Virtualisation

Johan Montelius

KTH

2021

1/26

code

(text) data heap |— «—| stack

The role of the operating system - provide a virtual environment for a process.

2/26

the kernel

code

(text) data || heap|— «—|stack

3/26

the kernel

|
user space | kernel space
|

code

h
(text) data || heap|— «—|stack

3/26

the kernel

user space } kernel space
|
|
|

code d heap | — «— k:

(.text) ata p stac :
|
|
|
|
|

IDTR

3/26

the kernel

user space kernel space

code

h
(text) data || heap|— «—]|stack

segm. table
page table

N

<
<
c

IDTR

3/26

(]
(=
—
()]
X
()
L=
)

kernel space

user space

3|qel Jaul

9|qe1 s3ed

heap|— «—|stack

code
(.text) data

3/26

indirect execution

Who is in control?

4/26

indirect execution

Who is in control?

@ control the registers of the MMU and
you control the virtual address space

4/26

indirect execution

Who is in control?

@ control the registers of the MMU and
you control the virtual address space

@ control the IDTR and you control
what will happen when we have an
interrupt

4/26

indirect execution

Who is in control?
@ control the registers of the MMU and
you control the virtual address space

@ control the IDTR and you control
what will happen when we have an
interrupt

@ instructions to set MMU or IDT
registers are privileged instructions

4/26

indirect execution

Who is in control? Limited direct execution:

@ control the registers of the MMU and
you control the virtual address space

@ control the IDTR and you control
what will happen when we have an
interrupt

@ instructions to set MMU or IDT
registers are privileged instructions

4/26

indirect execution

Who is in control? Limited direct execution:
@ control the registers of the MMU and @ only work with mapped memory in
you control the virtual address space user space,

@ control the IDTR and you control
what will happen when we have an
interrupt

@ instructions to set MMU or IDT
registers are privileged instructions

4/26

indirect execution

Who is in control? Limited direct execution:
@ control the registers of the MMU and @ only work with mapped memory in
you control the virtual address space user space,
@ control the IDTR and you control @ only execute non-privileged
what will happen when we have an instructions,
interrupt

@ instructions to set MMU or IDT
registers are privileged instructions

4/26

indirect execution

Who is in control? Limited direct execution:
@ control the registers of the MMU and @ only work with mapped memory in
you control the virtual address space user space,
@ control the IDTR and you control @ only execute non-privileged
what will happen when we have an instructions,
interrupt o for a limited amount of time.

@ instructions to set MMU or IDT
registers are privileged instructions

4/26

Interrupts

Synchronous interrupts - exceptions:
o faults:

5/26

Interrupts

Synchronous interrupts - exceptions:
o faults:

o page fault
e privilege violation
o divide by zero, ...

5/26

Interrupts

Synchronous interrupts - exceptions:
o faults:

o page fault
e privilege violation
o divide by zero, ...

@ programmed exceptions:

5/26

Interrupts

Synchronous interrupts - exceptions:
o faults:
o page fault
e privilege violation
o divide by zero, ...
@ programmed exceptions:
o system call (INT 0x80)
o debug instructions

5/26

Interrupts

Synchronous interrupts - exceptions: Asynchronous interrupts:
o faults:
o page fault
e privilege violation
o divide by zero, ...
@ programmed exceptions:
o system call (INT 0x80)
o debug instructions

5/26

Interrupts

Synchronous interrupts - exceptions: Asynchronous interrupts:
o faults: @ timer interrupt
o page fault

e privilege violation
o divide by zero, ...
@ programmed exceptions:

e system call (INT 0x80)
o debug instructions

5/26

Interrupts

Synchronous interrupts - exceptions: Asynchronous interrupts:
o faults: @ timer interrupt
o page fault

'S8 S @ hardware interrupt: 1/O complete, ...
e privilege violation

o divide by zero, ...
@ programmed exceptions:

e system call (INT 0x80)
o debug instructions

5/26

Interrupts

Synchronous interrupts - exceptions: Asynchronous interrupts:
o faults: @ timer interrupt
o page fault

'S8 S @ hardware interrupt: 1/O complete, ...
e privilege violation

o divide by zero, ...
@ programmed exceptions:

e system call (INT 0x80)
o debug instructions

The kernel is interrupt driven.

5/26

Virtualisation

hardware

6/26

Virtualisation

operating system

hardware

6/26

Virtualisation

process

operating system

hardware

6/26

Virtualisation

process

operating system

hardware

6/26

(=
.9
)
T
e
“©
3
4
—

operating system

hardware

6/26

(=
.9
)
T
e
“©
3
4
—

operating system

operating system

hardware

6/26

(=
.9
)
T
e
“©
3
4
—

operating system

operating system

hardware

6/26

Virtualisation

process

operating system operating system

hypervisor - virtual machine manager (VMM)

hardware

6/26

7/26

Utilisation of hardware.

