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Although this may seem a paradox,
all exact science is dominated by the idea of approximation.

- Bertrand Russell
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Abstract

This thesis is divided into two parts. The first part dealwlite Nevanlinna-Pick interpolation
problem, a problem which occurs naturally in several appilims such as robust control, signal
processing and circuit theory. We consider the problem apsty and approximating solutions to
the Nevanlinna-Pick problem in a systematic way. In the sdqmart, we study distance measures
between power spectra for spectral estimation. We postalaituation where we want to quantify
robustness based on a finite set of covariances, and this feddrally to considering the weak
topology. Several wedkcontinuous metrics are proposed and studied in this contex

In the first paper we consider the correspondence betweeghteei entropy functionals and
minimizing interpolants in order to find appropriate int@lgnts for, e.g., control synthesis. There are
two basic issues that we address: we first characterize sithheishapes of minimizers by studying
the corresponding inverse problem, and then we developtfeways of shaping minimizers via
suitable choices of weights. These results are used in tvdgstematize feedback control synthesis
to obtain frequency dependent robustness bounds with araorion the controller degree.

The second paper studies contractive interpolants olat@seninimizers of a weighted entropy
functional and analyzes the role of weights and interpatationditions as design parameters for
shaping the interpolants. We first show that, if, for a seqaeof interpolants, the values of the
corresponding entropy gains converge to the optimum, theimterpolants converge ifi», but not
necessarily inH. This result is then used to describe the asymptotic bebawabthe interpolant
as an interpolation point approaches the boundary of theadoof analyticity.

A quite comprehensive theory of analytic interpolationhadiegree constraint, dealing with ra-
tional analytic interpolants with an a priori bound, hasrbdeveloped in recent years. In the third
paper, we consider the limit case when this bound is remased,only stable interpolants with a
prescribed maximum degree are sought. This leads to weidiiteminimization, where the inter-
polants are parameterized by the weights. The inverse garobf determining the weight given a
desired interpolant profile is considered, and a rationgt@pmation procedure based on the theory
is proposed. This provides a tool for tuning the solutiondtaining design specifications.

The purpose of the fourth paper is to study the topology aneldp metrics that allow for lo-
calization of power spectra, based on second-order $tatis¥e show that the appropriate topology
is the weak-topology and give several examples on how to construct sugthics. This allows us
to quantify uncertainty of spectra in a natural way and tewale a priori bounds on spectral un-
certainty, based on second-order statistics. Finally, twaysidentification of spectral densities and
relate this to the trade-off between resolution and vagasfespectral estimates.

In the fifth paper, we present an axiomatic framework for seg#listances between power spec-
tra. The axioms require that the sought metric respectdfisetgof additive and multiplicative noise
in reducing our ability to discriminate spectra. They alsquire continuity of statistical quantities
with respect to perturbations measured in the metric. Wephesent a particular metric which abides
by these requirements. The metric is based on the Mongeskavith transportation problem and is
contrasted to an earlier Riemannian metric based on themamivariance prediction geometry of
the underlying time-series. It is also being compared wiighrhore traditional ltakura-Saito distance
measure, as well as the aforementioned prediction metrityo representative examples.

Keywords: Nevanlinna-Pick Interpolation, Approximation, Model tation, Robust Control, Gap-
robustness, Sensitivity Shaping, Entropy functional,cBpé Estimation, Weaktopology, Monge-
Kantorovic Transportation Problem.
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Introduction

Mathematical modelling and approximation theory has bedneacore of applied mathe-
matics for several centuries. Classical examples of tleissauss’ least square approxima-
tion where noisy measurements can be used for approximatirsgectory and Newton’s
laws which gives a model for movements of masses under gtanial forces. The essence
is to obtain representations which provide a simple but yeammgful description of the
real world.

This thesis is divided into two parts. In the first part, wedstapproximation of systems
while preserving specific properties of the system, suchaislisy, contractiveness, and
interpolation values. The underlying mathematical probégppears in many applications,
from control synthesis to model reduction of systems. Ingbeond part of the thesis,
we study distances and identification of stochastic prasesk particular we explore a
topology which allows for robust identification and quaatiite descriptions of uncertainty
sets.

In this introduction, we describe some of the definitions endcepts that are used in
the thesis. First, we consider linear systems, Hardy spacekhow these can be used
in robust control. Then, a brief overview of stochastic m%8es and spectral estimation
follows, and some connections with speech processing lastrdted. Finally, the main
contributions of this thesis are presented and the five gaggrersummarized.

1.1 Linear systems

A class of systems widely used in the literature is the cld$imear systems. A discrete-
time linear time-invariant (LTI) systerh can be represented by an input-output mapping,
h : U — Y which takes an input sequengey. } .z € U to an output sequendg }xez €

Y,
Yk = Z heug—p,

LET

whereZ denotes the set of integers, afld, } <z is specified byh. The input sequence
{ur}rez, the output sequendey } ez, and the input-output mapping induced byan
be represented by the formal power series

u(z) = Zukzk, y(z) = Zykzk, h(z) = Z hyz®
3 k ko

in which case
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Herez represents a unit delay of the signal (the shift-operafdrg functioni(z) is called
the transfer function of the systelmand is represented by a block diagram

input £ 2%, output

In this thesis we mainly deal with single-input single-autt(S1SO) systems, in which case
{urtrez € W, {yx }rez € Y, and{h; }rez are sequences of complex numbers. A common
requirement on physical systems is causality, i.e., thatLaputy; only depends on input
Uy, form < k, and hencé, = 0 for k < 0.

A fundamental problem in system identification and modelictidn is to find approx-
imate models of physical systems that can be implemented i effecient way. Due to
memory constraints we require the system to be rationalyépresentable in the form

Yk + aA1Yk—1 + -+ AnYk—n = OQUL +o1ug—1+ -+ opUk—m
in which case the transfer function is given by

oo+ 0124 -+ o 0(2)
L+aiz+-+az"  alz)

h(z) =

The McMillan degree (or simply degree) of a system repreg#atin this form, witho
anda coprime, ismax(n, m). The part of the system specified byis called the Auto-
Regressive (AR) part and the part specifiedlifie Moving-Average (MA) part. Therefore
we will call a system of the form

o(2)
a(z)
a MA-system, an AR-system, and an ARMA-system, respegti@he of the main topics

of this thesis is to find ARMA-models of low degree which appnoate a given system in
a suitable sense.

hz)=0(z), h(z)=—=, h(z)=

1.1.1 Norms and Hardy spaces

We consider Hardy spacé$, which are Banach spaces of analytic functions in the unit
discD = {z : |z| < 1}. Forl < p < oo, denote byH, the space of analytic functions
in D for which the norm
1
I : v
11, = (s 5 [ 15e)pa0)

0<r<1 2m —T

is finite. The spacé/ . is the set of bounded analytic functionslinvith norm
1f 1, = sup [f(2)].
zeD

ClearlyH., C H, C H, C Hy whenl < ¢ < p < oo.
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Let the input spacél and the output spacg of a systemh be thely(Z) space, i.e.,
both contains sequencés, } ..z for which the norm

{zktrezll2 = (leﬁ)

kEZ

is finite. By Parsevals equality, the norm{afy } ez in ¢ equals thel.o-norm of z(z) =
> ez Tkz" on the unit circlel
2 2 L 02
Hzrezbllz = lle()llz = o~ | |x(e™)["db,

—T

as it can be shown thatz) has boundary limits a.e. di [34]. Consider the norm which
is induced by the input-output behaviour of the system

ly(2)ll2 .
lu(2)]2 [1h(2) | 2 oo (T)-

[P == sup
u(z)#0

The assumption thdtis causal imposes the condition that all negative Fourieffiments
of h vanish. If the induced norm df is finite, thenh(z) is analytic in the unit dis® (see
e.g., [32, p. 20]), and the induced norm equalsihg-norm

IRl = [[7(2)]| o -

Such a system is said to be stable.

One useful concept is that o € H, has an inner-outer factorization, which can be
thought of as a “polar form” representation. Given a funttioe H,, it can be factored
into two parts, one which is specified by the zerog odnd one part which is specified by
the magnitude off on the unit circle. The function specified by the zerosfa$ called
inner, and sometimes referred to as an all-pass functionunition ¢ is inner if it is
analytic inD and|¢(z)| = 1 for a.e. z € T. Any inner function is of the formp(z) =
B(z)S(z) whereB(z) is a Blaschke product anfi(z) is a singular inner function. The
Blaschke product and the singular inner function represemdifferent types of “zeros.”
A Blaschke producB(z) is of the form

|zl za — 2
B(z)= 2222 =
(2) =2 12_[ Za 1 —Zo2
wheren is a positive integer angl, are zeros ifD\{0} such thaty >, (1 — [z.]) < oo,
and a singular inner functio$i(z) is of the form
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wheredy is a positive bounded measure @n The “zero-free” function specified by its
magnitude oril is called an outer function, and is sometimes referred to msnanum
phase function. For the spaég, an outer functior¥ is of the form

i 1 [T e 42 i
F(z) =e"exp (%/ T — log(|f(e 9|)d9>

—T

where~ is a real numbetog(|f(e?)|) € Ly, and|f(e??)| € L,. Now, given a function
f € H,, it has the inner-outer factorizatiof(z) = F(z)¢(z), whereF'(z) is outer and
¢(z) is inner. A more detailed and extensive exposition of Hapghces and factorizations
can be found in [34, 13].

1.1.2 Degree-constrained analytic interpolation

Givenn + 1 complex numbersg, z1, . . ., z, in D and complex numbersy, w1, - . . , Wy,
the classical Nevanlinna-Pick interpolation problem antstio finding a functiory in the
Schur class

8 ={f € Hx(D) : [[fllc <1}

which satisfies the interpolation condition
fzp) =wk, k=0,1,...,n, (1.2)

whereH, is the Hardy space of bounded analytic functiongorSuch a function exists
if and only if the Pick matrix

j = [w} (1.2)
1-— ZEL2y k,0=0

is positive semidefinite (see, e.g., [16]), and the soluiamique if and only ifP is also
singular. A complete parameterization of all solutions w&en by Nevanlinna (see, e.g.,
[1]). The Nevanlinna-Pick theory provides one particulaiuton, which is referred to
as the central solution or the maximum entropy solutiongesiih maximizes the entropy
functional

/ log(1 — | f|2)dm
T

subject to [T1), wherdm is the normalized Lebesgue measureTonThis solution is
generically of degree. However, the parameterization given by Nevanlinna presido
knowledge on how to parameterize solutions of low degree.

In several recent papers [6, 7] a theory for parameteriziedaw-degree solutions of
this problem was developed. The parameterization is indefithe spectral zeros, and the
low-degree solutions are obtained as minimizers of cedatropy functionals. In [8], the
problem was solved for positive real interpolants and tle®ith was further developed in
[6, 20]. In [7] the problem was solved for contractive intelants.
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Before presenting this parameterization result, we wilidduce some notation. Lét
be the finite Blaschke product

and letU : f(z) — zf(z) denote the standard shift operator Ba. Then¢H, is a shift
invariant subspace, i.ef, € ¢H, implies thatU(f) = zf € ¢H,. Denote byX the
co-invariant subspacH,; © ¢H,. ThenX is invariant undelU*, whereU* denotes the
adjoint of U. LetX, denote the set of outer functionsd@that are positive at the origin.
The following result is taken from [7].

Theorem 1.1. Suppose that the Pick matrfd) is positive definite, and let be an
arbitrary function inX,. Then there exists a unique pair of elemdiatd) € K, x K such
that

() f=0b/a€ Hoowith || fllco < 1,
(II) f(zk):wk, k=0,1,...,n, and
(ii)) [af2 — b2 = |o]2 a.e. ONT.

Conversely, any paifa, b) € Ko x K satisfying (i) and (ii) determines, via (iii), a unique
o € Ko. Moreover, settingl = |o|?, the optimization problem

min —/ Ulog(1 — |f|*)dm subjectto f(zx) = wk, k=0,...,n
T

has a unique solutioyf that is precisely the uniqug € § satisfying conditions (i), (ii) and
(iii).

The zeros of the functios € X, as in the theorem, are the zeros of the spectral outer
factorg of the nonnegative functiofy|?> = 1 — | f|? on the unit circle. Thus, the zeros of
o(z)* = o(z~1) are often referred to aspectral zerosWe also note that the degree pf
may be less than, which happens whei, b, ando have common roots.

1.1.3 Application to robust control

Robust stabilization is in its most basic setting the probte finding controllers which
stabilize a given set of systems. Examples of real-worldlgms which can be solved
using control are all around us, from control of hard drivesomputers and heat systems
for houses, to quality assessment for manufacturing pkamtstechnology for airplanes
and power plants.

Here we consider a plaiit and a controlle€' with input-output mapping® : U — Y
andC' : Y — U, and assume thd andC are linear time-invariant discrete time systems.
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ug + U1 Y1
() P(z)

U2 Y2 Yo
C(2) T

Figure 1.1: Standard feedback configuration.

Figure[I shows a standard feedback configuration. Gigmaki(ug, o), the inputs
(u1,y2) and outputsy; , us) of the plant and controller satisfies

<Z§>:(Zi)+(§j§> (1.3)

y1 = Pu
14
U2 = Cyg. ( )

where

This feedback configuration is internally stable if and oiflthe mapping(ug, yo) to
(u1,us2,y1,y2) is stable and uniquely determined by {1.3) dndl(1.4). Ingaer, stability
may be expressed in terms of stability of either the mappiomf(uo, yo) to (u1,us) Or
the mapping fronfuo, yo) t0 (y1, y2). These mappings

U U U2 Ug
<y1> P//C<yo>’(yz) CW’(%)’

can be expressed in terms of the plant and the controller
I -1
Up/jc = ( P ) (1-CP)" (I, =C)

teye = (G )a-rortern

The mapping$lp, ;- andll.,, p are projections which relate to the gap-robustness of the
feedback configuration. For the development and the mainitsesf this framework, see
[39, 37, 29, 21, 38].

Stabilization of a feedback system therefore amounts tanfgnd controller for which
the transfer functions iflp,,c, 1/, p are stable. For the scalar case at hand, one can
express this by considering the sensitivity function

S(z) = (1— PC)~!
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which is the mapping frong, to y. It turns out that the transfer functiobl/ /¢, ¢/, p
are stable if and only if is stable and the interpolation conditions

S(zk) =1 whenever z; is an unstable zero d?, and

S(pr) =0 whenever p; is an unstable pole aP, (1.5)

hold [11, 12]. These interpolation conditions reflect thare can not be any unstable
cancellation of poles or zeros in the prodétt'.

Problems of robust control address the effect of unceréarih the nominal plant
model and the effect of external disturbances. Typical risofte plant uncertainty are
taken in the form of additive or multiplicative perturbatmof the nominal transfer func-
tion, perturbations of a coprime factor representatioin arsuitable metric topology such
as the one induced by the gap metric. In such cases where shegli®on of uncertainty
is “unstructured,” i.e., non-parametric, the robustnessgim and the performance of the
closed loop system can often be expressed in terms of the ootine weighted norm of
IIp, ¢ orits various entries [11, 37, 21]. Indeed, stabilizatiomyrbe cast as an interpola-
tion problem with an analytic function [11], e.g., when tle@sitivity function is required to
be stable and to satisflz{1.5) in order to ensure internhllitaof the closed loop system.
The performance of the closed loop system relates to theesbfahe sensitivity function
which relates to disturbance rejection and tracking atowsrifrequency ranges. Robust-
ness to non-parametric perturbations relates again, eiarttall gain theorem, to the shape
of the sensitivity function or other suitable closed-loopppings depending on the un-
certainty description. In either case, such problems aiomuseeking a small (weighted)
norm for an analytic function that abides by given interfiolaconstraints. The solution
in the form of an analytic interpolant, e.g., a suitable gasity function, allows recovering
the corresponding stabilizing controll€t:

Naturally, the degree of such an interpolant relates to dwgeak of the corresponding
controller. For instance, in the context of sensitivity ging where a sensitivity function
S = 1/(1 — PC) is sought that satisfies suitable constraints, the degréeeafontroller
C = (S —1)/PSis bounded by

degC < degP +degS —n,+n,

wheren andn, are the number of unstable zeros and poles of the plant,ctagg [30].

In a similar manner, robustness in coprime factor uncetadn, uncertainty in the gap
metric, may also be posed as an interpolation problem andabogous degree bound for
the controller holds. Interest in keeping the degre€'ofS or other input-to-error maps
small can be motivated from several different angles. Rinstcomplexity of the controller
adds to numerical issues, round-off errors, implemenatiglays, and computational de-
lays. Second, a closed loop system may be the subject odereran outer loop that may
include a human operator. Naturally, a high order inpugitar map will create an extra
impediment in controlling the system by providing suitaliputs for needed tasks. In
conclusion, it is highly desirable to achieve performanu@bustness while maintaining
the degree of interpolantSiwithin reasonable bounds. This issue will be studied initleta
in Paper A. In the first part of this thesis we derive methodsk@ping and approximation
of interpolants, and the design of low degree controllers.
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1.2 Stochastic processes and spectral estimation

The power spectrum of a time-series signal represents #rggnontent over frequencies
of the signal. Spectral estimation can therefore be thooiggs estimation of the frequency
content of a signal. This is a widely used methodology, wialsed for analysis and pre-
diction in areas such as speech, stock market, radar, sotbseveral medical applications
(see e.g., [36, 25, 3)).

Consider a discrete-time stochastic process, which iesgmted by a mapping from a
probability space to a time series

s Y-1,Y0,Y1y -0

In addition we assume that this stochastic process has zn,me.,
E(yr) =0forallk € Z,
and is second order stationary, i.e.,
E(ytyi—r) is independent of,

where&{-} denotes the expectation operator. Stationarity allow® ukefine the covari-
ances as, = £(y:yi—r). The power spectrurdu of the process is the positive measure
onT = {z : |z| = 1} with covariances as Fourier coefficients

cp = / e~ qu(e®) for k € Z.

—T

If the spectrum is smooth, then the power spectral densitlyeofime series is

(I)(eie): Z ckeikO’

k=—o0

where®(e??)df = du(e?).
For any power spectrurdu with covariancegcy, ¢1, ¢, . ..), there is an associated
analytic function
2

1
f(2)2500+61z+02z

This function satisfiegiﬁef(eie)de = du(e”) a.e., or in the case with a smooth spectrum
2Ref(e?) = ®(e") holds. According to Herglotz’ theorem [2] this functioniséies

1 [T e 42 ,
= — [ —Zdu(e® 1.6
16 = 5 [ S (L.6)
and is analytic inD := {z : |z| < 1} with nonnegative real part. Any analytic function
in D with nonnegative real part is referred to as either “positigal” or, as a Carathéodory
function.
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Consider the inverse problem to determine when there exipmwer spectrum with

covariance sequendey, c1, . .., ¢,), and if such power spectrum exists, to parameterize
all of them. This is in fact an interpolation problem whereasifive realf(z) is sought
such that .
1
f(0) = 5¢0; fk('O) =cpfork=1,...,n. a.7)

If the Toeplitz matrix corresponding to this interpolatioroblem,

Cop C_-1 C_p
1 Co C—n+1

T= _ _ , (1.8)
Cn  Cpn—1 Co

is positive definite, then there is a family of infinitely mapgwer spectra consistent with
the covariance sequence [23]. If the Toeplitz matfix](1s8positive semidefinite and
singular, then there is a uniquely defined power specttuironsistent with the covariance
sequence.

When a stochastic proce$s; } ez with power spectrundy is passed through a LTI
filter h, the power spectrum of the output\ils(ew)\2 du(e’?). Therefore, the stochastic
process{yx } ez, produced by passing white noise through an ARMA filigr,, has the
power spectrum

0y |2
o€ gp.
a(ew)
Conversely, ifb is rational, then it may be factored inkdz)h(2)*, whereh(z) = o(2)/a(2)
is the transfer function of an ARMA-system. The correspagdiositive real functiorf
then satisfies

(e)dh =

f(z)+ f(2)" = ®(2) = h(z)h(2)", for z € T,

and hence (z) is determined by (2)o(2)* = a(2)b(2)* + a(z)*b(2). The zeros ok (z)*
are referred to as thepectral zero®f the positive real functiorf(z).

1.2.1 Identification and spectral estimates

In most practical applications, we study a stochastic ®gg; }.cz, assumed to be zero-
mean, second-order stationary, ergodic, and with powestapadu. Spectral estimation
is to find an estimaté/: of du. based on the finite sample, .. ., yn.

Here, the estimation of a power spectrum is done in two steipst estimating covari-
ancesc,, from the sampleyy, ..., yn, and then finding a power spectrum which has the
estimated covariances as Fourier coefficients. The covaacan be estimated using the
averages

N
. 1 _
& = > yetie—r (1.9)
{=k+1
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which are referred to as the biased covariance estimatgedE€ity of the process ensures
thatéy, is a good estimate af, as long a& < NV, and that, converges te;, almost surely
as N tends to infinity. For any such estimai@, ¢1, . . ., ¢, ), the Toeplitz matrix[[118) is
positive. This ensures that there exist a power specthiuthat matches the covariances
™
ép = / e~ *dpe?) fork =0,...,n.

—T
In general there is an infinite family of such power spectrand below we will describe
two methodologies for choosing specific power spectra.

The periodogram is the spectral estimate

N 2

Z yge*m

{=1

. 1
@P(ew) _ N

of the spectral densitp [35]. It identifies periodicities in the signal by multiphg the
signal by a complex exponential. It can be shown that thiskqu

@P (619) — Z ékelke

k=—N+1

whereé,, are the biased covariance estimates fribnd (1.9) [4]. The wigjiection to using
the periodogram in spectral estimation is that it has poortpdse convergence properties
[36]. To deal with this, smoothing and/or windowing may b#ized. In this text, we con-
sider the problem from a different viewpoint, and insteadrainging the spectral estimate,
the topology is changed to one where the periodogram coeserigely.

The second methodology is based on finding a rational spaatfuow degree that
match the covariances. Given a positive covariance seguepccs, - . ., ¢, ), there is
always an AR-filtera of degreen such that the power spectruW@ has Fourier
coefficients equal to the given covariance. It turns outthiatis the power spectrum with

the highest entropy gain
dp
e () 2

that satisfies the covariance constraint [5]. Furthermtiis, solution can be found by
solving a set of linear equations, and it is of the faim= ®df where® is of degreen.

In [26], R.E. Kalman put forth a rational covariance extensproblem, which in
essence amounts to parameterizing all rational functioodegree bounded Bn such
that®dd is a positive measure with covariandes, c1, . . ., ¢,,). It was proved in [18, 17]
that for every given MA-filtewr, there is an AR-fiIte% such that

2

. O.(eie)
dp(e'?) = _Z| 46
(e”) a(e)
is consistent with(cg, ¢1, ..., ¢,), and it was conjectured that there is a unique such AR-

filter with a(0) > 0. The conjecture was established in [9, 10, 19] and a coristeuc
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method was developed in [8] for calculating solutions viamawex optimization problem.
This is described in the following theorem.

Theorem 1.2. Let(co, c1, - . ., ¢, ) be a covariance sequence for which the Toeplitz matrix
@@8)is positive definite, and let be an arbitrary non-zero polynomial of degree Then
there exists a unique stable polynomiadf degreen with a(0) > 0 such that

2

0
ole ) 1" 49 is a positive measure and

a(e'?)

(i) dpu(c™) =

(i) cx=["_ e *du(e?) k=0,1,...,n.

Moreover, settingl = |o|?, the optimization problem

e 10 ™
max/ U(e?) log <%> dm subjecttoc, = / e aue?), k=0,...,n

—T —T

has a unique solutiory that is precisely the uniquéu satisfying conditions (i), (ii).

This theory has been further developed for general weiglitinctions¥ in [27]. Ap-
proximation of positive real interpolants using approxiimaof the corresponding weights
has been developed in [15, 14]. This follows a similar radleras used in Paper A and Pa-
per C.

The functionf corresponding ta/.: according tol(116) satisfies the interpolation con-
ditions [I.T). This may be used for characterizing all pesiteal interpolants of degree
bounded byn. In fact, the set of positive real functiorfs= b/a of degree bounded by
satisfying [I.¥), may be parameterized in terms pfvhereab* + a*b = oo™* [8].

1.2.2 Weak-convergence

The more data from the sequenfgg. } <z is used, the better estimates of the underlying
power spectrum can be obtained. Here we consider the spestirmation problem based
on the sample

Yi,- - YN

and convergence properties of the spectral estimatdstasds to infinity.

Let®p v (e?) be the periodogram based on the sequence ., yy. If the true under-
lying power spectra igyu(e’?) = ®(e'?)df, then the periodogram is an unbiased estimator
of , i.e.,

Nhlnm(S(@P,N(ew)) = d(e?).

However, the asymptotic variance is

2

lim £ (@p () — ()" = ®(e")?,

N
and hence the variance of the error does not go to zefd as oo (see e.g., [36]). There-
fore, the periodogram is not asymptotically efficient as mfpase estimator of the power
spectral density.
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The maximum entropy spectrum has nicer pointwise convegproperties, but con-
vergence can only be guaranteed if the power spectrum isiguftiy smooth. Y. L. Geron-
imus [22] proved that the maximum entropy spectrum convergeformly under such
assumptions. In practice, a priori information about sutloathness is rarely available.
Therefore, we are led to consider a weaker type of convemg@here only localization of
the spectral power is required. This is explained next.

We denote byC(T) the class of real-valued continuous functionsTan The set of
measures off' can be identified with the dual space®{T), i.e., the space of bounded
linear functionalsA : C(T) — R ([24], [28]). This is the Riesz representation theorem,
which asserts the existence of a bounded meaguseich that

M®=AGMWM

forall G € C(T). Thus, for any two measures that are different, there eaistmntinuous
function such that the two measures integrate to differahtes. In other words, contin-
uous functions serve as “test functions” to differentiageé®een measures, and bounds on
such integrals define the weatopology. A sequence of measurés,, n = 1,2, ...,
converges t@y in the weak topology if

/Gdun — /Gdu for everyG € C(T).
T T

The limit, when it exists, is defined uniquely by the sequence

The weak-topology on the set of power spectra respects the statigioperties of the
signal and localization of power spectra. The periodogranverges to the true spectrum
in the weak topology. This was observed in [33] (cf. [24, page 24]).

Theorem 1.3. Let® p y be the periodogram obtained from the sam@ie v1, - . ., yn) of
a stochastic process with power spectrdm Then

®p ndf — dpin weak
almost surely.

In fact, any sequence of spectral estimatirs with covariancescy, ¢, . . .) such that
cp — ¢y forall k asn — oo converges taly in weak'. Therefore, the maximum entropy
estimate also converges to the true spectrum as co in weak'.

1.2.3 Application to speech processing

Spoken communication between people consists of soundsveagated in the vocal tract,
which transmits messages. The sound wave excites the tyopembrane in the ear
which passes the information on to the brain. In speech aisadach part of this com-
munication is analyzed in order to understand a messag®ltiigaind in speech synthesis
sound waves are produced which resembles specific messajphrases.
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Sampling a speech waveform gives rise to a time series r@pting the acoustic sound
pressure wave. The data carries information about bothptesker and the message. There
are many methods to analyze the data and obtain useful iafamfrom the speech sam-
ple, and most of the methods use local second order statitiere are two main reasons
for this. Firstly, due to the physiology of the human speeadpction system, the speech
signal may be modelled as the output of a second order stéagiqumocess for short time
periods. Secondly, the second order statistics charaetére power of the signal over
the frequencies, a characteristic of the sound wave whiettiman auditory system is
sensitive to.
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Figure 1.2: Time-domain speech signal and power spectiai@®s of the phonemées'/
and/A/ respectively.

One example where this is used in everyday life is in a celigh&ince there are limits
in the amount of data which may be sent through the telecoriwation network, the en-
tire time series representing the sound wave can not belsstg¢ad, the sampled speech is
divided into short segments and for each segment, the maxiemiropy spectrum is cal-
culated from the covariances. The spectrum is then sentitegeith an input sequence
which carries information about the excitation and peadiof the speech wave. Conse-
quently, the speech produced by the cellphone is artificieltreated, but nevertheless it
resembles the important characteristics of the sounds.

