ROYAL INSTITUTE
OF TECHNOLOQY

Distributed Spectral Efficiency Maximization in Full-Duplex Cellular Networks

José Mairton B. da Silva Jr*, Y. Xu*, G. Fodor*†, C. Fischione*

IEEE ICC'16 Workshop on Novel Medium Access and Resource Allocation for 5G Networks

23rd May 2016

*School of Electrical Engineering
KTH Royal Institute of Technology
${ }^{\dagger}$ Ericsson Research
Stockholm, Sweden
http://www.kth.se/profile/jmbdsj
jmbdsj@kth.se

Why full-duplex at the base station?

Half-Duplex

Full-Duplex

- Half-Duplex (HD) systems \rightarrow Inefficient resource utilization
- Full-Duplex (FD) systems $\rightarrow \sim 2 \times$ spectral efficiency

Outline

1. Introduction
2. System Model for Spectral Efficiency Maximization
3. Centralized Solution Based on Lagrangian Duality
4. Distributed Solution Based on Auction Theory
5. Numerical Results
6. Conclusions

Outline

1. Introduction

2. System Model for Spectral Efficiency Maximization
3. Centralized Solution Based on Lagrangian Duality
4. Distributed Solution Based on Auction Theory
5. Numerical Results
6. Conclusions

FD Characteristics in cellular networks

Benefits

- Spectral efficiency: $\sim 2 \times$
- MAC layer: hidden terminal, collision avoidance, reduced end-to-end delay...

FD Characteristics in cellular networks

Challenges

- Severe self-interference (SI)
- UE-to-UE interference
- User to frequency channels pairing and power allocation

Research Gap in FD cellular networks

Need of distributed schemes

- Processing burden at the BS is high*
- Dense deployment of user
- New SI cancellation mechanisms
- Radio Resource Management

Lack of fair and efficient PHY procedures

- How to mitigate UE-to-UE interference and assess fairness?
- Pairing \rightarrow UL and DL users to share the frequency resource
- Power allocation \rightarrow mitigate interference
- Fairness \rightarrow weighted sum spectral efficiency maximization

[^0]
Contributions

- Study sum spectral efficiency maximization and fairness problem
- Joint pairing and power allocation \rightarrow maximize weighted sum spectral efficiency

Contributions

- Study sum spectral efficiency maximization and fairness problem
- Joint pairing and power allocation \rightarrow maximize weighted sum spectral efficiency
- Solve this MINLP problem
- Lagrangian duality \rightarrow optimal power allocation + optimal centralized assignment

Contributions

- Study sum spectral efficiency maximization and fairness problem
- Joint pairing and power allocation \rightarrow maximize weighted sum spectral efficiency
- Solve this MINLP problem
- Lagrangian duality \rightarrow optimal power allocation + optimal centralized assignment
- Provide distributed mechanisms for FD cellular networks
- Distributed auction algorithm \rightarrow resource assignment to UL and DL users

Contributions

- Study sum spectral efficiency maximization and fairness problem
- Joint pairing and power allocation \rightarrow maximize weighted sum spectral efficiency
- Solve this MINLP problem
- Lagrangian duality \rightarrow optimal power allocation + optimal centralized assignment
- Provide distributed mechanisms for FD cellular networks
- Distributed auction algorithm \rightarrow resource assignment to UL and DL users
- Show spectral efficiency gains over HD with distributed schemes
- Realistic system simulations \rightarrow Yes, 89% !

Outline

1. Introduction

2. System Model for Spectral Efficiency Maximization
3. Centralized Solution Based on Lagrangian Duality
4. Distributed Solution Based on Auction Theory
5. Numerical Results
6. Conclusions

Definitions (1)

- Single-cell cellular system + only BS is FD-capable
- UL users $\rightarrow \mathrm{I}$; DL users $\rightarrow \mathrm{J}$; Frequency channels $\rightarrow \mathrm{F}$
- Effective path gain values $\rightarrow G_{i b}, G_{b j}, G_{i j}$
- SI cancellation coefficient $\rightarrow \beta$
- Assignment matrix $\rightarrow \mathbf{X} \in\{0,1\}^{I \times J}$

$$
x_{i j}= \begin{cases}1, & \text { if the } \mathrm{UL} \mathrm{UE}_{i} \text { is paired with the } \mathrm{DL} \mathrm{UE}_{j}, \\ 0, & \text { otherwise. }\end{cases}
$$

