is the index
of the entry in the store. The handler should first look through the
write set to see if entry N has been written. If no matching operation
is found a message is sent to the nth entry process in the store. This
entry will reply to the handler since we need to record the read time.

e {Ref, Entry, Value, Time}: a reply from an entry that should be
forwarded to the Client. The entry and time is saved in the read set
of the handler. The reply to the client is {Ref, Value}.

e {write, N, Value}: a write message from the client. The integer N is
the index of the entry in the store and Value, the new value. The entry
with index N and the value is saved in the write set of the handler.

e {commit, Ref}: a commit message from the client. This is the time
to contact the validator and see if there are any conflicts in our read
set. If not, the validator will perform the write operations in the write
set and reply directly to the client.

Here is some skeleton code for the handler.

handler(Client, Validator, Store, Reads, Writes) ->
receive
{read, Ref, N} —>
case lists:keysearch(N, 1, Writes) of
{value, {N, _, Valuel}} ->

handler(Client, Validator, Store, Reads, Writes);
false ->
handler(Client, Validator, Store, Reads, Writes)
end;
{Ref, Entry, Value, Time} ->
handler(Client, Validator, Store, [...|Reads], Writes);
{write, N, Value} ->
Added = [{N, ..., ...}I...],

handler(Client, Validator, Store, Reads, Added);

{commit, Ref} ->
Validator ! {validate, Ref, Reads, Writes, Client};



abort ->
ok
end.

2.4 validation

The validation handler is responsible of doing the final validation of trans-
actions. The task is made quite easy since only one transaction is validated
at a time. There are no concurrent operations that could possibly conflict
with the validation process.

When we start the validator we also link it to the processes that creates
it. This is to ensure that we don’t have any zombie processes.

-module(validator).
-export ([start/0]).

start() —>
spawn_link(fun() -> init() end).

init()->
validator ().

The validator receives a request from a client containing everything that
is needed both to validate that the transaction is allowed and to perform
the write operations that will be a result of the transaction. The request
contains:

e Ref: a unique reference to tag the reply message.

e Reads: a list of read operations that have been performed. The val-
idator must ensure that the entries of the read operations have not
been changed.

e Writes: the pending write operations that, if the transaction is valid,
should be applied to the store.

e Client: the process identifier of the client to whom we should return
the reply.

Validation is thus simply checking if read operations are still valid and
if so update the store with the pending write operations.

validator() ->
receive



{validate, Ref, Reads, Writes, Client} ->
case validate(Reads) of

ok ->
update (Writes),
Client ! {Ref, ok};
abort ->
Client ! {Ref, abort}
end,
validator();
_01d ->
validator ()

end.

Since a read operation is represented with a tuple {Entry, Time} the
validator need only send a check message to the entry and make sure that
the current time-stamp of the entry is the same.

validate(Reads) ->
{N, Tag} = send_checks(Reads),
check_reads (N, tag).

For better performance the validator can first send check messages to
all entries and then collect the replies. As soon as one entry replies with
an abort message, we're done. Note however, that we must be careful so
that we are not seeing replies that pertain to a previous validation. When
we send our check request we therefore tag them with a unique reference so
that we know that we’re counting the right replies.

send_checks (Reads) —>
Tag = make_ref(),
Self = self(),
N = length(Reads),
lists:map(fun({Entry, Time}) ->
Entry ! {check, Tag, Time, Self}
end,
Reads),
{N, Tag}.

Collecting the replies is a simple task and we only have to be careful so
that we don’t collect an old reply.

check_reads(N, Tag) ->
if
N==0 ->
ok;



true —>
receive
{Tag, ok} ->
check_reads(N-1, Tag);
{Tag, abort} ->
abort
end
end.

Old messages that are still in the queue must be removed somehow, this
is why, and this is very important, the main loop of the validator includes a
catch all clause.

2.5 the server

We now have all the pieces to build the transaction server. The server will
construct the store and one validator process. Clients can then open a trans-
action and each transaction will be given a new handler that is dedicated to
the task.

-module (server) .
-export ([start/1, open/1, stop/1]).

start(N) ->
spawn(fun() -> init(N) end).

init(N) —>
Store = store:new(N),
Validator = validator:start(),
server(Validator, Store).

The server could simply wait for requests from clients and spawn a new
transaction handler. There is however a trap here that we don’t want to fall
into. If the server creates the transaction handler we must let the handler
be independent from the server (not linked). If the handler dies we don’t
want the server to die. On the other hand, if the client dies we do want
the handler to die. The solution is to let the process of the client create the
handler.

open(Server) —>
Server ! {open, self(},
receive
{transaction, Validator, Store} —>
handler:start(self(), Validator, Store)
end.



This will also have implications on where the transaction handler is running.
Something that we might discuss further when we are done with the server.
The server now becomes almost trivial.

server (Validator, Store) —->
receive
{open, Client} ->

server (Validator, Store);
stop —>
store:stop(Store)
end.

You're done, you have implemented a transaction server using optimistic
concurrency control.

3 Performance

Does it perform? How many transaction can we do per second? What are
the limitations on the number of concurrent transactions and the success
rate? This does of course depend on the size of the store, how many write
operations each transaction does and how much delay we have in between
the read instructions of the transaction and the final commit instruction.

Some Erlang related questions can be fair to raise. Is it realistic with the
store implementation that we have? Regardless of the transaction handler,
how fast can we operate on the store? What happens if we run this in
a distributed Erlang network, what is actually copied when a transaction
handler is started? Where is the handler running? Pros and cons of this
implementation strategy?