Phonemes are small segments of speech, and a sound wave t@ugbt of as a
sequence of phonemes. In speech analysis, a common predsdaridentify phonemes
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based on their power spectra. Consider two speech waveseshfrgm the phonemess/
and/A/, which are depicted on the left in Figlrell.2. For identimhich phonemes the
speech waves corresponds to, their spectra are estimatetheapower spectral estimates
corresponding to the maximum entropy spectrum and the g@gimm are shown on the
right. The spectra obtained are then compared to a datalvheeg different spectra cor-
responding to the phonemes are stored (usually utiliziniglétn markov models). The
main theme of the second part of this thesis deals with howtastcuct distances that are
appropriate for such discrimination and which propertigshsdistances should have.

1.3 Main contributions of this thesis

This thesis is divided into two parts. The first part, conitegnPapers A-C, deals with
approximation subject to interpolation constraints. Teéeond part, containing Papers D-
E, deals with spectral estimation and wealontinuous distances. The main results are
explained below.

1.3.1 Approximation subject to interpolation constraints

In [7] the degree-constrained Nevanlinna-Pick problem s@sed for contractive inter-
polants, and this circle of ideas is studied in detail in P&pand Paper B. The parameter-
ization of the interpolants is done in terms of minimizers of

min—/ Ulog(1 — |f|*)dm subjectto f(zx) = wi, k=0,...,n (1.10)
T

where the weighted entropy functional is to be minimized.endvert = |7|? for some
o € Ky, the degree of the minimizer is boundedrhyin Paper A, we generalize this result
for handling arbitrary log-integrable weighis As a corollary to this theorem, the set of
weightsX, may be extended in a natural way for parameterizing intargslof degree
bounded by: + m for any givenm > 0. As a second corollary to the theorem, we obtain
a solution to the following inverse problem: given an intdgmt f, determine the class of
weights¥ so that the minimizer of{1.10) is the given functign

Using these results we develop a degree reduction procéduneterpolants. This
gives a solution to the previously partly open problem on kmahoose the weighk (i.e.,
spectral zeros of) in order to obtain a particular shape. Given a interpolant high
degree, first find a weighp|? so thatg is the minimizer of [1I0) using weighit = |p|.
Then use quasi-convex optimization to find the X such thato|? is as close as possible
to|p|2. Then, lettingf be the minimizer ofI0) using the weight?, gives a interpolant
f that is of low degree and close §o By approximating in the weights instead of directly
in the interpolants, a nonconvex problem is replaced by batis tractable. Bounds on
the approximation errorf — g, are given in terms of the optimum of the quasi-convex
optimization problem.

We consider two control applications, one dealing with gty shaping and the
other dealing with frequency-dependent robustness in tipgiroe factors of the plant.
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Both problems can be formulated as interpolation problents dgegree bounds on the
controller can be obtained based on the degree of the iléerpd he advantage of using
our method, compared to standaid, theory, is that it allows for shaping interpolants
without increasing the degree unduly.

In Paper B the role of weight® and interpolation points for shaping the minimizer
of the minimization problen {1 0) is considered. It is shaat, if, for a sequence of
interpolants, the values of the entropy gain of the inteaptd converge to the optimum,
then the interpolants convergeifiy, but not necessarily it .. This resultis then used to
describe the asymptotic behaviour of the interpolant astarpolation point approaches
the unit circle. The result is, under a condition on the weigtat adding an interpolation
point close to the unit circle have negligible effect on fiig-norm, but it may have large
effect on theH . norm.

For loop shaping to specifications in control design, it mighfirst seem natural to
place strategically additional interpolation points €das the boundary. However, our re-
sults indicate that such a strategy will have little effectloe shape. Another consequence
of our results relates to model reduction based on minimatrepy principles, where one
should avoid placing interpolation points too close to tberddary. We have analyzed a
design example from robust control, studied by Nagamung [81he context of our re-
sults. It turns out that the effect of an added interpolationdition close to the boundary
turns out to be small, but that the effect of changing the hiagmajor.

These results are also utilized in Paper A for studying thdioaity of the mapping
from weightsW¥ to minimizersf of the minimization problen{{I210). It is shown that the
mapping fromlog ¥ € L., to H, is continuous, but the mapping frolog ¥ € L. to
H, is not. The former statement is in fact used above for degitte error bound in the
approximation procedure.

By scaling the interpolanft — v~ f, the optimization probleni{L10) becomes
min —72/ Ulog(1 — 2| f|*)dm subjectto f(zx) = wy, k=0,...,n
T

and can be used to parameterize interpolants vfth, < +. In Paper C we study what
happens as — oo. It turns out that

2 [ Wiog(t — 3217 Pydm — [ w|fdm asy — oo,
T T

i.e., that the entropy functional converges to a weightigehorm asy — oo. This leads
to a parameterization result similar to the ones obtaineddatractive interpolation and
positive real interpolation. The functions € X, parameterize the analytic functions
f= g whereb € K,a € K, in terms of minimizers of the entropy functionals in the
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following table.

Property Entropy functional Spectral zeros
Passive Re(f) >0 [ lo|* logRe(f) oo*=a*b+ ab*

Bounded |fllo <7 —7*[lof*log(1 —~72|f]?) o0* =aa*—~~20b*
Stable  f < H(D) [lof? oo*=aa*

In Paper C, we also develop a procedure similar to the oneatein Paper A for ap-
proximation of interpolants. Also here, the basic idea isi$e the inverse problem and
guasi-convex optimization to find a weight for which the miiging interpolant is of both
low degree and attains a desired shape. In some problenysa é&lv interpolation condi-
tions are given. This gives an additional freedom of chapsiterpolation points as extra
design parameters. By considering the error bound of theoappation, the interpolation
points may be chosen in a systematic way in order to guarayttee approximation in
selected regions.

1.3.2 Spectral estimation and weak-continuous distances

In the second part, we consider metrics and topologies faepgpectra. In Paper D, we
start by studying spectral estimation based on covariaf@@ssider a positive measuie

with covariance sequence= (co, ¢1, . . .) and consider the set of power spectra consistent
with then first covariances

Feom = {du>0:ck:/ eikedu,kzo,l,...,n}.

Identification often builds on covariance estimates, anohify the finite covariance se-
quence(co, c1, . . ., ¢,,) IS given, the only thing known about the measdreis that it be-
long to Fe,.,, . Asn tends toxo, this set shrinks and in the limit the only measure consisten
with the entire covariance sequeres dv

) Feo. = {dv}.

neN

Therefore one would expect that the diametefFgf, with respect to the distancés

ps(Fey.,) = sup{d(dpuo, dpr) = dpo,dps € Fey,, }

also shrinks nicely as& — oo. This is not the case for most of the standard distance
functions used for discriminating between power specfré.id taken as the Itakura-Saito
distance, the Kullback-Leibler distance, or the logaritistance, then the diameter is
infinite for anyn. If the total variation is considered, the diamegtgy, (Fe,., ) is 2¢o for
anyn. The problem is that, determining the values of the spedtasity at a point based
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on a finite set of covariances is an ill-posed problem, anthalldistance functions above
are based on the pointwise behaviour of the spectra.

However, we prove that, if is weak-continuous then the diametg§(F,., ) shrinks
to 0 asn — oo. By using weak-continuous distances, localization of the measure is
possible, i.e., determining the value of

/T G(2)dv(2)

with increasing accuracy asincreases, whenevéf is a continuous function. Motivated
by this, several ways of constructing wéatontinuous metrics are proposed. For one
class of such metrics, explicit bounds on the diameter;¢f, ) are given in terms of
the covariance sequence. Finally, we consider an exampéeenthe trade-off between
variance and resolution is considered. In this settingctigéce of metric represents the
required resolution, and then sufficient data (covarianeesd to be provided guarantee
that the variance is low.

In Paper E, we consider distances for power spectra basdtkdvdnge-Kantorovic
transportation problem. One characteristic of a good digtaneasure is that is has a set
of useful properties. In this paper we consider the inversélpm of finding distances
which satisfy a set of natural properties. This axiomatiprapch builds on four axioms.
We require that the distance is 1) a metric, 2) contractiih vaspect to additive noise, 3)
contractive with respect to multiplicative noise, and 4)yWfecontinuous. When signals
are corrupted with noise, discrimination between signasomes more difficult. This
is the motivation for the contractiveness properties. Tleaki-continuity is required in
order to ensure that the metric is continuous with respettidsecond order statistics. We
contrast this by considering earlier established distabesed on information theory and
statistics. In this context, another property which seetmnais invariance with respect
to linear filtering. However, we show that this property isompatible with any weak
continuous metric.

The Monge-Kantorovic transportation problem is a problemere the cost of trans-
porting mass from one measudg, to another measuréyu; is to be minimized. The
Wasserstein distance is a metric, associated with the ralrti@nsportation cost, which
satisfies several of the requested properties. Howevenlyt allows for differentiating
between measures of equal mass. To handle the situatiohguwassibly unequal mass,
we postulate that the measurgs), du, are perturbations of two other measudes, div,
which have equal mass. Then, the cost of transporting tlygnatimeasuredy, dju; to
one another can be thought of as the cost of transportingdttarbed measures, dvy
to one another plus the size of the respective perturbatifims leads to the optimization
problem

1
TC,,{(d/JJ(), d,ul) = inf_ Tc(dl/o, dVl) + K Z 6TV(d/f«ia dl/i),
jduo:j dul i=0

whereT, is the transportation cost aagl, is the total variation. By using the cost function
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c(x,y) = |z — y|?, the distance function

~ min(L%)
By o, dur) 1= (Tenldpio, dii) )

imposes a metric on the set of power spectra which satisfi¢lseahbove properties. At
first, computation of the distance appears to be a problemveier, by considering the
dual formulation, this may be posed as the linear optinorgproblem

Ten(dpo,dpy) = sup T (6, 9)
(6:0)EPe

where

T(6s) = / bidito + bipir.

and

Do = {(6,0) € L (dpo) x L (dpa) : ¢(x) <k,
U(y) <k, dlx) +v(y) < clz,y)}.

Therefore, it may be calculated using standard methodsdieing linear optimization
problems. One additional property of the transport distaris that their geodesics repre-
sent smooth transitions of mass. This is an important csentoastandard distances used
for power spectra which are mainly based on the pointwiseudéi® between the spectra
on the unit circle.

1.4 Summary of the papers
This thesis consists of five papers, and hereafter followsa summary of each of them.

A: The Inverse Problem of Analytic Interpolation with Degree Constraint and
Weight Selection for Control Synthesis. The paper is coauthored with Tryphon
Georgiou and Anders Lindquist and has been provisionattgpied for publication
in IEEE Transactions of Automatic ContrdResults from this paper have appeared
or will appear in the proceedings of CDC 2006, MTNS 2008, CDO&

The minimizers of certain weighted entropy functionals e solutions to an an-
alytic interpolation problem with a degree constraint, afidsolutions to this in-
terpolation problem arise in this way by a suitable choiceveights. This allows
for parameterizing the set of contractive interpolantdaidegree bound by select-
ing weights. An approximation procedure is developed dsva. First the set of
weights which give rise to an interpolant of high degree igiii. This is referred to
as the inverse problem. Then based on an optimization prglitee weight which
give rise to a low degree interpolant and is closest to théomweight is found. This
weight is used to obtain an interpolant of low degree, anativls close to the inter-
polant of high degree. Instead of approximation of the péant directly, which is
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a non-convex problem, the problem of approximating the Waggtractable.

This approximation procedure is used in order to system&tiedback control syn-
thesis with a constraint on the degree. This is utilized feighited sensitivity shap-
ing and for design of controllers for weighted robustnesshim coprime factors,
while at the same time keeping the degree of the controliétlaa closed loop low.

B: On Degree-Constrained Analytic Interpolation with Interp olation Points Close
to the Boundary. The paper is coauthored with Anders Lindquist and has been
provisionally accepted for publication IiEEE Transactions of Automatic Control
Results from this paper has appeared in the proceedings dfSVPD06.

In this paper we study contractive interpolants obtaineaiagmizers of a weighted
entropy functional, and analyze the role of weights andrpukation conditions as
design parameters for shaping the interpolants. We first shat, if, for a sequence
of interpolants, the values of the entropy gain of the intéapts converge to the
optimum, then the interpolants convergefin, but not in H.,. This result is then
used to describe the asymptotic behaviour of the interpalan interpolation point
approaches the boundary of the domain of analyticity. Fop haping to specifica-
tions in control design, it might at first seem natural to platrategically additional
interpolation points close to the boundary. However, osults indicate that such
a strategy will have little effect on the shape. Another eguence of our results
relates to model reduction based on minimum-entropy polasi where one should
avoid placing interpolation points too close to the bougdai/e have analyzed a
design example from robust control, studied by Nagamung [Blhe context of

our results. It turns out that the effect of an added intexfp@h condition close to
the boundary is small, but that the effect of changing theyhigs major.

C: Stability-Preserving Rational Approximation Subject to Interpolation Con-
straints. The paper is coautored with Anders Lindquist and has beespéed for
publication inlEEE Transactions of Automatic Controlhe conference version of
this paper for CDC 2007 was a finalist for the best studentipapard.

This paper presents new theory for stability-preservingehceduction that can also
handle prespecified interpolation conditions and comes &rtor bounds. We have
presented a systematic optimization procedure for chgammappropriate weight
so that the minimizer of a corresponding weigh#ég minimization problem both
matches the original system and has low degree.

The study of theH>; minimization problem is motivated by the relation betweas t
H, norm and the entropy functional used in the bounded intatfwsl problem. The
Hs> minimization problem may be seen as the limit case of boumatedpolation,
but where theco—norm bound is removed and only stability is required. There-
fore, new concepts derived in this framework are useful fatarstanding entropy
minimization.

D: Localization of Power Spectra. The paper is coauthored with Tryphon Georgiou.
Results from this paper has appeared in the proceedings GfZTD5.
In this paper we study the problem of robust identificatiopofver spectra based
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on covariance measurements and the purpose is to studypbledy and develop
metrics that allows for localization of power spectra. Thamconclusion is that,
for our robustness criteria to be satisfied with respect te#in) the metric needs to
be weak-continuous. Several examples on how to construct suchiaaetre given.

This allows us to quantify uncertainty of spectra in a ndtway and to calculate
a priori bounds on spectral uncertainty, based on secoderatatistics. Finally,

we study identification of spectral densities and relats thithe trade-off between
resolution and variance of estimates.

: Metrics for Power Spectra: an Axiomatic Approach. This paper is coauthored

with Tryphon Georgiou and Mir Shahrouz Takyar and has beerged for pub-
lication in IEEE Transactions of Signal ProcessingResults from this paper will
appear in the proceedings of CDC 2008.

In this paper we propose an axiomatic way of determining icgefor power spec-
tra. A set of properties are put forth, which requires theriméd be 1) continuous
with respect to second order statistics, and 2) contragtitle respect to certain
transformations which correspond to corruption of the aignie then present a
particular metric which abides by these requirements. The&imis based on the
Monge-Kantorovich transportation problem and is cong@$o an earlier Rieman-
nian metric based on the minimum-variance prediction geonué the underlying
time-series. Finally we compare the distance with the Itaksaito distance and a
metric based on prediction, in two identification examples.
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The Inverse Problem of Analytic
Interpolation with Degree Constraint
and Weight Selection for Control
Synthesis

Johan Karlsson, Tryphon Georgiou, and Anders Lindquist

Abstract

The minimizers of certain weighted entropy functionalstaeesolutions to an analytic interpo-
lation problem with a degree constraint, and all solutianthts interpolation problem arise in this
way by a suitable choice of weights. Selecting appropria@ghts is pertinent to feedback control
synthesis, where interpolants represent closed-loogfeafunctions. In this paper we consider the
correspondence between weights and interpolants in avdsistematize feedback control synthesis
with a constraint on the degree. There are two basic issa¢svthaddress: we first characterize ad-
missible shapes of minimizers by studying the correspanitiverse problem, and then we develop
effective ways of shaping minimizers via suitable choices@ights.

A.1 Introduction

The topic of this paper relates to the framework and the nmaglies of modern robust
control. The foundational work [37] of George Zames in théyeB980’s cast the basic ro-
bust control problem as an analytic interpolation probletnere interpolation constraints
ensure stability of the feedback scheme, and a norm boundugiess performance and
robustness. In this context, the analytic interpolantesents a particular transfer function
of the feedback system. The work of Zames and the fact that¢geee of the interpolant
relates to the dimension of the closed-loop system motivaterogram to investigate an-
alytic interpolation with degree constraint (see [8, 9]hisTled to an approach based on
convex optimization, in which interpolants of a certain #gare obtained as minimiz-
ers ofweightedentropy functionals. In this paper we study the correspooedetween

23
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weights and such interpolants, and we develop a theory vdliotvs for systematic shap-
ing of interpolants to specification.

The basic issue of how the choice of weights and indices immpdtion problems
affects the final design is by no means new. It was R.E. Kalr@dhvho, in the context of
guadratic optimal control, first raised the question of wihét that characterizes optimal
designs and, further, how to describe all performancer@ifer which a certain design
is optimal. Following Kalman’s example we study here thelegaus inverse problem
for analytic interpolation with complexity constraint,maly the problem to decide when
a particular interpolant is a minimizer of some weighted@py functional, and if so, to
determine the set of all admissible weights.

The analysis of the inverse problem leads to a new proceauréeédback control
synthesis. More specifically, the quality of control depgaod the frequency characteristics
of the interpolant, which in turn dictates the loop shapehef fieedback control system.
The theory of [8, 9] provides a parametrization of all int@gmts, having degree less than
the number of interpolation constraints, in terms of wedgint a suitable class. These
admissible weights are specified by their roots. These roaitscide with thespectral
zerosof the corresponding minimizers of the weighted entropycfiomals [8]. The choice
of weights for feedback control design via this procedurg leen the subject of several
papers (see e.g., [31, 32]). The challenge stems from theltfat the correspondence
between weights and the shape of interpolants is nonli@eas.of the contributions of this
paper is to develop a systematic procedure for the seleatioeights based on the inverse
problem.

The synthesis proceeds in two steps. We first obtain an iolf@mpwith the required
shape, but without any restriction on the degree. Thenheéérverse problem, we identify
all weights for which the given interpolant is a minimizertbg corresponding entropy
functional. The problem of approximating the interpolaptdme of lower degree is then
replaced by approximating weights in a suitable class. @pjgroximation problem is
quasi-convex and can be solved by standard methods. Henteweereplaced a non-
convex problem by one that is tractable.

In Sectiol[A2 we establish notation and review basic faotbaunded analytic in-
terpolation and complexity-constrained interpolatiore @ily discuss interpolation in the
unit discD = {z : |z| < 1}, but the theory applies equally well to interpolation in the
half plane. In Sectiof”Al3 we consider two motivating exassgh the context of robust
control. In SectiolCAM we provide the characterization afiimizers of weighted en-
tropy functionals and describe the set of weights which giterpolants of a prespecified
bounded degree. In Sectibn .5 we formulate and solve trersevproblem which is one
of the key tools needed in the paper, and study the possihfgestof minimizers without
any bound on their degree. In SectlonlA.6 we develop a methioddgree reduction of
interpolants via the corresponding weights. In Sediiod werhighlight the steps of the
synthesis procedure. Finally, in Sect[on]A.8, we revigtitiotivating examples of Section
A3 and apply the procedure of SectlonlA.7.
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A.2 Background

Given complex numbers,, z1, . . ., z, in D which we assume to be distinct for simplicity,
and given complex numbets), wy, . . . , wy,, the classical Pick interpolation problem asks
for a functionf in the Schur class

S={f€ Hx(D) : | flloc <1}
which satisfies the interpolation condition
f(zk):wka k:O,l,...,n, (Al)

whereH (D) (or simply H,) is the Hardy space of bounded analytic functiongorit
is well-known (see, e.g., [16]) that such a function existsid only if the Pick matrix

P— [w] (A2)
1-— ZLZy k,0=0

is positive semi-definite. The solution is unique if and dfl¥ is singular, in which casg

is a Blaschke product of degree equal to the ranR oiin this paper, throughout, we assume
that P is positive definite and hence that there are infinitely masiyt®ons to the Pick
problem. A complete parameterization of all solutions wiaemyby Nevanlinna (see e.qg.
[1]), and for this reason the subject is often referred to egaxlinna-Pick interpolation.

In engineering applicationg usually represents the transfer function of a feedback
control system or of a filter, and therefore the McMillan degyof f is of significant inter-
est. Thus, itis natural to require th&be rational and of bounded degree. Such a constraint
completely changes the nature of the underlying mathealatroblem.

The Nevanlinna-Pick theory provides one particular soluthat is rational and of a
generic degree equal to— the so-calledentral solution However, it provides no insight
and no help in determining any other possible solutions efstame degree. The central
solution is also referred to as tmeaximum-entropy solutiohecause it maximizes the
functional

t/mu—m%m
T

subject to[[AlL), wher& = {z = ¢ : 0 € (—x,x]} is the unit circle andim := df/2m
is the (normalized) Lebesgue measureToninvariably, determining extremals for such
an entropy functional leads to a set of linear equationssé&laee often referred to as the
canonical equations, and one such example is Levinsonatieqs in spectral analysis.
For more recent developments and generalizations we efér 13, 30].

Following [9, 21], we consider the generalized entropy fioral

Ky :8—RU,

defined by
Kwﬁ:—AM%u—m%m, (A3)
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whereV is a non-negative log-integrable function ®nWe study how the minimizer of
min{Kg(f) : f €8, flzx) =wk, k=0,...,n} (A.4)

depends on the weighting functidnand then determine when an interpoldris attain-
able as a minimizer of{Al4) for a suitable choicedof One particularly interesting case,
as we will see below, is wheWr = |¢|?> ando belongs to the class of rational functions
with poles at the conjugate inverses of the interpolatiantso

Let ¢ be the Blaschke product

ww=ﬁz“” (A.5)

1— 22
k=0 k

and letU : f(z) — zf(z) denote the standard shift operator Bp. Then¢H- is a shift
invariant subspace, i.ef € ¢H, implies thatU(f) = zf € ¢H>. Denote byX the
co-invariant subspacfs © ¢H,. ThenX is invariant undelU*, whereU* denotes the
adjoint ofU. LetX, denote the set of outer functionsd@that are positive at the origin.
The following result is taken from [9].

Theorem A.1. Suppose that the Pick matrf&2) is positive definite, and let be an
arbitrary function inX,. Then there exists a unique pair of elemgutd) € Ky x K such
that

() f=b/acH®with||f]s <1
(i) f(zx) =wg, k=0,1,...,n,and
(iii) |a|?> — |b|> = |o|? a.e. onT.
Conversely, any paifa, b) € Ko x K satisfying (i) and (ii) determines, via (iii), a unique
o € Ko. Moreover, settingl = |o|?, the optimization problem
minKg(f) s.t. f(zx) =wg, k=0,...,n

has a unique solutioyf that is precisely the uniqug € § satisfying conditions (i), (ii) and
(iii).
We define

n

7(2) = [[(1 - z2),

k=0
where{z;}}}_, are the interpolation points. Then, it is easy to see that

K= {% ' pE€ Pol(n)},

where Poln) denotes the set of polynomials of degree at mosind

Ko = {% tpE Pou(n)},
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where Pal (n) denotes the subset of polynomialss Pol(n) such thatp(z) # 0 for all
z € D andp(0) > 0.

The zeros of the functioa = p/7 € X, with p € Pol, (n), as in the theorem, are the
zeros of the spectral factor of the nonnegative functier f|? on the unit circle. Thus, the
n roots of the polynomiat™p(z~!) are often referred to aspectral zeros We also note
that the degree of may be less than, which happens whea, b, ando, have common
roots.

Theoren Al has two parts: the first part states that intargslof degree at mostare
completely parameterized in terms of spectral zeros. Mpeeifically, there is bijection
between the pair®, a) such thatf = b/a is an interpolant of degree at mosaind sets of
n points in the unit disc —the roots ef Given such an arbitrary choice nfspectral zeros,
the second part provides a convex optimization problemuttigue solution of which is
precisely the corresponding interpolant.

The theorem, stated in [9], allows for considerably moreegehinterpolation con-
ditions than (ii). In the case where the poidts), ..., z,} are not necessarily distinct,
condition(iz) needs to be replaced by

f = fo+ ¢qwith ¢ € Hy, (D),

which encapsulates interpolation of derivatives as weie 3pecial case whergz) = 2"

is analogous to the so-called covariance extension probigmdegree constraints, which
is usually stated for Carathéodory functions rather thamgéunctions. The theorem is
also valid whenp is an arbitrary inner function. The background to the deidveof The-
orem[A has a long history. The existence part of the parnzation was first proved
in the covariance extension case in [19, 17] and in the NevaaHPick case in [18]. The
uniqueness part (as well as well-posedness) in [12]. Then@ztion approach was initi-
ated in [10] (also, see the extended version [11]) and fudbeeloped in, e.g., [8, 7, 20].

A.3 Motivating examples

We present two basic examples of robust control design tligigt the relevance of the
theory. The first one deals with sensitivity minimizatiomaavisits an (academic) example
which was discussed in [8]. The second example addressegeatypical (and well-
conditioned) design which is formulated in the contexttbf -loopshaping and optimal
robustness in the gap metric.

A.3.1 Sensitivity minimization

Consider the standard feedback system in Fiflire A.1 whét¢ andC'(z) are the trans-
fer functions of plant and controller, respectively. Thabdlity and tracking/disturbance-
rejection qualities of the feedback system are reflecteddperties of the sensitivity func-
tion S(z) = (1 — P(2)C(2))~ . Itis well-known (see, for example, [38]) that the internal
stability of the feedback system is equivalentstg:) being analytic outside the unit disc
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Figure[A.1: Feedback system.

and satisfying the interpolation conditions

S(Zk) = 1,
S(pe) =0, £=1,2,...,np,

wherezi, ..., z,, andps,...,p,, are the zeros and poles outside the unit disk, respec-
tively, of the plantP(z). Conversely, ifS(z) is any stable, proper rational function which
satisfies these conditions, then it can be specified as tisdisiy function of such a feed-
back system with the giveR(z) and a choice of a suitable control transfer funciio).
The maximal disturbance-amplification depends on the ehaii¢he controller and is
equal to theH ,-norm of the sensitivity functiorj S||~. To illustrate this, consider the
simple exampleP(z) := . The optimal valug| Sopi| ~ in this example turns out to be
equal to two (see [8]), and the magnitude of the optimal sieitgifunction Sopt is constant
across frequencies. The choice of such an optimal contiislia fact unique. However,
in general, the magnitude of disturbances and the modehiagrtainty arenot uniform
across frequencies. Thus, the design ought to differenietween frequency bands so as
to achieve desired levels of performance and robustnessrefidre, we need to relax the
requirement of uniformly minimal sensitivity gain to a pspecified upper bound

[5]lo0 <.

In this case, providegl > || Soptl|, there is large family of controllers which achieve such
a specification. Naturally, the size of the family and thdigbio “shape”|S| increases
with +. On the other hand, the degree of the controller and the aodtplof the feedback
system depend on the degreef Thus, for a given value of, our goal is to not only
control the shape of, but its degree as well.

Adhering to a typical design specification for disturbarejection, we require

|S(e)]

<
1S(e™)] < v, on(be,m), (A.6)

where we takey = 2.5,¢ = 0.75 andd,. = 0.25. In Figure[A2, the degree sensitivity
functions which satisf{|.S||., < ~ are depicted in Subpldt It is observed that the design
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specifications are not met by any such function. Subpjah the same figure, shows

a sensitivity function of degreg which satisfies the constraints. As expected, this shows

that by relaxing the degree constraint to dedgrage are able to find a function that satisfies
the constraint. The design is accomplished with the methdseictior’A®, utilizing the
theory in the first part of the paper. Details will be providadSection[A®8 where the
example will be revisited.
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Figure[A.2: Subplot: Possible degree one shapes. Subpld degrees function satis-
fying the constraints.

