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The role of the operating system - provide a virtual environment for a process.
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indirect execution

Who is in control? Limited direct execution:
@ control the registers of the MMU and @ only work with mapped memory in
you control the virtual address space user space,
@ control the IDTR and you control @ only execute non-privileged
what will happen when we have an instructions,
interrupt o for a limited amount of time.

@ instructions to set MMU or IDT
registers are privileged instructions
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Interrupts

Synchronous interrupts - exceptions: Asynchronous interrupts:
o faults: @ timer interrupt
o page fault

'S8 S @ hardware interrupt: 1/O complete, ...
e privilege violation

o divide by zero, ...
@ programmed exceptions:

e system call (INT 0x80)
o debug instructions

The kernel is interrupt driven.
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Virtualisation
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operating system operating system

hypervisor - virtual machine manager (VMM)

hardware

6/26



7/26



Utilisation of hardware.

7/26



Utilisation of hardware.

Also provided by a multi-task operating system, what is new?

7/26



Utilisation of hardware.

Also provided by a multi-task operating system, what is new?

Applications are completely separated from each other.

7/26



Utilisation of hardware.

Also provided by a multi-task operating system, what is new?

Applications are completely separated from each other.

What do two processes in an operating system share?

7/26



Utilisation of hardware.

Also provided by a multi-task operating system, what is new?

Applications are completely separated from each other.

What do two processes in an operating system share?

Applications can use different operating systems.

7/26



Utilisation of hardware.

Also provided by a multi-task operating system, what is new?

Applications are completely separated from each other.

What do two processes in an operating system share?

Applications can use different operating systems.

Is this important?
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the Hypervisor

Provide virtualisaton of the hardware:
@ a virtual cpu, part of the processing power

@ a virtual memory, the illusion of physical memory

| think we have seen this before.
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the solution

Provide limited direct execution i.e. allow each guest operating system to execute in
user space and only perform non-privileged operations.

What is the first thing an operating system wants to do?
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the virtual IDT

Hypervisor Guest Operating system
set up IDT
pass control to OS
initialize OS
set up IDT

handle interrupt

save ref to IDT of OS
pass control to OS

continue as if
nothing happened

The operating system is running in non-privileged mode.
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a system call

Hypervisor Guest operating system Application

running
system call
INT 0x80

handle interrupt

check OS IDT
call OS procedure

handle interrupt

«——  return to user

handle interrupt

return to user
resume execution
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What about virtual memory?

process

virtual addresses @ regular translation tables

@ second level translation

guest operating system

physical addresses This will be expensive!

hypervisor

machine addresses

hardware
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regular paging

User process uses virtual addresses that are automatic translated by the hardware
(using page table and the MMU) to physical addresses.
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regular paging

User process uses virtual addresses that are automatic translated by the hardware
(using page table and the MMU) to physical addresses.

A page fault invokes the kernel that, if allowed, maps a missing page and return to the
user process.
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Hypervisor Guest operating system Application

running
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handle interrupt
call OS procedure

map missing page

«————update page table

modify page table
return to OS

«—— return to user
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...wait a second

If the guest operating system is executing in user mode - how does it protect itself
from the application process that is also running in user mode?

If we allow the guest operating system to run in kernel mode - then the hypervisor can
not protect it self.
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.. thank god for harware

Hardware support:
- Available in both AMD an Intel x86 processors

- Allows hypervisors to provide near “bare metal” performance.
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.. a different approach

Para-virtualization: change the operating system that you want to virtualize.
- Change kernel modules in the operating system.

- Recompile source code or patch binary code.

18/26



The original goal

19/26



The original goal

Utilisation of hardware.

19/26



The original goal

Utilisation of hardware.

19/26



The original goal

Utilisation of hardware.

Applications are completely separated from each other.

19/26



The original goal

Utilisation of hardware.

Applications are completely separated from each other.

19/26



The original goal

Utilisation of hardware.
Applications are completely separated from each other.

Applications can use different operating systems.

19/26



The original goal

Utilisation of hardware.
Applications are completely separated from each other.

Applications can use different operating systems.

What if we skip this.
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containers

An operating system uses several name spaces: memory addresses, file paths, port
numbers, device interrupt requests, process id, user id, ...

Provide a container, a separate environment with its own name spaces.

Processes in different containers are completely separated from each other .. .but they
use the same kernel.

20/26



containers

hardware

21/26



containers

operating system

hardware

21/26



containers

process

operating system

hardware

21/26



containers

process

operating system

hardware

21/26



(V2]
-
(]
=
T
i)
c
(@)
O

operating system

hardware

21/26



(V2]
-
(]
=
T
i)
c
(@)
O

operating system

hardware

21/26



(V2]
-
(]
=
T
i)
c
(@)
O

operating system

hardware

21/26



the original goal

22/26



the original goal

Utilisation of hardware.

22/26



the original goal

Utilisation of hardware.

22/26



the original goal

Utilisation of hardware.

Applications are completely separated from each other.

22/26



the original goal

Utilisation of hardware.

Applications are completely separated from each other.

22/26



the original goal

Utilisation of hardware.
Applications are completely separated from each other.

Applications can use different operating systems.

22/26



the original goal

Utilisation of hardware.
Applications are completely separated from each other.

Applications can use different operating systems.

Why do they have to run on the same hardware?
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Types of virtual machines

e Emulators
o Can emulate a different hardware than the host machine (QEMU, Simics).

@ Virtual machines
o Choose operating system but hardware is set (Xen, KVM, VirtualBox, VMware).

o Containers
o Separated name spaces in the same operating system (Dockers, Linux Containers).

@ Runtime systems
o Dedicated to a language (JVM, Erlang).
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... but | never installed a Hypervisor?

25 /26



... but | never installed a Hypervisor?

VirtualBox etc also installs a kernel module that turns your regular operating system
into a hypervisor.
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