7/26

Utilisation of hardware.

Also provided by a multi-task operating system, what is new?

7/26

Utilisation of hardware.

Also provided by a multi-task operating system, what is new?

Applications are completely separated from each other.

7/26

Utilisation of hardware.

Also provided by a multi-task operating system, what is new?

Applications are completely separated from each other.

What do two processes in an operating system share?

7/26

Utilisation of hardware.

Also provided by a multi-task operating system, what is new?

Applications are completely separated from each other.

What do two processes in an operating system share?

Applications can use different operating systems.

7/26

Utilisation of hardware.

Also provided by a multi-task operating system, what is new?

Applications are completely separated from each other.

What do two processes in an operating system share?

Applications can use different operating systems.

Is this important?

7/26

the Hypervisor

Provide virtualisaton of the hardware:

@ a virtual cpu, part of the processing power

8/26

the Hypervisor

Provide virtualisaton of the hardware:
@ a virtual cpu, part of the processing power

@ a virtual memory, the illusion of physical memory

8/26

the Hypervisor

Provide virtualisaton of the hardware:
@ a virtual cpu, part of the processing power

@ a virtual memory, the illusion of physical memory

| think we have seen this before.

8/26

the solution

Provide limited direct execution i.e. allow each guest operating system to execute in
user space and only perform non-privileged operations.

9/26

the solution

Provide limited direct execution i.e. allow each guest operating system to execute in
user space and only perform non-privileged operations.

What is the first thing an operating system wants to do?

9/26

the virtual IDT

Hypervisor Guest Operating system

set up IDT

10/26

the virtual IDT

Hypervisor Guest Operating system

set up IDT
pass control to OS

10/26

the virtual IDT

Hypervisor Guest Operating system

set up IDT
pass control to OS

initialize OS

10/26

the virtual IDT

Hypervisor Guest Operating system
set up IDT
pass control to OS
initialize OS
set up IDT

10/26

the virtual IDT

Hypervisor Guest Operating system
set up IDT
pass control to OS
initialize OS
set up IDT

handle interrupt

10/26

the virtual IDT

Hypervisor Guest Operating system
set up IDT
pass control to OS
initialize OS
set up IDT

handle interrupt
save ref to IDT of OS

10/26

the virtual IDT

Hypervisor Guest Operating system
set up IDT
pass control to OS
initialize OS
set up IDT

handle interrupt

save ref to IDT of OS
pass control to OS

10/26

the virtual IDT

Hypervisor Guest Operating system
set up IDT
pass control to OS
initialize OS
set up IDT

handle interrupt

save ref to IDT of OS
pass control to OS

10/26

the virtual IDT

Hypervisor Guest Operating system
set up IDT
pass control to OS
initialize OS
set up IDT

handle interrupt

save ref to IDT of OS
pass control to OS

continue as if
nothing happened

The operating system is running in non-privileged mode.

10/26

a system call

Hypervisor Guest operating system Application

running

11/26

a system call

Hypervisor Guest operating system Application

running
system call

11/26

a system call

Hypervisor Guest operating system Application

running
system call
INT 0x80

11/26

a system call

Hypervisor Guest operating system Application

running
system call
INT 0x80

11/26

a system call

Hypervisor Guest operating system Application

running
system call
INT 0x80

handle interrupt

11/26

a system call

Hypervisor Guest operating system Application

running
system call
INT 0x80

handle interrupt
check OS IDT

11/26

a system call

Hypervisor Guest operating system Application

running
system call
INT 0x80

handle interrupt

check OS IDT
call OS procedure

11/26

a system call

Hypervisor Guest operating system Application

running
system call
INT 0x80

handle interrupt

check OS IDT
call OS procedure

11/26

a system call

Hypervisor Guest operating system Application

running
system call
INT 0x80

handle interrupt

check OS IDT
call OS procedure

handle interrupt

11/26

a system call

Hypervisor Guest operating system Application

running
system call
INT 0x80

handle interrupt

check OS IDT
call OS procedure

handle interrupt
return to user

11/26

a system call

Hypervisor Guest operating system Application

running
system call
INT 0x80

handle interrupt

check OS IDT
call OS procedure

handle interrupt

«—— return to user

11/26

a system call

Hypervisor Guest operating system Application

running
system call
INT 0x80

handle interrupt

check OS IDT
call OS procedure

handle interrupt

«— return to user

handle interrupt

11/26

a system call

Hypervisor Guest operating system Application

running
system call
INT 0x80

handle interrupt

check OS IDT
call OS procedure

handle interrupt

«—— return to user

handle interrupt

return to user

11/26

a system call

Hypervisor Guest operating system Application

running
system call
INT 0x80

handle interrupt

check OS IDT
call OS procedure

handle interrupt

«—— return to user

handle interrupt

return to user
resume execution

11/26

What about virtual memory?