A.3.2 Frequency-dependent robustness margin

Let P, denote the transfer function of a single-input, singlepatifinite-dimensional linear
system with stable coprime factorizations

No
Py=—
0 ]\/[07
i.e., My, Ny € H.,, normalized to satisfy
MM+ NjNo =1, onT, (A7)
where f(z)* := f(z~!). Then, as is well-known, all stabilizing controllers f&% are
parameterized by € H via
Uy + Mg

C (A.8)

Vo + Nog’
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wherel,, Vy € H, satisfyVoMy—UyNy = 1, see, e.g., [14, 34]. To model perturbations
of the coprime factors for frequency-dependent uncertaive: consider plant® = N/M
such that

[(RE=NE )| <otwton o= e a9

where|| - || denotes Euclidean vector norm amds an outer function shaping the radius.
Moreover, the size of the radius is controlled by a separedéng parametetr € R
Thus, we consider the problem of robust stabilization oftthk of plants

B(Py, aw) := {P = % A9 holds},

around the centef,.
As shown in [35], a controller specified lpystabilizes3( P, aw) provided

Uo + Moq
< 1. .
H( Vo + Nog awoofl (A.10)

This condition can be expressed as a Nevanlinna-Pick probiedeed, taking advantage
of the normalization of the coprime factors as in [29] (se®§P2]), we define the trans-

formation
_( My Ny
z._(_NO M0>

which is unitary, i.e.ZZ* = Z*Z = I. We also denote by the Blaschke product that
vanishes at the conjugate inverse of the pole®lpf Vy. Hencep My, pNj € H. Then,
the left hand side ofTA0) is

0 Up + M, F
(8 ) =(%r ol [(T)ee - o
whereFy = ¢M;Uy + ¢NjVy € Hso and

F=Fy+d¢q. (A.12)

It can be seen that the valuesigfat the roots ofs are independent af and are specified
by the plant. Moreover, as seen from(A.11), condition (A\.#6lds providedr’ € H,

satisfies[[AIR) and
VIFE+1< L onT. (A.13)
afwl

Conversely, for any" € H., satisfying [AI2), there corresponds a unique paramgter
and a controllec’, whereC stabilizes the ball of plant8( Py, aw) with radius

alw] = (|F|? +1)7%.

Furthermore, if the degree &f is small, so is the degree of the controliér This is stated
in the following proposition proved in the appendix.
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Proposition A.2. LetF' € H,, satisfy(&IJ) andC be the controller specified vi&.12)
and@&3). Then
deg C' < deg F.

We consider

P —PyC .

(1 —6'F

Hp/)c = ( 1=RC 1-RC > =7 ( 0 (% >Z,
T-FC T RO

which is the matrix of transfer functions from disturbane¢she input and output ports
of the plant to the plant input and output. This is a rank-orarix function (see [22])
with singular value\/| F'|2 4+ 1. Thus, the shape ¢f| relates directly to amplification of
external disturbances in the loop, and it also dictates lodwist the control system is to
plant uncertainty in the coprime factor (or, in the gap neetf. [29, 22]). In fact,

bopt( P) := max 11 —1
op(P) ¢ stabilizing Iescllee

is precisely the optimal robustness radius for gap-baledainty (see [22]) and coincides
with 1/4/]F|? + 1 for the smalles{| F'|| , consistent with[{ATI2).

The use of a frequency-dependent weighdllows shaping the loop-gain [29] as well
as the performance and the robustness of the closed-lommsywer different frequency
bands [35, 6, 36]. By scaling in (AZI3) one can maximize the radius Bf P, aw) for
which a stabilizing controller exists (as in [35, 29, 22]hélmaximal valuexmax and the
optimal interpolant?, consistent with[{AJI2) and{A1 3), satisfy

|F|2 _ 1- O‘r271ax|w|2
OBl 0]

Thus, the use of a nontrivial weightforces the interpolant to have a nontrivial outer factor
as well. This causes a corresponding increase in the deftiee dosed-loop system and
of the controller. Therefore, the purpose of this work is¢v@lop techniques for reducing
the degree of the control system while relaxing design reguénts in a controlled fashion.
In SectioAB we revisit the issue of frequency-dependeimistness margin in order to
demonstrate the application of the framework.

A.4 Characterization of Kg-minimizers

TheorenALL provides a (complete) parametrization of Nkwaa-Pick interpolants of
degree< n. It states that such interpolants are in correspondenteWit |o|? for o €
Ko. Furthermore, it states that such interpolants originataiaimizers of the generalized
entropy integralky specified by such a weightt. In this paper we are also interested
in interpolants of higher degree. Thus, we are led to con&deentropy minimizers for
more general choices @f. Indeed, the entropy function&ly can be defined for arbitrary
nonnegative function®¥ and since the minimizer relates algebraicallydtp choices of

a rational¥ generate minimizers of a suitable degree. Thus, the fofigwheorem is a
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generalization of TheorefA.1 which allows for the use ofegahweightst. This is one
of our main results.

Theorem A.3. Suppose that the Pick matr&2) is positive definite andl is a log-
integrable nonnegative function on the unit circle. A fumctf is a minimizer of@&4) if
and only if the following three conditions hold:

() f(zx) =wgfork=0,...,n,
(i) f=2 e Swhereb € X anda is outer,
(iiiy ¥ = |a|®> — |b]?.
Any such minimizer is necessarily unique.

Proof. See the appendix. O

As seen from TheoremA. 1, any choicebf= |7|? with o € K, givesrise tai, b € X,
and hence to an interpolajfitwith a degree bounded by Even if U is rational of an arbi-
trarily high degree or is irrationab,still belongs taX. In fact, the additional “complexity”
is absorbed im. Naturally, in such a case, the interpolgnwill also be rational of a high
degree or irrational, respectively. This observationvedlais to characterize all minimizers
of Ky of degree at most + m for any givenm € N,. More specifically, let

Km = {U = oopp : 0o € Ko, degp < m, p outer,p(0) > 0}
= {L i rePol.(m), g€ Pol.(n+m)} (A14)
The following statement gives the sought characterization

Proposition A.4. Let ¥ = |o|? with o € XK,,. Then the minimizing functiofi in (&4)
satisfies

(I) f(zk) =wifork=0,...,n,
(i) f has at most zeros inD,
(i) the degree off is at mostn + m.

Conversely, for anyf € S which satisfies (i), (ii), and (iii), there exists a correspulting
choice ofc € X,,, so thatf is the minimizer off&.4).

Proof. By TheorenAB, the minimizef satisfies (ii), where
la|* = |o|? 4 b]*, 0 € K, b € K.

Then, in view of [AIN),c € X,,, and henceleg f < n + m. Conversely, suppose
f = (Bn)/«, whereg € Pol(n), 7 € Pol(m) anda € Poly(n + m), thenf = b/a,
whereb € X anda € X,,. Then

U= |a]? — [b]* = o],

wheres € K,,. If, in addition, f satisfies the interpolation conditions {#), then, by
TheorenAB.f is the minimizer of [A1), as claimed. O
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Corollary A.5. If f € 8 is a minimizer ofKy for some choice of a log-integrable non-
negative function, thenf has at most zeros inD.

Proof. The corollary follows directly from conditiofiz) in TheorenZAB, sincg = b/a
with a outer and € X. O

This corollary underscores the significance of Thedrem ér8hderstanding the struc-
ture of minimizers.

A.5 The inverse problem of analytic interpolation with degree
constraint

We begin by considering the inverse problem of analyticrpiéation with a degree con-
straint, and then explain how this can be used to shape oltans to specifications.

A.5.1 The inverse problem

Itturns out that the number of rootslihdetermine whether an interpolafis a minimizers
of Ky for some choice ofr. Furthermore, it is possible to characterize all s@chhis is
stated below.

Proposition A.6. Any functionf € § that satisfies
() f(zx) =wifork=0,...,n,
(i) f has at mosh zeros inD,
(iii) log(1 —|f[*) € L1(T),
is the unique minimizer ofA4) with
U= (|f]7* - 1)pf?

for anyb € X chosen so thalif ~! is outer. Conversely, a (nonzero) functigrhaving
more tham zeros inD cannot arise as the minimizer ¢&.4) for any choice of?.

Proof. Suppose thaf € § satisfies the interpolation constraif}. Then, by Theorem
A3 f is the minimizer of [Ad) if and only iff = b/a, whereb € X, a is outer, andl =
|a|?—]b[2, which in turn holds if and only if f ! is outerb € K, and¥ = (|f|~2—1)|b|>.
This condition cannot hold if has more tham zeros inD. In fact, forbf ! to be outer,
the zeros off in D must be canceled by zeros lof However,b € X can have at most
Zeros. |

The choice ob € X in TheorenAD is not unique, in general. The selectioh wiust
preventb ! from having poles iD, and hence any zero gfmust also be a zero éf If
f has more tham zeros inD, there is no such, whereas iff has exactlyn zeros inD,
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thenb is uniquely defined. In all other cases, whehasn; < n zeros inD, the family of
possible choices df, and hence the family of possible weights

(U 0=(f"2-1)b*be X, bf *outen
has dimension —n¢. The design freedom offered by this nonuniqueness will ipéoited

in SectioAY for finding a weight correspondingftehat is close to a low-degree weight.
RemarkA.1. Since the more general frequency-dependent constraint

[f(2)] < |w(z)[forz € T,

with w an outer weighting function, is often quite natural, [21fraduced the (doubly
“weighted”) entropy functional- [ ¥ log(1 — |w™" f|*)dm. Thus, compared td{A.3),
w can be introduced as an extra design-parameter. Propdaiftbmay be modified ac-
cordingly by changing condition (iii) ttog(1 — [w™! f|?) € L1(T). Thenf is the unique
minimizer of

min Ky (w™ ' f)s. t. f(z1) = wp, k=0,...,n, (A.15)

for the weight
U= (}w—1f|*2 - 1) b2

with b € X chosen so thatf ! is outer. The price to pay is that, in general, the degree of
the interpolanyf increases by the degreewof

A.5.2 Shaping the interpolant based on the inverse problem

Suppose thay is a given function oril. We address the following two questions that
pertain to admissible shapes of analytic interpolants:

a) Does there exist af € § which satisfies[{All) and

[F(e)] < lg(e?)], 0 € (~mn]? (A.16)

b) Does there exist & such that the corresponding (unique) minimizeof (&34)
satisfies _ _
[F(e)] = lg(e?)], € (—mn]? (A.17)

Without loss of generality we may assume thas an outer function and that, moreover,
g € 8. We note that the first question is equivalent to findingfan the set

{(Fe8:Ifg oo <1, f(2) =wi,k=0,...,n}, (A.18)

and this set is nonempty if and only if the associated Pickimat
1 — wig(ze) 'wig(z) 1

Pick(g) := e

(A.19)
k,1=0
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is positive semi-definite. This answers the first question.

If Pick(g) is positive definite, there exist interpolantssuch that f(z)| < |g(z)| for
all z € T and the design specificatior[STAl16) may be satisfied wiiltstrequality.
Therefore, any minimizing interpolagftcannot satish[{AT7), sindg (2)| < | f(z)] for all
z € T implies thatKy (f) < Ky (f), which contradicts the claim thgtis the minimizer.
Therefore in order foll{Al4) to have a solution satisfyingI®), Pickg) must be positive
semidefinite and singular. In this case, the EEL{]A.18) imglsion. This provides an

answer to the second question, which we summarize next.

Proposition A.7. Letg € $ be outer and such thabg(1 — |g|?) € L1. Then there exists
a pair (¥, f) of functions oril' such that

@) logW e Ly,
(i) f is the solution of[(Al4), and

(iii) |f]=lglonT

if and only if PicKg) is positive semidefinite and singular. Furthermoyeis uniquely
determined.

Proof. Sufficiency is shown in the text leading to the propositianjtyemains to prove
necessity. Since the matrix iIR{AIL9) is nonnegative defiaitd singular, there is a unique
f satisfying||f¢g~ || < 1 and [&A]). Thenf = gy wherey is inner and of degreg n.
Sincef is rational with at most zeros inD, by Propositiof A there exists a functiofis
such thatf is the minimizer of [AH}). O

A.6 Continuity properties of the map from weights to minimizers

Assume thaf is the minimizer of the entropy functional, as I {A.4), fos@itable weight
selected without regard to the degree. We begin by studiimgtoperties of the nonlinear
transformation

p: U f (A.20)

which maps a space of weights
UeM:={T|log¥ e L(T)}

to the corresponding minimizersof (B4). We define the metric oM asd(¥, ¥,.) :=

|l log(¥) — log(¥, )|, and, as we shall see,is continuous when the range is taken to
be H,, but not with range{,. On the other hand, the map — |f| € L is again
continuous.

RemarkA.2. Here we only study the case whebec M. However, it is easy to show that
these continuity properties also holds for arbitrary, perturbations ofog ¥ whenW is
non-negative and log-integrable.
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A.6.1 Continuity of the map ¢

In this subsection we establish the continuity of the map M — Hs. Moreover, with
a counterexample, we show that the corresponding gmapM — H.., with the range
endowed with the topology dfl .., is not continuous.

Lemma A.8. Let¥ and W, be nonnegative log-integrable functions Bithat satisfy
[ log(¥) — log(¥r)]lec =, (A.21)
and setf := p(¥) and f,. := ©(¥,.). Then

/\IJIO 1 |f_fT|2 26_
g1+ — dm < (e DKy (f). (A.22)
T

Proof. From [AZ21), it follows that
e U(z) <V, (2) <eVU(z), forzeT

and hence
Ky (fr) < e Ky, (fr) < e Ky, (f) < > Ko (f).
From [27] we have that

_ 2
%(Kq’(fHKw(fr)) > Ky (%) + %/T\IJlog <1+ %) .

Then, sincef is the minimizer ofKy, we have

Ke(f) < Ky <f+fr),

2

and consequently

2
[ o (1 " %) dm < Ky (f,) — K (f) < (% — DKy (f).
as claimed. 0

LemmdA3B provides a bound on a weight&d norm of the errorf — f,., as stated in
the next corollary.

Corollary A.9. Letf, f. and ¥, ¥,. be as in LemmBZA.8 and letbe the outer spectral
factor of U; i.e., o is outer ando|> = ¥ onT. Then

lo(f = fo)ll3 < 10(e* = DKu (f). (A.23)
Proof. Sincelog(1 +t) > 0.81¢ for ¢ € [0, ], we have that

|f = fol? |f = fo]?
/T\I/log <1+T) dmZ/T\IJTdm

Then [AZ3) follows from LemmBAl8. O
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The continuity ofp is then a direct consequence of this.
Proposition A.10. The mapp in (B20) with rangeH>, is continuous.

The mappingy from ¥ € M to f € H is not continuous. This can be seen from
the following counterexample. Consider the interpolapooblem with one interpolation
condition: f(0) = 1/2. Given a weight¥, according to Theorefn A.3, the minimizgr

satisfies )

1+ %’
whereb € K, which implies thab is a constant. Since there is only one interpolation point,
and thusn = 0, the minimizerf cannot have any zeros (Corolldiy N.5). Hentés the

outer factor of [AZK), wheré is a constant chosen so that the interpolation constraint is
satisfied. IfU' = 1, thenf = 1/2. Define

N 1 for 0ec[-F
\I'E(e)_{lJre for 0€ (3,

If1? = (A.24)

and letf, = 2= = o(V.), with b. € X anda, outer, as in Theoref1A.3. By LemiaAl17,
b. — b, but since|f.|? is a discontinuous & = 5 for e > 0, the spectral factof. does
not converge tof = 1/2in H,, ase — 0. This is since the phase of the spectral factor
will differ by an arbitrarily large amount [2, page 147] (ceixample in [2] page 145-158).

A.6.2 Continuity of the map defining the shape of the interpchnt

From an engineering viewpoinio-norm bounds on the approximation error are important
in order to guarantee performance and robustness. Herelhshaiv that a small approx-
imation error on the weigh¥ will in fact correspond to a small ., error in the shape of
the interpolant. To this end, consider the mapping

¥ U |f] € Loo, (A.25)

which maps a choice of weighlt € M to the magnitudé¢f| of the corresponding min-
imizer f of (B4). As seen from the previous example, the lackihf continuity of
interpolants is due to the fact that spectral factorizationot continuous. This problem
does not ocur withy, which is continuous.

Proposition A.11. The mapy in (&Z3) is continuous.

Proof. Let W € Mandf = £ = o(V), and let), € Mandf = 2 = (W) for
k=1,2,.... Assume further that

|& — Uyl — 0ask — co.
Then, by Lemm&ZA7 in the appendix, — b. The proposition now follows since

FA— L g

PN

Wy
|

uniformly. O
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A.7 Approximation of interpolants

The continuity properties described in the previous seci@gests a new approach for ap-
proximating interpolants that exploits the correspon@drgtween minimizers and weights.
Given an interpolanf we would like to find a degree-approximating interpolant, of

f, wherer > n. From the inverse problem there is a get!(f) of admissible weight®

for which a givenf is the minimizer of [A}). Our first task is to find a pdi¥, ¥,.) for
which ¥ € p=1(f) and¥, = |o,|?, with o, € X,_,,, S0 that their logarithmic distance is
minimal. That is, we solve the following optimization preit

min {|| log(T) — log(¥,) |l : ¥ € o~ 1(f) and¥, = |o, |2 with o, € JCT_,L}.

This optimization problem may be reformulated as a quasixewoptimization and solved
efficiently. By Propositiof AW the degree of the interpalgn= ¢(¥,) is bounded by,
and by PropositioRA0, a bound on the approximation efrer f,. is obtained. In fact,
based on the quality of approximation obtained via quasiter optimization, explicit a
bound on the error can be obtained from Lenimd A.8 and Coyd&d.

By PropositiolTA}, the functiorp, defined in [A2ZD), map&,_,, into the set of
interpolants of degree at most Thus, the basic idea is to replace the hard nonconvex
problem of approximating by another interpolating functiofi. of degree at most, by
the simpler quasi-convex problem to approximat& & ¢ *(f) by a¥, = |o,|? with
o € Ky_p.

The theory presented so far suggests a computational preegdseveral steps, which
we now summarize. In general, the required bound on the néiimecinterpolant may
differ from one, and therefore we consider the more geneddllpm to find a functiorf”,
of a desired shape, which satisfigB|| ., < v and the interpolation conditions

F(z) = Wi fork=0,1...,n. (A.26)

Step 1.Find an interpolant having the desired shape, but withaiticting its degree.
To this end, we begin with a family of functiodg,, } having desired shape, and we select
one functiong in this class for which the Pick condition in PropositidnJAs7satisfied.
Then, by PropositioR Al7, there islasuch thatf := ¢(V) satisfieg f(z)| = |g(z)] for all
z e T.

Typically we choose this family of functions in such a wayttha, | is monotonically
decreasing imv. In the first of our motivating examples we take

Ga = —,
o

which leads to a standaid., optimization problem. In the second example we take

1—a?w|?

2 _
|ga| - 012|’LU|2

which leads to a typical-block problem.
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We then seek a solution to the optimization problem

max o«
subject to
|F| < |gal @andF(z) = Wy, k=0,1...,n.

The optimum is attained when Pigk,) is positive semidefinite and singular (Proposition
[&7). Here the bound must satisfy

|F|ls <~ andlog(y® — |F|?) € Ly,

or else the bound needs to be relaxed. Then the normalized interpolant
1
f==F
Y
has the same shape Bsand satisfies the interpolation conditions
1
f(Zk) = Wk = —Wk, k= 0,1,...,71,
Y

as well as the log-integrability condition af— |f|2. Hence we have constructed an in-
terpolant with the required shape, but which in general cda¢satisfy the desired degree
constraint.

Step 2. For somer > n, find an approximatiory, of f of degree at most which
satisfies the same interpolation conditions. To this end,ffinctions¥ andW,. that solve
the optimization problem

min || log(¥) — log(¥,)| s
subject to
U e '(f)and¥, = |o,.|* with o, € K, .,

where
N ) ={v : W= (f]72 - 1D)b*|b e K, bf ' outer.

This is a quasi-convex optimization problem. In fadclpg(¥) — log(¥,.)|| < ¢ if and only
if

676 < \IJT(Z)

T ¥(z)
The constraint§{A27) define an infinite set of linear caists on the pseudo-polynomials
representing the nominator and denominator, respectoell,. /¥. Since the sublevel set
of nominators and denominators solvilg{A.27) is convexdache > 0, the problem
is quasiconvex. The reader is referred to [28] for a detadlestription how to solve this
problem.
Step 3.Next we solve the optimization problem

min{Ky, (f.) : fr €8, fr(zx) =wi, k=0,...,n}

<e‘forallz €T. (A.27)
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for the unique solutiorf,.. In Step 2 we have determined the weightas an approxima-
tion of ¥, and thereforef,. will also be an approximation of t@, for which the bounds
@&22) and [AZB) hold. Furthermore, singe. = |o,.|? with o,. € X,._,,, the degree of,
is bounded by (PropositioltAJ). Finally, we renormalize the interpdlan

F. = A/fr

to obtain the approximant which solves the original intéaion problem.

A.8 Examples Revisited

We now return to the two examples from SectionlA.3. In bothnepias, the underlying
mathematical problem is an analytic interpolation probleinere a desired shape is sought
for the interpolant. These are addressed using the proeedtiined in SectioR Al7.

A.8.1 Sensitivity minimization (continued)

In this example, we consider the sensitivity functi§n= (1 — PC)~! of the feedback

system with plant
1
P(z) = .
(2) =5

SinceP has one unstable poleaand an unstable zeroat, we require that the sensitivity
function satisfies

S(o0) =1andS(2) =0.

We further require that the specificatioRST{A.6) are met. fEth@xed bound on the infinity-
norm of S is ||.S|ec < 7 := g and we therefore define the function

flz)=7718(="")

which is normalized so that satisfies| f||. < 1 and is analytic irD. The constraints on

S can be directly translated into constraintsfon
f(0) =0.4, andf(0.5) =0,

and

[ (e)]

()]
where, as beforey = 2.5, ¢ = 0.75 andf. = 0.25. We begin with a particular interpolant
fidgeal that meets the criteria without regard to any constrainherdiegree, shown in Figure
B3, which we then approximate using the theory in Sediida A.

We determinefigea as follows. We first define an outer functianwith the property
thatlog |w(e?)| is piecewise linear il € (0, 7) and passes through the points

IN A

0,6y 1), (0 4+ 0.1,y 1), (A +0.3,1), and(m, 1).
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This is our desired shape. Then we get= = and scalex > 0 so that there exists a
minimizer of [A4) which satisfie$f| = |g| on T. By Propositio’AY « is specified
by the requirement that Pi¢k) is positive semidefinite and singular. In this case=
1.0498 > 1, and hencéfigeal = |g| is consistent with the requiremehfigeal| o < 1. Itis

clear that neitheg nor figeal is a rational function, but, unlike, figea iS an interpolant.

-

Magnitude (db)

-12
0

. . . . . .
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Angle ()

Figure[A.3: Ideal functionfigeai = 7~ Sijear

Next we approximatéigea by an interpolant of small degree. We first characterize the
inverse image ofigea Under the mad{A20), which according to Proposifianl A.6iveg

by
0 (fidea) = {¥ : U = (|figeal > — 1)[b]%, b € K, bfigey OUtER.

In the present cas#)? is a positive constant. Hencg; ! (figear) CONtains a single element,
modulo scaling, and we ch00884ea = (| figeal 2 — 1). As described in Sectidn A5.2 we
let f,- be the approximant of degree less or equal tdtained from

fr = argmin {K,, 2(f,) | f, € 8 and [&2) hold ,
whereo,. is the solution of the quasi-convex optimization
min{||log(|ar|2) — log(\IJideaQHOO | foro, € JCT_”} .

Finally, by scalingS,(z) := v£,(z~!) andSigeal(2) := 7 fideal(z '), we obtain admissible
sensitivity functions.
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We computeS,. for r = 1, 3,5 and display the magnitudes 6f, S; and.Ss in Figure
[AI4. Neither the degree-one nor the degree-three approiai®qeq satisfies the design
specifications, wheraS; does. It is interesting to note that even thoyfgha is infinite-
dimensional it is possible to find satisfactory low-dimemsil approximants.

10

= = 2
Z 5¢ ——
S e
2
S of
S
_57 L L L L L L
0 0.5 1 15 2 2.5 3
Frequency (rad/s)
10
=)
T 5t
(]
©
2
£ o
IS
=
-5t ‘ ‘ ‘ ‘ ‘ ‘
0 0.5 1 15 2 2.5 3

Frequency (rad/s)

Figure[A.4: Approximations of degree 3, and5

It is also interesting to note that when the boufi|., < ~ is removed and only
stability is required, as in [28], the approximation is bketin the low-frequency band
(0,6. + 0.1), but worse in the high-frequency baf@. + 0.3, 7). It seems as if approx-
imation with a bound puts more emphasis on the region wherénterpolant is close to
the bound (i.e|S| ~ v) at the expense of the region whéfgiea| < 7.

A.8.2 Frequency-dependent robustness margin (continued)

We consider a continuous-time plant having one integra@low unstable pole, and a
time-lag, modeled vig— m. We base our design on its discrete-time counterpart

~0.087722% — 0.087722% — 0.4386z — 0.2632

P
0(2) 23 — 243922 + 1.807z — 0.3634

obtained via the M6bius transform

S — 2=

2—5’

and restrict our analysis to the discrete-time domain.
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The design objective is encapsulated in the choice of a weiglthosen as in Sec-
tion [&3 to increase robustness to high-frequency modalingertainty. The selected
“nominal weight”w is shown in FiguréRl. The maximal scaling parametggy can
be readily computed by first calculating the outer fagtpof

1—a?|wl?

F|* =
| | 062|w|2

= |gal® ONT,

and then, finding the maximal valugnax for which the Pick matrix Picly,,) is positive
semidefinite (cf. Proposition A.7). The Pick matrix Pigk) is defined in [AJIP) and
requires the interpolation data that can be obtained byuatiag F; at the roots ofp in
(AI3). Denote byFigea the unique interpolant which satisfifSgeal = |gamy|, @nd denote
the corresponding controller qeq. Sincew is not rational, neither arBjges andCigeal.
Next we describe how to approximaliges With an admissible interpolant of low degree.
Using the corresponding controller leads to closed-loapdfer functions of low degree.

25

:
[—v]

20

15 b

10 b
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FigurelA.5: The frequency-dependent robustness stiape

The uniform robustness margin corresponding to the cdatr6lyea is determined by
the value of|| Figeall| o via (AI3). For the above choicédigeal|c = 10.87. In order
to achieve the desired characteristic for the frequen@eddent robustness margin, we
relax theH., bound onF'. For the particular example, it is deemed appropriate tmnall
I F|lco < = 20. We normalizeF’ by definingf = %F which is then required to satisfy

f(z)= %Fo(z) whenevek(z) = 0, (A.28)
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in view of the interpolation conditiod {A12). Then we folche steps of Sectidn A.7 to
obtain approximants t@gea = %Fideab

For any given > n we determine a degreeapproximantf,. of figeas as follows. We
first compute a minimizes,. of the quasi-convex optimization problem to findra €
K,_n and a¥ € ¢~ ( figea) Which minimize

[[log (o [*) — log(W)]| -

Next we determing, as the minimizer of the convex optimization problem

fr= argmin{K‘UHz(frﬂf € 8 and [AZ8}.

A corresponding controllef’,. can now be determined vigfrom (A12) and [AB).

