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Abstract
Future cellular networks, the so-called 5G, are expected to provide explosive data

volumes and data rates. To meet such a demand, the research communities are investigating
new wireless transmission technologies. One of the most promising candidates is in-
band full-duplex communications. These communications are characterized by that a
wireless device can simultaneously transmit and receive on the same frequency channel.
In-band full-duplex communications have the potential to double the spectral efficiency
when compared to current half duplex systems. The traditional drawback of full-duplex
was the interference that leaks from the own transmitter to its own receiver, the so-
called self-interference, which renders the receiving signal unsuitable for communication.
However, recent advances in self-interference suppression techniques have provided high
cancellation and reduced the self-interference to noise floor levels, which shows full-duplex
is becoming a realistic technology component of advanced wireless systems.

Although in-band full-duplex promises to double the data rate of existing wireless
technologies, its deployment in cellular networks is challenging due to the large number
of legacy devices working in half-duplex. A viable introduction in cellular networks
is offered by three-node full-duplex deployments, in which only the base stations are
full-duplex, whereas the user- or end-devices remain half-duplex. However, in addition
to the inherent self-interference, now the interference between users, the user-to-user
interference, may become the performance bottleneck, especially as the capability to
suppress self-interference improves. Due to this new interference situation, user pairing
and frequency channel assignment become of paramount importance, because both
mechanisms can help to mitigate the user-to-user interference. It is essential to understand
the trade-offs in the performance of full-duplex cellular networks, specially three-node
full-duplex, in the design of spectral and energy efficient as well as fair mechanisms.

This thesis investigates the design of spectral efficient and fair mechanisms to improve
the performance of full-duplex in cellular networks. The novel analysis proposed in this
thesis suggests centralized and distributed user pairing, frequency channel assignment and
power allocation solutions to maximize the spectral efficiency and fairness in future full-
duplex cellular networks. The investigations are based on distributed optimization theory
with mixed integer-real variables and novel extensions of Fast-Lipschitz optimization. The
analysis sheds lights on two fundamental problems of standard cellular networks, namely
the spectral efficiency and fairness maximization, but in the new context of full-duplex
communications. The results in this thesis provide important understanding in the role of
user pairing, frequency assignment and power allocation, and reveal the special behaviour
between the legacy self-interference and the new user-to-user interference. This thesis can
provide input to the standardization process of full-duplex communications, and have the
potential to be used in the implementation of future full-duplex in cellular networks.
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Chapter 1

Introduction

Current wireless communication systems are witnessing an explosive increase in data
traffic [1]. For the incoming 5th generation (5G) of these systems, the international
telecommunication union radiocommunication sector expects peaks of data rates in
the order of tens of Gbit/s [2]. To meet these demands, wireless network operators
seek to enhance the spectral efficiency – the rate of information a system delivers
over a given bandwidth– in lower-frequency bands [1], and to exploit higher-frequency
bands such as the millimiter waves (mmWave). Figure 1.1 shows the three main use
cases envisioned for 5G [3], enhanced mobile broadband, ultra-reliable low latency
communications, and massive machine type communications. The enhanced mobile
broadband expresses the extended support of conventional mobile broadband services
through improved peak/average/cell-edge data rates, capacity and coverage. ultra-reliable
low latency communications represents the requirement for network services with extreme
demand on availability, latency and reliability. massive machine type communications
is necessary to support the envisioned 5G scenarios with tens of billions of network-
enable devices [4]. The research and standardization communities are currently studying
physical layer technologies, including massive multiple input multiple output (MIMO)
systems, spectrum sharing in mmWave networks, new waveforms, non-orthogonal multiple
access technologies, and full-duplex communications [3, 5–7]. 5G networks will also
have to feature large numbers of close-by nodes wanting to exchange data [8], and
one relevant technological component to meet these requirements is full-duplex (FD)
communications [9], as shown in Figure 1.1.

Traditional cellular networks operate in half-duplex (HD) transmission mode, in
which a user equipment (UE) or the base station (BS) either transmits or receives on
given frequency channels. Recently, in-band FD has been proposed as a key enabling
technology to increase the spectral efficiency of conventional wireless transmission modes.
Full-Duplex communications overcome the assumption that it is not possible for radios
to transmit and receive simultaneously on the same time-frequency resource. In-band
FD transceivers are expected to improve the attainable spectral efficiency of traditional
wireless networks operating with HD transceivers by a factor close to two [6, 10]. In
addition to the spectral efficiency gains, full-duplex can provide gains in the medium access
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Possible FD
use cases

Figure 1.1: The three main use cases in 5G, enhanced mobile broadband (eMBB), ultra-
reliable low latency communications (URLLC), and massive machine type communications
(mMTC) [3]. Notice that possible candidates for the application of FD communications
could be in smart offices (small cells), and connected city/home (use of relays to improve
coverage).

control layer, on which problems such as the hidden/exposed nodes and collision detection
can be mitigated [11–13].

Until recently, in-band FD was not considered as a solution for wireless networks
due to the inherent interference created from the transmitter to its own receiver, the so
called self-interference (SI). However, recent advancements in mitigating SI have been
successful [14–20]. To cancel the SI created by full-duplex communications, we need to
rely on different techniques that can be classified as passive and active suppression [13].
The first step is to consider passive suppression of the SI using antenna techniques and after
that active SI cancellation schemes with analog and digital cancellation to suppress the
residual SI. Overall, the recent advances imply that FD is becoming a realistic technology
component of advanced wireless – including cellular – systems, especially in the low
transmit power regime [17, 18].

Although in-band FD promises to double the data capacity of existing technology,
its deployment in wireless local area and cellular networks is challenging due to the
large number of legacy devices and wireless access points. A viable introduction of FD
technology in cellular networks is offered by three-node full-duplex (TNFD) deployments,
in which only the wireless access points or BSs, typically equipped with multiple antennas,
implement FD transceivers to support the simultaneous downlink (DL) and uplink (UL)
communication with two distinct UEs on the same frequency channel [12]. In TNFD
networks, in addition to the inherently present SI, the users experience the UE-to-UE
interference, which may become the performance bottleneck, especially as the capability of
FD transceivers to suppress SI improves. It is crucial to understand the trade-offs between
UL and DL performance of full-duplex in cellular systems, specially TNFD, in the design
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Figure 1.2: We can divide in-band FD schemes in three configurations, bidirectional full-
duplex, three-node full-duplex, relaying full-duplex, and the additional HD mode. Some
configurations are more suitable to cellular networks with the BS as access points, whereas
others are also suited for general wireless networks.

of efficient and fair medium access control protocols, and also coordination mechanisms
that help to realize the FD potential even for legacy UEs.

1.1 Background

In this section we overview some fundamental aspects of FD communications, including
its history and recent developments in SI cancellation, cellular networks, and distributed
solutions for power control and assignment of users.

1.1.1 Full-Duplex Communications

In-band FD in wireless networks is not recent, the concept of transmission and reception
in the same frequency channel has been used since 1940 in radar systems [11]. The SI was
already a key challenge on which the first circuits to null the SI were proposed and provided
low levels of cancellation. Such mild SI cancellation levels limited transmit power, which
provided a reduced range of detectable targets, which is desirable in radar systems. In the
last decade, wireless broadband systems, such as WiFi and cellular, started to take into
account in-band FD communications. To the best of our knowledge, the first application
of FD in such context considers it for relaying purposes, where the relay could be used
to improve the sum rate, area coverage or in areas where it is prohibitive to implement an
operational BS [11, 21].

With respect to the transmission configurations, we can categorize the in-band FD in
three: bidirectional full-duplex (BFD), TNFD, and relaying full-duplex (RFD) [12, 22].
Figure 1.2 shows the standard half-duplex system and the aforementioned configurations,
as well as the interference scenarios they face. In BFD, two FD-capable nodes (either a
UE or the BS) transmit and receive on the same time-frequency resource, which creates
SI for both nodes. In contrast, TNFD involves three nodes, but only one requires FD
capability. The FD-capable node transmits to its receiver node while receiving from another
transmitter node on the same frequency channel, in which SI is present only at the FD-
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capable node. In cellular networks, the BS is FD-capable and transmits in the DL and
receives in the UL from the HD UEs (Figure 1.2). In RFD, one node transmits to a FD-
capable relay and then retransmits the signal to the second node, where all transmissions
occur in the same time-frequency. Since the relay is the only FD-capable node, SI is present
only at the relay.

These new configurations extend the design options and allow for a higher spectral
usage of the already available frequency resource. For example, in BFD the nodes can
ideally double the spectral efficiency, provided that a good SI cancellation is performed
at each node. The same idea applies to the other configurations, but now with a broader
application range. Figure 1.3 shows some FD applications in which all three configurations
have already been studied or envisioned, where the blue color represents BFD, the green
color represents TNFD, and the purple color the RFD. Notice that FD has already
a broad range of applications, ranging from device-to-device (D2D) communications,
going to simultaneous wireless information and power transfer (SWIPT) networks, and
also reaching mmWaves, which show an evolution and broad application range of the
technology. For some application areas, more than one configuration can be applied at
the same time, which is the case of MIMO – and massive MIMO –, SWIPT, and cognitive
radio. However, the common drawback of FD in all the technologies and applications in
Figure 1.3 remains the SI, which highlights that SI cancellation is crucial.

1.1.2 Self-Interference Cancellation for Full-Duplex Communications

The driving concept of FD communication is to allow simultaneous transmission and
reception for a node, and for this to happen, the FD nodes require a transmit and receive
radio-frequency (RF) chain. To separate these two RF chains, there are two methods:
separated and shared antennas [22]. The first method consists of separating physically the
RF chains, i.e., when the number of antennas is greater than 2, use a part of the set of
antennas to transmit and the other part to receive. In this situation, there is a loss in the
degree of freedom in the spatial domain. The second method shares all the antennas in
the RF chains, and to isolate the receiver from the transmitter, a special duplexer named
circulator is used. The circulator idea comes from radar technology [11, 22]; it is a three-
port device that prevents the transmitted signal from one RF chain to leak into the receiver
signal of the receiver RF chain. With shared antennas, it is possible to have a single
antenna to transmit and receive, which is advantageous in single input single output (SISO)
systems.

Irrespectively of the methods to separate the RF chains, the simultaneous transmission
and reception in the same frequency resource makes the transmitted signal to loop back to
the receiving antenna, and this leaked signal is the SI. Depending on the transmitter power,
the SI needs to be cancelled by more than 100 dB to reduce its value to the noise floor [11,
16], which is an extremely high level to be cancelled. To have a better understanding of the
impact of SI in the system, we need to cancel a signal that is approximately 1 trillion times
higher than the received signal [18]. To cancel SI, we need to rely on two steps that can be
classified as passive and active suppression [13].

Usually, the first step is passive suppression of the SI using the antenna techniques
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Figure 1.3: A range of areas in which FD has been envisioned, irrespective of the
configuration in Figure 1.2. We show in blue some applications for BFD, in green for
TNFD, and in purple for RFD. In some cases, more than one configuration can be applied
at the same time, such as D2D communications, MIMO, and SWIPT.

mentioned above, and then active SI cancellation schemes with analog and/or digital
cancellation to suppress the residual SI. Besides the physical separation between the
transmitting and receiving antenna, passive suppression can also be accomplished by
setting a directional beam towards the receiving antenna and a lobe to the transmitting
antenna, which is called directional SI suppression [69–71]. The passive suppression is
suggested to be used before the SI enters the receive RF chain circuit [11, 72, 73], and it
was shown experimentally that up to 65 dB of SI can be suppressed with omni-directional
antennas [73].

On the other hand, active suppression is subdivided into analog and digital cancellation
techniques. Analog cancellation is usually the first step in the active suppresion, and
it is performed before the signal enters the analog-to-digital converter. Usually, analog
cancellation subtracts an estimate of the SI signal after performing a passive suppression
[22], but it can also be used to tap the transmit signal into the digital domain (to apply
adjustments digitally), and then convert it back to the analog domain to cancel the self-
interference [11, 14, 15, 73, 74]. To further reduce the SI, passive suppression is also
used along with analog cancellation, and some authors report up to 80 dB using both
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techniques [75].
To further reduce SI, digital cancellation is performed, where an estimate of the SI

signal is treated in the digital domain. The goal of this cancellation is to mitigate any
residual self-interference signal. Since it is easier to perform heavy calculations in the
digital domain, the digital cancellation can model linear and nonlinear distortions of the
signal, and then cancel these components in the main signal. Digital cancellation can also
be used along with passive suppression and analog cancellation to further suppress the
SI, but it was noted that digital cancellation should not be used when analog cancellation
performs well [15]. In Duarte et al. [15] the authors show that using separated antennas
along with analog and digital cancellation, the system is able to suppress 74 dB of the SI.
The best SI suppression appears to have been achieved by Bharadia et al. [16], where 110
dB of SI suppression was obtained with analog and digital cancellation in Wi-Fi networks
with bandwidth of 20 MHz. According to the authors, such performance can also achieved
in current long term evolution (LTE) systems regardless of the frequency band. For a more
detailed analysis of all cancellation methods, [6, 22] provide tables with different methods
of passive and active suppression, as well as advantages and disadvantages of each method.
More recently, SI suppression has achieved high levels also for mobile devices [20,68], FD
MIMO relays [76], and also in mmWaves [68]. As an example, researchers from Stanford
University have founded a startup company, Kumu Networks, to develop practical full-
duplex radios [77].

With these high levels of SI cancellation circuits, many works assume that either the SI
is fully cancelled [26, 78], or some residual value is left [15, 23, 28, 79, 80]. Provided that
some residual value is left, some authors consider three different types of residual SI: fixed
value independent of the transmitter power [79], fixed value dependent of the transmitter
power in a linear function [28, 80], and a random variable following a Rician distribution
dependent on the transmitter power in a linear function [15, 23]. Throughout this thesis,
we consider that the residual SI is fixed and depends on the transmitter power in a linear
manner.

We notice that the historical drawback of FD, the SI interference, remains important
and needs to be mitigated, but the recent developments show the maturity and feasibility
of FD communications in practical scenarios.

1.1.3 Full-Duplex Applications in Cellular Networks

With the recent research in SI cancellation, and considering the different in-band FD
configurations in Figure 1.2, a viable introduction of FD technology in cellular networks
is offered by TNFD. This configuration requires that, at least the wireless access points or
BSs, implement FD transceivers to support the simultaneous DL and UL communication
with two distinct UEs on the same frequency channel [12]. Although recent research have
pointed to practical FD mobile users [20, 68], its implementation in modern phones and
standards has still a long road to travel. Due to this reason, the most common assumption
in TNFD cellular networks is that only the BS is full-duplex capable, whereas the majority
of users remain HD.

As shown in Figure 1.2, TNFD also suffers from the UE-to-UE interference, which
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Figure 1.4: An example of TNFD in a cellular network with 4 users. Notice that it is
advantageous to pair users far apart, such as UE1-UE4 and UE2-UE3, and then assign
these pairs the same frequency channel.

is present because the UL user is transmitting in the same frequency resource as the
one the DL user is receiving from the BS. The UE-to-UE interference depends on the
users location and propagation effects, but also on the transmit powers of UL users. In
addition, in cellular SISO networks there are inherent constraints of orthogonality within
the same transmission direction. That is, every UL user – as well as the BS in the DL
– must transmit in a different frequency channel. To cope with this orthogonality, another
challenge appears, which is how to pair UL and DL such that the assignment of both sets of
users to frequency channels maximize the desired performance indicator, e.g., the spectral
efficiency. Figure 1.4 highlights a situation with four users and two frequency channels,
where the pairing and assignment of users to frequency channels needs to be carefully
performed. To deal with these new challenges, coordination mechanisms that take into
account pairing, frequency assignment – to which both are usually named assignment–
and power allocation are crucial for FD cellular networks.

1.1.4 Power Allocation and Assignment for Full-Duplex Cellular Networks

Coordination mechanisms – such as power allocation and assignment – are important to
reduce the impacts of the different sources of interference in TNFD cellular networks,
and also to optimize a desired performance indicator. Typical and natural objectives
for many physical layer procedures for FD cellular networks are maximizing the sum
spectral efficiency and fairness. In order to achieve the two main goals, the coordination
mechanisms can use power allocation [81–83], assignment [28,84,85] or a joint mechanism
that takes both into account [29, 32, 79, 86–88]. The main motivation for considering joint
aspects is to further improve the desired performance indicator.

Most of the works in FD cellular networks aim to maximize the spectral efficiency
and analyse the theoretical doubling that FD provides. In [81, 82], the authors analyse the
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rate gain region of TNFD and BFD considering only power allocation, whereas in [83]
the authors analyse power allocation only in the UL. On the other hand, scheduling was
also used to improve the spectral efficiency [28] in a cellular environment, as well as the
pairing UL and DL of users [84, 85]. Some works also took into account both aspects,
power allocation and assignment, to maximize the spectral efficiency. In [32], the authors
use this joint approach in a heterogeneous network, whereas [29,79,86–88] have a similar
approach but towards small cellular networks. However, some of the above works tackle
the assignment problem from a subcarrier or scheduling perspective, make simplifications
to the model, or provide heuristic solutions.

Another important objective is to improve the fairness and per-user quality of service
(QoS) of FD cellular networks, but little has been done as emphasized in [12,80]. The work
in [12] emphasizes the importance of fairness and that it may degrade by a factor of two
compared with HD communications. However, the authors do not provide power allocation
and assignment schemes that are developed with such objectives in mind. In [80], a QoS
provisioning framework within bidirectional FD configuration is proposed, but without
considering the implications of TNFD transmissions. We notice here a research gap that
has not been tackled, and which may have great impact in the application of FD in cellular
networks.