process

guest operating system

hypervisor

hardware

12/26

What about virtual memory?

process

virtual addresses

guest operating system

hypervisor

hardware

12/26

What about virtual memory?

process

virtual addresses @ regular translation tables

guest operating system

physical addresses

hypervisor

hardware

12/26

What about virtual memory?

process

virtual addresses @ regular translation tables

@ second level translation

guest operating system

physical addresses

hypervisor

machine addresses

hardware

12/26

What about virtual memory?

process

virtual addresses @ regular translation tables

@ second level translation

guest operating system

physical addresses This will be expensive!

hypervisor

machine addresses

hardware

12/26

regular paging

User process uses virtual addresses that are automatic translated by the hardware
(using page table and the MMU) to physical addresses.

13/26

regular paging

User process uses virtual addresses that are automatic translated by the hardware
(using page table and the MMU) to physical addresses.

A page fault invokes the kernel that, if allowed, maps a missing page and return to the
user process.

13/26

second level paging

Hypervisor Guest operating system Application

running

14 /26

second level paging

Hypervisor Guest operating system Application

running
page fault

14 /26

second level paging

Hypervisor Guest operating system Application

running
page fault

14 /26

second level paging

Hypervisor Guest operating system Application

running
page fault

handle interrupt

14 /26

second level paging

Hypervisor Guest operating system Application

running
page fault

handle interrupt
call OS procedure

14 /26

second level paging

Hypervisor Guest operating system Application

running
page fault

handle interrupt
call OS procedure

14 /26

second level paging

Hypervisor Guest operating system Application

running
page fault

handle interrupt
call OS procedure

map missing page

14 /26

second level paging

Hypervisor Guest operating system Application

running
page fault

handle interrupt
call OS procedure

map missing page
update page table

14 /26

second level paging

Hypervisor Guest operating system Application

running
page fault

handle interrupt
call OS procedure

map missing page
——update page table

14 /26

second level paging

Hypervisor Guest operating system Application

running
page fault

handle interrupt
call OS procedure

map missing page
——update page table
modify page table

14 /26

second level paging

Hypervisor Guest operating system Application

running
page fault

handle interrupt
call OS procedure

map missing page

——update page table
modify page table
return to OS

14 /26

second level paging

Hypervisor Guest operating system Application

running
page fault

handle interrupt
call OS procedure

map missing page

——update page table

modify page table
return to OS

14 /26

second level paging

Hypervisor Guest operating system Application

running
page fault

handle interrupt
call OS procedure

map missing page

«—————update page table

modify page table
return to OS

«—— return to user

14 /26

second level paging

Hypervisor Guest operating system Application

running
page fault

handle interrupt
call OS procedure

map missing page

«—————update page table

modify page table
return to OS

«—— return to user

14 /26

second level paging

Hypervisor Guest operating system Application

running
page fault

handle interrupt
call OS procedure

map missing page

———update page table

modify page table
return to OS

«—— return to user

return to user

14 /26

second level paging

Hypervisor Guest operating system Application

running
page fault

handle interrupt
call OS procedure

map missing page

«————update page table

modify page table
return to OS

«—— return to user

return to user
resume execution

14 /26

...wait a second

15/26

...wait a second

If the guest operating system is executing in user mode - how does it protect itself
from the application process that is also running in user mode?

15/26

...wait a second

If the guest operating system is executing in user mode - how does it protect itself
from the application process that is also running in user mode?

If we allow the guest operating system to run in kernel mode - then the hypervisor can
not protect it self.