The uniform robustness radius for gap-metric uncertaistsnaximal for an optimal
choice of the controlle€Cyp and equaldqp(P) ([35, 22]. This is the inverse of thH .-
norm of the “parallel projection” operatdtp, ¢, and this value is shown in FiguieA.6
with a dash-dotted line. On the other hand, the inverse ofhgimal singular value
of Ilp//c.. Plotted as a function of frequency with solid line, repreisea frequency-
dependent robustness radius [35]. Both are now comparbdwdégree-four approximant

0.8762% — 0.190z3 — 0.066922 — 0.460z + 0.157
24 4+ 0.12052° + 1.38922 4 0.07538z + 0.2214 °

and it is seen that there is substantial improvement of toless as compared tgy( )

in the high-frequency range. Figutd .7 compares the gdins,cand Cop. Similarly,
Figure[AB and FigurEJAlI9 compare the loop-gains and the Iéyqlots, respectively, for

the two cases. It is seen that some form of phase compensatdfected byC, around

1.6 rad/sec, as comparedd®,; So as to gain the sought advantage. FiflIlelA.10 compares
the gains of the four entries of the closed-loop transferimat,,,. The improvement

in the sensitivity function at middle range becomes evident

Cy =

A.9 Concluding remarks

The formulation of feedback control synthesis as an ar@algterpolation problem has
been at the heart of modern developments in robust conted).n¥any of the standard ap-
proaches often lead to designs of a large degree, due toadiedliaion when introducing
and absorbing “weights” into the controller. At variousgsta, alternative methodologies
for dealing with control design under structural and dimemnality constraints were de-
veloped by several authors based primarily on suitablecqimations and a linear matrix
inequality formalism (see [15], [33], [23], [3]). In partitar, a comparison between the
viewpoint in Gahinet and Apkarian [15] and Skelton, Iwasakid Grigoriadis [33] and
the viewpoint advocated in our work is provided in [21].

Our approach builds on the original..-formulation of control synthesis as an ana-
lytic interpolation problem and on the recently discovefact that, in contrast td .-
minimization, dimensionality and performance are inkeetiby the weighted-entropy min-
imization. In this setting, “weights” provide the means béping interpolants in a manner
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Figure[A.6: The robustness radius obtained for the cortralligea, Cs1, andCopt.

akin to H*° design. Thus, the advantage of the new methodology whiaiag entropy
functionals stems from the fact that selection of weightthiwia specific class does not
unduly penalize the degree of the design. However, the eladizeights is not immediate,
as itis in the standard/ ., paradigm [14]. The choice of weights that lead to acceptable
controllersis, in itself, a non-convex optimization preim. Thus, one of the contributions
of this paper is a relaxation of this non-convex problem iot@ which is quasi-convex,
and thus solvable by standard methods. The methodologgsbaii a more fundamental
guestion which forms a main theme of the paper, namely theactexization of all pos-
sible minimizers of weighted entropy functionals. The ise2problem of constructing
weights for permissible minimizers is the basis for our n@sign theory. In a more gen-
eral context, the results of this paper provide a solutiaghédongstanding open problem of
determining which spectral zeros correspond to a certamatbshape of the interpolant.
This paper provides a considerable extension of the rgstdiented in the conference
paper [25]. The modified problem obtained by removing #hpriori bound~ on the
interpolants has been studied in [26, 28]. In fact, by alfaythe upper boundl to tend to
infinity, the entropy optimization problem becomesHpn optimization problem, and the
interpolants are then parameterized in terms of polesr#iha in terms of spectral zeros.

A.10 Appendix

In the appendix we prove TheordmMA.3 and some technicalteeseéded in the paper.
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Figure[A.7: Bode plots of controllers,, andCopt

A.10.1 Controller complexity: Proof of Proposition[A2

Given the controller parameterizatién (A.8), we have- U/V, wherell = Uy + Myq and
V = Vp + Nog. SinceU,V € H,,, the number of the distinct poles fandV (counted
with multiplicity, including poles at zero and ab) is at least as large as the degre&of

From [AT1) and[[AIR) we have

U\ [ "M NG
(v)=(5m ) ()

and, sinceMy, Ny, oM, pN; € Ho, any stable pole ot/ or V' is a stable pole of'.
However,U andV has no unstable poles, and therefore, the degréei@bounded by the
degree off’, as claimed.

A.10.2 Proof of TheorenTAB

The main ideas of the proof of TheorémA.3 are similar to thafsEheorem 1 in [9], but
some lemmas need to be modified to handle the present situdtar ease of reference,
we retain (modulo a sign change) the notations of [9].

We start by showing that for any log-integrable weightthere exists a strictly con-
tractive interpolantv with finite generalized entropy.

Lemma A.12. Suppose that > 0 satisfiedog ¥ € L,(T), and letP be the Pick matrix
(B2). Then, ifP > 0, there exists a € H,, that satisfiegAT) and ||w||.. < 1 and such
thatKg (w) < oco.
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Proof. Let g. be the outer function such thgt| =

15 2 25
Angle ()

1
1+etel?

fore > 0. Sinceg. — 1

pointwise inD ase — 0, and since Pickl) = P > 0, it is possible to choose small
enough so that Pigk.) > 0. Then it is possible to find @ which satisfies[{Al1) and for
which|w| < |g¢| onT. The calculation

shows thaiKg (w) < oo.

With w fixed and satisfying the properties in LemmaZA.12, we define

{v [ llw+ vl <1},
{v]llw+ vl <1, Ky (w+ ¢v) < oo},

X:
X =

<

IN

Ky (96)

/%g (M) dm
T 6"‘6‘1’

1
/q;( +e+e\I’_1)
T €+ el

2

€

whereg is the Blaschke produdi{A.5).
Consider the convex function&l : X — [0, o] given by

dm

F(o) = = [ o log(1 = fu -+ 0Py

(A.29)
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Figure[A.9: Nyquist plots of the loop gai3Cy (above) andPCoy (below), respectively

where as previous; is outer such thatr|> = ¥

Lemma A.13. There exists a sét of continuous affine functionals di*° of the form
Av) = Xo + / Re(hv)dm,
T

with Ao € R, h € L, such that

F(v) = sup A(v) for everyv € X. (A.30)
AL

Proof. For alla,z > 0, log(x) < log(a) + *=%. Hence for all|s| < 1,[z| < 1, and
e € (0,1) we have

log(1— (1 -e)ls*) < 1og<1—<1—e>|z|2>+<1—6>%
z|? — Re(zs
< log(1—(1—e)|z?) +2(1 - e)%

with equality if s = z. Let ¥, := min(¥, 1/¢). By monotone convergencEy, ((1 —
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Figure[A.10: The four closed-loop transfer functiondiyf, ., andllp,, ¢,

€)f) — Kyg(f) ase — 0. Consequently,

Flv) = sup — / U, log(l— (1 —€)|w + ¢v|[*)dm
ec(0,1) JT

Y

sup sup —/\IJ€<1og(1—(1—e)|w+¢u|2)
T

ueX e€(0,1)

1201 ) |w + ¢u|? — Re(w + du)(w + (bv))dm,

1—(1— 6w+ oul?

where the outer infimum is achievedat= v. Therefore, by defining to be the class of
affine functionals orf{,, defined via

w0 -+ gul? = Re((wF pu ),

o= = [ (o= (1= -+ ouf?) 20 - g LT

and
p g, 20 = 9@ uo
1—(1-¢)|w+ ¢ul?
forall e € (0,1) andu € X, the representatioB{ABO) follows. O

This leads to the main lemma, the proof of which follows véirhgdrom [9, p. 974]
using Lemm&A3.
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Main Lemma A.14. The optimization problerf&4) has a unique minimizer oX.

Lemma A.15. Let f = w + ¢v, wherev = argmin(F'). Then
o fI?
1—[f[?

Proof. Consider fort € (0, 1), the differentiable function) : ¢t — F((1 — t)v) with
derivative

(S Ll(T)

0(t) = [ utm.

where _ _
Re {(f +t(@w - H(f —w)}

L—|f+tw- ]
SinceF has a minimum at, ¢(t) > 0 for smallt. Choose & such thaﬂ% <~v<1,
and let/; and I, be the subintervals of where|f| < ~ and|f| > ~, respectively.
On I;, the denominator of; is bounded, and, sincg. [0 f|?dm < Kg¢(f) < oo and
Jp low[?dm < Ky (w) < oo, we have that

/ cptdm'
Iy

is uniformly bounded fot € (0, 1), while, only, ¢; < 0for sufficiently smalk. Therefore,
to say that/ 2Ll ¢ L,(T) is to say that

-2
/ SDtdm — — 00,
I

contradicting the nonnegativity aif(t) for smallt. O

Pt = |0|2

Sinceo is log-intergrable and” € H., with || f|] < 1, the fact thatl‘fl—fjl‘z2 € Ly(T)

implies thatlog(1 — | f|?) € L. Therefordog % € L1 (T) and there is a unique outer
factora with a(0) > 0 such that

| |2 _ |U|2
L—[f]>’
and, if we defing := fa (in H, due to Lemm&AT5); andb satisfies
b
f = )
a
o> = laf* —[b]*.

Next, we show thak € X.
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Lemma A.16. Let f = w + ¢v, wherev = argmin(F'), and letf, be the outer part of .
Then

lo|? fof* &

1_ |f|2 S ZHl(D)

Proof. From the Lemm&ZA5 we have théXle € L1(T), and, sincdog |o| € L1, it
follows thatlog(1 — | f|?) € L'. Hence there ig € H, such thatl — |f|*> = |g|?. For any

h € H* with ||2]|o <1, we have that + tg? foh € X, fort € (—e¢, €) ande sufficiently
small. In fact, sincéie{ fotg? foh} < |t|| f|?, we have
L= |f +tog® fohl? > |g* (1 = 20¢|| FI* — €| 1),

and hence

Flo+tgfoh) = — / (o log(L — | + tdg® foh|2)dm
T

IN

F(o) = [ I 1og(1 = 2017 = 2] )am

In fact, since—log(1 — z) < 2z forz € (0, 1), we have fort € (—%, 1) that
—/T|U|210g(1 = 20t[|f]? = [ f]")dm < —/T|U|210g(1 — 3[t[|f|*)dm

< 6|t|A|a|2|f|Qdm<w.

This proves that + tg foh € Xo fort € (=3, #). Sincev = argmin(F), the derivative

of F must be zero at in the directions)? foh for arbitraryh € H., with ||k~ < 1;i.e.,

Qiﬁe{f qbg th}
| | 1 _1r2 =0
=1/
forall h € H,, in the unit ball. Therefore,
If |
S0, sincey is outer ando|* {- I ¢ 5 € Ly, LemmdATH follows. O

By LemmaATH, we have that= af = “f € H,. By LemmdAIs S “f0¢ = zq

whereq € Hy, and hencé-? = % ¢ ;. Slnceb € H,and%? ¢ H, |t follows
thathb € XK. Finally, sincea = g the minimizing interpolany is of the form stated in
TheorenfAB.
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We have thus established that the minimizer exists andfisati§), (ii), and (iii). It
remains to prove that there is only one functipre § satisfying (i), (ii), and (iii). This
follows directly from the arguments on pa@g7 in [9] and by noting that

= F) _ Johl  lohf?
TTTRE SToE T o

and hence that

2 2Re{f1 (f1 — fo)}
1—[fl?
This concludes the proof of TheorédmA.3.

e l.

||

A.10.3 A lemma on continuity

Lemma A.17. Let¥ € Mandf = £ = ¢(¥), and let¥, € M and f, = 2 = p(¥})
fork=1,2,.... Then,if

| log(W¥) — log(Wy,)| — 0 ask — o,
by — bask — oc.
Proof. From the proof of the main theorem, we see that

_Jo
g7

b

with o the outer factor oft andg the outer factor of — | £|?. Similarly by, = % where
ok, gr are outer|og|? = ¥y, and|gx|? = 1 — | f|*.

As || log(¥) —log(¥)|| — 0, fx — f in Hy (Propositiod AD). From this it follows
that1 — |fx|> — 1 — |f]? in L; and hence thag, — g in H> (see [5] and note that
{1 — | fx|*}« are log-integrable). Clearly, — o in Ha.

Sinceb, by, € K, b = £2,b, = 2= with 3, 8 € Pol(n), we therefore have

9.8k = [rokT.
The convergenck, — b now follows, sincey, — ¢ fi — f ando, — o coefficientwise
(weakly) andg is not identically zero. O
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On Degree-Constrained Analytic
Interpolation with Interpolation Points
Close to the Boundary

Johan Karlsson and Anders Lindquist

Abstract

In the recent article [4] a theory for complexity-constesdrinterpolation of contractive functions
is developed. In particular, it is shown that any such irdkapt may be obtained as the unique
minimizer of a (convex) weighted entropy gain. In this paperstudy this optimization problem in
detail and describe how the minimizer depends on weightgefeand on interpolation conditions.
We first show that, if, for a sequence of interpolants, thaeesbf the entropy gain of the interpolants
converge to the optimum, then the interpolants convergH-nbut not necessarily i ... This
result is then used to describe the asymptotic behavioreofriterpolant as an interpolation point
approaches the boundary of the domain of analyticity. Fop lshaping to specifications in control
design, it might at first seem natural to place strategicadiglitional interpolation points close to
the boundary. However, our results indicate that such gegtyawill have little effect on the shape.
Another consequence of our results relates to model remubtised on minimum-entropy principles,
where one should avoid placing interpolation points toselm the boundary.

B.1 Introduction

Many important engineering problems lead to analytic iptéation, where the interpolant
represents a transfer function of, for example, a feedbackral system or a filter and
therefore is required to be a rational function of boundegtele. In recent years, a com-
plete theory of analytic interpolation with degree constrhas been developed, which pro-
vides complete smooth parameterizations of whole clagsgsch interpolants in terms of
a weighting function belonging to a finite-dimensional spaas well as convex optimiza-
tion problems for determining them; see [3, 4] and refersrticerein.

This theory provides a framework for tuning an engineeriagigh based on analytic
interpolation to satisfy additional design specificatiatheut increasing the degree of the

57
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transfer function. Occasionally the number of tuning paetars is too small to satisfy the
design specifications, and then the parameter space neee®tdarged by increasing the
degree bound. In [11] this was done by adding new interpmiatonditions, often close to
the boundary.

In this paper we present some negative results concerriggtthtegy and explain why,
after all, the solution in [11] is satisfactory. We show thatess the weighting function
is changed, adding new interpolation points close to theatbary will have little effect on
the interpolant. We illustrate this by analyzing a simplareple from robust control.

We also show that interpolation conditions close to the disit have little effect on the
minimum-entropy solution and can thus be discarded (Rell88lk Recently some pro-
cedures for model reduction based on the minimum-entrojpyiso have been proposed
[2, 12], which amount to interpolating in the mirror imagdselected spectral zeros. Our
results suggest (at least for bounded-real interpolamasfominant spectral zeros close to
the boundary should not be selected in this procedure. Hexviey choosing more general
weights [8], this situation can be avoided.

In Sectio B2 we begin by reviewing some pertinent resutimf[4] amplified with
a generalization from the more recent paper [9]. Then, iri@e.3, we provide a mo-
tivation example from robust control, which is then rewsliin Sectiod BI5 after having
presented the main results in SeclianlB.4. Some proofs éeerdé to SectioiBI6.

B.2 Background
Consider the classical Nevanlinna-Pick problem of findirigrection f in the Schur class

8:={f € Hoo(D) : [|flloc <1}

that satisfies the interpolation condition

fzp) =wk, k=0,1,...,n, (B.1)
where(z, wy ),k = 0,1,...,n, are given pairs of points in the open unit ddc= {z :
|z] < 1}. Itis well-known that such ajfi € $ exists if and only if the Pick matrix

1 o — n
P [ﬂ] (8.2)
1-— ZLZy k,0=0

is positive semi-definite, and that the functignis unique if and only if the matrix’
is singular. In the latter casgis a Blaschke product of degree equal to the raniof
Here we shall takeé” to be positive definite, in which case there are infinitely ynsolu-
tions to the Pick problem. A complete parameterization efgblutions of this so called
Nevanlinna-Pick interpolation problem was given by Neiramd (see, e.g. [1]) in 1929.
The parameterization is in terms of a linear fractional $farmation centered around a
rational solution of degree, known as theentral solution

In a research program leading to [3, 4], the subset of alltewia of the Nevanlinna-
Pick problem that are rational of degree at mestere parameterized. Most engineering
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problems require such degree constraints, which complattdr the basic mathematical
problem. More precisely, I€K be the space of all functions

XK = {@ : p(z) € Pol(n), 7(2) = [ (1 - Zkz)}’

7(2) 0

where Po(n) denotes the set of polynomial of degree at mas€ClearlyX is a subspace
of the Hardy spacéi,(ID). Moreover, letK, be the the subset of afl € K such thap(z)
has all its roots in the complementB®fandp(0) > 0. In this (rational) context, Theorem
1in [4] can be stated in the following way.

Theorem B.1. Suppose that the Pick mat®2) is positive definite. Let be an arbitrary
function inX,. Then there exists a unique pdir, b) € K, x X such that

(i) f=0/acs
(II) f(zk):wk, k=0,1,...,n, and
(iii) |a]®> —|b]*> = |o]? a.e. onT := {2 : |z| = 1}.

Conversely, any paifa, b) € Ky x K satisfying(i) and(ii) determines, vidiii), a unique
(oS fK().

Consequently, the solutior{g, b) corresponding to interpolants of degree at most
are completely parameterized by the zerog af Koy; i.e., then-tuples{\y,...,\,} of
complex number in the complement bf these are called thgpectral zeros For each
such choice of spectral zeros, the corresponding intempglae S can be determined by
minimizing the strictly convex functiond{y : § — R U {co}, given by

K (f) = — / log(1 — |f[2)dm(),

over the class of interpolants, whebe = |o|> andm is the normalized Lebesgue measure
onT. In fact, in the present context, Theorem 5 in [4] can can atedtas follows.

Theorem B.2. Suppose that the Pick mati83) is positive definite. Let be an arbitrary

function inX,, and set¥ := |o|2. Then the functionaKy has a unique minimizer in
the class of functions that satisfy the interpolation ctinds (Bl), and this minimizer is
precisely the unique functioh € 8 satisfying conditions$i), (:¢) and(ii:) in TheoreniBI1.

RemarkB.1. Whenz, = 0, then the central solution correspondsito= 1. The cor-
responding functionak; is the usual entropy gain, and the central solution is tloeeef
equal to theminimum entropy solutio(see, e.g. [10]). Thea = 1 € Ky, and hence
the generic degree of the minimum entropy solution,i&nd the corresponding spectral
zeros are located at the conjugate inverses (mirror imagesit circle) of{z;}}_,; allin
harmony with TheoreniSB.1 aldB.2. If zero is not an interpofepoint, thenl ¢ X,
and the generic degree of the minimum entropy solution igat: + 1.
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By varying ¥ we can tune the interpolant without increasing its degne¢hé context
of our motivating example in the next section, this amouh&ping the sensitivity function
without increasing the McMillan degree of the closed-lopgtem. By adding interpolation
conditions we can increase the number of tuning paramedt#re aost of increased degree
of the interpolant.

TheoremBEBll arldB.2 can be generalized to the cas@tisatn arbitrary log-integrable
function onT. This was done in the following way in [9].

Theorem B.3. Suppose that the Pick matrfg2) is positive definite and that = |o|?

is a log-integrable nonnegative function on the unit ciraMhereos is analytic but need
not belong tdkK,. Thenf is the minimizer oKy in the class of functions that satisfy the
interpolation conditiongB) if and only if the following three conditions hold:

() f=0b/a € 8 whereb € X anda is outer,
(i) f(zx) =wpfork=0,...,n,
(iii) [af* —1b|* = |o]*.
Any such minimizer is necessarily unique.

This allows for shaping the interpolant without the constrthato belong toX,, but
at the expense of increased degree; for a precise stateseer{@]. An interesting special
case of this is whe® € C(T),., i.e. ¥ is positive and continuous on the unit circle.

The theory described above allows us to choose an interpthlansatisfies additional
design specifications. In fact, the map frento (a, b) defined by Theoreiln Bl.1 is smooth
[5, 6], and hence a given design can be tuneddito smoothly change the interpolant.
An obvious first choice off is to make it large in frequency bands wheféneeds to be
small. This paper is an attempt to gain understanding of titeerlying function theory
involved in tuning the interpolant. In the paper [9] we haegivked asystematiprocedure
for shaping interpolants based on design specifications.

B.3 A motivating example

The purpose of this paper is to show how the interpolant cbsras the weight is
changed and as additional interpolation points are inteduespecially close to the bound-
ary of D. To illustrate this point, we consider an example on sentsitshaping in robust
control from [11]. Figur&Bl depicts a feedback system withenoting the control input
to the plant

1

z—1.05

to be controlledd represents a disturbance, anis the resulting output, which is fed back
through a compensatdt (z) to be designed. The goal is to determine a contrdil¢r)

G(z) =
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—» G(2) (s

Kz) |4—— ]

Figure[B.1: A feedback system.

so that the feedback system in FiglelB.1 satisfies the depiggifications

|S(e?)] <2.0~ 6.02dB 0 <f<m (B.3)
|S(e)] < 0.1 ~—20.1dB 0 <0<0.3 (B.4)
IT ()] < 0.5~ —6.02dB 25<6<m (B.5)

in terms of the sensitivity functio§ = (1 — GK)~! and the complementary sensitivity
functionT =1 - S.

The plantG(z) has one unstable pole at= 1.05 and one non-minimum phase zero
atz = oo. It follows from H,, control theory (see, e.g. [7]) that the feedback system is
internally stable if and only if the sensitivity functid z), the transfer function froni to
y, is analytic inD® := {z : |z| > 1}, the complement of the closed unit disc, and satisfies
the interpolation conditions

S(1.05) =0, S(o0) = 1.

By the design specificatiol(B.3), the interpolants are iregiuto satisfy|| S|/ < v := 2.
Setting

1 _
f(z)= 55(2 b, (B.6)
f fits into the framework of TheorefB.1 with interpolation ditions
£(0.9524) =0, f(0) = % (B.7)

Sincen = 1, there exists a one-parameter family of degree-one inkenp® satisfying
7l < 1 that may be parametrized by its corresponding spectral xerBigure[E2
shows the solution§(z) = 2f(2~!) as1/ varies from—1 to 1 with the grid0.2.

Clearly none of these designs satisfies the specificatioherefore, following Naga-
mune [11], we add the interpolation conditions

£(=0.9901) = % (B.8)
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Magnitude (db)

0 05 1 15 2 25 3
Frequency (rad/s)

Figure[B.2:The degree-one sensitivity functions corresponding totsplezero selections
with 1/ between-1 to 1 with grid 0.2.

and
£(0.9901e*9-3) = 0. (B.9)

Here [B8), motivated by the design specificatlonlB.5)uees, vial[BB), thal'(1.01) =

0, while (B8), motivated by the design specificatibi{B.4js@res thas(1.01e*0-3%) = 0.
The number of interpolation conditions adds upite- 1 = 5, and therefore Theorem B.1
allows for parameterizing all solutions of degnee-= 4 by choosing. spectral zeros. As
in [11], we choose the spectral zeroi97¢°-5>* and0.9¢* 12> which corresponds to
the weight

T (1 _ 0.961'55i2)(1 _ 0.9671.557;2)(1 . 0.9760'557;2)(1 _ 0.97670.557;2) 2 (B 10)
N = (Z — 1.05)(2 4 1.01)(2 _ 1.0160.31')(2 _ 1.016—0‘31') . .

The corresponding sensitivity functigiy, depicted in FigurEBI3 together with the weight
Uy, satisfies the design specificatioRs{B[3)-IB.5). The pukation points and spectral
zeros for this design are depicted in Figiiiel B.4.

From the plots in FigurEIBl 3 one first notices that in the eXemyere a large weight
in the low frequency region is used, the magnitude of theigeitgis low. This seems to
be intuitive since the high weight in the entropy functiopahalizes the sensitivity more
in that region than in others. However, the weight is alsgdan the high frequency area,
and in this case there is no significant change in the seigitiv

In order to understand the effects of interpolation poimts spectral zeros in this de-
sign, in the next section we develop results for interpofapioints close to the unit circle.
Then, in Sectiof BI5 we revisit the example above.
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Figure[B.3: The weight¥'y (above) and the magnitude of the sensitivity functiar(be-
low).

Interpolation points and spectral zeros.

0.8

0.6

0.4

0.2

Figure[B.4: The intepolation pointsx) and the mirror imagesd) of the spectral zeros
corresponding tdoy.
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B.4 Main results

As the example of SectidnB.3 suggests, we need to investigat the interpolant changes
as additional interpolation points are introduced closéh®unit circle. The following
theorem is one of our main results.

Theorem B.4. Let U = |0]2 € C(T),, whereoc € Ky, and letf be the minimizer of
Ky (f) subject to the interpolation conditions

fzp) =wk, k=0,1,...,n.
Moreover, givenw| < 1, let f be the minimizer dKy (f) subject to
flzr) =wg, k=0,1,....,n, f(\)=w.
Thenfy — fin Hyas|\| — 1.

This theorem indicates that adding interpolation condgiolose to the unit circle will
not affect the design in any important way unless we also ghdline weighting function
¥. For the proof we first need to show that if the generalizedogyt of interpolants
converge to the optimum, then the interpolants converged@ptimal interpolant irf.
The following theorem is proved in SectibnB.6.

Theorem B.5. Let ¥ € C(T),, and letf be the minimizer oKy (f) subject tof (z;) =
wi, k=0,1,...,n. If f, satisfiesfe(zx) = w, k =0,1,...,n, andKy(fe) — Ky (f),
thenfg — fln H>.

It should be noted that this result could not be strengtheéodd,, convergence. A
counterexample could be constructed by notingkatf +axg,) — Kg (f) if m(E,) —
0. Herey denotes the characteristic function ands a scalar such that < |a| <
1 — || flleo- BUt|laxE,|lsc = « forall £. This argument works equally well fof + ge,
whereg, € ¢H> and|g,| is an appropriate approximation 9f;, .

A second step in proving Theordm B.4 is to investigate howrtegpolant changes as
the data is transformed under a Mdbius transformation \FerD, let b, be the Blaschke
factor \

—Z
b)\ (Z) = 1— ;\Z
Then the following proposition tells us how the entropy isieged as the range is trans-
formed by a Mébius transformation.

Proposition B.6. The map(-, A\, ¥) : § — R defined by

Y2
prx ) = [wiog 5= e

is continuous, and
Moreover, if¥ = |o|> whereo € Ko, thenp(f1, A, ¥) = p(fa, A, ¥), wheneverf; (z;) =
fa(zg) fork =0,1,...,n.
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Proof. First part is trivial, second part follows from [4, p. 8 andnuma 10]. O

As a corollary we have the following proposition, which $ells that the solution ob-
tained from the transformed data is the solution transfdrmi¢h the same transformation.

Proposition B.7. Leto € Ko, and letf be the minimizer oK, - (f) subject tof (zx) =
wr, k = 0,1,...,n, as prescribed by Theore@ B.1. Then= b,(f) is the minimizing
interpolant corresponding to the sameof the analytic interpolation problem(zx) =
ba(wg),k=0,1,...,n.

A simple proof of Propositiol Bl7, derived directly from Tdrem[Bl using basic
principles, is given in Sectidi B.6.

To conclude the proof of Theordm .4, we first prove a versiowhich the interpola-
tion valuew equals zero.

Theorem B.8. Let ¥ e C(T),, and let f be the minimizer oKy (f) subject to the
interpolation conditionsf (z) = wyg, k = 0,1,...,n. Moreover, letf, be the minimizer
of Ky (f) subjecttof(z) = wy, k =0,1,...,nand f(\) = 0. Thenfy — fin Hy as

Al — 1.

In Theorem§BWM arldB.§,, may not exist for certain € D, since the corresponding
Pick matrix may not be positive definite. However, there vgagls ane > 0 such thatf,
exists whenevet — e < |\| < 1, hence the limit results are valid.

Proof. Let M, = {g : g € S,9(zx) = %}. First note that ify € M), thengb,
satisfies the interpolation conditions. Furthermore

Ku(g9) = Ku(gby) > Ku(fx) > Ku(f)
by the definitions off, and f. If we prove that

min Ky (g) — Ke(f) as|A| — 1, (B.11)
geEM

thenKyg (fy) — K\p(f), and by Theorer BI5 it follows that, — fin H,. However,
since% — wg as|A| — 1, there is a sequence of functiops€ M), such thay, — f
in H,. By H., continuity of Ky, (BZI1) holds. O

Note that Theoredn Bl 8 holds for any positive and continubuahereas Theorem B.4
only holds if ¥ = |o|?> ando belong toX,. This is because the proof of Theor€mlB.4
requires the use of PropositibnB.7, where X is a condition.