1.1.5 Distributed Algorithms for Full-Duplex Cellular Networks

In future cellular networks, there is a need to move from a fully centralized architecture
towards a more decentralized architecture [8]. The objective is to use the infrastructure of
the BS to help the UEs to communicate in a distributed manner, reducing the processing
burden at the BS and the latency. In TNFD, the burden of the BS is further increased by
the SI cancellation circuits, which increases the need of distributed solutions. Although
the TNFD configuration remains centralized, the functions – such as power allocation and
assignment– may be distributed. Few works have developed distributed algorithms that
are applicable in TNFD networks [89, 90]. The authors of [89] have tackled the problem
of the UE-to-UE interference from an information theoretic perspective, without relating
to resource allocation and power control. In [90], the authors have proposed a distributed
power control for general wireless networks using approximation techniques, but they have
not taken into account the specific aspects of TNFD in cellular networks. Therefore, there
is a need for distributed solutions in TNFD for cellular networks.

1.2 Problem Formulation

In this thesis we take into account a joint formulation of power allocation and assignment
– pairing and/or frequency assignment– in order to maximize the performance indicator of
interest for TNFD in cellular networks. We can pose this objective in a joint formulation
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of a mixed integer nonlinear programming (MINLP) problem as

maximize
X,pu,pd

f0(X,pu,pd) (1.1a)

subject to fi(X,p
u,pd) ≤ bi, ∀i ∈ I, (1.1b)

hj(X) ≤ cj , ∀j ∈ J , (1.1c)

X ∈ {0, 1}S . (1.1d)

The main optimization variables are pu, pd and X, where pu, pd represent the transmit
power vectors for I UL and J DL users, and X is the assignment matrix. Notice that
the assignment matrix may vary its size S depending on the fading the environment is
experiencing, where for frequency selective fading X has three dimensions, the first two for
UL and DL users and the third for the frequency channel. For block fading environments,
X has only the dimensions for UL and DL users. The objective function (1.1a) of the
problem depends on the three variables, and it is nonconvex for the applications in this
thesis. Constraint (1.1b) represent a series of inequality constraints that depend on either
two or three optimization variables. The inequality function vector fi(X,pu,pd) is usually
nonconvex if it takes into account all three variables, but it is convex if it considers
only the transmit power vectors pu, pd. This constraint may represent minimum QoS
requirement per UL and DL user, as well as maximum transmitting power for UL users
and the BS. The other constraint function vector in Eq. (1.1c) represents the binary
inequalities, and embed the orthogonality between UL/DL users and frequency channels.
This constraint may represent that a UL user can be associated to only one DL user
and frequency channel, and it is applied for all users and frequency channels. The last
constraint (1.1d) requires the assignment matrix to be binary. In addition, the set of
constraints I and J are complementary, the inequality function vectors fi(X,p

u,pd)
and hj(X) represent different functions, and all inequalities in Eqs. (1.1b)-(1.1d) are
component-wise. Optimization problem (1.1) is difficult to solve because it has binary
and real variables intertwined in a nonconvex problem. In fact, we show that for some
applications the problem is non-deterministic polynomial-time (NP)-hard, i.e., that no
polynomial time solution – in the sense of optimality – for the problem is known. With
this in mind, we will use different optimization techniques to provide an approximated
or close-to-optimal solution, either centralized or distributed, for the maximization of two
practical objectives: spectral efficiency and fairness.

1.2.1 Spectral Efficiency Maximization

One of the main promises of FD is to theoretically double the spectral efficiency by the
transmission and reception in the same frequency channel. With this, one of the most
important performance objectives is the spectral efficiency. In the sequel, we pose a spectral
maximization problem that jointly takes into account frequency assignment of UEs in the
UL and DL to frequency channels and the transmitting powers of UL users and the BS.

To this end, we need to first define some parameters. Let the number of UEs in the UL
and DL be denoted by I and J , respectively, which are constrained by the total number of
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frequency channels in the system F , i.e., I ≤ F and J ≤ F . Let Gib denote the effective
path gain between transmitter UE i and the BS, Gbj denote the effective path gain between
the BS and the receiving UE j, and Gij denote the interfering path gain between the UL
transmitter UE i and the DL receiver UE j, and β as the SI cancellation coefficient. The
vector of transmit power levels in the UL by UE i is denoted by pu = [Pu1 . . . P

u
I ], whereas

the DL transmit powers by the BS is denoted by pd = [P d1 . . . P
d
J ]. Accordingly, we define

the assignment matrix, X ∈ {0, 1}I×J×F , such that xijf = 1 if the UL UEi is paired with
the DL UEj and assigned to frequency channel f , and xij = 0 otherwise. The signal-to-
interference-plus-noise ratio (SINR) at the BS of transmitting user i and the SINR at the
receiving user j of the BS are given by

γui =
Pui Gib

σ2 +
∑J
j=1 xijP

d
j β

, γdj =
P dj Gbj

σ2 +
∑I
i=1 xijP

u
i Gij

. (1.2)

The achievable spectral efficiency for each user is given by the Shannon equation (in
bits/s/Hz) for the UL and DL as Cui = log2(1 + γui ) and Cdj = log2(1 + γdj ), respectively.

Our goal is to devise the pairing and assignment of UEs in the UL and DL to frequency
channels, that maximize the sum spectral efficiency over all users. The problem can be
formulated as

maximize
X,pu,pd

I∑
i=1

Cui +

J∑
j=1

Cdj (1.3a)

subject to Pui ≤ Pumax, ∀i, (1.3b)

P dj ≤ P dmax, ∀j, (1.3c)
J∑
j=1

F∑
f=1

xijf ≤ 1, ∀i, (1.3d)

I∑
i=1

F∑
f=1

xijf ≤ 1, ∀j, (1.3e)

I∑
i=1

J∑
j=1

xijf ≤ 1, ∀f, (1.3f)

xijf ∈ {0, 1}, ∀i, j, f. (1.3g)

The main optimization variables are pu, pd and X. Constraints (1.3b) and (1.3c) limit the
transmit powers per-user and per-channel DL power constraint, whereas constraints (1.3d)-
(1.3f) assure that at most one UE in the DL can share the frequency resource with a UE in
the UL and vice-versa. Problem (1.3) belongs to the category of MINLP, and in addition,
problem (1.3) belongs to the category of 3-D nonlinear assignment problems. We may also
have slightly different problem formulations in which we require a minimum SINR for UL
and DL users, and also use weights in the spectral efficiency for the UL and DL users.
In this thesis, we provide a close-to-optimal solution with distributed power control for
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problem (1.3), and for a slightly modified problem with reduced complexity, we provide
an approximate distributed solution.

1.2.2 Fairness Maximization

Provided that we have an operational usage of FD in cellular networks, we need to ensure
some level of fairness for all the users in the system. However, fairness can be defined in
many ways [91], such as a minimum QoS guarantee for all users, a high average spectral
efficiency for all users, or we can guarantee a high spectral efficiency for the user with
minimum spectral efficiency.

In this thesis, fairness maximization is understood as the maximization of the minimum
spectral efficiency of all users, i.e., max-min spectral efficiency. To this end, we propose
a joint frequency assignment of UEs in the UL and DL to frequency channels and power
allocation to increase the fairness of the system. We formulate the problem as

maximize
Xu,Xd,pu,pd

min{Cui , Cdj }
∀i,j

(1.4a)

subject to
F∑
f=1

γuif ≥ γuth, ∀i, (1.4b)

F∑
f=1

γdjf ≥ γdth, ∀j, (1.4c)

Pui ≤ Pumax, ∀i, (1.4d)

P dj ≤ P dmax, ∀j, (1.4e)
I∑
i=1

xuif ≤ 1, ∀f, (1.4f)

F∑
f=1

xuif ≤ 1, ∀i, (1.4g)

J∑
j=1

xdjf ≤ 1, ∀f, (1.4h)

F∑
f=1

xdjf ≤ 1, ∀j, (1.4i)

xuif , x
d
jf ∈ {0, 1}, ∀i, j, f. (1.4j)

The optimization variables are pu, pd, Xu, and Xd. Constraints (1.4b) and (1.4c) ensure
a minimum SINR to be achieved in the DL and UL, respectively. Constraints (1.4d)
and (1.4e) limit the transmitting power and constraints (1.4f)-(1.4i) assure that only one
UE in the UL and DL can use frequency channel f and that any given frequency channel
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is used by at most one UE in the UL and DL. Differently from the spectral efficiency
maximization in Section 1.2.1, this problem is MINLP and belongs to the category of
multi-level nonlinear bottleneck assignments, which is also extremely complex. In this
thesis, we provide an approximate solution for problem (1.4). In addition, we provide
a centralized solution to a multi-objective problem that takes into account both spectral
efficiency and fairness maximization.

1.3 Contributions of the Thesis

In this thesis we analyse key performance measures to further optimize full-duplex
communications in cellular networks. In the second part of the thesis, each chapter is based
on a published or submitted manuscript. We present below the publications each chapter is
based on:

[C1] José Mairton B. da Silva Jr., Yuzhe Xu, Gábor Fodor, Carlo Fischione, “Distributed
Spectral Efficiency Maximization in Full-Duplex Cellular Networks”, in Proc. IEEE
International Conference on Communications (ICC’16), May 2016.

[J1] José Mairton B. da Silva Jr., Gábor Fodor, Carlo Fischione, “Fast-Lipschitz
Power Control and User-Frequency Assignment in Full-Duplex Cellular Networks,”
submitted to IEEE Transactions on Wireless Communications, February 2017.

[J2] José Mairton B. da Silva Jr., Gábor Fodor, Carlo Fischione, “Spectral Efficient
and Fair User Pairing for Full-Duplex Communication in Cellular Networks”, IEEE
Transactions on Wireless Communications, Vol. 15, No. 11, pp. 7578-7593, Nov.
2016.

[C2] José Mairton B. da Silva Jr., Gábor Fodor, Carlo Fischione, “On the Spectral Effi-
ciency and Fairness in Full-Duplex Cellular Networks”, in Proc. IEEE International
Conference on Communications (ICC’17), May 2017, accepted.

In Table 1.1 we show the main coordination mechanisms, design aspects and perfor-
mance measures present in the publications. We consider user pairing, frequency channel
assignment, and power allocation as coordination mechanisms, which are necessary to
mitigate the effect of the SI and UE-to-UE interference in the spectral efficiency of the
system. All publications consider user pairing and power allocation, whereas only [J1] and
[J2] consider frequency assignment, i.e., the environment is frequency selective and the
users need to also decide on which frequency they will transmit/receive. Since distributed
mechanisms are needed, we propose a distributed user pairing in [C1] and a distributed
power control in [J2]. The two objective functions considered in this thesis are the sum
spectral efficiency (SE), either weighted or with weights equal to one, and the minimum
spectral efficiency of the system, aiming at a fair allocation of resources.
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Table 1.1: Coordination mechanisms and performance objectives considered in the
included articles of this thesis.

[C1] [J1] [J2] [C2]
User Pairing X X X X

Freq. Assignment - X X -
Power Alloc./Control X X X X

Distributed X X - -
Objective Sum SE Sum SE Minimum SE Sum SE + Minimum SE

1.3.1 Distributed Assignment Solution for Spectral Efficiency Maximization

This chapter is based on [C1] and studies the sum spectral efficiency maximization
problem through a distributed approach. We propose a joint problem of user pairing,
and UL/DL power control that is a MINLP problem, whose objective is to maximize the
overall weighted spectral efficiency of the system. Due to the complexity of the MINLP
problem proposed, the solution approach uses Lagrangian duality. We provide an initial
solution to the user pairing problem that can be solved centrally, and prove the optimal
power allocation for any given pair of UL/DL users (i, j). However, such centralized and
demanding solutions may increase the burden on the BS, and since the cellular environment
is network-controlled by the BS, it is possible to use its resources to provide a distributed
solution for the pairing. The pairing solution is expressed as an assignment problem,
whereas we use the theory of combinatorial auction to develop the distributed solution that
provides a bounded number of iterations and optimality. The numerical results in Figure 1.5
show the sum spectral efficiency in a path loss compensation modelling. We notice that the
distributed solution proposed, named D-AUC, improves the sum spectral efficiency when
compared to current HD modes when the SI cancelling level is high.

1.3.2 Distributed Power Control for Spectral Efficiency Maximization

This chapter is based on [J1] and we study the sum spectral efficiency maximization
problem, but aiming at a distributed power control solution. The focus of the problem
is on joint user-frequency channel assignment and power control, and the problem is
formulated as a MINLP optimization. The joint problem is NP-hard, and to find an
approximated solution, we decompose it into two parts that correspond to the user-
frequency channel assignment problem and power control problem, respectively. However,
the assignment problem is also NP-hard. Then, we propose a greedy algorithm with
guaranteed performance with respect to the optimal solution. To solve the power control
problem, we develop a novel power control mechanism especially suited for FD networks.
The proposed power control scheme is a distributed algorithm that sets the SINR targets
at each receiver such that the achieved sum rate is close-to-optimal. The sum rate
maximization problem is non-convex and I therefore proposed to use Fast-Lipschitz (FL)
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Figure 1.5: Cumulative distribution function of the sum spectral efficiency in a system with
25 UL, DL users, and frequency channels, using different SI cancelling levels, and with
path loss compensation as weights. The proposed distributed solution D-AUC improves
the sum spectral efficiency in scenarios with high SI cancellation when compared to HD
systems and a naive full-duplex solution using random pairing and equal power allocation,
named R-EPA.

optimization [92] to solve it in a distributed and fast manner. The numerical results in
Figure 1.6a show the sum spectral efficiency, whereas in Figure 1.6b we show the total
power consumption. We notice that our proposed solution, named G-FLIP, outperforms
existing methods in the literature for interference-limited scenarios, providing gains in
terms of energy saving, as well as in the sum spectral efficiency gains.

1.3.3 Fairness Maximization for Full-Duplex Cellular Networks

This chapter is based on [J2] and studies fairness in FD for cellular networks. We propose
a joint problem of user-frequency channel assignment and transmit power allocation,
formulated as a mixed integer nonlinear optimization. The objective of our proposed
problem is to maximize the spectral efficiency of the user with the lowest achieved
spectral efficiency while respecting minimum QoS constraints, aiming at a fair and efficient
communication. The proposed problem is NP-hard, implying that no optimal solution
in polynomial time can be obtained. Thus, we apply Lagrangian duality, allowing us to
provide the optimal power allocation and an initial solution for the assignment. However,
the assignment cannot be solved efficiently, because this problem is also NP-hard, but
now with respect to the assignment variables. Then, we propose an approximated greedy
solution to the assignment problem, and prove that the duality gap between the greedy
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Figure 1.6: Cumulative distribution functions of the sum spectral efficiency and total
power consumption for an interference-limited system. The system has 25 UL, DL users,
and frequency channels, whereas the self-interference cancelling level is −110 dB.

solution with optimal power allocation and the primal solution is bounded and diminishes
as the number of frequency channels increases. The numerical results in Figure 1.7 show
the ratio of users that fulfil the minimum QoS constraint in the system. We notice that
our proposed solution, named JAFMA, improves the spectral efficiency of the users with
low spectral efficiency in a wide range of scenarios. The results also indicated that the
optimization of the assignment and power allocation should be approximately solved
jointly; otherwise, a random allocation with equal power allocation (EPA) achieves a
similar performance.

1.3.4 Joint Spectral Efficiency and Fairness Maximization for Full-Duplex
Cellular Networks

This chapter is based on [C2] and we study the interplay between fairness and weighted
sum spectral efficiency maximization in FD cellular networks. We propose a multi-
objective optimization problem to maximize simultaneously both the weighted sum
spectral efficiency and the minimum spectral efficiency of all users. We use Lagrangian
duality and the associated centralized algorithm based on the dual problem to decompose
it into parts: the power allocation problem and UL/DL assignment problem. We proved
the optimal power allocation between UL/DL users, but it depends on the Lagrangian
multiplies of both UL and DL users. Then, we proved an initial solution for the assign-
ment problem, but due to the intertwined optimal power allocation between Lagrangian
multiplies of both UL and DL users, this solution is still too complex. Based on this, we
reformulated the dual problem and proposed a fast centralized solution for the assignment
problem. The numerical results in show that proposed solution, named C-HUN, increases
the sum spectral efficiency (see Figure 1.8a) and fairness (see Figure 1.8b) among the users.
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Figure 1.7: Cumulative distribution function of the ratio of connected users in a system
with 25 frequency channels and 19 or 25 UL and DL users. Our proposed JAFMA solution
guarantees connection to a high ratio of connected users although the system is completely
loaded, and for different SI cancellation levels.

An important feature of the proposed solution is that there is no need to consider weights
in the sum spectral efficiency, be it equal weights (SR), or for path-loss compensation (PL).
This is advantageous because defining the weights in a weighted sum objective function is
typically cumbersome and difficult in practice.

1.3.5 Contributions not Covered in the Thesis

The following publications are not covered in the thesis, but contain related materials and
applications:

[J3] Gábor Fodor, S. Roger, N. Rajatheva, S. B. Slimane, T. Svensson, P. Popovski, José
Mairton B. da Silva Jr., S. Ali, “An Overview of Device-to-Device Communications
Technology Components in METIS”, IEEE Access, Vol. 4, pp. 3288-3299, 2016.

[BC1] Z. Li, F. S. Moya, Gábor Fodor, José Mairton B. da Silva Jr., K. Koufos, “Device-to-
Device (D2D) Communications”, in A. Osseiran, J.F. Monserrat, P. Marsch(eds.),
“5G Mobile and Wireless Communications Technology”, Cambridge University
Press, pp. 107-136, 2016.

[J4] José Mairton B. da Silva Jr., Gábor Fodor, “A Binary Power Control Scheme
for D2D Communications,” IEEE Wireless Communications Letters, Vol. 4, No.
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1.4 Conclusions and Future Works

1.4.1 Conclusions

Full-duplex communications have the potential to almost double the spectral efficiency
of traditional wireless systems operating in HD, and due to the recent advances in SI
suppression techniques, FD is becoming a realistic technology component of cellular
systems. However, in addition to the inherent SI, the UE-to-UE interference may further
degrade the performance, which calls for coordination mechanisms such as user pairing,
frequency assignment and power control.

