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1 Introduction

So this is an experiment where we will implement our own malloc. We
will not implement the worlds fastest allocator but it will work and we will
hopefully better understand what is required by the underlying memory
manager. Remember that malloc() is a library procedure that is running
i user space, it is therefore easy to direct a program to use our allocator
rather than the one provided by the standard library.

2 The interface

If we look at the manual pages of malloc and free, we start to understand
what are the requirements.

The malloc() function allocates size bytes and returns a pointer

to the allocated memory. The memory is not initialized. If size

is 0, then malloc() returns either NULL, or a unique pointer value

that can later be successfully passed to free().

The free() function frees the memory space pointed to by ptr,

which must have been returned by a previous call to malloc(),

calloc(), or realloc(). Otherwise, or if free(ptr) has already

been called before, undefined behavior occurs. If ptr is NULL, no

operation is performed.

Also look further down in the man page, to see what the procedures
should return and why malloc() can fail.

2.1 this is too easy

Ok, how hard can it be, we only need to have a infinite memory and the
problem is solve - let’s do this as our first experiment. Create a file called
mylloc.c and buckle you seat belt.

We will make things very easy in the beginning, simply ask the operating
system for more heap space when we call mylloc() and ignore anything that
is freed. Now this solution would not give you any points in the exam but
it’s a good start for our experiments.

#include <s t d l i b . h>
#include <uni s td . h>
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void ∗malloc ( s i z e t s i z e ) {
i f ( s i z e == 0 ){

return NULL;
}
void ∗memory = sbrk ( s i z e ) ;
i f (memory == (void ∗)−1) {

return NULL;
} else {

return memory ;
}

}

void f r e e (void ∗memory) {
return ;

}

Look up the man-pages for sbrk(). The procedure will fail only of the
operating system fails to increase the heap segment, if this happens it will
return -1 but malloc() should return NULL. Also note the two versions of
changing the size of the heap segment, sbrk() and brk(), the first is just a
convenient way of calling the other.

When we compile the mylloc.c program we need to tell GCC that the
program should be compiled to an object file but we should not link the
object file and try to turn it into an executable. After all there is no main()

procedure so it is not a complete program. We do this using the -c flag, if
we look in the man page for gcc we find this description:

-c Compile or assemble the source files, but do not link. The

linking stage simply is not done. The ultimate output is in the

form of an object file for each source file.

So our command looks like this:

$ gcc -c mylloc.c

If everything works you should have a file called mylloc.o that is the
object file that we need.

2.2 the benchmark

To see how well our solution (remember the proposal is a close to stupid
solution) works, we implement a benchmark that will allocate and free a
sequence of memory blocks. Our first benchmark will not be the best bench-
mark but it will at least show that the system is working, or rather why it
is not working that well. We use a call to sbrk(0) to get the current top of
the heap and then track this for each round that we execute the inner loop.
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#include <s t d l i b . h>
#include <s t d i o . h>
#include <uni s td . h>

#define ROUNDS 10
#define LOOP 100000

int main ( ) {
void ∗ i n i t = sbrk ( 0 ) ;
void ∗ cur rent ;

p r i n t f ( ”The i n i t i a l top o f the heap i s %p .\n” , i n i t ) ;

for ( int j = 0 ; j < ROUNDS; j++) {
for ( int i= 0 ; i < LOOP ; i++) {

s i z e t s i z e = ( rand ( ) % 4000) + s izeof ( int ) ;
int ∗memory ;
memory = mal loc ( s i z e ) ;
i f (memory == NULL) {

f p r i n t f ( s tde r r , ” mal loc f a i l e d \n” ) ;
return ( 1 ) ;

}
/∗ wr i t i n g to the memory so we know i t e x i s t s ∗/
∗memory = 123 ;
f r e e (memory ) ;

}
cur rent = sbrk ( 0 ) ;
int a l l o c a t e d = ( int ) ( ( cur rent − i n i t ) / 1024 ) ;
p r i n t f ( ”%d\n” , j ) ;
p r i n t f ( ”The cur rent top o f the heap i s %p .\n” , cur rent ) ;
p r i n t f ( ” i n c r e a s e d by %d Kbyte\n” , a l l o c a t e d ) ;

}
return 0 ;

}

2.3 our first run

We can now compile our benchmark and provide the object file so that
the linking works. Note that we provide the object file mylloc.o as an
argument to gcc. The linker will first use the object files that we provide so
the real implementation of malloc() in the standard library is shadowed by
our implementation in mylloc.o.