We are now in a position to prove Theor€émIB.4. To this endglet= b, (f\) and
g = by (f). By Propositiof Bl and TheordB.4, is the unique minimizer oKy (f)
such thatf(z,) = by(wr), k = 1,...,n, and f(A) = 0. Furthermorey is the unique
minimizer of Ky ( f) such thatf (zx) = by (wy), k = 1,...,n. By TheoreniBBg, — ¢
in Hs. Sinceb,, is Lipschitz continuousf, — f in H,. This concludes the proof of

Theoreni BK.
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FigurelB.5: The sensitivity functions corresponding to the maximunopgtsolution, i.e.
¥ = 1. The dashed lines correspond to interpolation conditif@sl) and (B-8) and the

solid lines(B2)-(B9).

RemarkB.2. Consider a Pick problem withy, = 0 and several interpolation points close
to the unit circle. Sincé € X, for all n > 1, it follows from Theoreni B} thet removing
the interpolation points close to the boundary have litffeat on the minimium-entropy
interpolant. Unless the interpolation value equals zehe@FeniB.B), the situation is more
complicated for a more general choice ®f since removing an interpolation condition
generally producesa ¢ K.

B.5 Reuvisiting the example

We now return to the example of SectlonIB.3. For determirtiegsensitivity function, two
design tools were used, namely adding interpolation camditand changing the weight
¥ by adding spectral zeros. We shall now investigate how thsgegies have affected
the design.

As a starting point we choose the maximum entropy intergaarresponding to the
interpolation conditiond{Bl7) an@{B.8). This senitiviiynction, obtained by using the
weight ¥ = 1, is depicted FigurEIBI5 with a dashed line. Next we observatWwhppens
to the maximum entropy solution when we add the interpatationditions[[B.R), which
requires the interpolant to be zero at the poin@01e*°-3%, This interpolation point is
close to the unit circle. The corresponding sensitivitydiion is depicted by the solid
line in Figure[®®}. As is seen, the added interpolation molrave neglible effect on the
modulus of the interpolant and only a local effect on the prer®und).3 rad/sec, where
there is a sharp shift &r in the phase. This is in harmony with TheorEmlIB.4 which states
that the effect of adding additional interpolation poinlisse to the unit circle is small in
the Hy-norm.
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FigurelB.6: The sensitivity functions corresponding to the weigit The dashed lines
correspond to interpolation conditiof&4) and (B:8) and the solid lines tdB1)-(B.9).

However, the theory allows for shaping the interpolant bgc#ying spectral zeros or,
equivalently, the weigh®. In the motivating example of Secti@iB.3, the spectral gero
were chosen to be in97e+0-°5 and0.9¢* 12>, which corresponds to the weight given
by (B10). The sensitivity functiorsy obtained, vial[lBI6), by using this weight and the
interpolation constraintg{B.7]-(B.9) is depicted in Figli.8 with solid line. If we remove
the interpolation conditiorL.{Bl9) we obtain the sensijifitnction depicted by dashed line
in Figure[E®. As can be seen, also in this case, the onlyfggni change resulting from
the additional interpolation condition is the chang&sfin the phase arouni= 0.3. As
before this change is very local close to the added intetipolaondition.

Therefore, solely adding the interpolation conditibnRi6es not change the solution
significantly. The change in the magnitude is neglible, élsachange in the phase, except
for the region close to the added interpolation point, whikege is a sharp shift dfr in
the phase. Since the shift occurs over a short interval Hhage inH, norm is minor, and
as the interpolation point approaches the boundary thiswstiihave negligible effect on
the H, norm. This example shows why the same convergence resudt cothold for the
H., norm.

Let us return to FigurEIBl3 and the fact that there is no sicpnifi change in the sen-
sitivity in the high frequency area, despite the large weigtthis region. This could be
due to the interpolation conditiof.(B.8), which lies vergpsé to the boundary in the high
frequency region. Note that any effeEf{BB.8) has on the jputkant is not in conflict with
TheorenfBM. This is because¢ X, if (BB) is removed, and hence TheorEmIB.4 is not
applicable. What can be concluded is that the weight hagja Effect on the design. This
is further exploited in [9] where a systematic procedurefifoding appropriote weights is
developed.
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B.6 Proofs

For the proof of TheorefiBl5 we will use concepts from convedysis. LetA : X — R
be a strictly convex functional, whebgis compact and convex. Then the minimum

f = min A(z)

exists and is attained at a uniques X. Consider the sek. of e—suboptimal solutions
K.={reX:A(@)<B+e}, e>0.

It seems reasonable that the “size”gf tends to zero as — 0. However, to state and
prove this properly, we need topological consideratiortstae concept of strong convex-

ity.

Definition B.9. A functional A is strongly convex with respect to the notm || if there

exists anx : [0, 00) — [0, 0o) that is continuous, strictly increasing and satisfiéd) = 0,

for which

r+y
2

%(A(aj)—kA(y)) > A=) v allz - y))

holds for allz, y € X.

Lemma B.10. LetX be a convex set, and lAtbe a strongly convex functional dhwith
respect to the nornj - ||. Moreover, leti be the minimum ol (x) such that: € X. Then
A(zg) — A(%), z € X, implies||zy, — Z|| — 0.

An equivalent statment is that, i is strongly convex with respect to the notm |
then

sup{[lz —yl| : 7,y € K} — 0

ase — 0, or, equivalently,K. is a neighboorhood basis for the optimal painin the
topology induced by the north- ||.

Proof. Assume that the statement of Lemma®.10 does not hold, ia.thlere exists an
€ > 0 so that for any > 0 it is possible to find an € X so that|/A(z) — A(Z)| < § and
|z — &]| > e. Letd < ale). ThenA(Z) + 6 > S(A(z) + A(2)) > A(ZEE) + o]z —
2[|) > A(Z£2) + a(e). This contradicts that is the minimizer, and hence the validity of
LemmdB.ID is proved by contradiction. O

In order to apply this result to the entropy functional, wesahéo show thakKy is
strongly convex with respect to thé, norm.

Proposition B.11. Let U € C(T),.. Then the entropy function&y, is strongly convex
with respect to théZ, norm.



ON ANALYTIC INTERPOLATION WITH INTERPOLATION CLOSE TO THEBOUNDARY 69

Proof. For|f| < 1 and|g| < 1, we have the following inequality
3(=1log(1 = [f[*) —log(1 — |g]*))
>—1og(1—’%]2) + d1og (141525 (B.12)
To see this, use the parallellogram law

\f+ gl +1f —gl> =2[f1* +2|g/?

to obtain
(1- L) = i o - g+ L
o 7+ 20gl? - 11 - )’
= @i -l + LI e )
(7P = 19%)° + 7617 — oI

(1170 19+ L2 2 - o).

+

.

Y

Consequently, since

_ 2 _ 2
2|/ lof .,
(1= [f»)A—1g*)
we have )
_ If+gl?
(1 1 ) N i

A=) —1lgl?) 2
from which [BI2) follows. Then, multiplyind{B-12) b¥ and integrating, we obtain

2
%(Kq;(f) +Ky(g)) > Ky <¥> + %/Tllllog (1 + u) dm. (B.13)

Sincelog(1 + t) > t/2for ¢ € [0, 2], the last term in[{BI3) is bounded from below by

1 — g]? —g/? in ¥
—/\Illog 1+M dmz/\pudmzﬂnf_g@’
2 Jr 2 T 4 4

establishing the strong convexity &y O

Theoren BB then follows from LemniaBl10 and ProposifioflB. 1
We now provide a more direct proof of PropositlonIB.7. In fagt /) clearly satisfies
the interpolation conditions, (f(zx)) = ba(wg) and||bA(f)|lec < 1. Let f =b/a. Then

B A= f  _aA—b
a_bk(f)_l—j\f_a—ij’
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and hence
ac® — BB* = (a — Ab)(a — Ab)* — (aX — b)(aX — b)* = (1 — A\)(aa* — bb*¥).
This shows thay = b, (f) is the interpolant corresponding éo

B.7 Conclusions and further directions

In this paper we have studied the (generalized) entropytiumel Ky of [4] and the inter-
polants solving the optimization problem

min Ky (f) subjectto f(zx) = wi, £k =0,1,...,n.

It is shown that, if the entropies of a sequence of intergslannverge to the minimum,
then the corresponding interpolants convergélin but not necessarily i/ ,. Further-
more, if the interpolation values are transformed by a Méhiansform, so is the mini-
mizing interpolant. Next we show that the introduction ofeaiditional interpolation point
close to the boundary produces an insignificant increaskarentropy gain. Taken to-
gether with the results above, this implies that the changles interpolant is small i/,
norm.

We have analyzed a design example from robust control,exfualy Nagamune [11],
in the context of our results. The effect of an added intexfpwh condition close to the
boundary turns out to be small, in harmony with TheorEm$ BAfE&8. In the solution of
Nagamune [11], a main objective of the additional interpotaconditions was to increase
the dimension ofK, thereby allowing for more design parameters. Howevernisieiad
applying the parameterization of TheorEmIB.3, we couldestie optimization problem
for alarger class o¥ without the additional interpolation conditions. Addimgérpolation
points restricts the admissible set, and, if they have gidé effect, one would expect
better solutions without them. A complete theory for thidéveloped in [9].
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Stability-Preserving Rational
Approximation Subject to Interpolation
Constraints

Johan Karlsson and Anders Lindquist

Abstract

A quite comprehensive theory of analytic interpolationhadiegree constraint, dealing with ra-
tional analytic interpolants with an a priori bound, hasrbdeveloped in recent years. In this paper
we consider the limit case when this bound is removed, andstable interpolants with a prescribed
maximum degree are sought. This leads to weiglifgdminimization, where the interpolants are
parameterized by the weights. The inverse problem of déwamgthe weight given a desired inter-
polant profile is considered, and a rational approximatime@dure based on the theory is proposed.
This provides a tool for tuning the solution to specification

C.1 Introduction

Stability-preserving model reduction is a topic of majopimntance in systems and control,
and over the last decades numerous such approximationdun@sehave been developed;
see, e.g., [3, 17, 23, 1] and references therein. In thisrpa@éntroduce a novel approach
to stability-preserving model reduction that also accomates interpolation contraints, a
requirement not uncommon in systems and control. By chgakimweights appropriately
in a family of weightedH> minimization problems, the minimizer will both have low
degree and match the original system.

As we shall see in this paper, stable interpolation with degonstraint can be regarded
as a limit case of bounded analytic interpolation under #mesdegree constraint — a topic
that has been thoroughly researched in recent years; ség [Blore precisely, letf be
a function inH (D), the space of functions analytic in the unit dBc= {z : |z| < 1},
satisfying

73
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(i) the interpolation condition

fGr)=wk, k=0,...,n, (C.1

(i) the a priori bound| f||o < =, and

(iii) the condition thatf be rational of degree at most

wherezg, 21, ...,2, € D are distinct (for simplicity) andvg, w1, ...,w, € C. It was
shown in [5] that, for each such there is a rational function(z) of the form
o(z) = p(z) 7(2) = ﬁ(l — Zpz)
7(2)’ o ’

wherep(z) is a polynomial of degree with p(0) > 0 andp(z) # 0 for z € D such thatf
is the unique minimizer of the generalized entropy funciion

" i0\|2.,2 —2 LAY do
= [ ot og1 =2 )y
. 2

subject to the interpolation conditioliS{C.1). In factrehis a complete parameterization of
the class of all interpolants satisfying (i)—(iii) in terrathe zeros of, which also are the
spectral zeros of; i.e., the zeros of? — f(z) f*(z) located in the complement of the unit
disc. It can also be shown that this parameterization is $§mao fact a diffeomorphism
[6].

This smooth parameterization in terms of spectral zerdsdsénter piece in the the-
ory of analytic interpolation with degree constraints; pges] and reference therein. By
tuning the spectral zeros one can obtain an interpolanbeser fulfills additional design
specifications. However, one of the stumbling-blocks inapplication of this theory has
been the lack of a systematic procedure for achieving tmis¢u In fact, the relation be-
tween the spectral zeros pfandf itself is nontrivial, and how to choose the spectral zeros
in order to obtain an interpolant which satisfy the givenigiespecifications has been a
partly open problem.

In order to understand this problem better, we will in thipgafocus on the limit case
asy — oo; i.e., the case when condition (ii) is removed. We shallrédethis problem
— which is of considerable interest in its own right —saable interpolation with degree
constraint Note that, asy — oo,

—y*log(1 =7 ~2|f*) — If1%,
and hence (see Proposition1C.2),
T _ db T do
- [ lePrtton - ey — [ lesiy.
- s o 21

For the case = 1, this connection between thié, norm and the corresponding entropy
functional have been studied in [15]. Consequently, thblstmterpolants with degree
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constraint turn out to be minimizers of weight&d norms. Indeed, thél; norm plays the
same role in stable interpolation as the entropy functidiogls in bounded interpolation.
Stable interpolation an@/> norms are considerably easier to work with than bounded
analytic interpolation and entropy functionals, but marfiyth® concepts and ideas are
similar.

The purpose of this paper is twofold. First, we want to prewdstability-preserving
model reduction procedure that admits interpolation gaitgs and error bounds. Sec-
ondly, this theory is the simplest and most transparenwgatdor understanding the full
power of bounded analytic interpolation with degree caistr In fact, our paper provides,
together with the results in [12], the key to the problem ofitio settle an important open
question in the theory of bounded analytic interpolatiothwdegree constraint, namely
how to choose spectral zeros. In the present setting, siheetios are actually the poles.

In many applications, no interpolation conditions (or oalyew) are given a priori.
This allows us to use the interpolation points as additiomaing variables, available for
satisfying design specifications. Such an approach foripgspreserving model reduc-
tion was taken in [8]. However, a problem left open in [8] wamvhto actually select
spectral zeros and interpolation points in a systematic iwayder to obtain the best ap-
proximation. This problem, here in the context of stabifityeserving model reduction, is
one of the topics of this paper.

The paper is outlined as follows. In SectlonlC.2 we show thatgroblem of stable
interpolation is the limit, as the bound tend to infinity, bEtbounded analytic interpola-
tion problem stated above. In SectlonlC.3 we derive the khsiory for how all stable
interpolants with a degree bound may be obtained as weigtitedorm minimizers. In
SectioCH we consider the inverse problentfaf minimization, and in Sectiolid.5 the
inverse problem is used for model reduction of interpolatee inverse problem and the
model reduction procedure are closely related to the theof%2]. A model reduction
procedure where no a priori interpolation conditions apied are derived in Section
[Cd. This is motivated by a weighed relative error bound efapproximant and gives a
systematic way to choose the interpolation points. Thig@gmation procedure is also
tunable so as to give small error in selected regions. In thpeAdix we describe how
the corresponding quasi-convex optimization problemshbeEasolved. Finally, in Section
we illustrate our new approximation procedures by appglyhem to an example and
finally conclude with two control design examples.

C.2 Bounded interpolation and stable interpolation

In this section we show that thi,; norm is the limit of a sequence of entropy function-
als. From this limit, the relation between stable interfiolaand bounded interpolation
is established, and it is shown that some of the importanteats in the two different
frameworks match.

First consider one of the main results of bounded interpmiat complete parameter-
ization of all interpolants with a degree bound [5]. For thve will need two key concepts
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in that theory; the entropy functional

Klp() = = [ lote®)Plog(1 2P 5

3
. 2

where we takdﬁrglg(f) := oo whenever the,, norm|| f||- > 7, and the co-invariant
subspace

X = {M c71(2) = ﬁ (1 —2zk2),pe€ POl(n)} . (C.2)

7(2)
k=0
Here Po[n) denotes the set of polynomials of degree at mosand{z;}}_, are the
interpolation points.
In fact, any interpolanf of degree at most with || f||oo < 7 is a minimizer 01K|70|2 (f)

subject to[[Cl) for some < K,, where

Ko ={oce€X : o(0) > 0,0 outer.
Furthermore, all such interpolants are parameterizedl byX,. This is one of the main
results for bounded interpolation in [5] and is stated maeejsely as follows.
Theorem C.1. Let {z;}}_, € D, {wx}}_, C C, andy € R;. Suppose that the Pick
matrix ) .

P= {77 — wkw‘f] (C.3)
L= 2zZe | =0

is positive definite, and let be an arbitrary function inKy. Then there exists a unique
pair of elementga, b) € Ky x K such that

() f(z) =b(2)/a(z) € H* with || f|lec <~
(i) f(zx) =wg, k=0,1,...,n,and
(iii) |a(2)> =7 72[b(2)[* = |o(2)[* forz € T,

whereT := {z : |z| = 1}. Conversely, any paifa,b) € K, x X satisfying (i) and (ii)
determines, via (iii), a unique € X,. Moreover, the optimization problem

minKrglz(f) st fzk) =wg, k=0,...,n
has a unique solutioff that is precisely the uniqug satisfying conditions (i), (i) and (iii).

The essential content of this theorem is that the classefpotants satisfying f || .. <
~ may be parameterized in terms of the zerog pind that these zeros are the same as
the spectral zeroof f; i.e., the zeros of the spectral outer factefz) of w(z)w*(z) =
72 = f(2)f*(2), wheref*(z) = f(z71).

Let||f]| = v/(f, f) denote the norm in the Hilbert spag&k (D) with inner product

o) = [ re gy,
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As the boundy tend to infinity,

—?log(L =7 2|f]) — IfI>-
Therefore, the entropy functionKI?olz (f) converge to the weighteH> norm||o f||2.

Proposition C.2. Let f € H,, (D) ando be rational functions witle outer. Then

() K?U‘Q(f) is a non-increasing function of, and,

(i) KJ,12(f) = llof|* asy — oc.

o]

Proof. It clearly suffices to consider only > || f| «. Then the derivative of-v2 log(1 —
72| f|?) with respect toy is non-positive fof f| < ~, and henc@i‘fj‘2 (f)is non-increasing.
To establish (ii), note that

—?log(1 =7 2[f*) = [f1> + OOy 2| f1?),

and therefore

—lo[*y*log(1 =y 2|f1?) = lo f[?
pointwise inT except foro with poles inT. There are two cases of importance. First,
if o has no poles i, or if a pole ofo coincided with a zero of of at least the same
multiplicity, then —|o|?>42 log(1 — v~2|f|?) is bounded, and (ii) follows from bounded
convergence. Secondly,dfhas a pole ifT at a point in whichf does not have a zero, then
bothK, .(f), and|lo f||* are infinite for anyy. O

The condition|| f||. < oo is needed in Propositidi @.2. Otherwise||f|| = oo,
thenK‘Vg‘2 (f) is infinite for any, while ||o f||* may be finite ifc has zeros in the poles of
fonT.

The next proposition shows that stable interpolation magd®n as the limit case of
bounded interpolation when the boundend to infinity.

Proposition C.3. Let o be any outer function such that the minimizeof
min ||o f|| subject tof (z) = wi, k =0,...,n (C.49)
satisfied| f|l.c < co. Let f, be the minimizer of

min K",
o]

(fy) subjecttof,(zx) = wg,k=0,...,n

for v € R large enough so that the Pick matr&3) is positive definite. Thefo(f —
[l — 0asy — oo

Proof. By PropositioltlCR, and singeéand f, are minimizers of the respective functional,
we have

Kl () 2 K 2(Fy) = lofy 1 = llo f]1%.
Moreover, sincek) ,(f) — |of|* asy — oc it follows that|[o f,||* — [/of|? and

o]

hence, by Lemm&Q.8, we hajje(f — f,)|| — 0 asy — oo, as claimed. O
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Note that Propositiof’(.3 holds for amywhich is outer and not only for € K.
However, ifo € Ko, thendeg f, < n for any~. Therefore, sincdo(f — f,)|| — 0 as
~ — oo, for o € Ky the minimizerf of (C:4) will be a stable interpolant of degree at most
n. We will return to this in the next section.

Itis interesting to note how concepts in the two types ofrimdéation are related. First
of all, the weightedH, norm plays the same role in stable interpolation as the pytro
functional does in bounded interpolation. Secondly, trexspl zeros, which play a major
role in degree constrained bounded interpolation, simptyespond to the poles in stable
interpolation. This may be seen from (iii) in TheorEmIC.1.

C.3 Rational interpolation and H, minimization

In the previous section we have seen that minimizers of aifspelass of H> norms are
stable interpolants of degree at mast This, and also the fact that this class may be
parameterized by € K, can be proved using basic Hilbert space concepts. This will b
done in this section.

To this end, first consider the minimization problem

min || f|| subjecttof (z) = wi, k =0,...,n, (C.5)
without any weightr. Let fy € Ho(D) satisfy the interpolation conditioR{G.1). Then any

f € H,(D) satisfying [C]l) can be written a5= f, + v, whereB = [];_, A= and
v € BH,. Therefore,[[Ck) is equivalent to

,nin. Il fo +vl|.

By the Projection Theorem (see, e.g., [13]), there existsique solutionf = f, + v to
this optimization problem, which is orthogonal B, i.e. f € X := Hy & BHs.
Conversely, iff € X andf(z) = wg, fork = 0,...,n, thenf is the unique solution
of (C3). To see this, note that any interpolantip(D) may be written ag’ + v where
v € BH,. However, sinces € BHy L X > f, we have|f + v[|? = || f||* + ||v]% and
hence the minimizer ig, obtained by setting = 0.
We summarize this in the following proposition.

Proposition C.4. The unique minimizer ofCH) belongs tdk. Conversely, iff € X and
f(zx) = wy, fork =0,...,n, thenf is the minimizer offC3).

Consequently, in view off{C.2)f is a rational function with its poles fixed in the
mirror images (with respect to the unit circle) of the int@giion points. By introducing
weighted norms, any interpolant with poles in prespecifieidi{s may be constructed in a
similar way. In fact, the set of interpolanfsof degree< n may be parameterized in this
way. One way to see this is by considering

min ||o f|| subject tof (zx) = wg, k =0,...,n, (C.6)
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whereo € K. Sinceo is invertible in H (D), (CA) is equivalent to
min ||o f|| subjectto(o f)(zx) = o(zk)wk, k= 0,...,n.

According to Propositiol.Cl4, this has the optimal solutigh= b € X, and hence the
solution of [C®),f = g is rational of degree at most To see that any solution of
degree at most can be obtained in this way, note that any such interpafaistof the
form f = g,b € K,o € Ky. Sincesf = b € X holds together with the interpolation
condition [C) if and only ifo(zx) f(21) = o(zk)wi for k = 0,...,n, f is the unique
solution of [C®), by Propositidnd.4. This proves the faliog theorem.

Theorem C.5. Leto € K. Then the unique minimizer of
min ||o f|| subject tof (zx) = wg, k=0,...,n, (C.7)

belongs toH (D) and is rational of a degree at most More precisely,
b
f== (C.8)
g

whereb € X is the unique solution of the linear system of equations
b(zg) = o(zr)wg, k=0,1,...,n. (C.9)

Conversely, iff satisfieq]C.H)for someb € K and the interpolation conditio) holds,
then is the unique minimizer ofC1).

In other words, the set of interpolants Mi(D) of degree at most may be param-
eterized in terms of weights € X,. Another way to look at this is that the poles of
the minimizer [CB) are specified by the zerossoéind that the numeratdr = §/7 is
determined from the interpolation condition by solving limear system of equations

6('216) = T(Zk)U(Zk)’lUk, k= 07 17 XL (Clo)
for then + 1 coefficientsfy, g1, .. ., 8, of the polynomial3(z). This is a Vandermonde
system have a unique solution (as long as the interpolationigx,, z1, . . ., z, are distinct
as here).

Note that this parameterization is not necessarily injectif, for examplew;, = 1
for k = 0,...,n, then there is a unique functiof of degree at most that satisfies
f(zk) = wg,k = 0,...,n. No matter hows € X, is chosenp = o, and hence the
minimizer of [C®) will bef = 1.

C.4 The inverse problem

In [12] we considered th&verse problem of analytic interpolatipine., the problem of
choosing an entropy functional whose unique minimizer isespecified interpolant. In
this section we will consider the counterpart of this prabfer stable interpolation. To this
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end, let us first introduce the subcld$g (D) of log-integrable analytic functions iH (D)
for which the inner part is rational. In particular, the dasf rational analytic functions
belong toHy (D).

Suppose € Hg (D) satisfies the interpolation conditida{€.1). Then, whensdbere
existo which is outer such that is the minimizer of

min ||o f|| subjecttof (z) = wi, k=0,...,n?

We refer to this as thimverse problem off; minimization and its solution is given in the
following theorem.

Theorem C.6. Let f € Hg(DD) satisfy the interpolation conditiorf(z;) = wg,k =
0,...,n. Thenf is the minimizer of

min ||o f|| subjecttof (zx) = wg, k=0,...,n, (C.11)

whereo is outer if and only ifo f € X, in which case the minimizer is unique. Such a
exists if and only iff has no more tham zeros inD.

Proof. The functionf is the minimizer of [CT1) if and only ib = o f is the minimizer
(necessarily unique) of

min ||b|| subject tob(zx) := wro(zk), k=0,...,n,

which, by Propositiofi_.Cl4, holds if and onlydff = b € K. Such as only exists if

f has less or equal ta zeros insiddD. To see this, first note that, jf has more than
n zeros inD, theno f has more tham zeros inD and can therefore not be of the form
p/T with p € Pol(r). On the other hand, if has less or equal to zeros inD, then let
p = [[(z — px) Wherep;, are the zeros of, and setr := % Theno is outer and satisfies
of e X. O

Theoren CF defines a mapthat sends to the unique minimizey of the optimiza-
tion problem[C1N); i.e.,
o f=¢(o). (C.12)
Let W, denote the set of weightsthat give f as a minimizer offl{C11); i.e., the inverse
imagep~1(f) of f. By TheorenLCH,

Wy = ¢ '(f)={o outer:of € X} (C.13)

= {a = % :p € Polln) \ {0},? outer} ,

i.e., Wy may be parameterized in terms of the polynomjais Pol(n). For the condition
thatpf~1! is outer to hold for some € Pol(n), it is necessary that has at most zeros
in D. This is in accordance with Theordm.6. It is interestingate that the dimension
of W depends on the number of zerosfoinsideD. The more zerog has insideD, the
more restricted is the clagg;. One extreme case is wherhas no zeros insid®. Then
p could be any stable polynomial of degreeThe other extreme is whefihasn zeros in
D, in which case is uniquely determined up to a multiplicative constant.
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C.5 Rational approximation with interpolation constraint s

In this section the solution of the inverse problem (ThedtZ@) will be used to develop
an approximation procedure for interpolants. lfet Hg (D) be a function satisfying the
interpolation condition{C]1). We want to construct anofa@ctiong € Hg(D) of degree
at mostn satisfying the same interpolation condition such that as close as possible to
/-

Leto € Wy; i.e., leto be a weight and such thditis the minimizer of [C7I1), and let
p be close tar. Then it is reasonable that the minimizeof the optimization problem

min ||pg|| subject tog(z) = wy, £ =0,...,n, (C.14)
is close tof. This is the statement of the following theorem.

Theorem C.7. Let f € Hg(D) satisfy the interpolation conditiotf(zx) = wg, k =
0,...,n,andletc € W;. Moreover, letp be an outer function such that

2
Hl _ ‘3‘ €, (C.15)
ag

(oo}

and letg be the corresponding minimizer @€I4) Then
2 4e 2
lo(f = DII* < Tl I (C.16)

For the proof we need the following lemma.

Lemma C.8. Let letg € Hg(D) satisfyg(z) = wy, for k = 0,...,n, and letf be the
minimizer of CI1) Then, if

logl® < (1 + d)llofII?,

we have
lo(f—g)lI* < 28|laf]>.

Proof. From the parallelogram law we have,

2 2

=g
+HU 5

(I 12+ llorgll?) = Ha%

1
2

Therefore, sincg is the minimizer of [CI1), and hendle f|| < ||o(f + g)/2]|, it follows

that

lo(f = I* < 2(llogl® — o fII*) < 28]lof11%,

which concludes the proof of the lemma. O
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Proof of Theoreri.Cl7In view of (CI%) we have
(1 =)o) < lp(e?)* < (14 ¢)lo(e”)?

for all @ € [—m, «r]. Therefore, since is the minimizer of [CIK), by[{TC15), we have

1 1 1+e
logl” < ——logll* < oI < Tl fIP = (1+ 8) oI,

whered := 2¢/(1—¢). Consequentlf{C16) follows from Lemiat.8.