In this thesis we analysed different performance measures along with resource
allocation solutions for full-duplex in cellular networks. We analysed the fundamental
problem of weighted sum spectral efficiency maximization for two situations: with/without
frequency selective fading. With the frequency selective fading, we had to take into
account both frequency assignment and user pairing. We proposed a greedy solution to
approximate the assignment problem, and developed a novel distributed solution using
Fast-Lipschitz optimization. The results showed improvements in the spectral efficiency of
the users with in an interference-limited regime, achieved higher spectral efficiency than
HD transmissions, and showed large energy saving gains. The results also indicated that a
smart assignment solution achieves more gains in interference-limited regime than smart
power control solution, whereas the opposite happens in a SI-limited regime.
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Without the frequency selective fading, users have no preference of which resource they
share. However, user pairing is a concern, since it has a great impact on the individual users’
performance. We developed a distributed solution for the user pairing using combinatorial
auction and proved the optimal power allocation for users sharing a frequency channel.
The numerical results showed that the proposed distributed solution increases the weighted
sum spectral efficiency with weights based on path loss compensation when compared to
current HD modes with high SI cancelling level. Furthermore, the impact of the UE-to-UE
interference is severe when the SI cancelling level is high, and conversely, when the SI
cancelling level is low, a proper management of the UE-to-UE interference is not enough
to bring gains to FD cellular networks. With respect to the sum spectral efficiency, we
showed with these works that for sum spectral efficiency maximization the assignment and
power control solutions play different roles that depend on the level of SI cancelling level.
Also, we showed that distributed solutions, either for the assignment or power control, can
be performed and provide gains with respect to HD systems.

Besides sum spectral efficiency, we were also interested in fairness for full-duplex cel-
lular networks. We tackled this important performance indicator through the maximization
of the minimum spectral efficiency achieved in the system. We proposed an approximated
solution for the assignment and proved the optimal power allocation for a system with
minimum QoS constraints, as well as the minimum SI cancelling level that allow the pair of
users to achieve at least the minimum SINR. The numerical results showed that our solution
improved the minimum spectral efficiency and achieved the highest ratio of connected
users in a wide range of scenarios. Also, the results indicated that the optimization of the
assignment and power allocation should be solved jointly; otherwise, a random allocation
with EPA achieves a similar performance.

Since both sum spectral efficiency and fairness are key performance indicators, we
also studied the interplay between them through the multi-objective optimization problem
of maximizing the weighted sum spectral efficiency and minimum spectral efficiency
achieved in the system. Due to its high complexity, we proposed a low-complexity
centralized solution that can be implemented at the cellular base station. The numerical
results showed that using a proper weight between the two objectives, the sum spectral
efficiency and fairness are improved regardless of the individual weights on the sum
spectral efficiencies of UL and DL users. Furthermore, the UE-to-UE interference has
to be taken into account irrespectively of how the assignment and power allocation are
performed. When it is not, the performance in terms of sum spectral efficiency and fairness
will be close to a random assignment and equal power allocation among users. Regarding
fairness in full-duplex for cellular networks, we showed that it is possible to achieve a fair
and spectral efficient resource allocation, provided smart assignment and power allocation
solutions are employed.

1.4.2 Future Works

Although we propose some future directions in the second part of this thesis, there are
other directions that we also wish to take, and they are listed as follows:
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• Interplay between more performance indicators: In [C2] we analysed the relation
between spectral efficiency and fairness, whereas in [J2] we showed a solution that
maximized the spectral efficiency and achieved high energy saving gains. Another
possibility is to directly analyse the interplay between spectral and energy efficiency
in full-duplex for cellular networks. By proposing an optimization problem that aims
at both objectives, we may further increase the gains of FD communications.

• Channel estimation and pilot design for FD-MIMO: A natural extension is to
consider FD with multiple antennas at both transmitter and receiver, and this has
been studied recently. However, most of the works assume perfect or partial channel
knowledge, and without taking into account a proper method for channel estimation
and the design of pilots. The pilot-data trade-off is a well-studied topic in standard
MIMO, but it has not been addressed in the context of full-duplex communications.

• Beamforming design for FD-MIMO in mmWaves: With the growing of mmWave
and the intensive development in hardware, FD in mmWave is becoming a viable
technology component. To use fully the benefits of mmWave, we need a proper
beamforming design with digital and analog architectures, i.e., a hybrid beam-
forming. However, none of these aspects have been considered in the context of
full-duplex communications, implying that the combined gains may help to further
increase the rate and spectral efficiency of future cellular systems.





Chapter 2

Preliminaries

This chapter summarizes the background theory used in the thesis. In particular, Section 2.1
introduces the Hungarian algorithm, a centralized solution to assignment problems.
Section 2.2 introduces the fundamentals of Auction theory, a solution to assignment
problem that we use in the thesis to pair UL and DL users. Then, in Section 2.3 we discuss
the framework of Fast-Lipschitz optimization.

2.1 Hungarian Algorithm

In this section, we summarize an efficient centralized method for solving assignment
problems optimally and in polynomial time [93–95]. Let us suppose there are n agents
that need to be assigned to n locations in a one-to-one basis. For each association, we
define the costs aij to represent the cost expenses of assigning agent i to location j, which
are collected in the matrix A ∈ R. The objective of this problem is to minimize the overall
cost of transportation, i.e., the association between agents to locations need to be performed
such that the overall cost of transportation is minimized. We can formulate this assignment
problem as a linear optimization with binary variables as

minimize
X

I∑
i=1

J∑
j=1

aijxij (2.1a)

subject to
I∑
i=1

xij = 1, ∀j, (2.1b)

J∑
j=1

xij = 1, ∀i, (2.1c)

xij ∈ {0, 1}, ∀i, j, (2.1d)

where the assignment matrix X ∈ {0, 1}n×n is the optimization variable. This assignment
problem can also be seen as a 2D assignment problem, which represents the two
dimensions that we have to assign. The Hungarian algorithm is a polynomial time

23
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centralized solution for this problem [93, 94], and it was named by Kuhn [93] in honor
of the work of König and Egerváry on which it is based. The algorithm assigns in an
optimal manner the agents to the locations in O(n3) operations [95].

For the sake of simplicity, we present below the summarized steps of the Hungarian
algorithm in matrix form [95]:

Step 1 Subtract the smallest aijmin in each row of A from all the entries of its row.

Step 2 Similarly to Step 1, subtract the smallest entry aiminj in each column of A from all
the entries of its column.

Step 3 Cover rows and columns with the minimum number pf lines so that all the zero
entries of matrix A are covered. For simplicity, let us denote this minimum number
as l.

Step 4 If l = n, we have an optimal assignment of zeros and we are finished. However,
l < n, an optimal assignment of zeros is not possible yet, and we proceed to the
next step.

Step 5 Find the smallest entry āij not covered by any line. Subtract this entry from each
uncovered row, and then add it to each covered column. Go back to Step 3.

We use the Hungarian algorithm as a benchmarking solution for the pairing of UL and DL
users in [C1] and [C2].

2.2 Distributed Auction Theory

In this section, we summarize an efficient method for solving assignment problems in a
distributed manner. The method is based on Auction theory, which is centralized [96], and
its extension to the distributed case was proposed by Yuzhe et al. [97]. Let us suppose there
are n UL users (persons in [96]) and n DL users (objects in [96]) that we have to pair on
a one-to-one basis. In our application, this pairing represents the UL and DL users that
will transmit in the same frequency channel, and the DL users can also be represented
by the BS. The UL user i benefits cij for the association with DL user j. Differently
from Section 2.1, our objective now is to assign DL to UL users so as to maximize the
total sum utility, instead of minimize it. This assignment problem is formulated as a linear
optimization problem with binary variables as

maximize
X

I∑
i=1

J∑
j=1

cijxij (2.2a)

subject to
I∑
i=1

xij = 1, ∀j, (2.2b)

J∑
j=1

xij = 1, ∀i, (2.2c)

xij ∈ {0, 1}, ∀i, j, (2.2d)
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where the assignment matrix X ∈ {0, 1}n×n is the optimization variable. The auction
algorithm is a method to solve the assignment problem (2.2) by an iterative procedure that
can be performed in a distributed manner between UL and DL users.

For the correct operation of the auction algorithm, we require the ε-complementary
slackness (ε-CS), which relates a partial assignment S and a price vector p= [p1 . . . pn].
We can view this variable pj as the price the UL user is willing to pay to be associated with
DL user j. Also, it is useful to define the non-empty set of DL users to which UL user i
can be paired as A(i). The couple S and p satisfy ε-CS if for every pair (i, j) ∈ S , DL
user j is within ε of being the best candidate pair for UL user i [96], i.e.,

cij − pj ≥ max
k∈AA(i)

{cik − pk} − ε,∀(i, j) ∈ S. (2.3)

For the sake of clarity we define cij−pj as the utility that UL user i can obtain from DL user
j. The auction algorithm is iterative, where each iteration starts with a partial assignment
and the algorithm terminates when an assignment for all users is obtained. This iterative
process consists of two phases: the bidding phase and the assignment phase. In the bidding
phase, each UL user bids for a DL user that maximizes the associated utility (cij − pj),
and the DL evaluates the bid received from the UL users. In the assignment phase, the DL
users select the UL user with the highest bid and updates the prices.

The bidding phase is performed by the UL users, and can be summarized from a UL
user i as:

Step 1 Evaluate the maximum utility vi for all DL users, which is defined as

vi = max
j∈A(i)

{cij − pj}. (2.4)

Step 2 Select the DL user ji that maximizes its maximum utility vi

ji = arg max
j∈A(i)

vi. (2.5)

Step 3 Evaluate the utility wi of the best DL user, without considering user ji

wi = max
j∈A(i),j 6=ji

{cij − p̂j}. (2.6)

Step 4 The bid of UL user i to DL user ji, bi, is defined as

biji = cij − wi + ε. (2.7)

When the DL users receive the bids, the assignment phase starts. For the sake of simplicity,
let us denote P(j) as the set of UL users from which DL user j received a bid. In the
assignment phase the prices are updated based on the highest bid received, which is given
by

pj = max
i∈P(j)

{bij}. (2.8)
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Then, remove from the partial assignment S any pair that has the DL user j assigned to,
and include to S the new pair with the UL user ij that attained the maximum bij .

This distributed iterative process is repeated until each UL user has been assigned
to a DL user. The iterative process has a finite and bounded number of iterations, and
the auction algorithm provides an approximated solution for the assignment problem [96]
that is within nε of being optimal. We use the Auction algorithm to develop a distributed
solution for the pairing of UL and DL users in [C1].

2.3 Fast-Lipschitz Optimization

In this section, we give an introductory formal definition of the Fast-Lipschitz optimization
framework, which was introduced in [92]. For a thorough discussion of Fast-Lipschitz
problems we refer the interested reader to the following articles [92, 98, 99].

Definition 1. A problem is said to be on Fast-Lipschitz form if it can be written

maximize
x

f0(x)

subject to xi ≤ fi(x) ∀i ∈ A
xi = fi(x) ∀i ∈ B,

(2.9)

where

• f0(x) :Rn → Rm is a differentiable scalar (m=1) or vector valued (m≥2) function.

• A and B are complementary subsets of {1, . . . , n}, i.e., A ∪ B = {1, . . . , n} and
A ∩ B = ∅

• The functions fi : f0(x) :Rn → R are all differentiable.

From the individual constraint functions, we form the vector valued function f : Rn → Rn
as

f(x)=
[
f1(x) · · · fn(x)

]T
.

One characteristic of Fast-Lipschitz optimization is that each variable xi is associated with
one constraint fi(x), although this does not reduce the generality of the approach because
one can always introduce redundant constraints satisfying such characteristic. The form
x ≤ f(x) is general because any constraint on canonical form g(x) ≤ 0 can be written as
x ≤ x− γg(x) for some γ > 0.

Definition 2. We restrict our attention to a bounding box D={x ∈ Rn |a ≤ x ≤ b} . We
assume D contains all candidates for optimality and that f maps D into D, f :D→D. This
box arises naturally in practice, since any real-world decision variable, such as transmitting
power, must be bounded.
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Definition 3. A problem is said to be Fast-Lipschitz when it can be written on Fast-
Lipschitz form and admits a unique Pareto optimal solution x∗, defined as the unique
solution to the system of equations

x∗ = f(x∗). (2.10)

A problem written on FL form is not automatically Fast-Lipschitz. We present below
the first qualifying conditions proposed in [92] that a problem in Fast-Lipschitz form needs
to fulfil. Many other qualifying conditions have been proved since [92], and for this reason
we will refer to the following conditions as old.

Old Qualifying Conditions. For all x ∈ D, f0(x) and f(x) must fulfil at least one of the
following cases, either (0) and (i) or (0) and (ii):

(0) ∇f0(x) > 0

AND (i. a) ∇f(x) ≥ 0
(i. b) |||∇f(x)||| < 1

OR (ii. a) f0(x) = c1Tx

(ii. b) ∇f(x) ≤ 0, or more generally,∇f(x)2 ≥ 0
(ii. c) |||∇f(x)|||∞ < 1

OR (iii. a) f0(x) ∈ R

(iii. b) |||∇f(x)|||∞ < δ̄
δ̄+∆̄

, where δ̄ , mini minx∈D∇if0(x), and ∆̄ ,
maxi maxx∈D∇if0(x).

Theorem 1 (Fischione [92]). A problem in Fast-Lipschitz form that fulfils any pair of the
Old Qualifying Conditions is Fast-Lipschitz, i.e., it has a unique Pareto optimal point given
by x∗ = f(x∗). Furthermore, x∗ can be found as the limit of the iterations xk+1 = f(xk).

Therefore, once we know the problem is Fast-Lipschitz, to obtain the solution we
only need to solve the system of equations (2.10). In general, solving this system of
equations is much easier solving an optimization problem using standard Lagrangian
duality. Specifically, the qualifying conditions assure than f(x) is contractive on D, which
implies that the iterations x∗ := f(x∗) converge geometrically to the optimal point x∗

starting from any point x0 ∈ D. We use the Fast-Lipschitz framework to develop a
distributed power control solution in [J1].
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Distributed Spectral Efficiency Maximization in
Full-Duplex Cellular Networks

José Mairton B. da Silva Jr., Yuzhe Xu, Gábor Fodor, and Carlo Fischione

Abstract

Three-node full-duplex is a promising new transmission mode between a full-
duplex capable wireless node and two other wireless nodes that use half-duplex trans-
mission and reception respectively. Although three-node full-duplex transmissions can
increase the spectral efficiency without requiring full-duplex capability of user devices,
inter-node interference – in addition to the inherent self-interference – can severely
degrade the performance. Therefore, as methods that provide effective self-interference
mitigation evolve, the management of inter-node interference is becoming increasingly
important. This paper considers a cellular system in which a full-duplex capable
base station serves a set of half-duplex capable users. As the spectral efficiencies
achieved by the uplink and downlink transmissions are inherently intertwined, the
objective is to device channel assignment and power control algorithms that maximize
the weighted sum of the uplink-downlink transmissions. To this end a distributed
auction based channel assignment algorithm is proposed, in which the scheduled uplink
users and the base station jointly determine the set of downlink users for full-duplex
transmission. Realistic system simulations indicate that the spectral efficiency can be
up to 89% better than using the traditional half-duplex mode. Furthermore, when the
self-interference cancelling level is high, the impact of the user-to-user interference is
severe unless properly managed.

A.1 Introduction

Traditional cellular networks operate in half-duplex (HD) transmission mode, in which
a user equipment (UE) or the base station (BS) either transmits or receives on any
given frequency channel. However, the increasing demand to support the transmission of
unprecedented data quantities has led the research community to investigate new wireless
transmission technologies. Recently, in-band full-duplex (FD) has been proposed as a
key enabling technology to drastically increase the spectral efficiency of conventional
wireless transmission modes. Due to recent advances in antenna design, interference
cancellation algorithms, self-interference (SI) suppression techniques and prototyping
of FD transceivers, FD transmission is becoming a realistic technology component of
advanced wireless – including cellular – systems, especially in the low transmit power
regime [17, 18].

In particular, in-band FD and three-node full-duplex (TNFD) transmission modes can
drastically increase the spectral efficiency of conventional wireless transmission modes
since both transmission techniques have the potential to double the spectral efficiency of
traditional wireless systems operating in HD [12,16]. TNFD involves three nodes, but only
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Freq. Channel 1

Freq. Channel 2
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Self-Interf. (SI)

Figure A.1: A cellular network employing FD with two UEs pairs. The BS selects pairs
of UEs, represented by the ellipses, and jointly schedules them for FD transmission by
allocating frequency channels in the UL and DL. To mitigate UE-to-UE interference, it is
advantageous to co-schedule DL/UL users for FD transmission that are far apart, such as
UE1-UE2 and UE3-UE4.

one of them needs to have FD capability. The FD-capable node transmits to its receiver
node while receiving from another transmitter node on the same frequency channel.

As illustrated in Figure A.1, FD operation in a cellular environment experiences
new types of interference, aside from the inherently present SI. Because the level of
UE-to-UE interference depends on the UE locations and their transmission powers,
coordination mechanisms are needed to mitigate the negative effect of the interference
on the spectral efficiency of the system [10]. A key element of such mechanisms is UE
pairing and frequency channel selection that together determine which UEs should be
scheduled for simultaneous uplink (UL) and downlink (DL) transmissions on specific
frequency channels. Hence, it is crucial to design efficient and fair medium access
control protocols and physical layer procedures capable of supporting adequate pairing
mechanisms. Furthermore, in future cellular networks the idea is to move from a fully
centralized to a more distributed network [8], where the infrastructure of the BS can be
used to help the UEs to communicate in a distributed manner and reduce the processing
burden at the BS, which is further increased by SI cancellation.

