Failure detectors in Erlang
Johan Montelius

October 2, 2016

Introduction

In this assignment you will look at how failure detectors work in Erlang. You
will first set up a system of two processes running in one Erlang node and
then divide the system so that the processes run in two nodes on different
machines.

1 Send and receive

Let us start with a two simple processes, one that keeps sending ping mes-
sages every second and one that happily consume these messages. The pro-
ducer will be started first and wait for a consumer to attach to it. Once the
consumer has been connected the ping messages can be sent, each tagged
with an increasing number. We should be able to stop the producer and it
will then send a final message to the consumer.

1.1 the producer

The producer could look like this, we start by declaring the module and the
interface.

-module (producer) .
-export([start/1, stop/0, crash/0]).

start (Delay) ->
Producer = spawn(fun() -> init(Delay) end),
register (producer, Producer).

stop() —>
producer ! stop.

crash() ->
producer ! crash.

The function start/1 will spawn the new process and register it under
the name producer. It is given a parameter called Delay, that will be the
number of milliseconds between messages. The function stop/0 will simply
send a stop message to the process registered under the name producer.



In the initialization of the producer we wait for a consumer to send us
a message. A consumer will send us a message {hello, Consumer} where
Consumer is the process identifier of the process that wants to receive the
messages.

init (Delay) ->
receive
{hello, Consumer} ->
producer (Consumer, 0, Delay);
stop ->
ok
end.

The process is then implemented using the after construct that allows
us to wait for a message a certain time before carrying on. If no stop message
is received we send a ping message to the consumer.

producer (Consumer, N, Delay) ->
receive
stop —>
Consumer ! bye;
crash —>
42/0 %% this will give you a warning, but it is ok
after Delay ->
Consumer ! {ping, N},
producer (Consumer, N+1, Delay)
end.

If we receive a stop message we send a bye message to the consumer and
terminate the execution. This is the controlled way and let the consumer
know that it should not expect to see any more messages. If we receive a
crash message we simply terminate without informing the consumer. We
will see that this of course leads to problems.

1.2 the consumer

The consumer is equally simple, it should have the following properties.

e It should export two functions: start/1 that takes a process iden-
tifier or registered name of a producer as argument and stop/ that
terminates the process.

e When initialized it should send a hello message to the producer before
entering its recursive state with a expected value set to 0.



e [t should receive a sequence of ping messages and check that the mes-
sage contains the expected value. If it is the correct value it should
print the number on the screen and continue. If a higher value is re-
ceived it should print a warning before continuing. In both cases the
next expected value is one more than the received value.

e If the process receives a bye message (sent by the producer) or a stop
message (sent when calling stop/0) the process should terminate.

2 Detecting a crash

Start the producer and then start the consumer in the same Erlang shell.
The parameter to the consumer is simply producer since this is the local
name under which it is registered.

You should be able to start the producer and then consumer and see
how the messages are received by the consumer. If you stop the producer,
the consumer is informed through a bye messages and terminates gracefully.

The problem is if we simulate a crash and the producer simply termi-
nates. The consumer will now be stuck, waiting for a ping or bye message
that will never come. This can be solved by implementing the consumer
using a after construct. If no message has been received for ten seconds we
can expect that the producer is dead and do something else. This is a rather
crude way of solving the problem and there is a better way.

The Erlang runtime system can help us since it knows if the producer
is alive or not. In Erlang we have a construct called monitor that asks the
runtime system to give us information of the state of another process. To
use this feature we start a monitor for the producer and add one additional
clause to the recursive definition.

The monitor is started as follows:

init (Producer) —>
Monitor = monitor(process, Producer),
Producer ! {hello, self()},
consumer (0, Monitor).

The Monitor that is returned from the call to monitor/2 is simply a
unique reference so that we can determine which monitor that was triggered.

Apart from now having one additional parameter, one more message is
added to the recursive definition.

{’DOWN’, Monitor, process, Object, Info} ->
io:format(""w died; “w™n", [Object, Infol),
consumer (N, Monitor);



This message is what we should receive if the producer crashes or termi-
nates. We knows that the message pertains to the monitor that we started
since the second element of the tuple is identical to our Monitor. The Object
element is the process identifier (or registered name) of the dead process and
the Info element gives us information in why it terminated.

You might ask why are we doing a recursive call and it is of course rather
pointless. If the producer died we will not receive any more messages and
we are then stuck in the same situations as before. We will however later
use this feature to show some strange behaviour.

Run the producer and consumer and then crash the producer to see that
it is working.

3 A two node experiment

Erlang is, as you know, quite transparent when it comes to distribution. We
can quite easily run our producer and consumer in different Erlang nodes.

3.1 on the same host

Use two Erlang nodes, gold and silver, running on the same machine. Start
them in distributed mode and make sure that you start hem with the same
cookie so that they can communicate.

>erl -sname gold -setcookie foo

If the producer is started on the node silver the consumer should be
given the argument {producer, ’silver@host’} where host is the name
of the machine we are running.

No we can not only fake a crashing producer but kill the Erlang node
that it is running in. What is the message that is given as reason when the
node is killed, why?

3.2 a distributed experiment

Now things are getting interesting; run each of the nodes on separate ma-
chines. As first things should be as normal and we should be able to crash
the process. What happens if we kill the Erlang node of the producer?

Now unplug the Ethernet cable to the producer and put it back in again
after a few seconds. What happens? Remove the cable for longer time
periods, what happens?

What does it mean that we have received a DOWN message? When
should we trust it?

Have you received any messages out of order even without having re-
ceived a DOWN message? What does the manual say about message deliv-
ery guarantees?



The questions raised are the core problems when implementing dis-
tributed systems.