Definitions (2)

- Power vectors $\rightarrow \quad \mathbf{p}^{\mathbf{u}}=\left[P_{1}^{u} \ldots P_{I}^{u}\right], \quad \mathbf{p}^{\mathbf{d}}=\left[P_{1}^{d} \ldots P_{J}^{d}\right]$
- SINR at the BS and at DL user

$$
\gamma_{i}^{u}=\frac{P_{i}^{u} G_{i b}}{\sigma^{2}+\sum_{j=1}^{J} x_{i j} P_{j}^{d} \beta}, \gamma_{j}^{d}=\frac{P_{j}^{d} G_{b j}}{\sigma^{2}+\sum_{i=1}^{I} x_{i j} P_{i}^{u} G_{i j}} .
$$

- Achievable spectral efficiency

$$
C_{i}^{u}=\log _{2}\left(1+\gamma_{i}^{u}\right), \quad C_{j}^{d}=\log _{2}\left(1+\gamma_{j}^{d}\right) .
$$

- Weights $\alpha_{i}^{u}, \alpha_{j}^{d}$
- $\alpha_{i}^{u}=\alpha_{j}^{d}=1, \forall i, j \rightarrow$ Sum spectral efficiency maximization
- $\alpha_{i}^{u}=G_{i b}^{-1}, \quad \alpha_{j}^{d}=G_{b j}^{-1} \rightarrow$ Path loss compensation

Problem Formulation

- Weighted sum spectral efficiency maximization (P-OPT)

$$
\begin{aligned}
\underset{\mathbf{X}, \mathbf{p}^{u}, \mathbf{p}^{d}}{\operatorname{maximize}} & \sum_{i=1}^{I} \alpha_{i}^{u} C_{i}^{u}+\sum_{j=1}^{J} \alpha_{j}^{d} C_{j}^{d} \\
\text { subject to } & \gamma_{i}^{u} \geq \gamma_{\mathrm{th}}^{u}, \forall i, \\
& \gamma_{j}^{d} \geq \gamma_{\mathrm{th}}^{d}, \forall j, \\
& P_{i}^{u} \leq P_{\max }^{u}, \forall i, \\
& P_{j}^{d} \leq P_{\max }^{d}, \forall j, \\
& \sum_{i=1}^{I} x_{i j} \leq 1, \forall j, \\
& \sum_{j=1}^{J} x_{i j} \leq 1, \forall i, \\
& x_{i j} \in\{0,1\}, \forall i, j
\end{aligned}
$$

Problem solution approaches

Outline

1. Introduction

2. System Model for Spectral Efficiency Maximization

3. Centralized Solution Based on Lagrangian Duality
4. Distributed Solution Based on Auction Theory
5. Numerical Results
6. Conclusions

Lagrangian function

- Formulate partial Lagrangian function

$$
\begin{array}{r}
L\left(\boldsymbol{\lambda}^{u}, \boldsymbol{\lambda}^{d}, \mathbf{X}, \mathbf{p}^{u}, \mathbf{p}^{d}\right) \triangleq-\sum_{i=1}^{I} \alpha_{i}^{u} C_{i}^{u}-\sum_{j=1}^{J} \alpha_{j}^{d} C_{j}^{d}+ \\
+\sum_{i=1}^{I} \lambda_{i}^{u}\left(\gamma_{\mathrm{th}}^{u}-\gamma_{i}^{u}\right)+\sum_{j=1}^{J} \lambda_{j}^{d}\left(\gamma_{\mathrm{th}}^{d}-\gamma_{j}^{d}\right)
\end{array}
$$