$ gcc -o bench mylloc.o bench.c

3



Ok, give the benchmark a try to see if it works. If it does, you should see
how the heap is increasing as we myllocate more memory. The problem is
of course that our implementation of free() is simply doing nothing. The
blocks that we have freed could have been reused when we asked for the
next block but we simply ignore old blocks and just ask the kernel for more
space.

For how long can this work, we must run out of memory sometime?
Increase the number of ROUNDS to 100 and see what happens. My guess is
the program will not end successfully, it might stop with an exit message
“malloc failed” but it could also be that it is shot down by the kernel and
the final message is simply “killed”. The latter happens when the kernel is
starting to run out of virtual memory and is looking around for a suitable
process to terminate. This is the called Out Of Memory management or
simply the OOM-Killer process in action.

You might wonder what could cause the kernel to be out of virtual
memory, if we have a virtual address space of 47 bits, there should be plenty
of virtual memory to choose from. Hmm . . . , comment out the line where
we write 123 to the allocated memory, then increase the number of rounds
to a thousand - what is going on?

2.4 a random sequence of size

Ok, so we know that things work and we know what we will have to improve
the reuse of freed blocks, but before we change the mylloc procedures we
need to improve the benchmark program.

The first thing that we will fix is the random selection of block size. We
can assume that a program will request small blocks far often than large
blocks so this is our goal. The use of rand() % 4000 in the code gives
us a uniform distribution from zero to 4000. We would much rather have a
exponentially decreasing distribution between for example MIN and MAX;
how can we achieve this? What if the size was calculated like this, where r
is a random value,:

size = MAX/er

If er is from 1 to MAX/MIN then the size will be in the range from
MIN to MAX. To generate er in this range we simply want r to be in the
range 0 to log(MAX/MIN). Let’s go, we have to keep track of doubles and
int:s but it’s quite simple.

#include <math . h>

#define MAX 4000
#define MIN 8

int r eque s t ( ) {
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/∗ k i s l o g (MAX/MIN) ∗/
double k = log ( ( ( double ) MAX )/ MIN) ;

/∗ r i s [ 0 . . k [ ∗/
double r = ( (double ) ( rand ( ) % ( int ) ( k ∗10000)) ) / 10000 ;

/∗ s i z e i s [0 . . MAX[ ∗/
int s i z e = ( int ) ( ( double )MAX / exp ( r ) ) ;

return s i z e ;
}

To see the effect of this distribution you can do a quick experiment.
Write a small program, rand.c, that takes an integer as an argument and
generates a sequence of requested block sizes. Print them to stdout so that
we can pipe the sequence and sort the output.

#include <s t d l i b . h>
#include <s t d i o . h>

int main ( int argc , char ∗argv [ ] ) {

i f ( argc < 2) {
p r i n t f ( ” usage : rand <loop>\n” ) ;
e x i t ( 1 ) ;

}
int loop = a t o i ( argv [ 1 ] ) ;
for ( int i= 0 ; i < loop ; i++) {

int s i z e = reques t ( ) ;
p r i n t f ( ”%d\n” , s i z e ) ;

}
}

When you compile the program you need to include the math library
(-lm) in order for the linker to find the definitions of log() and exp().
Note that rand.c must be given before the link parameter.

$ gcc -o rand rand.c -lm

Now we generate a sequence and sort the output:

$ ./rand 100 | sort -n

Looks ok? Now generate a thousand numbers, sort them and save it to
a file freq.dat.
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$ ./rand 1000 | sort -n > freq.dat

Now we are ready to use gnuplot to take a look at the generated sequence.
Start gnuplot and just do a quick and dirty plot of the freq.dat.

$ gnuplot

:

:

gnuplot> plot "freq.dat" u 1

You can try the following if you better want to see what is happening:

gnuplot> set logscale y

:

gnuplot> plot "freq.dat" u 1

Ok? Now let’s continue the work on the benchmark program.

2.5 a buffer of blocks

The benchmark program does not mimic how a typical program would use
memory. We simply allocate a memory block and then free the same block
immediately. A typical program would probably allocate some blocks, free
some and then allocate some more etc. We need to adapt our benchmark
program so it produces something that is closer to regular behavior.

To do this we introduce a buffer of allocated blocks. We will randomly
select a position in the buffer and if it is empty we allocate a block. If we
find a block at the position we first free this block before allocating a new
block. When we start, the buffer is all empty but after a while it will be
filled with references to allocated blocks.