To the best of our knowledge, the only work to consider a distributed approach for FD
cellular networks is reported in [89]. However, the authors tackle the problem of the UE-
to-UE interference from an information theoretic perspective, without relating to resource
allocation and power control. Conversely, some works consider the joint subcarrier and
power allocation problem [79] and the joint duplex mode selection, channel allocation,
and power control problem [32] in FD networks. The cellular network model in [79] is
applicable to FD mobile nodes rather than to networks operating in TNFD mode. The work
reported in [32] considers the case of TNFD transmission mode in a cognitive femto-cell
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context with bidirectional transmissions from UEs and develops sum-rate optimal resource
allocation and power control algorithms. However, none of these two works consider a
distributed approach for FD cellular networks.

In this paper we formulate the joint problem of user pairing (i.e. co-scheduling of UL
and DL simultaneous transmissions on a frequency channel), and UL/DL power control as
a mixed integer nonlinear programming (MINLP) problem, whose objective is to maximize
the overall spectral efficiency of the system. Due to the complexity of the MINLP problem
proposed, our solution approach relies on Lagrangian duality and a distributed auction
algorithm in which UL users offer bids on desirable DL users. In this iterative auction
process, the BS – as the entity that owns the radio resources – accepts or rejects bids and
performs resource assignment. This algorithm is tested in a realistic system simulator that
indicates that the bidding process converges to a near optimal pairing and power allocation.

A.2 System Model and Problem Formulation

A.2.1 System Model

We consider a single-cell cellular system in which only the BS is FD capable, while the
UEs served by the BS are only HD capable, as illustrated by Figure A.1. In Figure A.1, the
BS is subject to SI and the UEs in the UL (UE2 and UE4) cause UE-to-UE interference
to co-scheduled UEs in the DL, that is to UE1 and UE3 respectively. The number of UEs
in the UL and DL is denoted by I and J , respectively, which are constrained by the total
number of frequency channels in the system F , i.e., I ≤ F and J ≤ F . The sets of UL
and DL users are denoted by by I = {1, . . . , I} and J = {1, . . . , J} respectively.

We consider frequency flat and slow fading, such that the channels are constant during
the time slot of a scheduling instance and over the frequency channels assigned to co-
scheduled users. Let Gib denote the effective path gain between transmitter UE i and the
BS, Gbj denote the effective path gain between the BS and the receiving UE j, and Gij
denote the interfering path gain between the UL transmitter UE i and the DL receiver UE
j. To take into account the residual SI power that leaks to the receiver, we define β as the
SI cancellation coefficient, such that the SI power at the receiver of the BS is βP dj when
the transmit power is P dj .

The vector of transmit power levels in the UL by UE i is denoted by pu = [Pu1 . . . P
u
I ],

whereas the DL transmit powers by the BS is denoted by pd = [P d1 . . . P
d
J ]. As illustrated

in Figure A.1, the UE-to-UE interference is much dependent on the geometry of the co-
scheduled UL and DL users, i.e., the pairing of UL and DL users. Therefore, UE pairing
is a key functions of the system. Accordingly, we define the assignment matrix, X ∈
{0, 1}I×J , such that

xij =

{
1, if the UL UEi is paired with the DL UEj ,
0, otherwise.

The signal-to-interference-plus-noise ratio (SINR) at the BS of transmitting user i and
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the SINR at the receiving user j of the BS are given by

γui =
Pui Gib

σ2 +
∑J
j=1 xijP

d
j β

, γdj =
P dj Gbj

σ2 +
∑I
i=1 xijP

u
i Gij

, (A.1)

respectively, where xij in the denominator of γui accounts for the SI at the BS, whereas xij
in the denominator of γdj accounts for the UE-to-UE interference caused by UEi to UEj .

Thus, the achievable spectral efficiency for each user is given by the Shannon equation
(in bits/s/Hz) for the UL and DL as Cui = log2(1 + γui ) and Cdj = log2(1 + γdj ),
respectively. In addition to the spectral efficiency, we consider weights for the UL and
DL users, which are denoted by αui and αdj , respectively. The idea behind weighing is that
it allows the system designer to choose between the commonly used sum rate maximization
and important fairness related criteria such as the well known path loss compensation
typically employed in the power control of cellular networks [100]. For the weights αui
and αdj , we can account for sum rate maximization with αui = αdj = 1 and for path loss
compensation with αui = G−1

ib and αdj = G−1
bj .

A.2.2 Problem Formulation

Our goal is to jointly consider the assignment of UEs in the UL and DL (pairing), while
maximizing the weighted sum spectral efficiency of all users. Specifically, the problem is
formulated as

maximize
X,pu,pd

I∑
i=1

αui C
u
i +

J∑
j=1

αdjC
d
j (A.2a)

subject to γui ≥ γuth, ∀i, (A.2b)

γdj ≥ γdth, ∀j, (A.2c)

Pui ≤ Pumax, ∀i, (A.2d)

P dj ≤ P dmax, ∀j, (A.2e)
I∑
i=1

xij ≤ 1, ∀j, (A.2f)

J∑
j=1

xij ≤ 1, ∀i, (A.2g)

xij ∈ {0, 1}, ∀i, j. (A.2h)

The main optimization variables are pu, pd and X. Constraints (A.2b) and (A.2c) ensure
a minimum SINR to be achieved in the DL and UL, respectively. Constraints (A.2d) and
(A.2e) limit the transmit powers whereas constraints (A.2f)-(A.2g) assure that only one UE
in the DL can share the frequency resource with a UE in the UL and vice-versa. Note that
constraints (A.2b)-(A.2c) require that the SINR targets for both UL and DL be defined a
priori.



A.3. A Solution Approach Based on Lagrangian Duality 37

Problem (A.2) belongs to the category of MINLP, which is known for its high
complexity and computational intractability. Thus, to solve problem (A.2) we will rely
on Lagrangian duality, which is described on Section A.3. We develop the optimal power
allocation for a UL-DL pair and the optimal closed-form solution for the assignment, which
can be solved in a centralized manner. However, in future cellular networks the idea is to
move from a fully centralized to a more distributed network [8], offloading the burden on
the BS. With this objective, in Section A.4 we use the optimal power allocation to create a
distributed solution for the assignment between UL and DL users.

A.3 A Solution Approach Based on Lagrangian Duality

From problem (A.2), we form the partial Lagrangian function by considering constraints
(A.2b)-(A.2c) and ignoring the integer (A.2f)-(A.2h) and power allocation constraints
(A.2d)-(A.2e). To this end, we introduce Lagrange multipliers λu, λd, where the
superscript u and d denote the dimensions of I and J , respectively. The partial Lagrangian
is a function of the Lagrange multipliers and the optimization variables X,pu,pd as
follows:

L(λu,λd,X,pu,pd) , −
I∑
i=1

αui C
u
i −

J∑
j=1

αdjC
d
j +

I∑
i=1

λui

(
γuth − γui

)
+

+

J∑
j=1

λdj

(
γdth − γdj

)
. (A.3)

Let g(λu,λd) denote the dual function obtained by minimizing the partial Lagrangian
(A.3) with respect to the variables X,pu,pd. That is, the dual function is

g(λu,λd) = inf
X∈X pu,pd∈P

L(λu,λd,X,pu,pd), (A.4)

where X and P are the set where the assignment and power allocation constraints are
fulfilled, respectively. Notice that we can rewrite the dual as

g(λu,λd)= inf
X∈X pu,pd∈P

N∑
n=1

(
quin(X,pu,pd) + qdjn(X,pu,pd)

)
, (A.5)

where we assume N = I = J is the maximum number of UL-DL pairs, in and jn are the
UL and DL users of pair n, respectively. Moreover,

quin(X,pu,pd) , λuin

(
γuth − γuin

)
− αui Cuin , (A.6a)

qdjn(X,pu,pd) , λdjn

(
γdth − γdjn

)
− αdjnC

d
jn . (A.6b)
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We can find the infimum of (A.5) if we maximize the SINR of the N UL-DL pairs.
Thus, we can write a closed-form expression for the assignment xij as follows:

x?ij =

1, if (i, j) = arg max
i,j

(
qu,max
in

+ qd,max
jn

)
0, otherwise,

(A.7)

where for simplicity we denoted an ordinary pair as (i, j). Notice that x?ij and equation
(A.7) uniquely associate an UL user with a DL user. However, the solutions are still tied
through the SINRs γui and γdj , i.e., the solution to the assignment problem is still complex
and – through (A.7) – is intertwined with the optimal power allocation.

Since the SINRs on the UL are not separable from those on the DL, we cannot analyse
them independently. Consequently, we need to find the powers that jointly minimize (A.5).
To this end, we first analyse the dual problem, given by

maximize
λu, λu

g(λu,λd) (A.8a)

subject to λui , λ
d
j ,≥ 0,∀i, j, (A.8b)

where recall that g(λu,λd) is the solution of problem (A.4). Notice that if constraints
(A.2b)-(A.2c) are fulfilled in the inequality or equality, λui

(
γuth − γui

)
and λdj

(
γdth − γdj

)
will be either negative or zero. If the terms are negative, then λui or λdj will be zero.
Thus, the terms with λui and λdj will not impact g(λu,λd). Therefore, the dual is easily
solved by assigning zero to λui or λdj whose corresponding UL and DL user fulfils the
inequalities (A.2b)-(A.2c). If there are users that do not fulfil the inequalities, the problem
is unbounded.

Therefore, we now turn our attention to the power allocation problem, and – based on
the above considerations on λui or λdj–, we formulate the power allocation problem as:

minimize
pu,pd

−
I∑
i=1

αui C
u
i −

J∑
j=1

αdjC
d
j (A.9a)

subject to pu,pd ∈ P. (A.9b)

From Gesbert et al. [101], the optimal transmit power allocation will have either Pui or
P dj equal to Pumax or P dmax, given that i and j share a frequency channel and form a pair.
Moreover, from Feng et al. [102, Section III.B], the optimal power allocation lies within
the admissible area for pair (i, j), where we do not show the explicit expressions for the
optimal power allocation here due to space limit.

Therefore, with the optimal transmit powers for any given pair (i, j), and with the
closed-form solution for the assignment in Eq. (A.7), we can solve the dual problem (A.8).
To compute the optimal assignment as given by Eq. (A.7) requires checking N ! assign-
ments [103, Section 1], or we could apply the Hungarian algorithm in a fully centralized
manner [103, Section 3.2], that has worst-case complexity of O(N3).
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However, we are not interested in such centralized and demanding solutions that would
increase the burden on the BS. Since we are in a network-controlled environment with the
BS, we use its resources to provide a distributed solution for the assignment, whereas the
power allocation would remain centralized, because distributed power allocation schemes
require too many iterations to converge. Therefore, in the next section we reformulate the
closed-form solution in Eq. (A.7) and propose a fully distributed assignment based on
Auction Theory [96].

A.4 Distributed Auction Solution

With the optimal power allocation for a pair (i, j) at hand, and as mentioned in Section A.3,
we are interested in a distributed solution for the closed-form solution for the assignment in
Eq. (A.7) in order to reduce the burden on the BS by supporting a more distributed system.
In Section A.4.1 we reformulate the closed-form expression as an asymmetric assignment
problem, whereas Section A.4.2 introduces the fundamental definitions necessary to
propose the distributed auction algorithm in Section A.4.3. Furthermore, we give one of
the core results in this paper in Section A.4.4, where we show that the number of iterations
of the algorithms is bounded and that the feasible assignment provided at the end is within
a bound of desired accuracy around the optimal assignment.

A.4.1 Problem Reformulation

We can rewrite the closed form expression (A.7) as an asymmetric assignment problem,
given by

maximize
X

I∑
i=1

J∑
j=1

cijxij (A.10a)

subject to
I∑
i=1

xij = 1, ∀j, (A.10b)

J∑
j=1

xij = 1, ∀i, (A.10c)

xij ∈ {0, 1}, ∀i, j, (A.10d)

where cij = αui C
u
i + αdjC

d
j for a pair (i, j) assigned to the same frequency and it can be

understood as the benefit of assigning UL user i to DL user j. Constraint (A.10b) ensures
that the DL users are associated with one UL user. Similarly, constraint (A.10c) ensures
that all the UL users need to be associated with a DL user. To solve this problem in a
distributed manner, we use Auction Theory.
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A.4.2 Fundamentals of the Auction

We consider the assignment problem (A.10), where we want to pair I UL and J DL users
on a one-to-one basis, where the benefit for pairing UL user i to DL user j is given by cij .
Initially, we assume that J= I and J≤ F , whereas the set of DL users to which UL user i
can be paired is non-empty and is denoted by A(i). We define an assignment S as a set of
UL-DL pairs (i, j) such that j ∈ A(i) for all (i, j) ∈ S and for each UL and DL user there
can be at most one pair (i, j) ∈ S , respectively. The assignment S is said to be feasible if
it contains I pairs; otherwise the assignment is called partial [96]. Lastly, in terms of the
assignment matrix X, the assignment is feasible if constraints (A.10b)-(A.10c) are fulfilled
for all i∈ I and j∈ J .

An important notion for the correct operation of the auction algorithm is the ε-
complementary slackness (ε-CS), which relates a partial assignment S and a price vector
p̂= [p̂1 . . . p̂J ]. In practice, the DL user j that supports more interference from a UL user
i will get a higher price, i.e., the prices reflect how much a UL user i is willing pay to
connect to DL user j. The couple S and p̂ satisfy ε-CS if for every pair (i, j) ∈ S, DL user
j is within ε of being the best candidate pair for UL user i [96], i.e.,

cij − p̂j ≥ max
k∈A(i)

{cik − p̂k} − ε, ∀(i, j) ∈ S. (A.11)

For the sake of clarity we define cij − p̂j as the utility that UL user i can obtain from
DL user j. The auction algorithm is iterative, where each iteration starts with a partial
assignment and the algorithm terminates when a feasible assignment is obtained.

The iteration process consists of two phases: the bidding and the assignment. In the
bidding phase, each UL user bids for a DL user that maximizes the associated utility (cij−
p̂j), and the BS evaluates the bid received from the UL users. In the assignment phase,
the BS (responsible for the transmission to DL users), selects the UL user with the highest
bid and updates the prices. In fact, this bidding and assignment process implies that the
UL users select the DL users which they will be paired with. However, the information
exchange occurs between UL users and the BS, rather than between the UL-DL users.
Therefore, we propose a forward auction in which the UL users and the BS determines the
pairing of UL-DL users in a distributed manner, where the UL is responsible for bidding
and the BS for the assignment phase.

In the following, we present some necessary definitions for the iteration process. First,
we define vi as the maximum utility achieved by UL user i on the set of possible DL users
A(i), which is given by

vi = max
j∈A(i)

{cij − p̂j}. (A.12)

The selected DL user ji is the one that maximizes vi, which is given by

ji = arg max
j∈A(i)

vi. (A.13)

The best utility offered by other DL users than the selected ji is denoted by wi and is given
by

wi = max
j∈A(i),j 6=ji

{cij − p̂j}. (A.14)
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The bid of UL user i on resource ji is given by

biji = cij − wi + ε. (A.15)

LetP(j) denote the set of UL users from which DL user j received a bid. In the assignment
phase the prices are updated based on the highest bid received, which is given by

p̂j = max
i∈P(j)

{bij}. (A.16)

Subsequently, the BS adds the pair (ij , i) to the assignment S, where ij refers to the
UL user i ∈ P(j) that maximizes bij in eq. (A.16) for DL user j. At UL user i,
P̂i = [P̂i1 . . . P̂iJ ] denotes the price vector of associating with DL user j and it is informed
by the BS. Differently from P̂ij , p̂j is the up-to-date maximum price of DL user j.

Summarizing, in the bidding phase the UL users need to evaluate vi, ji, wi and biji ,
whereas in the assignment phase the BS receives the bids and decides to update the prices
p̂j or not. In the next section, we propose the distributed auction that is executed in an
asynchronous manner, where the UL users perform the bidding, and the BS performs the
assignment.

A.4.3 The Distributed Auction Algorithm

Algorithm 1 and Algorithm 2 show the steps of the iterative process of the bidding and
assignment phases, where the bidding is performed at each UL user and the assignment at
the BS. We define messages M1, M2, M3 and M4 that enable the exchange of information
between the UL users and the BS. Message M1 informs UL user i that the bid was accepted.
Message M2 informs that the bid is not high enough and it also contains the most updated
price p̂j of the demanded DL user ji. Message M3 informs that a feasible assignment was
found, which allows the auction algorithm to terminate. Message M4 informs the UL and
DL users their respective pairs and transmitting powers. Notice that all these messages can
be exchanged between the BS and the UL/DL users using control channels, such as power
uplink control channel (PUCCH) and power downlink control channel (PDCCH) [104].

UL user i requires as inputs the benefits ci and the ε for the bidding phase (see line 1
on Algorithm 1). Then, the price vector is initialized with zero, as well as the associated DL
user is initially empty and the set of DL users it can associate with is the set J (see line 2
in Algorithm 1). The auction algorithm at the UL users will continue until message M3
is received (see line 3 on Algorithm 1). If message M2 is received, UL user i disconnects
from the previously associated DL user ji and set it to ∅. Next, the price received from
the BS is updated (see lines 5-6 on Algorithm 1). Notice that message M2 implies that
either the previously associated DL user has a new association or the bid was lower than
the current price (the bid was placed with an outdated price).