We have thus shown that ‘I%‘ is close tol for z € T, then||o(f — g)|| is small.
This suggests the following approximation procedurestiated in Figur€ICl1. By The-
orem[C.b, the functiorp, defined by[[CT2), maps the sub8éf into the space of inter-
polants of degree at most In Figurd @1 these subsets are depicted by fat lines. Téie ba

idea is to replace the hard problem of approximatfrigy a functiong of degree at most
by the simpler problem of approximating an outer functéoby a functionp € Xy.

Interpolants of degre€ n

Figure[T.1: The mapp sending weighting functions to interpolants.

Theoren ClJ7 suggests various strategies for choosing ti@idnsp € X, ando €
W, depending on the design preferences. If a small error boumgf f — ¢)|| is desired
for a particularc € W, this o should be used together with thec X, that minimizes
(om1:)}

However, obtaining a small value di{Cl15) is often more img@ot than the choice
of 0. Therefore, in general it is more natural to choose the @aip) € (W;,X,) that
minimizese. For such a pair, setting:= 7p, we can be see froh{G.2) afld ({d.13) that

2

EZHI—
o

2
1—’—’ H , (C.17)

o0
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whereg € Pol(n) andp € Pol(n) ~ {0} needs to be chosen so thatf is outer. It is
interesting to note tha{CIL7) is independent of) := [];_,(1 — zx2) and hence of the
interpolation pointgyg, 21, - - ., 2.

Now suppose thaf hasy zeros inD; i.e.,» nonminimum-phase zeros. Thén=  fj,
where f; is outer (minimum phase) and is an unstable polynomial of degree< n.
Settingp = mpo, our optimization problem to minimizereduces to the problem to find a
pair (po, q) € Polin — v) x Pol(n) that minimizes

1_’q_fo
Po

€ =

2
H (C.18)

for a given nonminimum-phasg. This is a quasi-convex optimization problem, which
can be solved as described in the Appendix (see also [20, Zihp optimalg yields the
optimalp = ¢/7. The approximany is then obtained by solving the optimization problem
(CI32) as described in Theorém1C.5.

One should note that, the more zerbsas insideD, the smaller is the choice of
Therefore one expects approximations of non-minimum plpdesets to be worse than
approximations of plants without unstable zeros.

C.6 Rational approximation

In applications where there are no a priori interpolationstmints, the choice of interpo-
lation points serve as additional design parameters. hes important to choose them
so that a good approximation is obtained. The main strategyiqusly used is to chose
interpolation points close to the regions of the unit cinvleere good fit is desired. The
closer to the unit circle the points are placed, the bettebtit the smaller is the region
where good fit is ensured; see [8] for further discussionsh@a tHowever, in this paper
we shall provide a systematic procedure for choosing therpatation points, based on
guasi-convex optimization.

As we have seen in the previous section the choice of intatipol points does not
affecte given by [CIF). However, since = £-, the weighted?, error bound[C6) in
TheorenLCJ7 becomes
pf—g|*_ e
T f “1l—c¢

which depends om and hence on the choice of interpolation points. In fact thia
weighedH» bound on the relative errdrf — g)/f. If a specific part of the unit circle

is of particular interest, interpolation points may be pldclose to that part, which gives
a bound on the weighted relative error with high emphasishanh $pecific region. (For

a method to do this by convex optimization, see Rerark C.Beémext section.) If no
particular part is more important than the rest, we suggestlectr as the outer part qf;
i.e.,|7(z)| = |p(z)| for z € T. This gives a natural choice of interpolation points that ar
the mirror images of the roots ef Furthermore, this choice gives the relative error bound
I(f —g)/fIl < 4e/(1 — ¢€). This is summarized in the following theorem.

2
)

|
g
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Theorem C.9. Let p and¢ be polynomials of degrees at maessuch thatpf—! is outer,

and set
2

e:=|1- ‘g (C.19)
p oo
Letzg, 21,...,2, € Dand let
g = argmin ||pg|| subjecttog(z;) = f(zx),k =0,...,n,
wherep = ¢/7 and7r = [[,_,(1 — z,2). Thendeg g < n and
2
pf—g de p H2
to 2l < = . C.20
T f H T 1l—ellr ( )
In particular, if the interpolation pointsyg, z1, . . ., 2, are chosen so thdt(z)| = |p(z)]
for z € T, then
f—y 2 4e
— < . cz21
15 < (€21

RemarkC.1 Note that the choicgr| = |p| in TheorenLCP implies that the unstable zeros
of f become interpolation points. Therefore, o 1, (f — g)/f belongs toH>.

RemarkC.2. Our method requires that we choosdo be greater than or equal to the
number of unstable zeros. This is a natural design resmicsince the approximation
problem becomes more difficult the larger is the number ofabis zeros. It should be
noted that other methods for which there is a bound for thativel error, such as balanced
stochastic truncation or Glover's relative error metha(®.g., [10]), will not work either

if the number of unstable zeros exceeddn fact, in such a case the corresponding phase
function will have more than Hankel singular values equal t¢ and therefore the bound
will be infinite, and the problem to minimiz& f — g)/ f]|- over allg of degree at most

n will have the optimal solutioy = 0. Also note that, unlike these methods, our method
does not requirg to be rational.

C.7 The computational procedure and some illustrative examples

Next we summarize the computational procedure suggesttteliheory presented above
and apply it to some examples.

Given afunctionf € Hg(ID) with at most: zeros inD, we want to construct a function
g € Hop(D) of degree at most that approximateg as closely as possible. We consider
two versions of this problem. First we assume tfiaatisfies the interpolation condition
(C), and we require to satisfy the same interpolation conditions. Secondlyelex the
problem by removing the interpolation constraints.

Suppose thaf hasy < n zerosinD. Thenf = « fy, wheref, is minimum-phase, and
m is a polynomial of degree with zeros inD. The approximang can then be determined
in two steps:
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(i) Solve the quasi-convex optimization problem to find adgé, ¢) € Pol(n — v) x
Pol(n) that minimizes[[CI8), as outlined in the Appendix. Thiddgeoptimale, po and
q. Setp := mpy.

(i) Solve the optimization probleri{CIL4) with= ¢/, as described in Theordm T.5.
Exchangingr for p in (CI0) we solve the Vandermonde system

B(zx) = q(zr)wr, k=0,1,...,n,

for the 8 € Pol(n), which yields

g= s (C.22)

q

and the boundIC20), wher¢z) := [[,_,(1 — Z2).
For the problem without interpolation condition, beforegstii) we chose the interpo-
lation points in one of the following ways.

(i)’ Choosex, 21, . . ., z, arbitrarily, or as in Remailkd.3 below. This yields a solntio
(C22) and a bound{CPO0).
(i) Choosezg, 21, - . ., 2, SO thatr is the outer (minimum-phase) factor pf This

yields a solution[C22) and the boufld{Q.21) for the retakiy error.

RemarkC.3. If abound on the weighted errpw(f—g)|| is desired in Step (if) itis natural

to chooser (which specify the interpolation points) so thT%t is as close tav as possible.

This may be done by solving the convex optimization problerfitd ar € Pol(n) that

minimizes

Tfw
p

1—

)

‘ 2

o0

as in the Appendix. If instead we need a bound on the weigleledive error||w(f —
9)/ 1, we modify the optimization problem accordingly.

Next, we apply these procedures to some numerical examples.

C.7.1 Model reduction with and without interpolation constraints

Example C.1. Let
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Figure[®.2: Poles and zeros of in Examples and2.

be the stable system of ordet given by

b(z) = 30234 902" +128.62'" +114.62'°
—137.42% — 322.328 — 371.427 +10.82°
+1005.82° 4 2428.72* 4 3967.02° + 4189.72>
+2800.62 4 726.2,

a(z) = 4.0z —13.42'2 — 44221 — 1445210
+83.52% 4 363.72% + 791.427 + 340.12°
+770.72° + 877.32* — 93.62° — 4767.822
—6349.32 — 4532.7.

This system has one minimum-phase zero. The poles and zergivan in Figur€Tl2.
Consider the problem to approximatéoy a functiong of degree six while preserving
the values in the pointsg, 21, ..., z,) = (0,0.3,0.5,—0.1, —0.7, —0.3 = 0.37). Such an
interpolation condition occurs in certain applications.
Step (i) to solve the quasi-convex optimization problem tnimize (CI8) yields op-
timal ¢, p andgq, and Step (ii) the approximagt the Bode plot of which is depicted in
FigurelB together with that gf. The third subplot in the picture shows the relative error

‘% for 6 € [0, 7].
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Figurel@.3: Bode plots off andg together with the relative error.

Itis important to note that the functign which is guaranteed to be stable, satisfies the
prespecified interpolation conditions and the error bollA@Q). FigurdeCI3 shows that
matchesf quite well.

Example C.2. Next we approximate the functiofiin Example 1 without imposing any
interpolation condition. Fon = 4, 6 and8 we determine an approximagy of degree

n via Steps (i) and (ifj. This approximant satisfies the relative error bodnd{IC.Zhen

we comparey, to an approximant,, of the same degree obtained by balanced truncation
[19, 24].

Since balance truncation imposes a bound on the absoldker rlhan the relative,
error, it is reasonable to also compare it with the approrimg of degreen obtained by
stochastically balanced truncation [22, 18], which comik wrelative error bound.

The respective Bode plots and relative errors for the threthaus are depicted in
FigurefTHTI5, arld[@.6. Stochastically balanced trimecgives the best approximation
close to the valleys of the plant, and balanced truncatieesgbest approximation close to
the peaks. The proposed method performs somewhere in bebmeehas a more uniform
relative error. In fact, as can be seen from Fidud C.5 andrBiE®, it is the method with
the smallest relativé .. -error forn = 6 andn = 8. As can be seen in the following tables,
listing the relative and absolute errors of the three methtdte approximants of roughly
the same quality.
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Relative Lo Error Degree
Approximation method 4 6 8
Proposed method 0.4736 0.0764 0.0194

Balanced truncation 0.4727 0.0785 0.0220
Stoch. Bal. truncation 0.7958 0.0656 0.0334

Hs Error Degree
Approximation method 4 6 8
Proposed method 0.1918 0.0422 0.0100

Balanced truncation 0.0746 0.0451 0.0057
Stoch. Bal. truncation 0.3073 0.0506 0.0213

In the present example, the error bound{C.21) is quite gwatee. In fact, the bound
is 10.4735,0.8765, and0.3994, for n equal to4, 6, and8 respectively, which should be
compared with the corresponding errors in the table. By aoipn, the relativd.
bound o, is 3.9288, 0.3562, and0.0573 for n equal to4, 6, and8 respectively, which is
also conservative for = 4, 6. Although these bounds are measured in different norms, it
is still interesting to compare them. How to improve our badwill be subject to further
studies.

In Figure[@.Y the approximantfrom Example 1 is compared tg. The interpolation
points forgg are chosen according to (fi)and the interpolation condition gfis prespec-
ified. It can be seen from FiguEdT.7 thgtmatchesf better than doeg. This is because
the interpolation points could be chosen freely Jer

RemarkC.4. Note that stable approximation could be done iterativelsblying a non-
convex optimization directly by gradient methods to finddbeptima; see e.g. [14] and
references therein. With a sufficiently good starting paarglobal optimum could be ob-
tained. Using such methods for the present example, it isilplesto find approximants of
degreest, 6, and8 with relative errors that compare favorable to all the abonvghods.
However, our method is based on convex and quasi-convexizatiion, and thus does not
rely on a good starting point, which is often difficult to find.will be subject to further
research to investigate in which way optimal approximagiohweights relate to optimal
approximations of interpolants.

C.7.2 Sensitivity shaping in robust control

Finally, we apply our approximation procedure to loop-shgy low-degree controllers
in robust control, where interpolation conditions are rezketb ensure internal stability.
Given a plantP, a controller is often designed by shaping the sensitivitiction

1
T 1-PC’

where P andC' are the transfer functions of the plant and the controllspeetively. In
fact, the design specifications may often be translateddatalitions on the sensitivity

S
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function. For internal stability of the closed loop systehe sensitivity functiors needs
to satisfy the following properties:

(i) SisanalyticinC_L (continuous time) or i<, whereD® := {z | |z| > 1}, (discrete
time),

(i) S(zx) = 1 whenevery is an unstable zero d?,

(i) S(px) = 0 whenevepy, is an unstable pole aP.
Furthermore, in general we require that

(iv) S has low degree, and

(v) S satisfies additional design specifications.

The degree bound ofi is important for several reasons. In fact, a low-degreeiteins
function results in a low-degree controller (see e.g.,)1&hd, in some applications, the
degree of the sensitivity function is importantin its owght. A case in point is an autopi-
lot, for which the feedback system itself is to be contrall@bnditions (i)-(iv) do not in
general uniquely specif§, so the additional freedom can be utilized to satisfy adddil
design specifications (v).

Example C.3. As a simple example, also illustrating rational approxigrabf a nonra-
tional function, consider sensitivity shaping of a feedbsgstem with the planP(z) =
(z — 2)~L. SinceP has an unstable pole at= 2 and an unstable zero at= oo, the sen-
sitivity function must satisfy5(co) = 1 andS(2) = 0. Then the functiorf(z) := S(z~1)
is analytic inD, and satisfies

£(0) = 1andf(1/2) = 0. (C.23)

Now, suppose we want to find a rational sensitivity functthnof degreen that preserves
internal stability and that approximates an ideal serigjtifiunction Siq with the spline-
formed shape in bold in FiguEdQ.8. The shape is originallggias a positive functio
on the unit circle, and a normalizing factor> 0 needs to be chosen so thé(e?)| =
pW (&) for 6 € [—=, 7]. An outer functionk having the prescribed shape is given by
T 0
h(z) = exp {i/ % log W (e~)d#

(2
27 J_, e

(see, e.g., [11, p. 62]). Now, define the function

h(z),
1-— %z
wherep is selected so thgt(0) = 1. Thenf is analytic inD and satisfies the interpolation
conditions [C2B), an®iq(z) = f(z~!). Clearly, f is nonrational andsq represents a
infinite-dimensional systerh.

1For a systematic procedure to determiiygfrom W for general interpolation constraints, see [12].
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By using the computational procedure in the beginning ostwion, we determine the
approximantg,, of f of degrees: = 1,2 and3 which satisfy the interpolation conditions
({CZ3). More preciselyy; is determined via steps (i) and (ii), whereas, §erandgs, we
need to add one or two extra interpolation points and usen@i)(&)’. That is,zo = 0 and
21 = 1/2,andz, andzs, 23, respectively, are determined as in Renfar C.3 with= f 1.

The magnitudes of the corresponding sensitivity functi§hsSs and S3, obtained
from S,,(2) = gn(271), are depicted in FiguleId.8. The degree of the controllerecor
sponding to the approximas} is two.

Example C.4. In [7] the problem of shaping the sensitivity function of axilde beam
with transfer function

~ —6.4750s? + 4.0302s + 175.770
~ 5(5s3 + 3.5682 + 139.50215 + 0.09290)

P(s)

is considered, and a controller is sought so that the seitgitiinction is close to

s(s+1.2)
s24+1.25+1’

whose Bode plot is depicted in FigUf&1.9. The pl&rtas an unstable zero in5308, a
pole at0 and has relative degrée For the controller to be strictly proper and the closed
loop system to be internally stable, the interpolation étoral

Sia =

S(5.5308) = S(c0) =1,
S(0) = S(co) = S(c0)" =0,
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needs to be satisfied.

In order to apply our theory as presented in this paper, wetfassform the domain of
the problem fronC . to D, using the bilinear transformation

So— S
, Wheresy = 3.1.
S

S — 2z =
50
The constant, = 3.1 is chosen the corresponding bilinear transformation magatea

of interest,0.17 to 1004, onto a large part of the unit circle. Choosingtoo small or too
large might cause numerical problems. This yields

fia(2) = S < - Z) :

s
01+z

and the problem is then to find a stable functjahat is close tqgf;4(z) and which satisfies
the constraints

(—0.2816) — g(—1) =1,
’ g9(1) z(—l)' =g(-1)"=0. (C.24)

However,f;4 does not satisfy the constrainfs{d.24), and therefore #tboa in Sec-
tion[CH does not directly apply. Instead we would like to fardapproximatioryf of f;4
which satisfies the interpolation constraints, and thenryathe degree reduction method
onf.

Note thatitis impossible to obtain an analytic functjpwhich simultaneously satisfies
the interpolation conditiod{C24) and the criterigiiz)| < |fiq(z)| for z € T. If such a

function f did exist, thenB := f/f;4 would be analytic ifl and bounded by one dh.
However,

B(—0.2816) = f(—0.2816)/ f;q(—0.2816) = 1.0269 > 1,



94 PaPeER

and henceB violates the maximum principle. Therefore we need to be erunivith a
function f which satisfieg f(z)| < | fia(2)|(1 + €) for z € T with somee > 0.0269.
If all the interpolation points of were inD, a straightforward method would be to take

f as the minimizer of
‘ &) | b
ject to[[C21)
fia(2) |l
Then we would havg = f,4Ba, whereB is a Blaschke product and > 0. But, since
there are interpolation points on the boundary, a sliglattger region of analyticity need
to be considered.
Note thatf;4 is analyticin(1 4+ 0)D := {(1 + d)z : |z| < 1} for 0 < § < 0.44, and let
f be the function that minimizes
f(z)

’ fia(2)

subject tof satisfying the constraintE{CI24). Now, for aay> 0.0269 one can find a

6 >0s0 thatH ff;‘(zz)) < 1+ €. We choose = 0.05, and for thise, 6 = 0.05 works.

Then the functiory satisfies f(z)| < 1.05|f;a(z)| for z € T, and, since[{lC24) holds
for f itis possible to follow the steps (i) and (ii) to reduce thg@® off to 4. That is, let
(p, o) € Ko x Wy be the minimizer of

2
g

Hoo ((14-6)D)

and letg be the unique function satisfying{Cl24) apg € X. Finally we transform the
domain back to the continuous-time setting via

1—=2
142

zZ— 8§ =5 ,

whcih givesS(s) = g (jg;j) as depicted in FiguleICILO.
Note that since there are interpolation points on the bowynttee relativeH, bound is
not meaningful. In facty has poles in-1 that are not cancelled by zeros fifand hence

the right hand side of
4e
lo(f =9I < 7l fI*

will be infinite, rendering the inequality trivial. How to dkewith interpolation points on
the boundary in a more rigorous way will be the subject offertresearch.

RemarkC.5. It is worth noting that if the main concern is a low order cofigr, one
can consider a larger class of sensitivity functions witroagibility of better design. For
clairity of presentation we will consider a discrete-timarg P. Briefly, we recall from
[16] that

degC < deg P +degS —n, —n.
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wheren,, andn are the number of unstable zeros and poles respectivelyeqgilémt P.
Since the theory guarantees tdag S < n, + n. — 1, the degree of the controller is less
than the degree of the plaft We then factor the transfer function of the plantinto algtab
and an unstable part 88,3 )/(«,a), wheregs,, anda,, have roots irD, andgs andag
have roots ifD“. The idea is to use our knowledge about the stable part of [t
construct a larger class of sensitivity functions for whileh controller order is the same.
Let

Ka, = {a = Z b€ Polin +degay), o outer},
T S

where
ﬂ@zliﬂ—&@[ﬂl—%@
k=1 k=1

Now for anyo € X, the minimizer of
min ||o.S|| subject to{ S(;’“) -
p) =

is of the formS = <=, wherea € Pol(n). Due to the interpolation constraints we have
ayla andg,|(asa — b), and hence

0_5—1_%wﬂ—m_%%9
_PS_ 6uﬂsa ~ Baa

Ay




96 PaPeEr

where%*b and% are polynomials. Moreover, sineeg o, + deg 3, = n, we have

asa —b

deg

< n+degas — deg 3, = deg a, + deg a,

u

deg Psa < n+ degfs — deg o, = deg 35 + deg B.
Oy
This shows that any choice of in the classX,. will produce a controller of a degree
less than the degree of the plant. By utilizing the stablé plthe plant, we have shown
that chosing sensitivity functions from a larger class wibt increase the degree of the
controller.

C.8 Concluding remarks

This paper presented a new theory for stability-presemringel reduction (for plants that
need not be minimum-phase) that can also handle prespetifexgolation conditions
and comes with error bounds. We have presented a systemétinzation procedure for
choosing appropriate weight (and, if desired, interpolapoints) so that the minimizer of
a corresponding weightefd, minimization problem both matches the original system and
has low degree.

The study of theZ, minimization problem is motivated by the relation betwdssil,
norm and the entropy functional used in bounded interpmiatTherefore, new concepts
derived in this framework are useful for understanding@mtrminimization. In fact, the
degree reduction methods proposed in this paper easilygéeresto the bounded case; see
[12] for the method which preserves interpolation condisioe are currently working on
similar bounds for the positive real case; also, see [8].

C.9 Appendix

A quasi-convex optimization problem is an optimizationtgemm for which each sublevel
setis convex. The optimization problem to minimize{C. 1®)erep andq are polynomials
of fixed degree is quasi-convex. For simplicity, we assunag fhis real and hence that
andgq are real as well.

As a first step, consider tHfeasibility problemof finding a pair(p, ¢) of polynomials
satisfying

<e (C.25)

for a givene, or, equivalently,

—elp(e)|* < [p(e™)[* — |q(e™) f(e)|? < elp(e™)?
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forall 6 € [—, n]. Since|p|? and|q|? are pseudo-polynomials, they have representations

Mp

p(e)F = 1+ picos(kd),
k=1

la(€)* =) axcos(kh),
k=0

wheren,, andn, are the degree bounds prandgq respectively, and the first coefficient in
|p|? is chosen to be one without loss of generality. Hefice [C28yuivalent to

Np Ng

—l1—e<(1+¢) Zpk cos kb — | f(e')|? qu cos k0,
k=1 k=0

1—e<(e— I)Zpk cos kf + |f(ei9)|22qk cos k0,
k=1 k=0

forall € [—m,7|. Thereis also arequirementon "> | pj cos(kd) and)_ ;2 i cos(kb)
to be positive. However, i € (0, 1), then the above constraints will imply positivity. The
setofpy, pa, ..., Pn,sq0,q1, - - -, Gn, Satisfying this infinite number of linear constraints is
convex.

The most straightforward way to solve this feasibility piegh is to relax the infinite
number of constraints to a finite grid, which is dense enoogyidld an appropriate so-
lution. Here one must be carefully to check the positivitylof >°,” | py cos(k6) and
ZZ;O qr cos(k@) in the regions between the grid points. Another method i€ihipsoid
Algorithm, described in detail in [2].

Minimizing (CI3) then amounts to finding the smallesfor which the feasibility
problem has a solution. This can be done by the the biseclimmithm, as described in
[2]. Note that fore = 1, the trivial solutiong = 0 is always feasible.
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Localization of Power Spectra

Johan Karlsson and Tryphon Georgiou

Abstract

The purpose of this paper is to study the topology and develefpics that allows for localiza-
tion of power spectra, based on second-order statisticshde that the appropriate topology is the
weak -topology and give several examples on how to constuct swthies. This allows us to quan-
tify uncertainty of spectra in an natural way and to calaikpriori bounds on spectral uncertainty,
based on second-order statistics. Finally, we study ifieation of spectral densities and relate this
to the tradeoff between resolution and variance of estisnate

D.1 Introduction

The estimation of power spectra of stationary time-sergies on second order statis-
tics. The premise is that these are moments of an underhgngipspectral distribution
—the power spectrum. Thus, the question arises as to how isutmowable” about
the power spectrum from such statistics. In other words, hatwvays statistics localize
the power spectrum. Traditionally, there have been “methtitht lead to specific power
spectra which, in one way or another, are consistent witmeberded data and estimated
moments. For instance, the correlogram, the periodogramg'®algorithm, and the max-
imum entropy spectrum are specific such choices [12, 20]efretnl, there exists a large
family of admissible power spectra. Bounding the “valuethe spectral density function
at a specific region based on knowledge of a finite set of Statis an ill-posed problem.
The proper notion of localization is a certain weak notiobadinding the energy over parts
of the frequency band. Thus, the goal of this paper is to stivelgppropriate topology and
develop suitable metrics. These metrics allow localizatibpower spectra and they can
be used to quantify spectral uncertainty on the basis ahestid statistics.

A typical set of statistics for a stationary stochastic gscconsists of finitely many
covariance samples. Throughout, we consider such a progess € Z} to be a discrete-
time, zero-mean, second-order stationary stochasticepsoc The covariances (equiva-
lently, autocorrelation samples)

cp = E{yT_r}, fork = 0,+1,42, ..., +n,

101
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where&{-} denotes the expectation operator, provide moment contriur the power
spectrumiy, of the process:

1 ™

=5 e~ ®0du() fork = 0,+£1,42..., £n. (D.1)
i —T

Ck

The power spectrum is a non-negative measure on the unig @ire= {z = ¢ : 0 ¢
(—m, w|} which, for simplicity, we identify with the interval—=, 7]. We use the symbol
2 to denote the class of such measures. The problem of deiagwin from the covari-
ance samples (finitely or infinitely many) is known as thednigmetric moment problem.
Classical theory on this problem originates in the work oéflitiz and Carathéodory at
the turn of the 2 century and has evolved into a rather deep chapter of furaitemal-
ysis and of operator theory [1, 18, 10, 5, 2]. The classicatogoaph by Geronimus [10]
presents a wide range of results on the asymptotic conveegersolutions to the trigono-
metric moment problem, which include the asymptotic bedrawf the maximum entropy
spectrum [10, Theorem 7] and of spectral envelops [10, Theorér] (c.f. [4, 12, 8]). It
also studies at length the convergence of the correspospigral factors.

In the present work we attempt to address certain questipraatical interest. Invari-
ably, the covariance samples are estimated from a finiteradotsen record of the process,
and are known with limited accuracy. Thus, in a typical ekpent, as the observation
record increases so does the accuracy and the length of thearmce estimates. In this
context, we seek quantitative metrics of spectral unagstahat have the following prop-
erties:

1. given a finite set of covariance samples, the family of t@st power spectra has a
finite diameter,

2. the diameter of the uncertain set of power spectra shttnksro as the accuracy of
the covariance samples increases and as their number teimdigiity.

The latter condition is dictated by the fact that the trigowtric moment problem is known
to be determined, i.e., there is a unique power spectrumstenswith an infinite sequence
of covariances. As we will explain, the proper topology whadlows for these propertiesto
hold is the weaktopology on measures (cf., [13, pa&]¢ There is a variety of metrics that
can be used to metrize the topology, and thus, in principlantjfy spectral uncertainty.
A main contribution of this work is to present a class of netiior which the radius of

spectral uncertainty is computable given a finite set ofies.

In Sectior D2 we review the trigonometric moment problem discuss relevant rela-
tions with complex analysis and functional analysis. Int®edD.3 derive the connection
between uncertainty sets and wéalontinuous metrics and state the main theorem. In
Section D1 give several examples of weaontinuous metrics. In SectidnIb.5 the we
calculate the size of the uncertainty for a metric and shawitrsatisfies the desired limit
properties. In Sectiop .6 we study an identification exangwld in SectiofiDl7 discuss
conclusions and further directions.
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D.2 On the trigonometric moment problem

The covariances;, kK = 0,+1,+2,..., of the random procesgy; : t € Z} are the
Fourier coefficients of the spectral measdyeas in [D.1). These are characterized by the
non-negativity of the Toeplitz matrices [11, 12]

Co C—1 o Con
1 Cp crr Coptl
Tn = . 5
Cn Cp—1 Co
forn =0,1,.... WhenT,, > 0 and singular for a particular valug then rank7,,.¢) =

rank(T,,) for all ¢ > 1. In this casedyu is singular with respect to the Lebesgue measure
and consists of finitely many “spectral lines,” equal in nemto rank7,,) [11, page 148].
Becausely is a real measurey, = ¢ for k = 0, 1,..., hence we use only positive
indices and we will refer by

CO:n = (007 cla ct cn)
to the vector of the firsn + 1) moments, and by
Cc:= (CQ, C1, .. )

to the infinite sequence. The sequenégsaid to beositiveif 73, > 0 for all n. Similarly
Co.n, IS Said to beositiveif T,, > 0. Accordingly, the terrmon-negativés used when the
relevant Toeplitz matrices are non-negative definite.

