
File systems

Johan Montelius

KTH

2020

1 / 35

The bigger picture

A file system is the user space implementation of persistent storage.

a file is persistent i.e. it survives the termination of a process
a file can be access by several processes i.e. a shared resource
a file can be located given a path name

2 / 35

What’s a file

a sequence of bytes
attributes, associated meta-data

size and type
owner and permissions
author
created, last written
icons, fonts, presentation....

3 / 35

User space operations

We need functionality to:
create and delete a file
find a file
read and write the content of the file
control authorization - who is allowed to do what

4 / 35

Implementation

directory map from name to identifier

file module locate file

access control interacts with authentication system

file operations read and write operations

block operations which blocks on which devices

device operations operations on physical drive

5 / 35

the name service

Name service

File service

/

bin/ boot/ dev/ home/ usr/ var/

kalle/ pelle/
foo.txt
bar.txt

6 / 35

links and the directory tree
Looking only at hard links:

The directory graph is
a tree of directories.
Directories contain sub
directories and files.
A file can be linked to from
many directories.

/

bin/ home/ usr/

kalle/ pelle/
foo.txt
bar.txt

zot.txt

7 / 35

links and the directory tree

Looking only at hard links:

Special directory links to:
. self
.. parent

There is no explicit way of creating
hard links to directories.
Hard links to directories are created
when directories are created or
moved.
Why?

home/

kalle/
.
..

8 / 35

symbolic links a.k.a soft links

Symbolic links are in-directions in the directory.

$ ls -l ./
total 16
drwxrwxr-x 2 johanmon johanmon 4096 nov 14 16:43 bar
drwxrwxr-x 2 johanmon johanmon 4096 nov 14 16:41 foo
-rw-rw-r-- 1 johanmon johanmon 8 nov 14 16:11 zat.txt
-rw-rw-r-- 1 johanmon johanmon 8 nov 14 16:11 zot.txt

$ ls -l foo
total 0
lrwxrwxrwx 1 johanmon johanmon 6 nov 14 16:41 gurka -> ../bar

9 / 35

File name operations

int creat(const char *pathname, mode_t mode)
hardly ever used

int unlink(const char *pathname)
when last link is removed the file is deleted

int link(const char *oldpath, const char *newpath)
a hard link

int symlink(const char *target, const char *linkpath)
a soft link

int stat(const char *pathname, struct stat *buf)
reads the meta-data of the file

10 / 35

The process state

The kernel keeps a record of all open files of a process.
int open(const char *pathname, int flags)

returns a file descriptor
int open(const char *pathname, int flags, mode_t mode)

will create the file if it does not exist i.e. same as creat() and open()

int close(int fd)
closes a file given a file descriptor

By default a process has three open files: 0 standard input, 1 standard output
and 2 standard error.

You can not choose descriptor, the operating system will choose the lowest
available.

11 / 35

The file tables

pid:1

pid:2

processes file descriptor
tables

fd:2

fd:2

open files
table inode table

12 / 35

The file tables

descriptor table: one table per process, copied when process is forked
open files table: table is global, one entry per open operation
inode table: one table per file system, one entry per file object

Note - a forked process can share file table entry with mother.

13 / 35

The file table entry

The file table entry holds:
reference to inode
reference counter, when it reaches 0 the file is closed and the entry is
removed
the current position in the file
read and write access rights, determined when opened

14 / 35

File operations

int read(int fd, void *buf, size_t count)
returns the number of bytes actually read

int write(int fd, const void *buf, size_t count)
returns the number of bytes actually written

lseek(int fd, off_t offset, int whence)
sets the current position in the file

lseek() will only modify the file tabels entry i.e. it will not read anything from
disk.

15 / 35

The inode

mode: access rights
number of links: when zero the file is deleted
user id: the owner of the file
group id: the associated group
size: file size in bytes
blocks: how many data blocks have been allocated
identifiers: block identifiers (more on this later)
generation: incremented when inode is reused
access time: last time read
modify time: last time modified
change time: the time the inode was changed

16 / 35

The file system

The file system determines how files and directory structures are organized on a
disk.

An operating system can mount different file systems, all accessible from the
same directory structure.

Do mount, to see which file systems you have mounted.