Subsequently, if UL user i is not associated with a DL user, the bidding phase starts.
In this phase, the necessary variables – vi, ji, wi and biji – are evaluated (see lines 9-12
on Algorithm 1). UL user i reports the selected DL user and bid to the BS and wait for the
response on line 13 on Algorithm 1. If the response is message M1, then the association to
the selected DL user ji is stored.
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Algorithm 1 Distributed Auction Bidding at UL user i
1: Input: ci, ε
2: Define Pi = 0, ij = ∅ andA(i) = J
3: while Message M3 is not received do
4: if Message M2 is received then
5: Disconnect from previous DL user ji and set ji = ∅
6: Update prices P̂ij = p̂j
7: end if

Bidding Phase at the UL users
8: if ji = ∅ then
9: Evaluate vi according to Equation (A.12)

10: Select the DL user ji according to Equation (A.13)
11: Evaluate wi according to Equation (A.14)
12: Evaluate the bid biji according to Equation (A.15)
13: Report the selected DL user ji and the bid biji and wait response
14: if Message M1 is received then
15: Store the assigned DL user ji
16: end if
17: end if
18: end while
19: Message M4 is received with the assigned DL user ji and the power pi

Algorithm 2 Distributed Auction Assignment at the BS
1: Estimate the channel gains Gib, Gbj and Gij for all UL and DL users
2: Evaluate the optimal power allocation pu,pd for every pair (i, j) based on the solution of problem (A.9)
3: Evaluate cij and then send to all UL users its respective row (ci = [ci1 . . . ciJ ]

T ) along with ε
4: Initialize the selected UL users ij = ∅, ∀j and P(j) = I, ∀j
5: Initialize the prices p̂j = 0, ∀j and the assignment matrix X = 0

Assignment Phase at the BS
6: while X is not feasible do
7: if receive request from UL user i then
8: if bij − p̂j ≥ ε then # Bid accepted
9: Update prices according to Equation (A.16)

10: Report M2 to the previous assigned user ij and the updated prices
11: Update ij = i and report M1 to UL user i
12: Update assignment X and if feasible, report M3 to UL user ij
13: else
14: Report M2 and the updated prices p̂j to UL user i
15: end if
16: else
17: Remain assigned to the UL user on iteration t
18: end if
19: end while
20: Output: X,pu,pd

21: Report M4 to the UL and DL user their respective pairs and powers

The BS runs Algorithm 2 and initially needs to acquire or estimate all channel
gains from UL and DL users, which can be done using reference signals similar to
those standardized by 3rd Generation Partnership Project (3GPP) [104]. Next, the BS
evaluates the optimal power allocation pu,pd for all possible pairs based on the solution



A.4. Distributed Auction Solution 43

of problem (A.9) (see lines 1-2 on Algorithm 2). Then, the assignment benefits cij are
evaluated and the corresponding row of each UL user i is sent (see line 3 on Algorithm 2).
The value of ε is fixed and sent on line 3 of Algorithm 2. The selected UL users ij for all
DL users j is initially empty, and the set of possible UL users that a DL user may associate
is defined as the set of UL users I (see line 4 on Algorithm 2). The prices p̂j and the
assignment matrix X are initialized with zero (see line 5).

The assignment phase at the BS continues until the assignment matrix X is not feasible
(see line 6). If the BS receives request from UL user i and the bid is accepted, the prices
are updated based on the new bid and the BS reports M2 to the previously assigned user ij
with the updated prices (see lines 6-10 on Algorithm 2). Then, the BS updates the assigned
user, reports message M1 to UL user i and update the assignment X (see lines 11-12
on Algorithm 2). If the new assignment is feasible, the BS reports M3 to all UL users.

However, if the bid proposed by UL user i is not accepted, then the BS reports M2 to
UE iwith the updated prices (see line 14 on Algorithm 2). Notice that while the BS does not
received requests, the assignment does not change (see line 17). Once a feasible assignment
is found and message M3 is sent, the algorithm has as outputs the matrix assignment X
and the power vectors pu and pd. With the assignment and the power vectors, message M4
is sent to UL and DL users with their respective pairs and powers.

Therefore, by using Algorithms 1 and 2, we solve in a distributed manner prob-
lem (A.10), but it is important to know how many iterations the algorithms execute until
a partial assignment is found, and how far this assignment is from the optimal solution. In
order to address all these questions, in Section A.4.4 we show that the algorithms terminate
within a bounded number of iterations and that the assignment given at the end is within
Iε of being optimal.

A.4.4 Complexity and Optimality

In this subsection we derive a bound on the number of iterations of our proposed distributed
auction algorithms in Theorem 2. Moreover, in Theorem 3 we show that the given
assignment solution by Algorithms 1 and 2 is within Iε of being optimal.

Theorem 2. Consider I UL users and J DL users in a TNFD network. The distributed
auction algorithms 1 and 2 terminate within a finite number of iterations bounded by
IJ2d∆/εe, where ∆ = max

∀i,j
cij −min

∀i,j
cij .

Proof. The proof of this theorem is along the lines of Xu et al. [105, Chapter 5], where we
do not provide the complete proof herein due to the lack of space. �

Theorem 2 shows that our algorithms terminate in a finite number of iterations bounded
by IJ2d∆/εe. However, we still need to know how far the solution is from the optimal
assignment. In Theorem 3 we show that the feasible assignment at the end of the distributed
auction is within Iε of being optimal, and if the benefits cij are integer and ε < 1/J , the
solution is optimal.
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Theorem 3. Consider problem (A.10). The distributed auction algorithm described by
Algorithms 1 and 2 terminate with a feasible assignment that is within Iε of being optimal.
This feasible assignment is optimal if cij ,∀i, j is integer and ε < 1/J .

Proof. Once more, the proof of this theorem is along the lines of [105, Chapter 5]. �

Based on Theorems 2 and 3, the distributed auction solution proposed by Algorithms 1
and 2 terminate within IJ2d∆/εe iterations, and in addition the feasible assignment at the
end of the algorithms is within Iε of being optimal. Notice that in practice the benefits
cij are seldom integer, implying that our solution to problem (A.10) is near optimal.
Moreover, since the primal problem (A.2) is MINLP, the duality gap between the primal
and dual solution is not zero, i.e., we should also take into account the duality gap on top
of the gap between the distributed auction and the optimal assignment for problem (A.10).
However, as we show in Section A.5, the gap between the exhaustive primal solution and
the distributed auction is small.

A.5 Numerical Results and Discussion

In this section we consider a single cell system operating in the urban micro environ-
ment [106]. The maximum number of frequency channels is F = 25 that corresponds to
the number of available frequency channel blocks in the a 5 MHz long term evolution (LTE)
system [106]. The total number of served UE varies between I + J = 8...50, where we
assume that I = J . We set the weights αui and αdj based on a path loss compensation
rule, where αui = G−1

ib and αdj = G−1
bj . The parameters of this system are set according to

Table A.1.
To evaluate the performance of the distributed auction in this environment, we use the

RUdimentary Network Emulator (RUNE) as a basic platform for system simulations and
extended it to FD cellular networks. The RUNE FD simulation tool allows to generate the
environment of Table A.1 and perform Monte Carlo simulations using either an exhaustive
search algorithm to solve problem (A.2) or the distributed auction.

Initially, we compare the optimality gap between the exhaustive search solution of
the primal problem (A.2), named herein as E-OPT, the optimal solution of the dual
problem (A.8) using the power allocation based on the corner points and the centralized
Hungarian algorithm for the assignment, named herein as C-HUN, and finally the solution
of the dual problem (A.8) with the optimal power allocation but now with the distributed
auction solution for the assignment, named herein as D-AUC. In the following, we compare
how the distributed auction solution performs in comparison with a HD system, named
herein as HD, and also a basic FD solution with random assignment and equal power
allocation (EPA) for UL and DL users, named herein as R-EPA. Notice that since in HD
systems two different time slots are required to serve all the UL and DL users, which
implies that the sum spectral efficiency is divided by two.

In Figure A.2 we show the sum spectral efficiency between E-OPT, C-HUN and the
proposed D-AUC as a measure of the optimality gap. We assume a small system with
reduced number of users, 4 UL and DL users, and frequency channels, where we increase
its number from 4 to 8. Moreover, we consider a SI cancelling level of β =−100 dB.
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Table A.1: Simulation parameters

Parameter Value
Cell radius 100 m

Number of UL UEs [I = J] [4 5 6 25]

Monte Carlo iterations 400

Carrier frequency 2.5 GHz

System bandwidth 5 MHz

Number of freq. channels [F ] [4 5 6 25]

LOS path-loss model 34.96 + 22.7 log10(d)

NLOS path-loss model 33.36 + 38.35 log10(d)

Shadowing st. dev. LOS and NLOS 3 dB and 4 dB

Thermal noise power [σ2] −116.4 dBm/channel
SI cancelling level [β] [−70 − 100− 110] dB

Max power [Pu
max] = [Pd

max] 24 dBm

Minimum SINR [γu
th = γd

th ] [0] dB

Step size [ε] 0.1
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Figure A.2: CDF of the optimality gap of the sum spectral efficiency for different users’
load. We notice that the optimality gap between the proposed D-AUC and the exhaustive
search solutions of the primal and dual, E-OPT and C-HUN, is low, which suggests that
we can use a distributed solution based on the dual and still be close to the centralized
optimal solution of the primal.

We notice that the differences between the exhaustive search solutions, either E-OPT OR
C-HUN, to the D-AUC is negligible, where in some cases the D-AUC achieves a higher
performance than E-OPT due to lack of computational power to find the best powers.
Figure A.2 clearly shows that the optimality gap is low for the distributed auction when
compared to the centralized dual solution (C-HUN) and also to the primal solution (E-
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Figure A.3: CDF of the sum spectral efficiency among all users for different SI cancelling
levels. We notice that with β =−110 dB the UE-to-UE interference is the limiting factor,
where D-AUC mitigates this new interference and outperforms the HD mode and the R-
EPA. When β =−70 dB, the SI is the limiting factor, where the mitigation of the UE-to-UE
interference is not enough to bring gains to FD cellular networks.

OPT). Therefore, we can use a distributed solution to solve the primal problem (A.2) and
still achieve a solution close to the centralized optimal solution.

Figure A.3 shows the sum spectral efficiency between the current HD system, a naive
FD implementation named R-EPA, and the proposed distributed solution D-AUC. We
assume a small system fully loaded with 25 UL, DL users, and frequency channels, where
we analyse the impact of the solutions for different SI cancelling levels of −110 dB and
−70 dB, i.e., β =−110 dB and−70 dB. Notice that with a SI cancelling level of−110 dB
we achieve 89 % relative gain in the spectral efficiency at the 50th percentile, which is
close to the expected doubling of FD networks. Moreover, the naive R-EPA performs
approximately 43 % worse than the HD mode, which shows that despite the high SI
cancelling level, we do not have any gain of using FD networks. This behaviour shows
that we should also optimize the UL-DL pairing and the power allocation of the UL user
and of the BS. When the SI level is −70 dB, HD outperforms the D-AUC and R-EPA with
a relative gain of approximately 23 % and 81 % at the 50th percentile, respectively. This
means that with low SI cancelling levels the D-AUC algorithm is not able to overcome the
high self-interference, although the difference to HD is not high. As for the R-EPA, notice
that its performance is even worse than before, which once more indicates that we should
not use naive implementation of user pairing and power allocation on FD cellular networks.
Overall, we notice that when the SI cancelling level is high, the UE-to-UE interference is
the limiting factor, where our proposed D-AUC outperforms a naive FD implementation
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that disregards this interference. When the SI cancelling level is low, then the SI is the
limiting factor, where optimizing the UE-to-UE interference is not enough to bring gains
to FD cellular networks.

A.6 Conclusion

In this paper we considered the joint problem of user pairing and power allocation in FD
cellular networks. Specifically, our objective was to maximize the weighted sum spectral
efficiency of the users, where we can tune the weights to sum maximization or path loss
compensation. This problem was posed as a mixed integer nonlinear optimization, which
is hard to solve directly, thus we resorted to Lagrangian duality and developed a closed-
form solution for the assignment and optimal power allocation. Since we were interested
in a distributed solution between the BS and the users, we proposed a novel distributed
auction solution to solve the assignment problem, whereas the power allocation was solved
in a centralized manner. We showed that the distributed auction converges and that it
has a guaranteed performance compared to the dual. The numerical results showed that
our distributed solution drastically improved the sum spectral efficiency in a path loss
compensation modelling, i.e. of the users with low spectral efficiency, when compared
to current HD modes when the SI cancelling level is high. Furthermore, we noticed that
with a high SI cancelling level, the impact of the UE-to-UE interference is severe and
needs to be properly managed. Conversely, when the SI cancelling level is low, a proper
management of the UE-to-UE interference is not enough to bring gains to FD cellular
networks. Studying the case of asymmetric assignment, that is the case of unequal number
of UL and DL users and the impact of the number of iterations and processing delays in
the auction algorithm are left for future works.
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Fast-Lipschitz Power Control and User-Frequency
Assignment in Full-Duplex Cellular Networks

José Mairton B. da Silva Jr., Gábor Fodor, and Carlo Fischione

Abstract

In cellular networks, the three-node full-duplex transmission mode has the po-
tential to increase spectral efficiency without requiring full-duplex capability of
users. Consequently, three-node full-duplex in cellular networks must deal with self-
interference and user-to-user interference, which can be managed by power control
and user-frequency assignment techniques. This paper investigates the problem of
maximizing the sum spectral efficiency by jointly determining the transmit powers
in a distributed fashion, and assigning users to frequency channels. The problem is for-
mulated as a mixed-integer nonlinear problem, which is shown to be non-deterministic
polynomial-time hard. We investigate a close-to-optimal solution approach by dividing
the joint problem into a power control problem and an assignment problem. The power
control problem is solved by Fast-Lipschitz optimization, while a greedy solution with
guaranteed performance is developed for the assignment problem. Numerical results
indicate that compared with the half-duplex mode, both spectral and energy efficiencies
of the system are increased by the proposed algorithm. Moreover, results show that the
power control and assignment solutions have important, but opposite roles in scenarios
with low or high self-interference cancellation. When the self-interference cancellation
is high, user-frequency assignment is more important than power control, while power
control is essential at low self-interference cancellation.

B.1 Introduction

In order to meet the need for explosive data volumes and data rates, wireless network op-
erators seek to enhance the spectral efficiency in lower-frequency bands [1], and to exploit
higher-frequency bands such as the millimiter waves. The research and standardization
communities are currently studying physical layer technologies, including massive MIMO
systems, spectrum sharing in mmWave networks, new waveforms, non-orthogonal multiple
access technologies, and full-duplex communications [5, 6].

In-band full-duplex (FD) transceivers are expected to improve the attainable spectral
efficiency of traditional wireless networks operating with half-duplex (HD) transceivers by
a factor of two [6]. Due to recent advancements in mitigating the inherent self-interference
(SI) by means of passive suppression, analog and/or digital cancellation, in-band FD
technology is quickly approaching the phase of commercial deployments in low-power
wireless networks [19].

Although in-band FD promises to instantly double the data capacity of existing
technology, its deployment in wireless local area and cellular networks is challenging due
to the large number of legacy devices and wireless access points. A viable introduction
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Figure B.1: A cellular network employing three node FD with two UEs pairs. The base
station selects pairs of UEs, represented by the ellipses, and jointly schedules them for FD
transmission in the UL and DL. To mitigate UE-to-UE interference (red dotted line), it is
advantageous to assign DL/UL users to for FD transmission in the same frequency that
are far apart, such as UE1-UE2 and UE3-UE4.

of FD technology in cellular networks is offered by three-node full-duplex (TNFD)
deployments, in which only the wireless access points or base stations (BSs), typically
equipped with multiple antennas, implement FD transceivers to support the simultaneous
downlink (DL) and uplink (UL) communication with two distinct user equipments (UEs)
on the same frequency channel [12]. In TNFD networks, the inherently present UE-to-UE
interference may become the performance bottleneck, especially as the capability of FD
transceivers to suppress SI improves.

To understand TNFD operations, consider the TNFD network with two UEs pairs
in Figure B.1. Unlike when using HD transmissions, a TNFD network must deal with
both SI and UE-to-UE interference, indicated by the red dotted lines between UE1-
UE2 and UE3-UE4. The UE-to-UE interference power depends on the UEs locations
and propagation environments, as well as the UE transmission powers. Coordination
mechanisms are required in order to mitigate the negative effects of interference on the
spectral efficiency of the system [10]. The two most important mechanisms are UE pair-
frequency assignment and power control [10,12,90,107]; together, these determine which
UEs transmit simultaneously on the frequency channels and with which powers the UE
and the BS will transmit. Therefore, it is crucial to understand the trade-offs between UL
and DL performance of TNFD systems in the design of efficient and fair medium access
control protocols, and also coordination mechanisms that help to realize the FD potential
even for legacy UEs.

In this paper, we focus on the problem of joint power control and user-frequency
channel assignment, assuming TNFD transmissions and a frequency selective wireless
environment. Specifically, we investigate the fundamental problem of sum spectral ef-
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ficiency maximization in a single-cell system. We formulate this problem as a mixed
integer nonlinear optimization, which we call the joint assignment and spectral efficiency
maximization (JASEM) problem. The decision variables are arranged in the assignment
matrix, each element of which is a binary variable that indicates the association of an UL
user to a DL user and a frequency channel. We show that the JASEM problem is a non-
deterministic polynomial-time (NP)-hard problem, implying that no optimal solution in
polynomial time can be obtained.