As noted in the introduction, the power spectrum of a digctighe stationary process
is a bounded non-negative measure on the unit circle. Theatige (of its absolutely con-
tinuous part) is referred to as the spectral density functidnile the singular part typically
contains jumps (spectral lines) associated with the presefisinusoidal components. In
general, the singular part may have a more complicated mmttieal structure that al-
locates “energy” on a set of measure zero without the needistinct spectral lines [11,
page 5]. From a mathematical viewpoint such spectra areriiaupticas they represent limits
of more palatable spectra, and hence, represent a form gfletion. Non-negative mea-
sures are naturally associated with analytic and harmamictions—a connection which
has profitably been exploited in classical circuit theoryha context of passivity. More
specifically, power spectra are, in a very precise sensaydaoy limits of the (harmonic)
real parts of so-called “positive-real functions.” Belove summarize relevant concepts.

Herglotz’ theorem [1] states thatdf. is a bounded non-negative measurélpithen

1 [™ef 42
Hldul(:) =5 [ S dulo)

is analytic inD := {z : |z| < 1} and the real part is non-negative. Such functions are
referred to as either “positive-real” or, as Carathéodongfions. Conversely, any positive-
real function can be represented (modulo an imaginary eat)dby the above formula for
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a suitable non-negative measure. The Poisson integral @f-anagative measuré:

Pldp](z) := % P.(t —0)du(0), z=re",
where P,.(0) = ﬁ is the Poisson kernel, is a harmonic function which is non-
negative inD and is equal to the real part &f[du](z).

We denote by”(T) the class of real valued continuous functionslorit is quite stan-
dard that the dual space 6fT), i.e the space of bounded linear functionals C(T) —
R, can be identified with the space of bounded measur&s(fi8, pager], [16, page 374].
This is the Riesz representation theorem, which assersxikence of bounded measure

dyp such that
A(f) = / F(t)du(t)

forall f € C(T). Thus, for any two measures that are different, there eaistntinuous
function that the two measures integrate to different \@lue other words, continuous
functions serve as “test functions” to differentiate betweneasures, and bounds on such
integrals define the we&kopology. A sequence of measurgs,, n = 1,2, ..., converges

to dy in the weak topology if [ fdu, — [ fdu for everyf € C(T). The limit, when it
exists, is defined uniquely by the sequence.

Given either a positive-real functial (z), or its real partP(z), the measurdyu such
that H(z) = Hldpl(z) and P(z) = P[du](z) is uniquely determined by the limit of
P(re)dh — dp asr — 1in the weak topology [13, page 33]. Similarly, given a positive
sequence, the measurdy can be determined as the limit in the wéapology of finite
Fourier sums or Cesaro means [13, page 24], to which we wiltmén Sectiol DFb.

D.3 Localization of power spectra

We postulate a situation where covariancgs of the stochastic procesgy, }rcz, which
has power spectruniu, are estimated with an absolute error bounded: by Typical
assumptions on the nature of power spectra such as, awgesdgr or smooth, may in
general not be justified. In the absence of such informadipmay be any power spectrum
in the uncertainty set

FCO,,L,en = {d,u Z 0:

T
Ck —/ e‘iked,u’ < é€n, k= O,l,...,n} .
—T

In the limit, as the number of covariances increases anceanéfasurement errors decrease
to zero, the uncertainty set shrinks to a unique power spectThis is due to the fact
that an infinite limit sequencedefines a unique power spectrum, since the trigonometric
problem is determined.

Thus, we seek suitable metriéon the space of positive measufgsthat provide a
meaningful and computationally tractable notion of “diden&

p‘;(‘FCO:n75n) = Sup{d(d/'LO7dlu’l) : dlu’oidul € fCO:n75n}7
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so as to quantify “modeling uncertainty” and determine the of 7, . in the appropriate
topology. The diameter should reflect shrinkage to a singelta

p5(Fegnen) — 0a@sn — 00, €, — 0. (D.2)
This condition forces the underlying metric to be weakntinuous, as we will se next.
Theorem D.1. The metrics satisfieqD.2) if and only if it § is weak continuous.
Proof. See the Appendix. O

We now consider the case where the finite covariance sacpplés known. Ifcg.,, is
positive, then the uncertainty set

Feoon :={du : du >0, and (@) holds}

contains infinitely many power spectra. d§.,, is only non-negative, and hendg, is
singular, then the family~,, consists of a single power spectruim[11, page 148]. The
following two results are corollaries of TheorémD.1.

Corollary D.2. Letc be a non-negative sequence anddét -) be a weak*-continuous
metric. Then, ag — oo, ps(Fe,.,) — 0.

Proof. The corollary follows by virtue of the fact that
FCO:n C ‘FCO:nsen’
or independently from [10, §1.16] in view of PropositlonD.5 O

Corollary D.3. Letcy.,, be a non-negative sequence such thatis a singular Toeplitz
matrix, and letd(-, -) be a weak*-continuous metric. &.,(k) (k = 1,2,...) are non-
negative(n + 1)-sequences of moments tendingdq, thenps(F,., (k) — 0 ask — oo.

For an independent proof, see [15].

RemarkD.1. The total variation ("|dsuo —dpu1 ) is not weak and therefore the conclutions

of the two corollaries would fail if this was used as the netilio see this, note thatd.,,

is positive, thenF, , contains infinitely many measures and among them at least two
singular measures with non-overlapping support, i@np&ipg) N supp(dui) = 0 [18].

The total variation of their difference i&:,. O

D.4 Weak‘-continuous metrics

In general, a finite set of second order statistics canntt@ithe precise value of the power
spectrum locally. Indeed, given any finite positive seqeeng, and anyf, € (—,x,
then for any valuex > 0 there exists am > 0 and an absolutely continuous measure
dp = fdb € Fe,,, such that

f(0) =aforf e (6p —e€ 6y +¢).
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What can be said instead, is that the range of values

{/ng,u s dp € fm:n}a (D.3)

for any particular test functiop € C(T), is bounded. Furthermore, &as — oo, this
range tends to zero. In fact, due to wéadontinuity, the range of values tend to zero
for any of the scenarios in TheordmD.1 and its two corolfariEinding the maximum
and the minimum of[{DI3) is a linear programming problem orirdimite dimensional
domain. Provided; is symmetric around and the covariance sequengg, is real, the
dual problems, which give the lower and upper boundBofl (3

max {Co:n A : D p_o Ak cos(kb) < g(0),6 € (—m, x|},
min {Co.n A 1 g(0) < D1 Ak cos(kf),0 € (—m, ]},

where ™ = (Ao, A1, ..., An).
A class of weak-continuous metrics can be sought in the form

/T ge(duo — )| (D.4)

d(dpo, dpir) = sup
(eK

for {ge}eex C C(T), provided the family{ g¢ } cc i is sufficiently rich to distinguish be-
tween measures and yet, small enough so that continuitgiged. The precise conditions
are given next.

Proposition D.4. The functionab(dju, di1 ) defined in[D.4) is a weak-continuous met-
ric if and only if the following two conditions hold:

1. for any two measureéyuo,du; € M, there is af € K such that [ geduo #
Jr 9=dp1, and

2. the sef{g¢ }ec i is relatively compact irC'(T).

Proof. It is clear that conditiori holds if and only if5(duo,du1) is positive whenever
dpo # dpp. The triangle inequality and symmetry always holds for séicko we only
need to show that conditidhholds if and only if§ is weak -continuous.

We will show that condition 2 implies thak is weak-continuous by contradiction.
Assume therefore that conditi@holds, but thab is not weak. Then there existgu; —
dp in weak' such that(du, dun) > €, k = 1,2,..., and hence there exisgs, , &, € K,
such that

€<

/ngk(d,uk—d,u)‘, k=1,2,....
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Since the sefg¢ }ec i Is relatively compact irC(T), there is a subsequentg, du,) of
(9e,., dpr) such thay, — g € C(T). A contradiction follows, since

e <

/Tge(due - du)‘

S|W—m@@wrwmﬂ4mwrww
— 0asl — oo,

and hence is weak-continuous whenever conditi@hholds.

A well known result of Arzela (see e.g., [16, page 102]) ist thaet of functions is
relatively compact inC'(T) if and only if the set of functions is uniformly bounded and
equicontinuous. If g¢ }¢c x is not equicontinuous, then there existscan 0 such that for
anyk = 1,2,...one canfindy, ¢, € T, and;, € K, that satisfies

00— el <  andlge, (O0) — g5, (61)] > e ©5)

Let (8¢, ¢¢) be a subsequence (fy, ¢x) such thatd, — 6, € T as¢ — oo, and letd,
anddy, be the measurs that consist of a unit mask iandg,, respectively. Fron{DI5) it
follows that¢, — 6y, and hence thatu, — duo anddv, — dug in weak', wheredpy is
the measure that consist of a unit mas8gnFrom [IB) it follows that

0(dpe, dug) + 0(dve, duo) > 0(due, dvy)
= 9¢.(0) — ge,(d0)| > €.

From this, itis evident thakis not weak-continuous since both(d s, djip) andd (dvy, dug)
cannot converge t0.

Similarly, if {g¢ }¢cx is not uniformly bounded, then for aty= 1, 2, . .. one can find
0, € T and¢;, € K such that

|9¢,. (Ok)| > k. (D.6)
Let duy be the measures that consist of a unit masgin the metrico is not weak-
continuous since dyu, — 0 in weak', butd(+d, 0) > 1 for all k. O

Condition1 ensures positivity and conditicghensures weakcontinuity. The triangle
inequality and symmetry always holds for suth

D.4.1 Metrics based on smoothing

A simple way to devise weékcontinuous metrics on measures is by first smoothing the
measures via convolution with a fixed suitable continuougfion, and then compare
the spectral density functions of the smoothed spectra.flimetion must have non-zero
Fourier coefficients, otherwise it will not differentiatetveen certain measures. Thus, if
g € C(T) is such a function, then

dsmoothg (dpo, dper) = [|g * (dpo — dp1)]| o,
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is a weaK-continuous metric. Here,

T

(g % dp)(€) = / g€ — 0)du(9),

—T

denotes the circular convolution afid ||, the L., norm. It follows from Propositioh D14
thatdsmoothg (d1to, dit1 ) i a weak-continuous metric. To see this, note that

/ " g€ — 0)(duo(8) — dua (9))]

—T

lg * (dpo — dp)|joc = sup
56(77"777]

and hence, conditio) of the proposition holds. Then, if(¢) = > 72 gre™? and if

(...,a_1,a9,,a1,...) are the Fourier coefficients dfiy(0) — du1(6), then

g% (dpo — dpa)(€) = Y g-rare’™.

k=—o00

Sincegy, # 0 for all k € Z, the above expression cannot vanish identically unlegball
ay's are zero, in which caséug = dpu;.

D.4.2 Metrics based on transportation

The Monge-Kantorovic transportation problem, can be ptatthis framework. The prob-
lem amounts to minimizing the cost of transportation betwweo distributions of equal
mass, e.g.4Juo anddu, where [ duo = [ duy. In this, a transportation pladir (6, ¢) is
sought which corresponds to a non-negative distributioff onT and is such that

| ax0.6) = duo¢)and | _ar(0.6) = o) (D.7)

¢€eT

Then, the minimal cost
min {/ |0 — ¢ldm(0,¢) : dr satisfieleIZ]?}
TxT

is the Wasserstein-1 distance betwégp anddy;, and is a weakcontinuous metric (see
e.g., [22, chapter]). This problem admits a dual formulation, referred to asKlantorovic
duality (see [22]):
Wi(dpo, dpn) = max /g(duo —dpy),
llgllo <1

where|| f|| = supy , % denotes the Lipschitz norm.

Power spectra, in general, cannot be expected to have thetstahmass. In this case,
51,,{(d,u0, d,ul) defined by

1
inf  Wi(dvo,d du; — dvgl, D.8
fduégfdul 1(dvo, U1)+K;/1r| : i (O8)
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is a weak-continuous metric for an arbitrary but fixed> 0. The interpretation is that
dpo anddp, are perturbations of the two measurkg anddv, respectively, with equal
mass. Then, the cost of transportifig, anddyp; to one another can be thought of as the
cost of transportingr, anddr, to one another plus the size of the respective perturbations
This is introduced in [6] and the metric admits a dual forntiola

01,x(dpo, dpy) = max /g(duo — dpy),
9lloc < &
lglle <1

which is in the form of the Propositidn1}.4. Various other gealizations of transportation
distance that apply to power spectra are also being pro@owkdtudied in [6].

D.4.3 Metrics based on the Poisson kernel

In this section we define metrics based on the Poisson iftegra

Plul(z) = o= [ Pt —0)du(o). = = re,

—T

which allow computation of explicit bounds on uncertairgyss(see Sectidnl.5). Itis easy
to see that wedkconvergence of measures is equivalent to certain typesmvirgense of
their harmonic counterpart, as stated next.

Proposition D.5. Let{du }$2, be a sequence of uniformly bounded signed measures on
T, letdu be a bounded measure @h and letu(z) = Pldu(2), ux(z) = Pldu](z) be
their corresponding Poisson integrals. The following staénts are equivalent:

1. duy — dp weak?*,

2. up(z) — u(z) pointwisevz € D,

3. ur(z) — u(z) in L1(D),

4. up(z) — u(z) uniformly on compact subsetsf

Proof. See Appendix. O

The maximal distance between the harmonic functions, onnapect non-finite set
K c D, gives rise to a wedkcontinuous metric

Ok (dpo, dpir) = sup |P(dpo — dpa)(2)]. (D.9)
1S

This is clear, since the resulting family of the Poisson késrsatisfies the properties in
PropositiorfD1.
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RemarkD.2. In practice, it is often the case that one is interested inganring spetra over
selected frequency bands. To this end, various schemeskaveconsider which rely on
pre-processing with a choice of “weighting” filters and filbanks (see e.g., [4], [21], and
[3, 9]). The choice of the point-sét in (.9) can be used to dictate the resolution of the
metric over such frequency bands. To see how this can be donsiderK to designate
anarc{¢ = re' : 0 € [0y—e, 0y +€|}. This satisfies the condtions of ProposifianlD.4 and
thus,d i is @ weak metric. At the same time, the valu&gdu|(§), with £ € K, represent
the variance at the output of a filter with transfer functigifz — £). These are bandpass
filters with a center frequencyrg(£) and bandwidth which depends on the choice.of
Thus, the metric compares the respective variance aftapbetra have been weighed by
a continium (for¢ € K) of such frequency selective bank of filters. O

D.5 The size of the uncertainty set

The size of the uncertainty set with respect to the distapdirns out to be especially easy
to compute. Indeed, the diameter is attained on a speciaksolbthe essential boundary
which corresponds to measures with only- 1 points of increase (i.e., support). This is
the content of the following proposition.

Proposition D.6. Let cy.,, be a positive covariance sequence andAetC D be closed.
Then

=

2

2
= + (b2, d2) (d,d)
_ 2 1—2Zz zy Wz
pisK (fco:n) l:zneai? (bz, bz) (bz, bz) )
where

27t 27 (o)

272 272(co + 2¢12)
bz — . b dz = . )

21 27" eg 4+ 2¢12 4 -+ + 2¢,2™)

and (z, y) denote the inner produet T, 'z. Furthermore,ps, (¢, ) is attained as the
distance between two elementsfgf , which are both singular with support containing at
mostn + 1 points.

Proof. See appendix. O

Both claims in Proposition Dl 6 can be used separately forpedimg ps, (¢, ). The
first one suggests finding the maximum of a real valued funaticer . The second
claim suggests search for a maximum ¢ (dps, dus) over a rather small subset of
ert(Fe,.,), hamely nonnegative sequencgs,, ) parametrized by, being a solu-
tion of the quadratic equation

det(Tn+1) =0.
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Diameter

Second Schur parameter

First Schur parameter

FigureD.1:p;s,. as a function ofy;, v, wheney = 1. K = {2 : |z| < 0.5}

The corresponding values foy,; 1 lie on a circle in the complex plane, and hence, com-
putation ofps,, (F¢,.,, ) Will require search on a torus (each of the two extretal, dy»
where the diameter is attained can be thought of as pointseocitcle).

As an example, FigulelD.1 shows, (F,., ) for

Co2 = (1, c1, c2)
as a function of the corresponding Schur parameters [10]

—-1< Y1 = C1 <1,

c

[y

)

&
det 1
1

C

det ©2
1 C1
-1< 725:<1—> <1

[y

andK istakenagz : |z| < 0.5} C D.

The plot confirms that the diameter decreases to zero asthmpters or, alternatively,
the covariances; andc,, tend to the boundary of the “positive” region (which in the
Schur coordinates corresponds to the unit square). Howigverinteresting to note that
the diameter off,, as a function ot.,, has several local maxima.
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RemarkD.3. Computation of the diameters(F,., ) of the uncertainty set amounts to
solving the infinite-dimensional optimization problem

SUP{é(dﬂlade) : dlu‘lad,uQ € fCo:n}' (Dlo)

If 0 is a weak*-continuous and jointly convex function, then diemeter is attained as the
precise distance between two elements which are extremespfj, . Extreme points are
the points with the property that they are not a nontrivialv@x combination of elements
in the set, denotedze(-). Then,du € ext(Fc,,) if and only if dp € F,, and the
support ofdy: consists of at mosin + 1 points (see [15]). Thuse(F,,, ) admits a finite
dimensional characterization alid{1J.10) reduces to a fitiiteensional problem.

D.6 Identification in weak*

In this example we consider identification of a spectrum Basecovariances. Although
the uncertainty set contains a large set of spectra whichhmaag considerably different
qualitatively properties, they are all close in the weabpology. In this context, the trade-
off between variance and resolution can be studied. Thdutimo is specified by the
metric (in this case by the séf), and then sufficient data has to be provided to ensure that
the size of the uncertainty set is small.

Consider the stochastic process

yr = cos(0.5t + 1) + cos(t + p2) + wy + %wt_l
wherew; is a white noise process angd, 5 are random variables with uniform distri-
bution on(—m, 7]. The power spectruniy is depicted in FigurEIDl2 and the spectrum
has both an absolutely continuous part and a singular pagtw@ld like to identify this
spectrum based on covariance estimates and show bounds esttmation errors. We
will use the metridx whereK = {z : |z| = 0.9}, i.e.,

Ok (dpo, dpn) = sup |P(dpo — dpa)(2)|.
z|=0.9

Let ¢ be the covariance sequencedf and letdus anddpusy be the power spectra
with highest entropy in the set&, . and F,.,,, respectively. FigurEXd3 compare the
spectradus anddu. The first subplot shows the spectra, and the second subipiot s
P[dus)(0.9¢%), P[du](0.9¢), and bounds o®[dv](0.9¢") whenv € F, .. The spec-
trum dus does not distinguish the two peaks and the bounds on therapectsistent with
Co.5 are quite large. For identifying the two spectral lines, iffermation fromcg.; is
clearly not enough, and this data does not provide enoughnrgtion for the variance to
be small in the resolution implied by the metdig .

Figure[ll4 comparesdyoo anddy similarly. The spectrunduso has two peaks close
to the spectral lines an@[d0](0.9¢"%) resemblesP[du](0.9¢") closely. In fact, as
can be seen from the bounds, for any spectwra F,,,, P[dv](0.9¢") is close to
P[du](0.9¢"), i.e., that the diameter of the uncertainty set is ratherllsnTde spectra
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dpget is the (unique) power spectrum if,,, with shur parametef,; = 1. This is a
deterministic spectrum and is depicted in FigltE]1D.5. Theréigshow that the spectrum
respect the bound oR|[dige] (0.9¢%).

The spectralyu, dusg, andduge: are very different in terms of their singular and ab-
solutely continuous part. Nevertheless they represerilasidfistribution of mass and are
hence close to each other in the weagpology.

D.7 Conclusions and further directions

The choice of metric is essential in every quantitative reiffie theory. Identification of
power spectra is based on measured covariances and weotieeredjuire that the metric
on power spectra is continuous and robust wich respect tertaioty in the covariances.
We show that any such metric need to localize “spectral rhasgquivalently the met-
ric need to be weakcontinuous. For the metri€x, we explicitly quantize the size of
the uncertainty set, i.e., the set of all spectra consistéhtan covariance estimate. This
provides the tools needed for robust identification and wiilee distances in spectra cor-
respond well to our intuition (see e.g. example 10 in [6]).

There are many directions in which this work could be expdrfdefurther develop-
ing the theory. One example of this is approximation in weedntinuous metrics. It is
well known that the Periodogram converges in weak the sample size goes to infinity
(see e.g., [19]). This makes the Periodogram a suitableidatedfor approximations. We
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expect that the MA-approximation problem can be formulatgdg standard LMIs. How-
ever, optimal ARMA-approximation is more interesting, bilgo more difficult so solve.
This will be subject to further research.

An other direction relate more to the usefullness of the ehasetric for particular
applications and is treated in [6]. Here the Monge-Kantartnansportation distance is
exploited in depth, it is weakand satisfies several additional desirable properties. In
particular, it is interesting to study the geodesics of ¢hetrics. It turns out that the
geodesics preserve lumpedness of the spectra, and thelyazafore model smooth mass
transfer [14]. To understand how this preservation of ludmess relate to the choice of
metric will also be studied further.

Appendix

Proof of TheoreriDl1The cannonical neighborhood basis for a paintin the weak
topology on9t is the sets of the type

N(dv,{gr}r_1,€) = {duZO : ’/Tgk(dl/—d/i)‘ < e,kz(),l,...,n},

whereg, are continuous functions dii for £ = 0,...,n. To show the theorem we will
prove that the neighborhood basis

N(dv) = {N(dv,{gk}i=0,€) : €>0,n €N {gr}i_o C C(T)}
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is equivalent to the neighborhood basis
S(dv) = {fCOwue ce>0,neN ¢ = / 2R, k=0,... ,n} )
T

First note thati(dv) O F(dv), and hence the weékopology is at least as strong as
the topology induced b§(dv). To show the other direction, 16¥ (dv, {gx}}_,, €) be an
arbitrary set inDt(dv). To show the equivalence, it is enough to show that theregsexis
¢ > 0,n' € Nsuch that

Fe, e C N(dv, {gi}r_y,e). (D.11)

If e, > 0,n) € Nare such thafe,, . C N(dv, gk, e€) holds fork =1,...,n, then

!/ . I

TR T T I

will satisfy (O213). We therefore only need to consider tlsen = 1, and to simplify
notation, lety = ¢;. The functiong is continuous and may be approximated uniformly by

pseudopolynomials. Le¥’ € N anday, for — N’ < k < N be such that

N/
[ 6
— for T
g(z) ;V,oz/z <4V(T)+2 zeT,
and lete/ = min (1, m) Letdu € F, , ., then
N’ N’
[otdn=an| < [lo= 3 adldu—ai+ Y ||| [ (- av)
T T {——_N' {=—N' T
€ N
- 2 T / /
< pmz®M+a+ > loele
(=—N’
< S£4.°_
= 2727°

and hencelu € N(dv,g,¢€). We have shown that the topology induced by the neighbor-
hood basisi(dv) is the weak-topology, and hencé is weak'-continuous if and only if

(O32) holds. O

Proof of Propositiof.LDJ6. There exists an analytic functigiiz) = H[du](z), du € Fe,.,,
such thatf(z) = w, if and only if its associated Pick matrix is nonnegative [1:4.

2T, b,w, —d,
( BbY — s ) > 0. (D.12)
By using Schur’s lemma and completing the squares we artive a
2 2 2 2
s+ dzabz =T bzadz 2y Uy
w, — 1—2Z ( ) < 1—2Zz ( ) o (d 7d )7 (D13)
(bzv bZ) (bza bz) (b27 bz)
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where equality holds if and only if the Pick matrxTDl12) isgular. From this, the first
part of PropositiofLDI6 follows. Since the maximum is ob¢girwhen equality holds in
EquatioDIB, the associated Pick matrices are singulancelithe solutions are unique
and correspond to measures with supporten 1 points [7, prop. 2]. O
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Metrics for Power Spectra: an
Axiomatic Approach

Tryphon Georgiou, Johan Karlsson, and Mir Shahrouz Takyar

Abstract

We present an axiomatic framework for seeking distancesdsat power spectral density func-
tions. The axioms require that the sought metric respeeteffiects of additive and multiplicative
noise in reducing our ability to discriminate spectra, a#l e they require continuity of statistical
guantities with respect to perturbations measured in thieien&Ve then present a particular metric
which abides by these requirements. The metric is basedeoltimge-Kantorovich transportation
problem and is contrasted with an earlier Riemannian mbaged on the minimum-variance pre-
diction geometry of the underlying time-series. It is alging compared with the more traditional
Itakura-Saito distance measure, as well as the aforenmextiprediction metric, on two representa-
tive examples.

E.1 Introduction

A key element of any quantitative scientific theory is a wagfined and natural metric.
A model for the development of such metrics is provided, i ¢ontext of information
theory and statistics, in the work of Fisher, Rao, Amari, t8em and many others, via an
axiomatic approach where the sought metric is identifiedhenbiasis of a natural set of
axioms—the main one being the contractiveness of stochastps. The subject of the
present paper is not the geometry of information, but instédee possibility of analogous
geometries for power spectra starting from a similar axigerationale. Specifically, we
seek a metric between power spectra which is contractivewbese is introduced, since
intuitively, noise impedes our ability to discriminate.rkher, we require that statistics are
continuous with respect to spectral uncertainty quantifigthe sought metric. We build
on [17] where a variety of potential metrics were studietigsiomplex analysis. The focus
of the current paper is twofold, firstly to propose a natueabd axioms that geometries for
power spectra must satisfy, and secondly to present a platicandidate which abides by
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the stated axioms. This metric is based on the Monge-Kawitdréransportation problem
and represents a relaxation of Wasserstein distancesesbaspplicable to power spectra.

In Section[ELR we outline and discuss the axiomatic framkwdn Sectiol EB we
contrast the present setting with two alternatives, firgtakiomatic basis of Information
Geometry and then with a geometry that is inherited by lipeadiction theory. In Section
[EZ2 we present basic facts of the Monge-Katnorovich trartapon problem which are
then utilized in SectioREl5 in order to develop a suitabtaifa of metrics satisfying the
axioms of the sought spectral geometry.

E.2 Morphisms on power spectra

We consider power spectra of discrete-time stochastiogss®s. These are bounded posi-
tive measures on the intervak= [—, 7] (with the end points identified) or, in the case of
real-valued processes, dr= [0, 7] and the set of such measures is denoted by

M :={dp : du > 0onl}.

The physics of signal interactions suggests certain nanoephisms between spectra that
model mixing in the time-domain. The most basic such intéas, additive and multi-
plicative, adversely affect the information content of&itg. It is our aim to devise metrics
that respect such a degradation in information content.tharqoroperty that ought to be
inherent in a metric geometry for power spectra is the caitirof statistics. More specif-
ically, since modeling and identification is often based tatistical quantities, it is natural
to demand that “small’ changes in the spectral content, assuored by suitable metrics,
result in small changes in any relevant statistical quantit

Consider a discrete-time stationary (in general comphixed) zero-mean stochastic
process{y(k), k € Z}, or simplyy for short, with corresponding power spectrudim €
M. The sequence of covariances

R() :=E{yim)y(m—£0)}, £=0,1,2,...,

where&{-} denotes expectation and™ " denotes complex conjugation, are the Fourier
coefficients ofdu, i.e.,

R({) = /]1 e I du(6).

In general, second order statistics are integrals of tha for

R = /HG(G)du(e)

for an arbitrary vectorial integration kern@l(¢) which is continuous i € R and periodic
with period2r. For future reference we denote the set of such functior@by, (I).