17 / 35

Anatomy of a HDD

track/cylinder
sectors per track varies
sector size: 4K or 512 bytes
platters: 1 to 6
heads: one side or two sides

How do we store a file system in the sectors of a hard disk drive.
18 / 35

The Very Simple File System

0 8 16

24 32 40

48 56 56 data blocks

inodes

S i d

Each block is 4Kbytes, an inode 256 bytes.
19 / 35

The super block, bitmaps and inodes

S i d

80 inodes

data-block bitmap
inode bitmap

Super block

20 / 35

The super block, bitmaps and the inodes

The super block
describes the file
system
how many inodes,
where are they
located
how many data
blocks, where are
they located
where are bitmaps

The bitmaps
which inode blocks
are available
which data blocks
are available

The inodes
all meta-data of
the file
which data blocks
are used

21 / 35

the inode revisited

blocks: how many data blocks have
been allocated
identifiers: block identifiers

3

34
47
13

If the inode has room for 15 block identifiers what is the maximum file size?
22 / 35

Multi-level index

If the first fourteen entries are block identifiers,
and the fifteenth entry is a reference to a block holding block identifiers.
What is the maximum size of a file?

If the first thirteen entries are block identifiers,
the fourteenth entry is a reference to a block holding block identifiers,
and the fifteenth entry is a reference to
a block holding identifiers to blocks holding block identifiers.
What is the maximum size of a file?

Why not have a balanced tree?

23 / 35

where are the directories?

A directory is stored as a file using an inode and (almost always) one data block.

The data block contains a mapping from names of files and directories to inode
numbers.

24 / 35

a directory

inode 2

37

d bin 23
d boot 43
d etc 56

The inode of the root directory is specified by the file system (possibly in the
super block). 25 / 35

try this

ls -ila ./
list the current directory, show inode numbers

stat <file name>
inspect an inode, try directories and regular files

istat <device> <inode>
shows information about a particular inode

sudo dd if=/dev/sda1 bs=4096 skip=<block> count=1
inspect a data block

to use istat, install: sudo apt install sleuthkit

26 / 35

reading a file

Assume we want to read the first 100 bytes of /foo/bar.txt.

Open the file:
read inode of / (the root dir) -
why?
read the data block of / - why?
read the inode of foo
read the data block of foo
read the inode of bar.txt
create a file table entry
create a file descriptor entry

Read from the file:
read the inode of bar.txt
read the first 100 bytes from the
first block
update the inode of bar.txt -
why?

Think about this the next time you complain about your computer being slow.
27 / 35

creating a file

Assume we want to create and write to a new file /foo/bar.txt.

Create the file:
read inode of /
read the data block of /
read inode of foo
read the inode bitmap - find a free
inode
update the inode bitmap
write the data block of foo
write the bar.txt inode
write the inode of foo

Write to the file:
read to the inode of bar.txt
read the data block bitmap - find a
free block
update the data block bitmap
write to the new block
write to the inode of bar.txt

28 / 35

Caching and buffering

Caching: keep frequently used inodes and data blocks in memory.

Buffering: perform updates in memory, batch operations to disk.

29 / 35

Anatomy of a HDD

track/cylinder
sectors per track varies
sector size: 4K or 512 bytes
platters: 1 to 6
heads: one side or two sides

How do we store a file system in the sectors of a hard disk drive?
30 / 35

Anatomy of a SSD

memory bank

erase blocks ~256 KiByte

pages ~4KiByte

You have constant time access to any page.
You can only write to (or program) an erased page.
You can only erase a block.

How do we store a file system in the sectors of a SSD?

31 / 35

tmpfs

Reserve one part of main memory to store a file system.

Do we provide persistent storage?
Is the storage much larger or cheaper than main memory?
Can processes use the file system to share data?

32 / 35

man mount

All files accessible in a Unix system are arranged in one big tree, the file
hierarchy, rooted at /. These files can be spread out over several devices. The
mount command serves to attach the filesystem found on some device to the big
file tree. Conversely, the umount(8) command will detach it again.

The standard form of the mount command is:

mount -t type device dir

This tells the kernel to attach the filesystem found on device (which is of type
type) at the directory dir. The previous contents (if any) and owner and mode
of dir become invisible, and as long as this filesystem remains mounted, the
pathname dir refers to the root of the filesystem on device.

33 / 35

Some file systems

ext4 : the default file system used by most Linux distributions
HFS+ : used by OSX
NTFS : default Windows file system
FAT32 : older file system from Microsoft, used if you want maximal
portability

34 / 35

Summary

separate directory service from file service
directory as tree structure
multiple hard links to files (not to directories)
symbolic links are re-directions
inodes, the data structure of file meta-data
file system, structure on disk
performance, caching, buffering
take device anatomy into account
mount several file systems in one tree

35 / 35