To find a close to optimal solution to JASEM, we decompose it into two parts that
correspond to the power control problem and user-frequency channel assignment problem,
respectively. It turns out that the assignment problem is also NP-hard. To solve it, we
propose a greedy algorithm that has a guaranteed performance with respect to the optimal
solution. To solve the power control problem, we develop a novel algorithm that is
especially suited for TNFD networks. Our proposed power control algorithm is distributed
and sets the signal-to-interference-plus-noise ratio (SINR) targets at each receiver such
that the achieved sum rate is close to optimal. The sum rate maximization problem is non-
convex, so we propose using the Fast-Lipschitz (FL) optimization [92] to solve it in a
distributed and fast manner. A key component of the proposed power control algorithm
is that it transforms the problem of finding the transmit power levels into a sequence
of feasibility checking sub-problems, where the sum of the spectral efficiency targets is
optimized while maintaining the feasibility of the power vector. The second element of
the proposed algorithm consists of setting the transmit powers that minimize the sum
power consumption and achieve the SINR targets. An important characteristic of the power
control algorithm is that it operates in a distributed manner, taking advantage of the TNFD
setup, where each transmit-receive pair sets its own transmit power levels based on locally
available information typically transmitted by the legacy BSs ir order to facilitate mobility.
Although we investigate the single-cell case, the proposed power control algorithm can
also be used in multi-cell systems, provided that inter-cell interference measurements are
available.

The analytical and numerical results show that the optimality gap between an exhaus-
tive solution of JASEM and the proposed joint solution is small. Our proposed solution
outperforms existing methods in the literature, such as random assignment without power
control, and the use of HD mode in interference-limited scenarios. With the proposed
distributed power control solution, we obtain gains in terms of energy saving, in addition
to the spectral efficiency gains in interference-limited scenarios. Our overall finding is
that smart assignment solutions are important when the scenario is interference-limited,
whereas smart power control solutions are more important in SI-limited scenarios.

The remainder of the paper is organized as follows. Section B.2 discusses relevant
and closely related works. Section B.3 presents the system model and main parameters,
followed by the problem formulation and the notation used throughout the paper. Sec-
tion B.4 analyses the power control problem. Using matrix analysis, we arrive at a sequence
of feasibility checking sub-problems to maximize the sum spectral efficiency. Since the
problem is not convex, we use the framework of FL optimization in Section B.5 to derive
a distributed solution to approximate the optimal SINR targets in a distributed manner, and
use these targets to obtain the transmit powers, also in a distributed manner. In Section B.6,
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we study the user-frequency channel assignment problem, for which we propose an
approximate greedy solution. We show its guaranteed performance and, for benchmarking
purposes, also propose a natural alternative solution to the assignment problem using the
Hungarian algorithm for bipartite matching. Section B.7 presents numerical results and
compares the performance of the proposed joint solution with alternative assignment and
power allocation schemes in UE-to-UE interference limited and SI-limited scenarios.

B.2 Related Works

The impact of FD radios on cellular systems has been analysed recently in [10, 28, 78],
which provide valuable insights into the design aspects and performance of such systems
in terms of rate and energy performance. However, the problem of distributed joint power
and user-frequency channel allocation in TNFD networks has not been addressed in these
works.

Power allocation and user assignment have been analysed in [29, 85, 86]. In [86], the
authors have used heuristics to assign UL and DL users to frequency channels in an ultra-
dense network. In a similar manner, in [29] the authors have addressed the assignment and
power allocation for small-cell networks, where the heuristic solutions of the assignment
and power allocation algorithm are evaluated for scenarios with Rayleigh fading. The
authors in [85] have analysed user-subcarrier assignment via matching theory. However,
none of the works mentioned above have investigated a distributed power control and user-
frequency channel assignment. We are interested in distributed solutions to offload the
operational burden imposed by a large number of diverse devices on the BS.

Other papers have developed distributed algorithms that are applicable in TNFD
networks [89, 90, 107]. The authors of [89] have tackled the problem of the UE-to-
UE interference from an information theoretic perspective, without relating to resource
allocation and power control. In [90], the authors have proposed a distributed power control
for general wireless networks using approximation techniques. The proposed framework
have not taken into account the specific aspects of TNFD in cellular networks, and thus the
resulting performance are suboptimal. We have studied a weighted sum spectral efficiency
maximization problem in our previous work [107]. In that paper, we have designed an
auction theory based distributed algorithm to the assignment problem without taking into
account frequency-selective fading, and assuming centralized power allocation. Notice that
frequency selective channel introduces major technical challenges compared to [107] due
to its variation between channels for UL and DL UEs, specially for distributed solution
mechanisms that require information exchange between users.

A typical and natural objective of many physical layer procedures designed for TNFD
cellular networks is to maximize the sum spectral efficiency [32, 79, 87, 88]. The authors
in [79] have considered a joint subcarrier and power allocation problem, without taking into
account the UE-to-UE interference. Similarly, the authors of [87] have taken into account
the UE-to-UE interference, which has led to a formulation of the assignment problem
as a 3D-matching problem. The authors have used a centralized water-filling solution
to sub-optimally solve the power allocation problem. The work reported in [32] have
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considered the application of TNFD transmission mode in a cognitive femto-cell scenario
with bidirectional transmissions from UEs, and have developed sum-rate optimal resource
allocation and power control algorithms. The authors in [88] have considered scheduling
and power allocation in multi-cell systems, and have proposed a distributed solution for
the user selection and used geometric programming to solve the power allocation problem.
However, these works have not considered a distributed solution approach for the power
control problem and have not addressed the optimal user-frequency assignment problem.

Fast-Lipschitz (FL) optimization is a recently proposed framework to solve distributed
optimization problems over networks by using fixed point iterations [92, 98, 99]. The
main characteristic of a FL problem is that the optimal solution is found using fixed
point iterations over the constraints, which are known for the fast convergence [96].
In addition, the structure of FL optimization does not rely on convexity or standard
interference functions. Due to this fast and general solution approach, FL optimization
has been used to solve general power control problems to minimize the sum power with
different quality of service constraints [99]. However, FL optimization has not been used
in TNFD networks, and the fundamental problem of sum spectral efficiency maximization
has not been addressed before.

In the light of this survey of related literature, the main contributions of this paper are
as follows:

• The problem formulation of JASEM and the proposed joint distributed power
control using FL optimization and greedy assignment solution are new. The joint
formulation to maximize the sum spectral efficiency is a natural objective in TNFD
networks, and appears as a complex optimization for which no known methods are
available.

• Due to the complexity of JASEM, we split the solution into two parts: power
control problem and user-frequency assignment. For power control, we use the FL
optimization framework to develop a distributed SINR setting close to the optimal
and a power control solution that minimizes the sum power in the system. We
propose a greedy solution to approximate the NP-hard problem of assigning UL
and DL users to frequency channels.

• We evaluate the proposed joint solution by a realistic system simulator and gain
insights that help design TNFD cellular networks operating in scenarios with both
high and low SI capabilities.

B.3 System Model and Problem Formulation

B.3.1 System Model

We consider a single-cell cellular system in which the BS is FD capable, whereas the UEs
served by the BS are only HD capable, as illustrated by Figure B.1. In Figure B.1, the
BS is subject to SI and the UEs transmitting in the UL (UE2 and UE4) cause UE-to-UE
interference to co-scheduled UEs receiving in the DL, that is to UE1 and UE3 respectively.
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The number of UEs in the UL and DL are denoted by I and J , respectively, which are
constrained by the total number of frequency channels in the system F , i.e., I ≤ F and
J ≤ F . Accordingly, the sets of UL and DL users are denoted by I = {1, . . . , I} and J =
{1, . . . , J} respectively, and the set of frequency channels is denoted by F = {1, . . . , F}.

We assume a frequency selective environment, such that the composite channel gains
depend on the frequency and consist of small- and large-scale fading. Let Gibf denote the
channel gain between transmitter UE i and the BS on frequency channel f , Gbjf denote
the channel gain between the BS and the receiving UE j on frequency channel f , and Gijf
denote the interfering channel gain between the UL transmitter UE i and the DL receiver
UE j on frequency channel f . To take into account the residual SI power that leaks to
the receiver, we define β as the SI cancellation coefficient, such that the SI power at the
receiver of the BS is βP dj when the transmit power is P dj .

The vector of transmit powers in the UL for all the UEs is denoted by pu =
[Pu1 . . . P

u
I ]T , whereas the vector of DL transmit powers by the BS is denoted by pd =

[P d1 . . . P
d
J ]T . As illustrated in Figure B.1, the UE-to-UE interference depends heavily on

the geometry of the co-scheduled UL and DL users, i.e., the pairing of UL and DL users,
which also depends on the frequency channels assigned to UL and DL users. Therefore,
UE pairing and frequency channel allocation are key functions of the system. Accordingly,
we define the assignment matrix, X ∈ {0, 1}I×J×F , such that

xijf =

{
1, if UEi is paired with UEj on frequency f,
0, otherwise.

The SINR at the BS of transmitting user i and the SINR at the receiving user j of the
BS, both assigned to frequency channel f , are given by

γuif =
Pui Gibf

σ2 +
∑J
j=1 xijfP

d
j β

, γdjf =
P dj Gbjf

σ2 +
∑I
i=1 xijfP

u
i Gijf

, (B.1)

respectively, where xijf in the denominator of γuif accounts for the SI at the BS, whereas
xijf in the denominator of γdjf accounts for the UE-to-UE interference caused by UEi to
UEj on frequency f , and σ2 is the noise power.

Thus, the achievable spectral efficiency by each user is given by the Shannon equation
(in bits/s/Hz) for the UL and DL as

Cui =

F∑
f=1

Cuif =

F∑
f=1

log2(1 + γuif ), (B.2a)

Cdj =

F∑
f=1

Cdjf =

F∑
f=1

log2(1 + γdjf ), (B.2b)

where the sums are taken along the frequency dimension because at most one SINR is
non-zero for every UL and DL user.
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B.3.2 Problem Formulation

Our goal is to devise the pairing and assignment of UEs in the UL and DL to frequency
channels, that maximize the sum spectral efficiency over all users. Specifically, we
formulate the joint assignment and spectral efficiency maximization (JASEM) problem
as

maximize
X,pu,pd

I∑
i=1

Cui +

J∑
j=1

Cdj (B.3a)

subject to Pui ≤ Pumax, ∀i, (B.3b)

P dj ≤ P dmax, ∀j, (B.3c)
J∑
j=1

F∑
f=1

xijf ≤ 1, ∀i, (B.3d)

I∑
i=1

F∑
f=1

xijf ≤ 1, ∀j, (B.3e)

I∑
i=1

J∑
j=1

xijf ≤ 1, ∀f, (B.3f)

xijf ∈ {0, 1}, ∀i, j, f. (B.3g)

The main optimization variables are pu, pd and X. Constraints (B.3b) and (B.3c) limit the
transmit powers per-user and per-channel DL power constraint, whereas constraints (B.3d)-
(B.3f) assure that at most one UE in the DL can share the frequency resource with a UE in
the UL and vice-versa. Note that if I 6= J , some users cannot be paired and will transmit
in HD mode if there are frequency channels available.

Problem (B.3) belongs to the category of mixed integer nonlinear programming
(MINLP), which is known for its high complexity and computational intractability. In
addition, problem (B.3) belongs to the category of 3-D nonlinear assignment problems,
where the problem with linear objective function is known to be NP-hard [108, Section
10.2]. Therefore, to arrive at a close to optimal solution to problem (B.3), we will split it
into two parts corresponding to power control and frequency channel assignment problems.
For power control, we propose to use Fast-Lipschitz optimization [92, 98] to develop
a distributed SINR target setting solution. With the SINR targets from Fast-Lipschitz
optimization , we find the power vectors that minimize the sum power consumption in
a distributed fashion. As for the frequency channel assignment, it is known to be an
axial 3-dimensional assignment problem (3-DAP) [108, Section 10.2], and it is NP-Hard,
which motivates us to propose a greedy solution with guaranteed performance. We use the
proposed greedy solution for the frequency assignment along with the distributed power
control from Fast-Lipschitz optimization. We remark that the problem formulation (B.3) is
original, and the solution approach we develop in the following is original as well.
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B.3.3 Notation

Vectors and matrices are denoted by bold lower and upper case letters, respectively. We
denote by I the identity matrix, and by 0 a vector or matrix where all elements are zero.

The gradient of a function f(x) is defined as the transpose of the Jacobian matrix,
i.e., [∇f(x)]ij = ∂fj(x)/∂xi, whereas ∇if(x) denotes the ith row of ∇f(x). Note that

∇f(x)k = (∇f(x))
k, which is not to be confused with the kth derivative. The spectral

radius is denoted ρ(·). Vector norms are denoted |||·||| and matrix norms are denoted
‖·‖. Unless specified |||·||| and ‖·‖ denote arbitrary norms. We denote by |||A|||∞ =
maxi

∑
j |Aij | the norm induced by the `∞ vector norm, where ‖x‖`∞ = maxi |xi|.

These matrix norm definitions are coherent with [109]. All inequalities in this paper are
intended element-wise, i.e., A ≥ B means Aij ≥ Bij for all i, j.

B.4 Power Control Analysis for JASEM

To develop a solution close to the optimal solution of problem (B.3), we split the problem
into two parts corresponding to power control and frequency channel assignment problems.
We first concentrate on the power allocation problem, and assume the assignment is already
performed, whereas in Section B.6 we provide an approximate solution and a benchmark
solution to the assignment problem. To this end, let us assumeN pairs of UL and DL users,
whereN = I = J , and that a specific pair n , (k, l) contains one UL and DL UEs sharing
a frequency channel. In this case, the sum spectral efficiency maximization is formulated
as:

maximize
pu,pd

I∑
i=1

Cui +

J∑
j=1

Cdj , (B.4a)

subject to pu,pd ∈ P, (B.4b)

where P is the set in which the power allocation constraints (B.3b)-(B.3c) are fulfilled.
From results of [101], we know that the optimal transmit power allocation will have
either Pui or P dj equal to zero or, Pumax or P dmax, given that i and j share a frequency
channel and form a pair. However, future cellular networks are expected to move from
a fully centralized to a more distributed architecture [8], offloading the computation and
orchestration burden imposed by a large number of diverse devices on the BS. With this
objective in mind, we wish a distributed power control solution such that the UL and DL
users can autonomously set their transmit powers and decrease the burden on the BS.

First, we rewrite problem (B.4) in a shortened form by defining p = [pu pd]T andK ,
I + J . Similarly, we define the vector Gb = [σ2/Gu1b . . . σ

2/GuIb σ
2/Gdb1 . . . σ

2/GdbJ ]T

as the noise power divided by the interesting channel gains; and the matrix containing the
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interfering channel gains F of size K ×K whose terms are defined as:

Flk =


0, if xkl = 0,

β/Gukb, if k ≤ I and I ≤ l ≤ K,
Glk/G

d
bk, if I ≤ k ≤ K and l ≤ I.

(B.5)

Note that the index k ≤ I indicates a UL user, while I ≤ k ≤ K indicates a DL user. We
can now reformulate the SINR in Eq. (B.1) for the kth user sharing the frequency channel
with the lth user in pair n = (k, l) as

γk(p) =
Pk

Gbk + (Fp)k
=

Pk
Gbk + PlFlk

, (B.6)

where Pk is the transmit power of user k, Gbk is the kth element of the column vector
Gb, and the expression (Fp)k stands for the kth element of the column vector Fp, which
results in a single term in the denominator of (B.6), representing the interference caused
by user l to user k. Using this representation, we write problem (B.4) in a joint formulation
of UL and DL users as:

maximize
p

K∑
k=1

αk log2(1 + γk(p)) (B.7a)

subject to Pk ≤ P (k)
max,∀k, (B.7b)

where P (k)
max is equal to Pumax or P dmax if k is a UL or DL user, respectively.

B.4.1 Problem Transformation

As a first step to solving problem (B.7), we consider the standard equivalent hypo-
graph [110, Sec. 3.1.7] form of problem (B.7), in which one new variable and one new
constraint are included:

maximize
p,t

K∑
k=1

tk (B.8a)

subject to tk ≤ αk log(1 + γk(p)),∀k, (B.8b)

Pk ≤ P (k)
max,∀k, (B.8c)

where the new variables tk > 0 can be interpreted as spectral efficiency targets. We set the
weights αk as 1/ log(2) so that in Eq. (B.8b) we have the natural logarithm. Expanding the
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constraint (B.8b), we get

αk log(1 + γk(p)) ≥ tk,
Pk

Gbk + PlFlk
≥ (exp(tk/αk)− 1),

Pk ≥ (exp(tk/αk)− 1)(Gbk + PlFlk),

p ≥ T(Gb + Fp),

(IK −TF)p ≥ TGb, (B.9)

where T denotes a diagonal matrix of size K ×K with entries (exp(tk/αk)− 1). Notice
that each diagonal entry (exp(tk/αk)− 1) of matrix T can be related to an adaptive SINR
target γtgt

k , i.e., γtgt
k = exp(tk/αk)−1. In the next section, we will transform problem (B.8)

into a sequence of feasibility checking sub-problems, by means of which the sum of the
spectral efficiency targets can be optimized while maintaining the feasibility of the power
vector with respect to constraints (B.8c) and (B.9).

The feasibility of the power vector and its relation to the SINR targets are established
by the following useful lemma.

Lemma 1. Consider problem (B.8). The diagonal matrix T of adaptive SINR targets is
feasible for problem (B.8) if and only if

ρ(TF) < 1. (B.10)

Proof. From inequality (B.9), we notice that TF > 0 and has a special structure,
with non-negative entries only in the position of the interfering user. Thus, from the
Perron-Frobenius Theorem [111], there exists a non-negative right eigenvector p of TF.
Furthermore, we also know that (I−TF)−1 is non-negative, which implies that the power
vector that fulfils inequality (B.9) at equality is uniquely evaluated as

p = (I−TF)−1TGb. (B.11)

Therefore, we can use eq. (B.11) to find the optimal powers for the given SINR targets. �

From the SINR Eq. (B.6), it is clear that there is exactly one interfering user per
frequency channel, which allows to decouple the UL and DL UEs sharing the same
frequency channel in problem (B.8). Specifically, let us assume that for pair n = (k, l) we
have the matrices F(n) and T(n) composed of the entries related to the kth and lth users,
respectively. Thus, the matrices F(n), T(n) and T(n)F(n) can be shown to have the form
of

F(n) =

[
0 Flk

Fkl 0

]
,T(n) =

[
γtgt
k 0

0 γtgt
l

]
,T(n)F(n) =

[
0 γtgt

k Flk

γtgt
l Fkl 0

]
.