The size of the buffer is the maximum number of blocks in memory.
Since we randomly add or remove blocks we will in average have half of
the entries filled. The size of the buffer is a measurement on how memory
hungry you benchmark will be and how quickly data structures are freed;
choose any number that you think make sense but the realize that it will
change the behaviour of the benchmark.

#d e f i n e BUFFER 100

To initailize the buffer we include this code in the beginning of the main
procedure:

void ∗ b u f f e r [BUFFER] ;
for ( int i =0; i < BUFFER; i++) {

b u f f e r [ i ] = NULL;
}
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Now change the section where new blocks are allocated to something
that looks like this:

int index = rand ( ) % BUFFER;
i f ( b u f f e r [ index ] != NULL) {

f r e e ( b u f f e r [ index ] ) ;
}
s i z e t s i z e = ( s i z e t ) r eque s t ( ) ;
int ∗memory ;
memory = mal loc ( s i z e ) ;

i f (memory == NULL) {
f p r i n t f ( s tde r r , ”memory a l l o c a t i o n f a i l e d \n” ) ;
return ( 1 ) ;

}
b u f f e r [ index ] = memory ;
/∗ wr i t i n g to the memory so we know i t e x i s t s ∗/
∗memory = 123 ;

A word of warning; we’re happily writing to the allocated memory in the
hope that the integer will actually fit. We’re thus relying on the fact that
request() will always return something that is greater than sizeof(int).
This is true in our case since we have MIN set to 8 but if you set MIN to 2
things might break.

So now we should have a nice benchmark program. Try it to see that
it works and then do the following: re-compile bench.c but now omit to
provide mylloc.o on the command line. The benchmark program will then
use the definition of malloc() found in the standard library.

$ gcc -o bench bench.c -lm

Run the benchmark again and see if there is any difference - we have
some work to do, right?

3 Let’s keep it simple

We should not complicate things more than necessary so let’s keep it simple.
We can save all freed blocks in a linked list and when we’re asked for a new
block we simply search through the list to see if we can find a block that is
large enough.

In order to do this we of course needs to keep track of how big blocks are:
this is not something that comes automatically. When the free() procedure
is called it is given a reference to a block but there is no information on how
big the block is. To solve this dilemma we have to cheat a bit.

7



3.1 You do not owe me your freedom.

Make a copy of mylloc.c and call it mhysa.c. We will now adapt the
procedures to work with a linked list of free blocks. Since we do not want
to expose the internals of our implementation we will do a trick. We will
allocate more memory than requested and write some hidden information
in the beginning of the block. When we hand the block to the user process,
we give it a pointer to the first free location.

We create a new data structure chunk and initialize a free list pointer.
The data structure is called malloc chunk in Linux and holds more infor-
mation than what we have but this is fine for now.

struct chunk {
int s i z e ;
struct chunk ∗next ;

}

struct chunk∗ f l i s t = NULL;

We now have to rewrite free() and malloc to make use of the free list.
To free a block is quite simple, we assume that the Reference that we get
is a reference to something that we allocated and therefore know that there
will be a hidden chunk structure just before the given reference.

void f r e e (void ∗memory) {

i f (memory != NULL) {
/∗ we ’ re jumping back one chunk po s i t i o n ∗/
struct chunk ∗cnk = ( struct chunk ∗ ) ( ( struct chunk ∗)memory − 1 ) ;
cnk−>next = f l i s t ;
f l i s t = cnk ;

}
return ;

}

It is a simple task to let the next pointer of the freed block point to
whatever flist is pointing to and then update flist. You can test to see
that it works but nothing has changed if we do not make use of the blocks
in the lists.

3.2 find a free block

The malloc() procedure is slightly more code but the task is quite simple.
If we’re asked for a new block of a given size we will first search the free list
for a suitable block. If one is found we can reuse the block and will then of
course un-link it from the free list. If no suitable block is found we have to
do as we did before and ask the kernel for some more space.
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void ∗malloc ( s i z e t s i z e ) {
i f ( s i z e == 0 ){

return NULL;
}
struct chunk ∗next = f l i s t ;
struct chunk ∗prev = NULL;

while ( next != NULL) {
i f ( next−>s i z e >= s i z e ) {

i f ( prev != NULL) {
prev−>next = next−>next ;

} else {
f l i s t = next−>next ;

}
return (void ∗ ) ( next + 1 ) ;

} else {
prev = next ;
next = next−>next ;

}
}

:

The only tricky thing is to make sure that we request more space from
the kernel than the user process asks for. We need some space to write the
hidden chunk structure. We also initialize this structure with the right size
value since this is something we need to know if we later want to reuse the
block.