15/26

system call revisited

Hypervisor Guest operating system Application

kernel space user space

in user mode

16 /26

system call revisited

Hypervisor Guest operating system Application

kernel space user space

in user mode
system call

16 /26

system call revisited

Hypervisor Guest operating system Application

kernel space user space

in user mode
system call
INT 0x80

16 /26

system call revisited

Hypervisor Guest operating system Application

kernel space user space

in user mode
system call
INT 0x80

!
!
|
|
|
|
|
|
|
1
|
!
!
|
|
|
|
|
|
|
|
!
!
!
|
|
|
|
1

16 /26

system call revisited

Hypervisor Guest operating system Application

kernel space user space

in user mode
system call
INT 0x80

change tables

!
!
|
|
|
|
|
|
|
1
|
!
!
|
|
|
|
|
|
|
|
!
!
!
|
|
|
|
1

16 /26

system call revisited

Hypervisor Guest operating system Application

kernel space user space

in user mode
system call
INT 0x80

change tables
OS now in user space

!
!
|
|
|
|
|
|
|
1
|
!
!
|
|
|
|
|
|
|
|
!
!
!
|
|
|
|
1

16 /26

system call revisited

Hypervisor Guest operating system Application

kernel space user space

|

|

|

|

| .

| in user mode
|

| system call
|

1

|

|

|

|

INT 0x80
change tables
OS now in user space

16 /26

system call revisited

Hypervisor Guest operating system Application

kernel space user space

|

|

|

|

| .

| in user mode
|

| system call
|

1

|

|

|

|

INT 0x80
change tables
OS now in user space

in user mode

16 /26

system call revisited

Hypervisor Guest operating system Application

kernel space user space

|

|

|

|

| .

| in user mode
|

| system call
|

1

|

|

|

|

INT 0x80
change tables
OS now in user space

in user mode
handle interrupt

16 /26

system call revisited

Hypervisor Guest operating system Application

kernel space user space

|

|

|

|

| .

| in user mode
|

| system call
|

1

|

|

|

|

INT 0x80
change tables
OS now in user space

in user mode
handle interrupt
return to user

16 /26

system call revisited

Hypervisor Guest operating system Application

kernel space user space

|

|

|

|

| .

| in user mode
|

| system call
|

1

|

|

|

|

INT 0x80
change tables
OS now in user space

|
} in user mode
1 handle interrupt

«——— return to user

16 /26

system call revisited

Hypervisor Guest operating system Application

kernel space user space

|

|

|

|

| .

| in user mode
|

| system call
|

1

|

|

|

|

INT 0x80
change tables
OS now in user space

|
} in user mode
1 handle interrupt

«——— return to user

change tables

16 /26

system call revisited

Hypervisor Guest operating system Application

kernel space user space

in user mode
system call
INT 0x80

change tables
OS now in user space

in user mode
handle interrupt
——— return to user
change tables
OS in kernel space

!
!
|
|
|
|
|
|
|
1
|
!
!
|
|
|
|
|
|
|
|
!
!
!
|
|
|
|
1

16 /26

system call revisited

Hypervisor Guest operating system Application

kernel space user space

in user mode
system call
INT 0x80

|

|

|

|

|

|

|

|

|

?

change tables |
. |
OS now in user space w
|

|

|

|

|

|

|

|

|

|

|

T

|

I

in user mode
handle interrupt
——— return to user
change tables
OS in kernel space

16 /26

system call revisited

Hypervisor Guest operating system Application

kernel space user space

in user mode
system call

INT 0x80

|

|

|

|

|

|

I

I

I

:

change tables l
. |
OS now in user space |
|

I

I

I

I

|

|

|

|

|

T

|

I

in user mode
handle interrupt
«—— return to user
change tables
OS in kernel space

resume execution

16 /26

.. thank god for harware

17/26

.. thank god for harware

Hardware support:

17/26

.. thank god for harware

Hardware support:

- Available in both AMD an Intel x86 processors

17/26

.. thank god for harware

Hardware support:
- Available in both AMD an Intel x86 processors

- Allows hypervisors to provide near “bare metal” performance.

17/26

.. a different approach

18/26

.. a different approach

Para-virtualization: change the operating system that you want to virtualize.

18/26

.. a different approach

Para-virtualization: change the operating system that you want to virtualize.

- Change kernel modules in the operating system.

18/26

.. a different approach

Para-virtualization: change the operating system that you want to virtualize.
- Change kernel modules in the operating system.

- Recompile source code or patch binary code.

18/26

The original goal

19/26

The original goal

Utilisation of hardware.

19/26

The original goal

Utilisation of hardware.

19/26

The original goal

Utilisation of hardware.

Applications are completely separated from each other.

19/26

The original goal

Utilisation of hardware.

Applications are completely separated from each other.

19/26

The original goal

Utilisation of hardware.
Applications are completely separated from each other.

Applications can use different operating systems.

19/26

The original goal

Utilisation of hardware.
Applications are completely separated from each other.

Applications can use different operating systems.

What if we skip this.

19/26

containers

20/26

containers

An operating system uses several name spaces: memory addresses, file paths, port
numbers, device interrupt requests, process id, user id, ...