Therefore, given the simple structure of the T(n)F(n), we can evaluate its eigenvalues as

λ(n) = ±
√
γtgt
k γ

tgt
l FklFlk. (B.12)
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In addition to Lemma 1, it will be useful to formulate an upper bound on the product
of SINR targets

γtgt
k γ

tgt
l <

1

FklFlk
=
GukbG

d
bl

βGlk
, (B.13a)

γtgt
k γ

tgt
l <

GukbG
d
bl

βGlk
. (B.13b)

Rewriting inequality (B.13b) as a function of the initial spectral efficiency targets tk and
tl, we have the following inequality:(

exp

(
tk
αk

)
− 1

)(
exp

(
tl
αl

)
− 1

)
<
GukbG

d
bl

βGlk
,

exp

(
tk
αk

+
tl
αl

)
− exp

(
tk
αk

)
− exp

(
tl
αl

)
<
GukbG

d
bl

βGlk
− 1. (B.14)

In order to transform the strict inequality in (B.14) into a nonstrict inequality, we introduce
a predefined parameter ε < 1 such that

exp

(
tk
αk

+
tl
αl

)
− exp

(
tk
αk

)
− exp

(
tl
αl

)
≤ ε
(GukbGdbl
βGlk

− 1
)
. (B.15)

With inequality (B.15) we can assure that the spectral efficiency targets fulfil Lemma 1
if (B.15) holds. Therefore, we can use inequality (B.15) to rewrite problem (B.8) as a
function of the spectral efficiency targets tk and tl as:

maximize
tk,tl

tk + tl (B.16a)

subject to (B.15),
tk, tl ≥ 0. (B.16b)

Notice that inequality (B.15) is not convex. Thus, problem (B.16) is not concave and there
is no guarantee that a local optimal value is also globally optimal. To solve this problem in
a distributed fashion, we resort to FL optimization [92].

B.5 Fast-Lipschitz SINR Target Updates and Distributed Power
Control

Since problem (B.16) is not convex and we are interested in a distributed solution, we use
FL optimization to solve the SINR setting problem. The main advantages of this framework
is that the objective function or constraints are not required to be convex, and the optimal
solution is found using fixed-point iterations, which are known for fast convergence.
For clarity, the framework of FL optimization is summarized in Appendix B.9.1. Using
this framework, we reformulate problem (B.16) using the relaxation of the FL form for
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problems with fewer constraints than variables, which is given in [98, Section V.B].
Consider a partitioned variable x = [tk tl]

T ∈ X ⊂ R2 and the following optimization
problem:

maximize
x

f0(x) (B.17a)

subject to tk ≤ ftk(x), (B.17b)
x ∈ X , (B.17c)

where the functions f0(x), ftk(x) and the set X are defined as

f0(x) = tk + tl, (B.18a)
ftk(x) = tk − γh(x), (B.18b)

X =

{
x :

{
tk ∈ Xk = {tk : ak ≤ tk ≤ bk}
tl ∈ Xl = {tl : al ≤ tl ≤ bl}

}
,

where for clarity and for the sake of easy of presentation in the sequel, we introduce the
functions h(x), u(x), v(x) as:

h(x) , exp

(
tk
αk

)(
exp

(
tl
αl

)
− 1

)
− exp

(
tl
αl

)
+

(
1− GukbG

d
bl

βGlk
+ ε

)
, (B.19a)

u(x) ,
1

αk
exp

(
tk
αk

)(
exp

(
tl
αl

)
− 1

)
, (B.19b)

v(x) ,
1

αl
exp

(
tl
αl

)(
exp

(
tk
αk

)
− 1

)
. (B.19c)

Note that γ in Eq. (B.18b) is the positive parameter used in [92, Section II.B] to
transform constraint (B.15) into function ftk(x), and that the upper bounds bk, bl can be
understood as the maximum achievable spectral efficiency without interference. With this
reformulation, we now state the following lemma to establish that problem (B.17) is Fast-
Lipschitz.

Lemma 2. Consider optimization problem (B.17). If v(x) < u(x), and the parameter γ is
constrained as

1

2u(x)
< γ <

1

u(x)
, (B.20)

then problem (B.17) is Fast-Lipschitz.

Proof. See Appendix B.9.2. �

If the conditions of Lemma 2 are fulfilled, then we can find tk using fixed point
iterations. Using the proof in Appendix B.9.2, we fix tl and find the optimal tk from fixed
point iterations t(n+1)

k = ftk(x)(n). Thus, we need to keep updating tl in order to obtain
the solution that maximizes problem (B.17). Section B.5.1 shows a decentralized algorithm
that uses the FL solution to the power control problem and can be executed by the UL and
DL UEs in a distributed fashion.
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Algorithm 3 FL Optimization to find tk

1: Input: Gu
kb, G

d
bl, Glk, β, αk, αl, t

(0)
k , ak, bk, tl, δp, δa

2: Evaluate u(x), v(x), h(x) from Eqs. (B.19)
3: Set γ(0) = 3

4u(x)
and evaluate ftk (x)

(0)

4: Set n = 0
5: while

∣∣∣t(n)
k − t(n−1)

k

∣∣∣ < δp do
6: n← n+ 1

7: Update t(n)
k = max

{
min

{
ftk (x)

(n−1), bk

}
, ak

}
8: Update u(x), v(x), h(x) from Eqs. (B.19)
9: Set γ(n) = 3

4u(x)
and evaluate ftk (x)

(n)

10: if
∣∣∣t(n)
k − t(n−1)

k

∣∣∣ = ∣∣∣t(n−1)
k − t(n−2)

k

∣∣∣ and |h(x)| > δa then
11: Stop the algorithm and set ζ = 1
12: end if
13: end while
14: Output: tk, ζ

B.5.1 Distributed SINR Target Updates using Fast-Lipschitz

Algorithm 3 comprises the steps that are necessary to find the optimal tk, tl of the FL
optimization. The input variables of Algorithm 3 are the channel gains Gukb, G

d
bl, Glk,

and the SI cancellation term β. In practice, the BS would acquire or estimate all channel
gains from UL and DL users, which can be done performing measurements on reference
signals similar to those standardized by 3rd Generation Partnership Project (3GPP) [104].
The algorithm also needs the initial values for tk, denoted as t(0)

k , the upper and lower
limits of tk, denoted by ak and bk, the initial point for tl, and some precision targets
for convergence denoted by δp, δa. The precision targets can be predefined and broadcast
by the BS, whereas the lower bounds are zero and the upper bounds can be sent via
measurements to each user based on the channel gains and signal-to-noise ratio (SNR).
The initial value for t(0)

k is decided based on the tl given as input.
Initially, u(x), v(x), h(x) are evaluated. Next, γ is set as the midpoint of the interval

defined in Eq. (B.20) and the function ftk(x) according to Eq. (B.18b) is evaluated (lines 2
and 3). Then, the algorithm updates tk using the fixed point iterations and ensuring that
ak ≤ t

(n)
k ≤ bk (line 7). In the next step, u(x), v(x), h(x), γ and ftk(x) are updated.

The algorithm iterates until
∣∣∣t(n)
k − t(n−1)

k

∣∣∣ < δp (line 5), which implies that the result δp
is close to the fixed point.

As another stopping criterion, if t(n)
k has reached the upper/lower bound twice, the

algorithm stops (line 10). This happens when the first stopping criterion cannot be fulfilled
while keeping t(n)

k within the predefined bounds. We define this situation as an infeasibility.
Note that the algorithm also enforces |h(x)| > δa, so that the bound can be reached if
|h(x)| is small enough (from Eq. (B.15) it should be zero). Accordingly, ζ = 1 is set to
highlight that the initial value given to tl does not lead to a feasible tk. As outputs, the
algorithm has the variable tk and the infeasibility check ζ. From now on, we will refer to
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Algorithm 4 Golden Search to find tl
1: Input: Gu

kb, G
d
bl, Glk, β, αk, αl, ak, bk, al, bl

2: Define φ , (−1 +
√
5)/2

3: Evaluate tl1 = alφ+ (1− φ)bl and tl2 = (1− φ)al + φbl
4: Evaluate tk|tl1 and tk|tl2 from Algorithm 3
5: while tl2 − tl1 < δg do
6: if (1− ζ|tl1 )(tk|tl1 + tl1 ) ≥ (1− ζ|tl2 )(tk|tl2 + tl2 ) then
7: Update intervals: bl ← tl2 , tl2 ← tl1
8: Update tk and tl: tk ← tk|tl1 and tl ← tl1
9: Update the evaluated value for tk|tl2 : tk|tl2 ← tk|tl1

10: Update the new point to search: tl1 = alφ+ (1− φ)bl
11: Evaluate tk|tl1 from the new tl1 using Algorithm 3
12: else
13: Update intervals: al ← tl1 , tl1 ← tl2
14: Update tk and tl: tk ← tk|tl2 and tl ← tl2
15: Update the evaluated value for tk|tl1 : tk|tl1 ← tk|tl2
16: Update the new point to search: tl2 = alφ+ (1− φ)bl
17: Evaluate tk|tl2 from the new tl2 using Algorithm 3
18: end if
19: end while
20: Output: tl, tk

the outputs as tk|tl and ζ|tl to highlight that the outputs were evaluated with the input tl.
Next, a unidimensional search algorithm is used to update tl. Notice that the objective

function has only one minimum, because problem (B.17) is Fast-Lipschitz and has a unique
Pareto optimal solution [92]. To find this unique minimum, we propose to use the Golden
Section search [112], because it does not rely on finding derivatives and requires only
one new computation at every iteration as opposed to the widely used bisection method
(see Algorithm 4).

In this algorithm the golden ratio φ is used as the constant reduction factor of the
interval. Subsequently, the two points tl1 , tl2 are defined followed by evaluating tk using
the FL optimization in Algorithm 3 (lines 3-4). Then, the algorithm checks which part of
the interval gives the higher sum tk + tl, if it is the lower part of the interval containing tl1
(see line 6), namely [al, tl2 ], or the upper part containing tl2 (see line 12), namely [tl1 , bl].
Notice that the feasibility of the solution is also checked, on which the algorithm considers
ζ in the sum.

Depending on the interval (lower or upper), the algorithm updates the upper/lower
bound and the respective values of tk (see lines 7-9 and 13-15). With this, we update the
current value of tk and tl (see lines 8-14). In the following, tl1 (tl2 in the respective upper
interval) is updated and the algorithm finds tk for the new given value of tl (see lines 10-11
and 16-17). The algorithm stops once the desired precision δg is achieved.

An important aspect of the Golden Search solution in Algorithm 4 is splitting the
interval such that the solution used for tk remains feasible. To this end, the algorithm
must verify that the solution is feasible by considering ζ in the sum. However, we need to
incorporate into the algorithm that when the infeasibility happens, it removes the branch of
tl that leads to infeasibility. To this end, the following Lemma 3 will be useful (see line 6).
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Lemma 3. Let tl, tk be given by Algorithm 4. Suppose that such tl and tk make
Algorithm 3 infeasible. Then, the Golden Search solution cuts the branch that resulted
in tl and leads to the feasibility direction, which is the other branch of the search.

Proof. See Appendix B.9.3. �

Therefore, we can now solve at optimality the SINR setting problem (B.16). In
the following subsection, we use the SINR targets obtained as the solution of the FL
optimization to evaluate the power vector in a distributed manner.

B.5.2 Distributed Power Control

Using the optimal SINR targets obtained as the solution to problem (B.16), we can
now develop a distributed power control algorithm based on the definition of standard
interference functions [113], which for clarity is recalled below.

Definition 4. A function I(p) :Rn→R is a standard interference function if for all vector
p ≥ 0 the following properties are satisfied:

• Positivity: I(p) > 0 for all p;

• Monotonicity: If p ≥ p′, then I(p) > I(p′);

• Scalability: For all scalar α > 1, αI(p) > I(αp).

Notice that Eq. (B.9) can be written as an inequality based on an appropriate
interference function IW (p), as follows:

Pk ≥ IWk (p) = γtgt
k (Gbk + FlkPl), (B.21)

Pl ≥ IWl (p) = γtgt
l (Gbl + FklPk). (B.22)

Using this form, it is straightforward to determine the power control update iterations
that minimize the sum power and achieve the predefined SINR targets. The following
lemma shows that with given feasible SINR targets, the transmit powers for the pair of
UL-DL users sharing a frequency channel can be determined in a distributed manner while
minimizing the sum power.

Lemma 4. Consider a feasible set of SINR targets for users k and l sharing a frequency
channel. The power vector that minimizes the sum transmit power of the two users while
attaining the SINR targets is found in a distributed manner as:

Pk(n+ 1) = min
{
P (k)

max, IWk (p(n))
}
, (B.23a)

Pl(n+ 1) = min
{
P (l)

max, IWl (p(n))
}
, (B.23b)

where n denotes the iteration counter.
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Proof. From [113], it can be proved that the power vector found from Eqs. (B.23) denotes
a sequence of monotone decreasing feasible power vectors that converge to a unique fixed
point p? [113, Lemma 1], which minimizes the sum power that attain the SINR targets.
If the SINR targets lead to a power higher than the maximum in (B.23), the proposed
algorithm projects this power onto the set P defined by the Pk ∈ [0, Pmax]. �

From the results of [101] we know that either user k or l or both transmit at maximum
power. Therefore, in practice, Pk(0) = P

(k)
max and Pl(0) = P

(l)
max is typically a good starting

point.

B.6 Assignment Solutions for JASEM

With the distributed solution to the powers, we are now interested in a solution for the
frequency channel assignment. In this section we assume a set of fixed powers – such as the
maximum power allocation (Pumax and P dmax) – for both UL and DL transmissions. Recall
that the optimal powers will have either Pui or P dj equal to zero, or Pumax or P dmax, or both
with Pumax and P dmax, which motivates us to consider both users transmitting at maximum
power. Since we cannot provide the optimal powers without knowing the assignment, we
reasonably assume fixed powers and later optimize the powers using what we developed in
sections B.4-B.5. With this assumption, we have the following combinatorial problem in
binary variables X:

maximize
X

I∑
i=1

J∑
j=1

F∑
f=1

sijfxijf (B.24a)

subject to
J∑
j=1

F∑
f=1

xijf = 1, ∀i, (B.24b)

I∑
i=1

F∑
f=1

xijf = 1, ∀j, (B.24c)

I∑
i=1

J∑
j=1

xijf = 1, ∀f, (B.24d)

xijf ∈ {0, 1}, ∀i, j, f, (B.24e)

where the matrix S = [sijf ] ∈ RI×J×F represents the sum of UL and DL spectral effi-
ciencies on frequency resource f , i.e., sijf = Cuif +Cdjf . Furthermore, equalities (B.24b)-
(B.24d) follow from the inequality terms (B.3d)-(B.3f), where it is now required to assign
a frequency channel to every UL and DL user.

The assignment problem (B.24) has (n!)2 possible assignments and is a well known
NP-hard problem named axial 3-DAP [108, Section 10.2]. Thus, no optimal solution
in polynomial time can be obtained, unless P = NP. Nevertheless, in the following
subsections we propose two solutions: a greedy solution with guaranteed performance,
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Algorithm 5 Greedy Solution for the Axial 3-DAP

1: Input: Gibf , Gbjf , Gijf , β, P
u
max, P

d
max

2: Evaluate sijf = Cu
if + Cd

jf for every i, j, f
3: Ia = Ja = Fa = ∅ ← Sets of assigned users and resources are initially empty
4: while | Ia |6= I and | Ja |6= J do
5: smax = max sijf ,∀i, j, f ← Sort in descending order sijf
6: (i?, j?, f?) = argmax smax ← Select the pair and frequency with maximum sum spectral efficiency
7: xi?j?f? = 1← Assign the frequency channel f? to pair (i?, j?)
8: Ia = Ia ∪ {i?}, Ja = Ja ∪ {j?}, Fa = Fa ∪ {f?} ← Update the set of assigned resources
9: Remove the already assigned users and frequency (i?, j?, f?) from sijf

10: end while
11: Output: X

based on our previous work [30] (Section B.6.1), and another solution based on a
modification of the Hungarian algorithm, especially adopted to the axial 3-DAP problem
(Section B.6.2). We provide two solutions to highlight to compare our approximate solution
to axial 3-DAP, the greedy solution, with an heuristic that splits the 3-DAP into two 2-D
assignment problems.

B.6.1 Greedy Solution for the Axial 3-DAP

Differently from other works that reduce the assignment problem (B.24) to two dimen-
sions [32], we aim at jointly assigning UE pairs to frequencies. A related work developed
some other heuristics applicable to problem (B.24) but it relies on meta-heuristics using
graph theory, and some simplifications of the cost sijf [108, Section 10.2.5]. This approach
cannot be used in our case, because it either requires unacceptable simplifications or is
computationally too complex. In our previous work [30], we proposed a greedy solution
to jointly solve an axial 3-DAP and a power allocation problem aiming at maximizing
the minimum spectral efficiency of a full-duplex cellular system. To solve the assignment
problem, we use the approach from our previous work [30]. The axial 3-DAP can be
understood as the maximization of a function over a constraint set that is the intersection of
3 matroids [108], which allows us to have performance guarantees in terms of sum spectral
efficiency. More precisely, let us consider X∗ and XG as the optimal and the greedy
solution found by our greedy algorithm, and let the objective function, the sum spectral
efficiency, be c(X∗) and c(XG), respectively. From Hausmann et al. [114, Corollary 4],
any greedy solution aiming to solve the maximization or minimization of a real-valued
weight function over a constraint set defined as the intersection of k matroids yields a
performance guarantee of at least 1/k, i.e., c(XG)/c(X∗) ≥ 1/k. Therefore, our proposed
greedy solution has a performance guarantee of at least 1/3. Actually, as the numerical
results will show, the optimality gap is lower than the guaranteed.