:
/∗ use sbrk to a l l o c a t e new memory ∗/
void ∗memory = sbrk ( s i z e + s izeof ( struct chunk ) ) ;
i f (memory == (void ∗)−1) {

return NULL;
} else {

struct chunk ∗cnk = ( struct chunk ∗)memory ;
cnk−>s i z e = s i z e ;
return (void ∗ ) ( cnk + 1 ) ;

}

}

If everything works you should be able to compile the mhysa.c module
into an object file and then link this with the benchmark - give it a try.

$ gcc -c mhysa.c

$ gcc -o bench mhysa.o bench.c -lm
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$ ./bench

How is that? It’s dirt simple and of course not the most efficient memory
allocator but it looks like it’s working right?

4 How to improve

We have a system that is working but there are of course a lot of things
that could be improved. One problem we clearly have is that we’re still
consuming far more memory than what we would need. The standard library
implementation obviously can do away with far less memory. The other
problem is that we’re probably asking the kernel for memory more often
than we would have to.

4.1 system calls

There is a command strace that could be fun to use. This command will
execute a program but trap all system calls and print them to standard
output. Try the following:

$ strace ./bench

Too much information? Try this (we’re redirecting stderr to stdout to
be able to pipe it to grep):

$ strace ./bench 2>&1 > /dev/null | grep brk | wc -l

Try all versions of the benchmark program, one linked with the standard
library, one with mylloc.o and one with mhysa.o. How more often do we
request memory from the kernel? Are there ways to avoid this?

4.2 first, best, worst fit

To reduce the amount of memory we use, we could try to be more clever
when selecting a free block. If we’re looking for a block of 32 bytes it is quite
wasteful to use a block of 2000 bytes. The least one could do is to find the
smallest block that would work. Finding a good block does however take
time so this is a trade-off.

Even if we find a suitable block we will not always find a perfect fit. There
will be space in a block that is unused, this is called internal fragmentation.
We could probably live with it but if we want to reduce this waste we come
to the solution of splitting a block in two if it’s too big. Assume we’re
looking for a block of 32 bytes and the best we can find is a chunk for 78
bytes. We could the divide the chunk into two chunks, one for 32 and the
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other for 34 (we loose some bytes since we need a new chunk header). This
would be much better, problem solved.

The danger of dividing chunks into too small pieces is that we will have
problems finding larger chunks. There might be plenty of free space but it
is all divided into small chunks, this is called external fragmentation. The
solution to this problem is to somehow merge free chunks that are adjacent
to each other in memory. If we realize that the two chunks of 32 and 34
bytes that we created are both in the free-list we can merge them and again
have a chunk of 78 bytes.

4.3 keep it simple

An alternative to splitting and merging chunks is to allow a certain amount
of internal fragmentation to make things simpler. Assume we only allocate
chunks of a total size of even powers of 2, for example: 32, 64, 128 etc. A
chunk of 32 will consist of a 12 byte header and 20 bytes available for the
user (we can improve this, but it’s fine for now). Then we keep multiple free
lists for the different sizes.

We will in average use three quarters of the allocated memory but man-
agement of the blocks becomes very simple. The nice thing about even
powers of two is that we can reduce the calls to sbrk, we always request a
memory of multiples of 4096 bytes (a page). The memory is then divided
into chunks of the required size and added to the corresponding free list.

Calls to malloc() and free() are extremely fast and fragmentation is
controlled.

4.4 let’s complicate things

Just when you though that things were actually quite simple we have to
break it to you - what happens when we have multiple threads accessing the
memory allocator concurrently. It’s not hard to see that any solution that
we have discussed will break. It’s of course possible to protect the structures
with one big lock but that would decrease performance.

The challenge with multiple threads is to try to keep things separated
while still not use more resources than necessary. If a thread frees a block
then it would be preferred if this block was later returned to the same thread.
The tread might still have the block in its cache and it would therefore be
an advantage of being able to use it again.

5 Summary

Implementing a strategy that works well over a range of hardware systems
is a problem, and far more complicated than what we have done in this
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exercise. The important lesson in this exercise is that it is doable, and I’m
sure you realize that you would be able to do so given more time.

I also hope that you better understand the role of malloc() and free()

and that they are working in user space. The kernel should be disturbed as
little as possible and we achieve this by allocating larger blocks of memory
when we have to.
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