- The dual function is

$$
g\left(\boldsymbol{\lambda}^{u}, \boldsymbol{\lambda}^{d}\right)=\inf _{\mathbf{x} \in \mathcal{X} \mathbf{p}^{u}, \mathbf{p}^{d} \in \mathcal{P}} L\left(\boldsymbol{\lambda}^{u}, \boldsymbol{\lambda}^{d}, \mathbf{X}, \mathbf{p}^{u}, \mathbf{p}^{d}\right)
$$

Dual problem and closed-form solution for assignment

- Rewrite the dual as

$$
g\left(\boldsymbol{\lambda}^{u}, \boldsymbol{\lambda}^{d}\right)=\inf _{\mathbf{X} \in \mathcal{X} \mathbf{p}^{u}, \mathbf{p}^{d} \in \mathcal{P}} \sum_{n=1}^{N}\left(q_{i_{n}}^{u}\left(\mathbf{X}, \mathbf{p}^{u}, \mathbf{p}^{d}\right)+q_{j_{n}}^{d}\left(\mathbf{X}, \mathbf{p}^{u}, \mathbf{p}^{d}\right)\right),
$$

with

$$
\begin{aligned}
& q_{i_{n}}^{u}\left(\mathbf{X}, \mathbf{p}^{u}, \mathbf{p}^{d}\right) \triangleq \lambda_{i_{n}}^{u}\left(\gamma_{\mathrm{th}}^{u}-\gamma_{i_{n}}^{u}\right)-\alpha_{i}^{u} C_{i_{n}}^{u}, \\
& q_{j_{n}}^{d}\left(\mathbf{X}, \mathbf{p}^{u}, \mathbf{p}^{d}\right) \triangleq \lambda_{j_{n}}^{d}\left(\gamma_{\mathrm{th}}^{d}-\gamma_{j_{n}}^{d}\right)-\alpha_{j_{n}}^{d} C_{j_{n}}^{d} .
\end{aligned}
$$

Dual problem and closed-form solution for assignment

- Rewrite the dual as

$$
g\left(\boldsymbol{\lambda}^{u}, \boldsymbol{\lambda}^{d}\right)=\inf _{\mathbf{X} \in \mathcal{X} \mathbf{p}^{u}, \mathbf{p}^{d} \in \mathcal{P}} \sum_{n=1}^{N}\left(q_{i_{n}}^{u}\left(\mathbf{X}, \mathbf{p}^{u}, \mathbf{p}^{d}\right)+q_{j_{n}}^{d}\left(\mathbf{X}, \mathbf{p}^{u}, \mathbf{p}^{d}\right)\right),
$$

with

$$
\begin{aligned}
& q_{i_{n}}^{u}\left(\mathbf{X}, \mathbf{p}^{u}, \mathbf{p}^{d}\right) \triangleq \lambda_{i_{n}}^{u}\left(\gamma_{\mathrm{th}}^{u}-\gamma_{i_{n}}^{u}\right)-\alpha_{i}^{u} C_{i_{n}}^{u}, \\
& q_{j_{n}}^{d}\left(\mathbf{X}, \mathbf{p}^{u}, \mathbf{p}^{d}\right) \triangleq \lambda_{j_{n}}^{d}\left(\gamma_{\mathrm{th}}^{d}-\gamma_{j_{n}}^{d}\right)-\alpha_{j_{n}}^{d} C_{j_{n}}^{d} .
\end{aligned}
$$

- Closed-form expression for the assignment

$$
x_{i j}^{\star}= \begin{cases}1, & \text { if }(i, j)=\underset{i, j}{\arg \max }\left(q_{i_{n}}^{u, \max }+q_{j_{n}}^{d, \max }\right) \\ 0, & \text { otherwise }\end{cases}
$$

Dual problem and optimal power allocation

- Analyse the dual problem

$$
\begin{array}{ll}
\underset{\boldsymbol{\lambda}^{u}, \boldsymbol{\lambda}^{u}}{\operatorname{maximize}} & g\left(\boldsymbol{\lambda}^{u}, \boldsymbol{\lambda}^{d}\right) \\
\text { subject to } & \lambda_{i}^{u}, \lambda_{j}^{d}, \geq 0, \forall i, j,
\end{array}
$$