20/26

containers

An operating system uses several name spaces: memory addresses, file paths, port
numbers, device interrupt requests, process id, user id, ...

Provide a container, a separate environment with its own name spaces.

20/26

containers

An operating system uses several name spaces: memory addresses, file paths, port
numbers, device interrupt requests, process id, user id, ...

Provide a container, a separate environment with its own name spaces.

Processes in different containers are completely separated from each other ...

20/26

containers

An operating system uses several name spaces: memory addresses, file paths, port
numbers, device interrupt requests, process id, user id, ...

Provide a container, a separate environment with its own name spaces.

Processes in different containers are completely separated from each other .. .but they
use the same kernel.

20/26

containers

hardware

21/26

containers

operating system

hardware

21/26

containers

process

operating system

hardware

21/26

containers

process

operating system

hardware

21/26

(V2]
-
(]
=
T
i)
c
(@)
O

operating system

hardware

21/26

(V2]
-
(]
=
T
i)
c
(@)
O

operating system

hardware

21/26

(V2]
-
(]
=
T
i)
c
(@)
O

operating system

hardware

21/26

the original goal

22/26

the original goal

Utilisation of hardware.

22/26

the original goal

Utilisation of hardware.

22/26

the original goal

Utilisation of hardware.

Applications are completely separated from each other.

22/26

the original goal

Utilisation of hardware.

Applications are completely separated from each other.

22/26

the original goal

Utilisation of hardware.
Applications are completely separated from each other.

Applications can use different operating systems.

22/26

the original goal

Utilisation of hardware.
Applications are completely separated from each other.

Applications can use different operating systems.

Why do they have to run on the same hardware?

22/26

emulating hardware

x86 hardware

23/26

emulating hardware

operating system

x86 hardware

23/26

emulating hardware

operating system

x86 hardware

23/26

emulating hardware

emulating ARM

operating system

x86 hardware

23/26

emulating hardware

operating system

emulating ARM

operating system

x86 hardware

23/26

emulating hardware

process

operating system

emulating ARM

operating system

x86 hardware

23/26

emulating hardware

operating system
emulating ARM

operating system

x86 hardware

23/26

emulating hardware

process

operating system

emulating ARM emulating Sparc

operating system

x86 hardware

23/26

emulating hardware

process

operating system operating system

emulating ARM emulating Sparc

operating system

x86 hardware

23/26

emulating hardware

process

operating system operating system

emulating ARM emulating Sparc

operating system

x86 hardware

23/26

emulating hardware

process

operating system operating system

emulating ARM emulating Sparc

operating system

x86 hardware

23/26

Types of virtual machines

e Emulators
o Can emulate a different hardware than the host machine (QEMU, Simics).

24 /26

Types of virtual machines

e Emulators
o Can emulate a different hardware than the host machine (QEMU, Simics).
e Virtual machines
o Choose operating system but hardware is set (Xen, KVM, VirtualBox, VMware).

24/26

Types of virtual machines

e Emulators
o Can emulate a different hardware than the host machine (QEMU, Simics).

@ Virtual machines
o Choose operating system but hardware is set (Xen, KVM, VirtualBox, VMware).

o Containers
o Separated name spaces in the same operating system (Dockers, Linux Containers).

24/26

Types of virtual machines

e Emulators
o Can emulate a different hardware than the host machine (QEMU, Simics).

@ Virtual machines
o Choose operating system but hardware is set (Xen, KVM, VirtualBox, VMware).

o Containers
o Separated name spaces in the same operating system (Dockers, Linux Containers).

@ Runtime systems
o Dedicated to a language (JVM, Erlang).

24/26

... but | never installed a Hypervisor?

25 /26

... but | never installed a Hypervisor?

VirtualBox etc also installs a kernel module that turns your regular operating system
into a hypervisor.

25 /26

@ Multiple operating systems running on the same machine.

26 /26

@ Multiple operating systems running on the same machine.

@ Each operating system provided a virtual hardware.

26 /26

@ Multiple operating systems running on the same machine.
@ Each operating system provided a virtual hardware.
@ With hardware support, near bare metal execution speed can be obtained.

26/26

@ Multiple operating systems running on the same machine.
@ Each operating system provided a virtual hardware.
@ With hardware support, near bare metal execution speed can be obtained.

@ Other types: emulators, containers, runtime environments.

26/26

@ Multiple operating systems running on the same machine.
@ Each operating system provided a virtual hardware.
@ With hardware support, near bare metal execution speed can be obtained.

@ Other types: emulators, containers, runtime environments.

26/26