Now, suppose thatu, represents the power spectrum of an “additive-noise” m®ce
Yy, Which is independent of. Then the power spectrum gf+ y, is simply du + dj,.
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Similarly, if du,, represents the power spectrum of a “multiplicative-nojseicessy,,,
the power spectrum of the point-wise prodycty,, is the circular convolution

dv = dp * djiy, .

l.e.,dv satisfies
/ dv(x) == / dp(t)dpe(x —t) forall S C T,
zesS zEeS el

where the arguments are interpreted moduio

We postulate situations where we need to discriminate letvweo signals on the
basis of their power spectra and of their statistics. In siades, additive or multiplicative
noise may impede our ability to differentiate between the.tWwhus, we consider noise
spectra as morphisms 01 that transform power spectra accordingly. Thus, additive a
multiplicative noise morphisms are defined as follows:

Ad#a : d:u = d:u + d,ua

foranydu, € 9, and
Mgy, = dp— dpx dpm

for anydum € M, normalized so thaf; dyum = 1. The normalization is such that multi-
plicative noise is perceived to affect the spectral conbeimnot the total energy of under-
lying signals.

The effect of additive independent noise on the statistiGs process is also additive,
e.g., covariances of the process are transformed accdaling

Agu. © R(0) — R(0) + Ra(0),

whereR,(¢) denotes the corresponding covariances of the noise prdgiesiarly, multi-
plicative noise transforms the process statistics by pasetmultiplication (Schur product)
as follows K

Mgy, @ R() — R(£) - Rm(0).

More generaIIdeum : R — R e Ry, for statistics with respect to an arbitrary kernel
G(0), wheree denotes point-wise multiplication of the vect@®s R,,,.

Consistent with the intuition that noise masks differertoetsveen two power spectra,
it is reasonable to seek a metric topology, where distane®sden power spectra are non-
increasing when they are transformed by any of the above tarphisms. More precisely,
we seek a notion of distan@¢:, -) on 9t with the following properties:

Axiomi) é(-,-) is a metric ortt.

Axiom ii) For anydu, € 9, Aq,, is contractive ot with respect to the metrig(-, -).
Axiom i) For anydj,, € M with [} dum < 1, My, is contractive ot with respect to
the metrici(-, -).

The property of a map being contractive refers to the requérd that the distance between
two power spectra does not increase when the transformatapplied.
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An important property for the sought topology of power spec$ that small changes
in the power spectra are reflected in correspondingly snielhges in statistics. More
precisely, any topology induces a notion of convergencd, the question is whether
this topology is compatible with the topology of the Euchdevector-space where (fi-
nite) statistics take their values. Continuity of statistio changes in the power spectra is
necessary for quantifying spectral uncertainty basedatissts. The property we require
is referred to as wedkcontinuity and is abstracted in the following statement.

Axiom iv) Letdp € 9t and a sequenaéu;, € M for k € N. Thend(duy,du) — 0 as
k — oo, if and only if

/Gal,u;C — /Gdu ask — oo,
I I

for anyG € Cperio(D).

E.3 Reflections and contrast with information geometry

The search for natural metrics between density functionsbeatraced back to the early
days of statistics, probability and information theory.cAoding to Chentsov [8, page 992]
(ref. [1]), Kolmogorov was “always interested in findimgformationdistances” between
probability distributions. In his notes he emphasized thpartance of the total variation

drv(dpo,dpn) = [ Ino(de) ~ (o)

as a metric, and he independently arrived at and discusgedetbvance of the Bhat-
tacharyya [5] distance

de(dio, ) =1 = [ /ol (@) (E.1)

as a measure of unlikeness of two measuyes du,. Both suggestions reveal great in-
tuition and foresight. The total variation admits the fallng interpretation (cf. [11]) that
will turn out to be particularly relevant in our context: thaal variation represents the
least “energy” of perturbations of two power specffg anddy, that render the two in-
distinguishable, i.e.,

dTV(duo,d,ul) = mln{/ dV0+/dV1 :
dvy, dv, € N, andduo + dvy = d,ul + dVl}. (E2)

On the other hand the Bhattacharyya distance turned outv® deep connections with
Fisher information, the Kullback-Leibler divergence, &nel Cramér-Rao inequality. These
connections underlie a body of work known as Information@etry which was advanced
by Amari, Nagaoka, Chentsov and others [18, 7, 2]. At the thefathe subject is the
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Fisher information metric on probability spaces and theselyp related spherical Fisher-
Bhattacharyya-Rao metric

drgr(dpo, dpy) = al"CCOS/ V ko (dw)p (dz). (E.3)

This latter metric is precisely the geodesic distance betweo distributions in the ge-
ometry of the Fisher metric. One of the fundamental resultd® subject is Chentsov’s
theorem. This theorem states that stochastic maps arectwerwith respect to the Fisher
information metric and moreover, that this metric is in fla@unique(up to constant multi-
ple) Riemannian metric with this property [7]. Stochastiaps represent the most general
class of linear maps which map probability distributionghe same. Stochastic maps
model coarse graining of the outcome of sampling, and tlors) & semi-group. Thus, it
is natural to require that any natural notion of distanceveen probability distributions
must be monotonic with respect to the action of stochastigsma

An alternative justification for the Fisher information meis based on the Kullback-
Leibler divergence

dpio dpio dpio
die s dn) = | 108G s = [ 108(52 )
betweenprobability distributions. The Kullback-Leibler divergence is not atrite but
quantifies in a very precise sense the difficulty in distisping the two distributions [20].
In fact, it may be seen to quantify, in source coding for diteffinite probability distribu-
tions, the increase in the average word-length when a cax#iimized for one distribution
and used instead for encoding symbols generated acconlthg bther. The distance be-
tween infinitesimal perturbations, measured uslg is precisely the Fisher information
metric. It is quite remarkable that both lines of reasondegradation of coding efficiency
and ability to discriminate on one hand and contractivenéswchastic maps on the other,
lead to the same geometry on probability spaces.
Turning again to power spectra, we observe thgtcan be used as a metric and has
a natural interpretation as explained earlier. The melgiz on the other hand can also
be used, if suitably modified to account for scaling, but $agk intrinsic interpretation. A
variety of other metrics can also be placeddn(cf. [14, 16, 21]), mostly borrowed from
functional analysis, which may similarly lack an intringnterpretation. Thus, the signal
processing community focused instead on other metricdikantities, as the so-called
Itakura-Saito distance [14, Equation (16)]

dis(fodf, f1d0) == / (@ - ln(@) — 1) de,
fi fi
which have been motivated in the context of linear predic{@2, 14]. This relates is
intimately related to the probability structure of undémty processes for the Gaussian
case and to their distance in the Kullback-Leibler divenge(see for instance [19, 23]).
A closely related metric was presented in [10, 12] which djfias in a precise way the
degradation of predictive error variance —in analogy wite Iatter argument that led to
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the Fisher metric. More specifically, a one-step optimadinpredictor for an underlying
random process is obtained based on a given power spectnghthen, this predictor is
applied to a random process with a different spectrum. Tlyeadkation of predictive error
variance, when the perturbations are infinitesimal, gives to a Riemannian metric. In
this metric, the geodesic distance between two power spictr

d d
dor(dpo, dn) = \/ / (log d—ﬁf)%ﬁ — / log d—ﬁfdm% (E.4)

which effectively depends on the ratio of the correspondipgctral densities. Interest-
ingly, this metric is a “normalized version” of the so-calleg-spectral distance [21, Equa-
tion (78)]

d
dis(dpo, dpr) = /(1og dﬂo)zde
111

which is commonly used without any intrinsic justificatioA.similar rationale that lead
to (E3) can be based on degradation of smoothing-variaistedd of prediction (see [10,
12]), and this also leads to expressions that weigh in ratidke corresponding spectral
density functions, i.e., it is the ratios of the absolutedniinuous part of the measures that
play any role.

A possible justification for such metrics which weigh in onthe ratio of the corre-
sponding density functions can be sought in interpretirgeaffiect of linear filtering as a
kind of processing that needs to be addressed in the axioroee $fpecifically, the power
spectrum at the output of a linear filter relates to the powecsum of the input via multi-
plication by the modulus square of the transfer functionusta metric that respects such
“processing” ought to be contractive (and possibly invat)ia However, it turns out that
such a property is incompatible with the spectral propsttiat we would like to have, and
in particular it is incompatible with the ability of the mitto localize a measure based on
its statistics (cf. Axiom iv). This incompatibility is shawnext.

Consider morphisms oft that correspond to processing by a linear filter:

Fiu : dp— [h[dp

foranyh € H.,. Here,h is thought of as the transfer function of the filterthe power
spectrum of the input, and|?du the power spectrum of the output.

Proposition E.1. Assume thai(-, -) is a weaK-continuous metric ofdt. Then there exists
h € H such thatF}, is not contractive with respect -, -).

Proof. We will prove the claim by showing that wheneveis a weak-continuous metric
that is a contraction with respect f9,, we may derive a contradiction. Denote hy,
t > 0 the measure with a unit mass in the pdimind lete = §(dyuo, do/2). By weak -
continuity, there existg, > 0 such thaty(duo, dut,) < €/3. Leth € Hy be such that
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|h(0)]? = 1/2 and|h(tp)|> = 1. Then we have that
€= 5(d,LL0, d,uﬂ/z) < 5(d,LL0, d,uto) + 5(d:ut07 d:LLO/Z)
8(dpo, dpey) + 8(|hf ey, |1 10)

2
20(dpo, dpey) < 3¢

Which is a contradiction, and hence the proposition holds. O

IN

It is important to point out that none of the above (i.e., neit[EZB) nor[[ER)) is a
weak*-continuous metric. In particular, the metric I {Figlimpervious to spectral lines
as only the absolutely continuous part of the spectra playsale. Similarly, neither the
metric in [E22) nor the one il (H.3) can localize distribnSdecause they are not weak*-
continuous. Thus, in this paper, we follow a line of reasgranalogous to the axiomatic
framework of the Chentsov theorem, but for power spectmuliring a metric to satisfy
Axioms i)-iv).

E.4 The Monge-Kantorovich problem

A natural class of metrics on measures are transport métaiesd on the ideas of Monge
and Kantorovich. The Monge-Kantorovich distance represaicost of moving a nonneg-
ative measureluy € M(X) to another nonnegative measute, € MM(X), given that
there is an associated cast:, y) of moving mass from the point to the pointy. The
theory may be formulated for rather general spa&esut in this paper we restrict our
attention to compact metric spac&sEvery possible way of moving the measuje, to
duy corresponds to a transference pfag 91(X x X), which satisfies

/ dr(z.y) = dpp and / dr(z,y) = dur,
yeX reX

or more rigorously, that
7[A x X] = po(A) andn[X x B] = u1(B) (E.5)

wheneverd, B C X are measurable. Such a plan exists only if the measisganddy,
have the same mass, i.eo(X) = w1 (X). Denote byll(duo, duy) the set of all such
transference plans, i.e.

(dpg, dpr) = {m € M(X x X) : (EF) holds for all4, B} .

To each such transference plan, the associated cost is

Ifr] = /X cla)dr(ay)

and consequently, the minimal transportation cost is

Te(dpo, dpr) == min{Z(w) : m € I(duo,dp)} . (E.6)
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The optimal transportation problem admits a dual formalatreferred to as the Kan-
torovich duality, which we state below without a proof. Faterivation and an insightful
exposition we refer the reader to [25, page 19].

Theorem E.2. Letc be a lower semi-continous (cost) function, let

O, = {(¢, ) € L' (dpo) x L' (dp1) : ¢(x) +(y) < c(x,y)},
and let
T(00) = [ oduo + v
X
Then

Tc(d/Jan d,ufl) = sup j(¢7 1/1)
(¢, 9)ED

A rather simple consequence is the following lemma.

Lemma E.3. Letc be a lower semi-continous (cost) function withy, ) = 0 for z € X.
ThenAg,, is contractive with respect t6..

Proof. Contractiveness ofiy,,, follows from the dual representation. Any paif, i) €
O satisfiesp(x) + ¥(x) < 0, and hence

[ o+ v = [ oo + v + (6 + )
X X

O

Monge-Kantorovich distances are not metrics, in genetdlthey readily give rise to
a class of the so-called Wasserstein metrics as explaingd ne

Theorem E.4. Assume that the (cost) functie(, -) is of the forme(z,y) = d(z,y)P
whered is a metric and € (0, c0). Then the Wasserstein distance

W (dpo, dpy) = Te(dpo, dul)min(l"%)
is a metric on the subspace ®t(.X) with fixed mass and metrizes the wetdpology.
Proof. See [25, Chapter 7]. Note that sin&eis compact, the wegkiopology on9t(X)
coincides with the weak topology. O
E.5 Metrics based on transportation

The Monge-Kantorovich theory deals with measures of eqaaslsnAs we have just seen,
it provides metrics that have some of the properties thatag& 1 satisfy. The purpose of
this section is to develop a metric based on similar primspthat applies to measures of
possibly unequal mass.
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Given two nonnegative measurés, anddu; onl, we postulate that these are pertur-
bations of two other measurds, anddv;, respectively, which have equal mass. Then,
the cost of transportindu, anddyu; to one another can be thought of as the cost of trans-
portingdry anddr, to one another plus the size of the respective perturbatibimss we

define
1

Te o (dpto, dpsy) == (H%nf (H)Tc(duo,dz/l) +r Y dry(dpi, dvy), (E.7)
voll)=n i=0

whererk is a suitable parameter that weighs the relative contabutif perturbation and
transportation. Define
C(xv y) = |($ - y)m0d27r|p (E8)

where(z)mow- iS the element in the equivalence class 277 which belongs td—, 7.
The main result of the section is the following theorem.

Theorem E.5. Letx > 0 andc(z, y) defined as ifE8), wherep € (0,00). Then

N min(l,%)
6p,/1(d,u*07 d,ufl) = (Tc,ﬁ(dM(L d,u]_))

is a metric o)t which satisfies Axiom i) - iv).

The proof uses the fact thdi{E.7) has an equivalent fornonlats a transportation
problem, and a corresponding dual stated below.

Theorem E.6. Letc be a lower semi-continuous (cost) function, let

(I)C7N = {((bvw) € Ll(dMO) X Ll(dlu'l) : (b(x) <K,
U(y) <k, ¢@) + YY) < clz,y)},

and let
T(d) = /H dduo + .
Then ~
Tew(dpo,dpr) = sup  J(9,v). (E.9)
(¢, 0)EDc

RemarkE.1 Definition {EXT) does not provide a direct way to compilitg. (dpo, dj1),
whereas the dual formulation in Theor€mlE.6 is amenable moenical implementation.
Indeed,[EDB) is a linear optimization problem which cand@puted using standard meth-
ods.

Proof. The problem[E]7) can be thought of as a transportation proldn the sefX’ =
I U {0}, where a mass is added @t as needed to normalize the measures so that they
have equal mass, e.g.,
,LALl(S) = ,ul(S) forsScl
fii(00) = M — p;(I)
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for someM > max{p;(I) : ¢ = 0,1}. Accordingly, the (cost) function is modified as

follows
min(c(z,y),2x) for z,y el

. B K for zel,y=o0,
e, y) = K for z=o00,y€l, (E.10)
0 for = =00,y = 0c.
First we prove that
Té(dﬂ07 dﬂl) = sup \7(¢7 w)a
(¢, 9)EPe, i
henceT(djio, df11) is independent i/, and then we conclude the proof by showing that
T..n(dpo, dur) = Te(dfio, dfir). (E.11)
According to Theore@El 2L (dfio, dji1) is equal to the supremum of
F(6.0) = [ odio+ v
subject to
o(x) +¢(y) < é(z,y) for zyel, (E.12)
d(z) + (o) <k for zel (E.13)
d(oc0) +9(y) <k for yel, (E.14)
P(00) + 1P(00) <0 (E.15)

Ouir first claim now follows by showing that there is no addestnietion imposed by re-
quiring thate(co) = 1¥(c0) = 0. Indeed @, ., is essentially identical to the set

{(¢,v) : EID)— EII) hold andj(co) = ¢(o0) = 0},

with (¢, ) extended to have support a as well. To this end, let¢, ) be an arbi-
trary pair of functions satisfying(EL2J-(E]15). Sinceldive scaling of(¢, —1) does not
change the constraints nor the value’fe, 1)), we may assume that(cc) = 0. There
are two cases that we need to considesuff,.; #(x) < &, then define

b(x) = ¢(z) forz € X, (a) = { ¢E)x) iii{)’

and ifsup,¢; ¢(z) = €+ k > &, then define

o = A TEL = W) e el

0 Tr = 00 0 Tr = 00.

In both cases we have that(¢,v) < J(¢,1) as well as that the paifp, /) satisfies
(E12)-[EID). In the second case, the constrdIni{E.1#ptsviolated;é(z,y) < 2k
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implies thatsup,,¢; ¢(x) + sup,er ¥(y) < 2k, and henceup, ;¥ (y) < x — e. Note that
(ET3) implies that)(co) < —e. Thus, in both cases, from an arbitrary p@irv), we have

constructed a paifp, 1) for which the constraint§{EJLAETEIL5) holaloo) = (o) = 0
holds, and the value QI7(¢ 1) has not decreased. Therefore we may without loss of

generality letp(co) = (o) = 0.
It remains to show thaly ,.(duo, dur) = Ta(djio, dfir). We start by showing that
T@(dﬂo, dﬂl) > Tcyﬁ(duo, dﬂl) Letw € H(dﬂo, dﬂl) and let

/ di(z,y) = dvy and/ di(z,y) = dv.
yel 1

Then for any transference planwe have that

T[] = /Hxﬂé(x,y)fr(a:,y)—|—/€/der(a:,oo)—i—/i/ﬂdﬁ'(oo,y)
- [ e+ Z_j [ s

1
> Te(dvo,din) + & Z drv (dp;, dv;)
i=0

Z Tc,rc(d,uﬂa d,ul)a

by noting thaidy; — dv; is positive and hencé, (du; — dv;) = drv(dpus, dv;). Therefore
Te(dfi, dfi1) > Tc7n(du0,du1) always holds. To show that the reverse inequality also
holds letdvy, dr; be two non-negative measures with(I) = »4(I). By introducing

fo = max(—k, ¢), f1 = max(—x, ) and using the dual formulation we get

Te(dji, dfiy) = sup T (¢, 1))
(P )EDe, 1

sup /foduo + fidu
(9, ¥)EDc,n

IN

N

< sup /fzdl/l + fildp; — dv;)
(CRTIS F—

IN

sup /fzdlh + KZ dTV d,ul, dl/l)

(¢ w)etbC K l O

IN

T.(dvo, dir) + Z dry (dpg, dvy).
=0

Here we use the fact thatiry (du:, dv;) = sup| s <, [ f(dpi — dv;). Since the above
inequality holds for any measurésy, dv; we get the reversed inequalif(djio, dfi1) <
T¢...(dpo, dp ), and hence we conclude tHBt(dfio, dji1) = T¢ . (dpo, dpr). O
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The final step to proving Theordm .5 will be provided by thiéofeing lemma.

Lemma E.7. Letc(x,y) be a function ofz —y|. Then for anylym € M with [ dym < 1,
My,,,, is contractive ord)t with respect tdl’. ,..

Proof. Note that

/ O » o))

— /men(b(x)/reﬂ dpim (T — 7)dpo(T)

[ ([ ownunte =) duotr)
= [ (0te) + (=) ol
and denote
On(r) = H) * diim(—2),
n(r) = 0(@) % dum ()],

From this it follows that

n7(d,um*d,ug,d,um*d,u1) (¢7 1/1) = -7(d,u0,d,u1) (¢ma wm)a

where the subscript specifies the measures used in the efioitthe dual functional.
Now let (¢, v) € @, ... Then

dle—71)+¢Y(y—7) < min(c(z—71,y—17),2kK)
= min (¢(z,y),2kK),

and by integrating with respect th.,,,(—7) overr € I, we arrive at

O (@) + Um(y) < min(e(z,y),2).

Furthermore, it is immediate tha{z) < x and¥(y) < x implies that,,(z) < s and
thaty,, (y) < &, and hencé¢,,, .,) € ., follows. Finally

Tc,n(Md,um (d,LL()), Md#m (d:ul))

= sup L7(d,um*d,ug,d,um*d,u1)(¢7 ¢)
(9 ¥)ET,«

= sup n7(d,ug,d,u1)(¢m7 1bm)
()€Y x

< osup Jldupe,dpn) (9, 0)
(P, )EY.

- Tc,n(dﬂ()a d,LLl)
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We now recap the proof of our main theorem.

Proof. [Proof of TheorerfLEl5]From the formulation[EZI1)T, . can be viewed as the
cost of a transportation problem. Since the associatedwostion¢ from (EXD) is of the
form d?, whered is a metric, Axioms i) follows from Theoreflr B.4. Axiom iv) folvs
by noting that if a sequence of measudlgs, converges talv in weak', then in particular
pn(I) — v(I). Therefore, for any\/ > sup{u,(I), n € N}, it readily follows that,
converges t@ in weak’, and hence Theoref .4 ensures weadntinuity ofd,, ,,. From
the above formulation, Axiom ii) follows from Lemnia.3. Rty Axiom iii) follows
from LemmdEY. O

RemarkiE.2 ltis interesting to note that for the cage- 1

01,k (dpo,dpy) = max /g(duo —dp),
lgll < w

lglle <1

where|| f||L = sup M:Z‘(y)l the Lipschitz norm. Furthermore, in general, for any

|z

1
E(Sl’ﬁ(dlu,o, d,ul) — dTv(d,u,Q, d,ul) ask — 0.

RemarkE.3. The transportation problem has indeed some very nice piep¢hat relate
to the weak continuity of the corresponding distance metrics. In pgaitir smoothness
with respect to translations and small deformations is &imsic property. For this reason
it has been used in conjunction with other notions of digamt a similar fashion as in
the current paper, to link density functions of unequal mésparticular, Benamou and
Brenier [4] have introduced a mixef/Wasserstein optimal mapping to link such density
functions, while in other relevant literature, Caffareliid McCann [6] and more recently,
Figalli [9] study the transportation of a portion of two unedmasses onto each other.

E.6 Examples

We present two examples that highlight the relevance of thpgsed metrics in spectral
analysis. The first example compares how different distameasures perform on spectra
which contain spectral lines. The second compares how theasures distinguish voiced
sounds of different speakers. The distance measures walegrizesides the transporta-
tion distance (heré, ), are the prediction metric and the Itakura-Saito distaticéoth
examples the time-series are normalized to have the sanamvar

Example E.1. We consider a random procegs = cos(kf + ¢) + wy which consists of
a sinusoidal component and a zero-mean, unit-variancégwoise component;. Here,
0 is taken as a constant, whereas assumed random, independentu@f and uniformly
distributed on(—m, w|. Figure[E1 shows three samples of such a random process for
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Figure[®.1: Stochastic procegsin time and frequency domain fér= 1, 1.2, and2

respective values df € {1, 1.2, 2}, along with their respective power spectra. Based on
a set of 500 independent simulations, Table | shows the geatatance of the respective
power spectra when measured using i) the transport distéhtkee prediction distance
[12], and iii) the Itakura-Saito distance (see e.g., [1@pmparison of these values reveals
that only the transportation-based metric can reliabljirdisiish between spectral lines.

Transportation Prediction Itakura Saito

60=2

x 20.8
6=2

2.9
6:11 60=1.2 2]

6=2
1
:11 0=12 9:11 6=1.2
Figurell.2: Relative distances between line spectra

The schematic in FigulelH.2 compares the relative distandiese three cases with
the smallest value normalized to one. The respective distfor the case of the prediction
metric are relatively insensitive to the actual locatiothaf spectral line, as in the limit of a
long observation record all three distances ought to beléguae. Recall that the predic-
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Table E.1: Comparison of distance measures on spectraHimmise

Distance between line spectra at

01 =1 02 = 1.2 01 =1

O =1.2 03 =2 03 =2
Transportationdy 1 0.3077 0.8832 1.0690
Predictive: dpr 1.8428 1.8390 1.8517
Itakura Saitod;s | 22.7279 472.6690 134.1707

tion metric does not detect deterministic components. @rother hand the Itakura-Saito
distance gives a rather distorted view of reality. In th@s$gortation metric the respective
distances are consistent with “physical” location of thedal lines. Further, the consis-
tency in the ability to discriminate between such spectrdrégnatically different in the
three cases. Consider the proportion of the simulationsvfach the distance between
the first two spectrdd = 1, 1.2) is smaller than any of the other distan¢és= 1.2,2 or

0 = 1,2). For the transport distance in &0 iterations the distance between the first two
power spectra with lines dtl, 1.2} was smaller than the distance between the other two
possibilities. On the other hand, the corresponding peages for the prediction distance
and for the Itakura-Saito distance we¥€4% and33.8%, respectively. Thus, the trans-
portation correctly identifies the two spectra that areifiviely closest (i.e., having spectral
lines closest to each other), whereas the other distancsumesasucceed about one third
of the times (practically a random pick).

To be fair, neither the prediction metric nor the Itakurat@eistance were designed,
or claimed, to have such discrimination capabilities. Aes shhmple size tends to infinity
power spectra computed via the periodogram method convergee true spectrum in
weak’, and since the transportation distance is weedntinuous, transportation distances
converge to the true values. On the other hand, this is natdake for either of the other
two distances. a

Example E.2. Figure[E3B (left side column) shows time samples corresipontb the
phoneme “a” spoken by three individuals, speakers A (AJi&)Bob), and C (Colin),
respectively. Speakers B and C were chosen to be males vghgreaker A was chosen
to be a female and, accordingly, the dominant formant of tisedpeaker has higher pitch
than the other two, as seen in the estimated power spectrashd-igurdEB (right hand
side column). The distance between these three power apetire transportation metric,
the prediction metric, and the Itakura-Saito distance amepared in FigurEIEl4 as before.
The shortest distance in all three cases is normalized to one

It is seen that all three distance measures are consistehatrthe power spectrum
corresponding to Bob is always between that of Alice andrCdtiowever, the respective
distances are highly skewed, especially when it comes ttidkara-Saito distance. O

In the second example, all three distance measures appgisetqualitatively similar
results. However, in general, visual comparison of two pospectra appears to be more
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Figure[®.3: phoneme “a” for Alice, Bob, and Colin (top to loott) in time and frequency
domain

Transportation Prediction Itakura Saito
Alice
Alice
Alice
3.3 1.8 2.1 3.7 / 6.3
2.6
Bob 1 colin Bob 1 colin Bob 1 Colin

Figurell.4: Relative distances between spectra of the ¢@icands in FigurElH.3

easily correlated with respective distances in the trariafjion metric. This is rather evi-
dent in the first example and the reasons are traceable td{sécpl interpretation of the
metric with regard to mass transfer. Moreover, we shouldtpmit that in neither example
did the Itakura-Saito distance respect the triangulariaéty (and of course, it has never
been claimed to satisfy this metric property).

E.7 Concluding remarks

Our goal has been to identify natural notions of distancegimntitative spectral analy-
sis. Historically, there has been a variety of options [18l, 21, 22] which were used to
measure distortion, and which were relied upon based on pleeceptive qualities, e.g.,
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see [24, 3]. However, in order to quantify spectral uncatyaithe relevant metrics ought
to allow localization of power spectra based on estimatatissics (i.e., being wedak
continuous). At the same time, these metrics ought to steataic natural properties with
regard to how noise affects distance between power spégtitae present paper, we have
presented an axiomatic framework that attempts to caplesetintuitive notions and we
have developed a family of metrics that satisfy the statgdirements.

While there are many possibilities for developing weakntinuous metrics as sug-
gested, we have chosen to base our approach on the concegriggdrtation. The reason
is that the resulting metrics have certain additional priggwhich relate to deformations
of spectra and smoothness with respect to translation. Bfoeeifically, from experience,
it appears that geodesics (in e.g., the Wasserstein 2anptaserve “lumpiness.” A con-
sequence is that when linking power spectra of two simileesp sounds via geodesics of
the metric, the corresponding formants often seem to becineal’ and the power between
those to transfer in a consistent manner. Such a propergeappighly desirable in speech
morphing (cf., see [15]). Thus, it will be interesting to exyl the set of axioms to include
such desirable properties in a more formal way. Such an iseamgay in turn narrow down
the possible choices of metrics and provide further justiiios for transportation-based
metrics.

Finally, we wish to comment on the need for analogous metoicsomparing multi-
variable spectra. The ability to localize matricial powpestra is of great significance in
system identification, as for instance, in identificatiosdzhon joint statistics of the input
and output processes of a system (cf. [13]).
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