Dual problem and optimal power allocation

- Analyse the dual problem

$$
\begin{array}{ll}
\underset{\boldsymbol{\lambda}^{u}, \boldsymbol{\lambda}^{u}}{\operatorname{maximize}} & g\left(\boldsymbol{\lambda}^{u}, \boldsymbol{\lambda}^{d}\right) \\
\text { subject to } & \lambda_{i}^{u}, \lambda_{j}^{d}, \geq 0, \forall i, j,
\end{array}
$$

- Turn our attention to the power allocation problem

$$
\begin{array}{ll}
\underset{\mathbf{p}^{u}, \mathbf{p}^{d}}{\operatorname{minimize}} & -\sum_{i=1}^{I} \alpha_{i}^{u} C_{i}^{u}-\sum_{j=1}^{J} \alpha_{j}^{d} C_{j}^{d} \\
\text { subject to } & \mathbf{p}^{u}, \mathbf{p}^{d} \in \mathcal{P} . \tag{1b}
\end{array}
$$

Dual problem and optimal power allocation

- Analyse the dual problem

$$
\begin{array}{ll}
\underset{\boldsymbol{\lambda}^{u}, \boldsymbol{\lambda}^{u}}{\operatorname{maximize}} & g\left(\boldsymbol{\lambda}^{u}, \boldsymbol{\lambda}^{d}\right) \\
\text { subject to } & \lambda_{i}^{u}, \lambda_{j}^{d}, \geq 0, \forall i, j,
\end{array}
$$

- Turn our attention to the power allocation problem

$$
\begin{array}{ll}
\underset{\mathbf{p}^{u}, \mathbf{p}^{d}}{\operatorname{minimize}} & -\sum_{i=1}^{I} \alpha_{i}^{u} C_{i}^{u}-\sum_{j=1}^{J} \alpha_{j}^{d} C_{j}^{d} \\
\text { subject to } & \mathbf{p}^{u}, \mathbf{p}^{d} \in \mathcal{P} . \tag{1b}
\end{array}
$$

- Optimal solution for (1) available*†
*A. Gjendemsj \varnothing, D. Gesbert, G. E. Øien and S. G. Kiani, "Binary Power Control for Sum Rate Maximization over Multiple Interfering Links," IEEE TWC, vol. 7, no. 8, pp. 3164-3173, August 2008
${ }^{\dagger}$ D. Feng, L. Lu, Y. Yuan-Wu, G. Y. Li, G. Feng and S. Li, "Device-to-Device Communications Underlaying Cellular Networks," IEEE TC, vol. 61, no. 8, pp. 3541-3551, August 2013

Outline

1. Introduction

> 2. System Model for Spectral Efficiency Maximization
> 3. Centralized Solution Based on Lagrangian Duality
4. Distributed Solution Based on Auction Theory
5. Numerical Results
6. Conclusions

Problem Reformulation

- Reformulate closed-form assignment with optimal power allocation as

$$
\begin{aligned}
\underset{\mathbf{X}}{\operatorname{maximize}} & \sum_{i=1}^{I} \sum_{j=1}^{J} c_{i j} x_{i j} \\
\text { subject to } & \sum_{i=1}^{I} x_{i j}=1, \forall j, \\
& \sum_{j=1}^{J} x_{i j}=1, \forall i, \\
& x_{i j} \in\{0,1\}, \forall i, j .
\end{aligned}
$$

- Centralized solution \rightarrow Hungarian Algorithm

Problem Reformulation

- Reformulate closed-form assignment with optimal power allocation as

$$
\begin{aligned}
\underset{\mathbf{X}}{\operatorname{maximize}} & \sum_{i=1}^{I} \sum_{j=1}^{J} c_{i j} x_{i j} \\
\text { subject to } & \sum_{i=1}^{I} x_{i j}=1, \forall j, \\
& \sum_{j=1}^{J} x_{i j}=1, \forall i \\
& x_{i j} \in\{0,1\}, \forall i, j
\end{aligned}
$$

- Centralized solution \rightarrow Hungarian Algorithm
- Distributed solution \rightarrow Auction Theory

Distributed Auction

- Input: $c_{i j}$, and tolerance ϵ

Bidding Phase

- UL bids for a DL user that maximizes $c_{i j}-\hat{p}_{j}$
- Wait for acknowledgement on assignment or update price

Assignment Phase

- BS is responsible for DL users
- BS selects the highest bid and update the prices \hat{p}_{j}
- Send updates and wait until the assignment matrix X is feasible
- Messages exchanged using control channels, e.g., PUCCH or PDCCH

Outline

> 1. Introduction
> 2. System Model for Spectral Efficiency Maximization
> 3. Centralized Solution Based on Lagrangian Duality
> 4. Distributed Solution Based on Auction Theory
5. Numerical Results
6. Conclusions

Simulation Parameters

- $F=I=J$ and $I+J=8, \ldots, 50$
- Path-loss compensation $\rightarrow \alpha_{i}^{u}=G_{i b}^{-1}, \quad \alpha_{j}^{d}=G_{b j}^{-1}$
- SI cancellation $\beta=[-70,-100] \mathrm{dB}$
- Proposed algorithm
- D-AUC: Dual solution with distributed Auction compared to
- P-OPT: Primal optimal from brute-force solution
- C-HUN: Centralized solution based on Duality and Hungarian algorithm
- R-EPA: Random assignment + equal power allocation
- HD: Traditional Half-Duplex scheme

Optimality Gap Comparison with $\beta=-100 \mathrm{~dB}$

- Negligible difference between P-OPT, C-HUN and D-AUC

Optimality Gap Comparison with $\beta=-100 \mathrm{~dB}$

- Negligible difference between P-OPT, C-HUN and D-AUC
- Possible to use distributed solutions without losing too much

Sum Spectral Efficiency Comparison for different β

- $\beta=-110 \mathrm{~dB} \rightarrow$ UE-to-UE interference is the limiting factor
- $\beta=-70 \mathrm{~dB} \rightarrow$ residual SI is the limiting factor

Outline

1. Introduction

2. System Model for Spectral Efficiency Maximization
3. Centralized Solution Based on Lagrangian Duality
4. Distributed Solution Based on Auction Theory
5. Numerical Results
6. Conclusions

Take home message

- Distributed algorithms to FD cellular networks
- Perform close to centralized schemes

Take home message

- Distributed algorithms to FD cellular networks
- Perform close to centralized schemes
- Fair and efficient

Take home message

- Distributed algorithms to FD cellular networks
- Perform close to centralized schemes
- Fair and efficient
- Almost double spectral efficiency (89% gain)

Take home message

- Distributed algorithms to FD cellular networks
- Perform close to centralized schemes
- Fair and efficient
- Almost double spectral efficiency (89% gain)
- Trade-off: residual SI \times UE-to-UE interference

Take home message

- Distributed algorithms to FD cellular networks
- Perform close to centralized schemes
- Fair and efficient
- Almost double spectral efficiency (89% gain)
- Trade-off: residual SI \times UE-to-UE interference
- UE-to-UE interference is the limiting factor for low β

Take home message

- Distributed algorithms to FD cellular networks
- Perform close to centralized schemes
- Fair and efficient
- Almost double spectral efficiency (89% gain)
- Trade-off: residual SI \times UE-to-UE interference
- UE-to-UE interference is the limiting factor for low β
- Residual SI is the limiting factor for high β

ROYAL INSTITUTE
OF TECHNOLOQY

Distributed Spectral Efficiency Maximization in Full-Duplex Cellular Networks

José Mairton B. da Silva Jr*, Y. Xu*, G. Fodor*†, C. Fischione*

IEEE ICC'16 Workshop on Novel Medium Access and Resource Allocation for 5G Networks

23rd May 2016

*School of Electrical Engineering
KTH Royal Institute of Technology
${ }^{\dagger}$ Ericsson Research
Stockholm, Sweden
http://www.kth.se/profile/jmbdsj
jmbdsj@kth.se

[^0]: ${ }^{\text {* }}$ A. Osseiran et al., "Scenarios for 5 G mobile and wireless communications: the vision of the METIS project," IEEE Communications Magazine, vol. 52, no. 5, pp. 26-35, May 2014.