Algorithm 5 comprises the steps of the greedy solution to solve the axial 3-DAP
in (B.24). Initially, the sijf for all pairs and frequency channels are evaluated. Next, we
define the sets that will contain the assigned users in UL, DL, and the frequency channels
(see lines 2-3). Subsequently, the algorithm sorts the matrix S in descending order and
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Algorithm 6 Solution of JASEM problem (B.3)
1: Solve the assignment problem using the greedy solution in Algorithm 5
2: Find in a distributed manner tk and tl using Algorithm 3-4
3: Find in a distributed manner pu and pd from tk and tl
4: Output: X,pu,pd

selects the UE pair and frequency channel that achieves the highest sijf (see lines 5-7).
With this, the assignment matrix X and the sets of UL and DL users, as well as the set of
frequency channels already used are updated (see lines 7-8). Finally, the assigned users and
frequency channels from the matrix S are removed. The loop is continued until all users
have been assigned to a frequency channel (see line 9). Notice that the computationally
demanding effort is sorting the matrix S, which has worst-case complexity O(n log(n)),
where n is the dimension of the vector to be sorted. In our case, the matrix S is of dimension
I × J × F , and since I = F = J , the worst-case complexity is O(F 3 logF ).

B.6.2 Solution Approach Based on A Modified Hungarian Algorithm

Since problem (B.24) is NP-hard, we propose to develop an approximate solution based on
a transformation of the axial 3-DAP into two 2-D assignment problems: one between the
UL users and the frequency channels, and another between the DL users and the frequency
channels. The idea here is to first assign the UL users to frequency channels such that the
sum spectral efficiency for all UL users is maximized. We then use the information of the
already assigned UL users to pair the DL users to frequency channels such that the sum
spectral efficiency of all DL users is maximized. Both assignments can be solved optimally
through the Hungarian algorithm [103, Section 3.2]. We propose this algorithm in order to
benchmark against our proposed greedy solution, and also to show that splitting 3-DAP
into 2-D assignment problems does not, in fact, lead to a good performance in terms of
sum spectral efficiency.

B.6.3 Summary

The solution of the initial JASEM problem (B.3) can be summarized as follows in
Algorithm 6. The algorithm initially solves the assignment problem of UL and DL users to
frequency channels using the greedy solution in Algorithm 5. With the assignment, it uses
a distributed solution provided in Algorithm 4 to find the close to optimal SINRs of UL
and DL users. Finally, the algorithm uses the distributed power control iterations of (B.23)
to set the power vectors of UL and DL users.

The assignment solution in Algorithm 5 provides an approximation to the assignment
problem (B.24), while Algorithm 4 provides a close to optimal solution to the power
control problem (B.16). Thus, by using both algorithms we are providing a suboptimal
solution to the JASEM problem (B.3). However, as the numerical results in Section B.7
show, the proposed solution method provides a close to optimal solution to JASEM.
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Table B.2: Simulation parameters

Parameter Value

Cell radius 100m

Number of UL UEs [I = J ] [4 5 25]

Monte Carlo iterations 400

Carrier frequency 2.5GHz

System bandwidth 5MHz

Number of freq. channels [F ] [4 5 25]

LOS path-loss model 34.96 + 22.7 log10(d)

NLOS path-loss model 33.36 + 38.35 log10(d)

LOS probability min(18/d, 1)(1−exp(−d/36))+
exp(−d/36)

Shadowing st. dev. LOS 3 dB

Shadowing st. dev. NLOS 4 dB

Thermal noise power [σ2] −116.4 dBm/channel
Average user speed 3 km/h

User antenna height 1.5m

BS antenna height 10m

SI cancelling level [β] [−70 − 110] dB

UE max power [Pu
max] 24 dBm

BS max power [P d
max] 24 dBm

B.7 Numerical Results and Discussion

We consider a single cell system operating in an urban micro environment assuming
2.5 GHz carrier frequency and a system bandwidth of 5 MHz [106, 115, 116]. For
this bandwidth in an long term evolution (LTE) system [106], the maximum number of
frequency channels is F = 25, which corresponds to the number of available frequency
channel blocks. The total number of served UE varies between I + J = 8...50, where
we assume that after UE pairing the number of UE transmitting in UL (I) is equal to the
number of UE receiving in DL (J). The parameters of this system are set according to
Table B.2.

To evaluate the performance of the proposed assignment and power control solution in
this environment, we use the RUdimentary Network Emulator (RUNE) as a basic platform
for system simulations [117] and extend it to FD cellular networks. With the RUNE FD
simulation tool, the environment specified in Table B.2 can be readily generated. Below
we report the results obtained by Monte Carlo simulations using either an exhaustive
search algorithm to solve problem (B.3) or the proposed solution for assignment and power
control.

Section B.7.1 analyses the optimality gap between the initially proposed sum rate
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maximization problem in (B.3), named P-OPT, our greedy solution for the axial 3-DAP
with FL optimization for the power control, named G-FLIP, and the Hungarian assignment
solution with FL optimization for the power control, termed H-FLIP.

In the following we compare the performance of these algorithms in two distinct
scenarios: interference limited scenario and SI limited scenario. In Section B.7.2, we
assume the scenario is interference limited, i.e, the SI cancellation level β is good (low
β) such that the UE-to-UE interference is the limiting factor. Conversely, in Section B.7.3
we consider an SI limited scenario, i.e., the SI cancellation is poor (high β) such that the
performance limiting factor is the SI.

Sections B.7.2-B.7.3 compare the performance of G-FLIP with four other algorithms:

1. Assignment according to the greedy solution but with equal power allocation (EPA),
named G-EPA;

2. Random assignment with EPA, named R-EPA;

3. Random assignment but with the proposed FL power control, named R-FLIP;

4. Half-Duplex, named HD.

Notice that in the HD solution we need to assign UL and DL users to frequency channels,
for which we use the Hungarian assignment, which in this situation is optimal.

B.7.1 Analysis of Optimality Gap

To evaluate the optimality gap between the proposed G-FLIP, H-FLIP and P-OPT, we
evaluate the objective function of problem (B.3). Recall from Section B.3.2 that P-OPT is
NP-hard, thus we solve it by exhaustive search for scenarios with a small number of users
and frequency channels. Specifically, we consider a small system with reduced number of
UL and DL users and frequency channels. Moreover, we consider a SI cancelling level of
−110 dB, i.e., with β =−110 dB.

In Figure B.2 we show the convergence of the fixed-point iterations t(n+1)
k = ftk(x)(n)

for a pair of UL-DL users. As expected, the solution converges fast, in approximately 12
iterations, and with an accuracy of 10−6.

With this, we can now evaluate the performance of the proposed G-FLIP and H-FLIP
with respect to P-OPT. Figure B.3 shows the cumulative distribution function (CDF) of
the sum spectral efficiency for all users, which is the objective function of problem (B.3).
As expected, P-OPT yields the highest sum spectral efficiency, followed by G-FLIP and
H-FLIP. Recall that P-OPT solves the NP-hard problem (B.3), and an optimality gap is
expected. In addition, H-FLIP results the lowest sum spectral efficiency, which shows that
greedily assigning all UL and DL users to frequency channels is better than doing the
assignment in separated phases for UL and DL users.

To understand the relative optimality gap between the algorithms, Figure B.4 shows the
relative optimality gap between P-OPT and G-FLIP and H-FLIP. As the number of users
increases, the optimality gap between P-OPT and G-FLIP increases from approximately
6.5 % to 9 % at the 50-th percentile, i.e., the gap remains small as the number of users
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Figure B.2: Convergence of the FL power control algorithm 3. Notice the solution
converges in approximately 12 iterations with an accuracy of 10−6.
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Figure B.3: CDF of the sum spectral efficiency with reduced number of users. The
proposed G-FLIP achieves a performance close to the optimal P-OPT and a better than
H-FLIP. Notice that H-FLIP has the lowest sum spectral efficiency regardless of the
number of users.
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Figure B.4: CDF of the relative optimality gap between P-OPT and the proposed G-FLIP
and H-FLIP. The relative gap slowly increases with the number of users for G-FLIP.
Conversely, for H-FLIP the relative gap almost doubles when increasing the number of
users.

increases in the system. However, for H-FLIP, the relative gap increases more when the
number of users increases, it grows from approximately 11.5 % to 21.5 %. This result
suggests that G-FLIP is more suited to systems with a large number of users than H-FLIP.

B.7.2 Analysis for Interference-limited Regime

In this subsection we study the performance of G-FLIP and compare it with G-EPA,
R-EPA, R-FLIP and HD in terms of sum spectral efficiency and total power consumption.
Here we assume a very high SI cancellation level of −110 dB, which represents an
interference-limited situation. Our objective is to evaluate the impact of frequency channel
allocation and power control on the sum spectral efficiency and system-wide power
consumption and, ultimately, to demonstrate the gains of the proposed algorithms.

Figure B.5 shows the CDF of the sum spectral efficiency. The proposed G-FLIP
algorithm has a gain of approximately 16 % at the 50-th percentile with respect to HD
systems, and recall that this HD solution has the optimal assignment that could be hardly
used in a real system. Notice that R-FLIP performs close to HD, with a relative difference
of approximately 4 % at the 50-th percentile. R-EPA achieves the lowest sum spectral
efficiency among all algorithms, and with the usage of a smart power control such as
the FL, the performance improves in approximately 30.6 %. This is shown as a power
control (PC) gain in Figure B.5. By comparing G-FLIP and G-EPA, notice that the PC
relative gain is small, approximately 1.6 %. The large gains come from the usage of the
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Figure B.5: CDF of the sum spectral efficiency with β =−110 dB, i.e., the system is limited
by the UE-to-UE interference. We notice that G-FLIP has a relative gain of approximately
16 % with respect to HD systems. In addition, most of the gains can be achieved by a smart
frequency assignment rather than a smart power control.

greedy frequency assignment, as can be observed by comparing G-EPA with R-EPA, the
relative gain is approximately 55 %. Therefore, for interference-limited scenarios, most of
the gains can be achieved by a smart frequency assignment, and the power control has little
impact on the sum spectral efficiency.

Figure B.6 shows the CDF of the total transmit power. Notice that G-EPA, R-EPA and
HD are represented by a straight line, which is a result of using a fixed power allocation
at maximum value. By comparing G-FLIP with any algorithm using EPA, we can observe
a relative energy saving of approximately 48 %. In addition, R-FLIP has a lower power
consumption than G-FLIP. This is because the greedy assignment is able to transmit with
a higher power on better (i.e. higher gain) channels.

The high energy saving gains with FL power control are expected. With the SINR
targets obtained by FL optimization, the distributed power control algorithm by [113] can
be used to set the powers that reach the target and minimize the sum power. Recall that
due to the strict inequality in Eq. (B.14), we are close to (but do not necessarily reach)
the optimal SINRs that maximizes the sum spectral efficiency. Thus, our solution with FL
power control realizes a system whose spectral efficiency is close to optimal but with low
power consumption.
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Figure B.6: CDF of the total power consumption with a system limited by the UE-to-UE
interference. We notice that using FL power control solution we have approximately 48 %
of energy saving gains.

B.7.3 Analysis for SI-limited Regime

In an opposite manner, in subsection B.7.3 we analyse a system limited by the SI, on
which the SI cancelling level is −70 dB. Similar to subsection B.7.2, the performance of
the proposed algorithm G-FLIP is compared to G-EPA, R-EPA, R-FLIP and HD.

Figure B.7 shows the sum spectral efficiency, and as expected, the performance has
degraded for all algorithms with full-duplex communications. The proposed G-FLIP
achieves the best performance among the algorithms with full-duplex, and the relative
difference to HD is small, approximately 5 % at the 50-th percentile. Notice that the PC
gain between G-FLIP and G-EPA is higher, approximately 28 % at the 50-th percentile.
Differently from Figure B.5, now most of the gains come from power control, and this
is shown by the relative difference between R-EPA and R-FLIP, with a relative gain of
approximately 170.5 % at the 50-th percentile. In addition, R-FLIP outperforms G-EPA,
which shows that a smart power control outperforms a smart frequency assignment in the
SI-limited regime. Therefore, power control, instead of the frequency assignment, has the
important role for the SI-limited regime.

Figure B.8 shows the total power consumption, and as before, we have a high energy
saving when using FL power control. For G-FLIP, an energy saving gain of approximately
42 % in the 50-th percentile can be observed, which is smaller than the gain in Figure B.6.
The reason for this result is that the BS transmits at a higher power for many users to
compensate for the high SI.

Overall, when the scenario is limited by the SI the power control is more important



B.7. Numerical Results and Discussion 75

0 100 200 300 400 500 600

Sum Spectral Efficiency [bps/Hz]

0

0.2

0.4

0.6

0.8

1

C
D

F

G-FLIP(SI:-70)

G-EPA(SI:-70)

R-EPA(SI:-70)

R-FLIP(SI:-70)

HD PC gain 
of 28%PC gain 

of 170%

Figure B.7: CDF of the sum spectral efficiency with β =−70 dB, i.e., the system is limited
by the SI. We notice a performance degradation for full-duplex communications, but the
relative difference between G-FLIP and HD is only 5 %. Now, most of the gains can be
achieved by a smart power control instead of a smart frequency assignment algorithm.
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Figure B.8: CDF of the total power consumption when the system is limited by the SI. The
proposed solution G-FLIP provides a relative energy saving of approximately 42 % with
respect to HD and all other algorithms transmitting with EPA.
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than the frequency assignment, and with the proposed G-FLIP we have a small relative
difference of 5 % to HD but transmitting at lower power, with an energy gain of
approximately 42 %.

B.8 Conclusion

In this paper we considered the joint assignment and spectral efficiency maximization
problem in FD cellular networks. Our objective was to maximize the sum spectral
efficiency in a distributed manner while optimizing the assignment of users to frequency
channels. This problem was posed as a mixed integer nonlinear optimization, called
JASEM, which was shown to be NP-hard. To solve JASEM, we split it into two
subproblems, power control and frequency channel assignment. For the power control, we
proposed a novel distributed SINR setting solution based on Fast-Lipschitz optimization.
The user-frequency assignment problem was also NP-hard, and we proposed a greedy
solution with guaranteed performance in terms of sum spectral efficiency. Using such an
optimization, we provided a distributed SINR setting power control algorithm that can
be used with our greedy solution to provide a solution close to optimality for the initial
JASEM problem.

The numerical results showed that our solution approach improved the spectral
efficiency of the users with in an interference-limited regime, achieved higher spectral
efficiency than HD transmissions, and showed large energy saving gains. The results also
indicated that a smart assignment solution achieves more gains in interference-limited
regime than smart power control solution, whereas this situation is reversed in SI-limited
regime.

In future works, we intend to analyse the impact of assignment and power control in
multi-cell FD systems in terms of sum spectral efficiency and fairness.

B.9 Appendix

B.9.1 Fast-Lipschitz Optimization

For the sake of self containment and the need for introducing a preliminary result, we now
give a brief formal definition of FL problems. For a thorough discussion of FL properties
we refer the reader to [92, 98].

Definition 5. A problem is said to be on FL form if it can be written as

maximize
x

f0(x)

subject to xi ≤ fi(x) ∀i ∈ A
xi = fi(x) ∀i ∈ B,

(B.25)

where

• f0(x) :Rn → Rm is a differentiable scalar (m=1) or vector valued (m≥2) function.
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• A and B are complementary subsets of {1, . . . , n}.

• For all i, fi : f0(x) :Rn → R is a differentiable function.

From the individual constraint functions we form the vector valued function f : Rn → Rn

as f(x)=
[
f1(x) · · · fn(x)

]T
.

Remark 1. We restrict our attention to a bounding box D= {x ∈ Rn |a ≤ x ≤ b} . We
assume D contains all candidates for optimality and that f maps D into D, f :D→D. This
box arises naturally in practice, since any real-world decision variable, such as transmitting
power, must be bounded.

Definition 6 (Pareto Optimal). A vector x∗ is called a Pareto optimal point if there is no
x ∈ D such that f0(x) > f0(x∗), i.e., if f0(x∗) is a maximal element of the set D with
respect to the natural partial ordering defined by the cone Rm+ [118].

In practice, a Pareto optimal solution is a vector for which is impossible to improve
one component without decreasing another component. The Pareto optimal solutions are
derived by converting a vector optimization problem into a scalar one via scalarization of
the objective function [118].

Definition 7. A problem is said to be Fast-Lipschitz when it can be written on FL form and
admits a unique Pareto optimal solution x∗, defined as the unique solution to the system of
equations

x∗ = f(x∗).

A problem written on FL form is not automatically Fast-Lipschitz. There are several
qualifying conditions that, when fulfilled, guarantee that problem (B.25) is Fast-Lipschitz
(see Table B.3). Note that only at least one condition in Table B.3 needs to be satisfied. The
special condition (GQC) is implied by (Q3) and thus (GQC) is more general in the sense
that if (Q3) holds, then (GQC) holds. However, this implies also that (GQC) can be more
conservative than (Q3).

Note that we only show the (Q3) in this paper. There are already six known qualifying
conditions in FL optimization [98]. We did not report the other conditions in this paper
because they are not used here and therefore are not included in this appendix.

B.9.2 Proof of Lemma 2

In the formulation of problem (B.17), there are no constraints for variable tl. Nevertheless,
we can enforce tl ∈ Xl twice and get the equivalent problem

maximize
x

f0(x) (B.26a)

subject to tk ≤ ftk(x), (B.26b)
tl ≤ ftl(x) = bl, (B.26c)
x ∈ X . (B.26d)
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Table B.3: Fast-Lipschitz qualifying conditions from [98]. Q3 implies the general
condition (GQC), but (Q3) is much easier to use from an analytical and computational
point of view compared to (GQC).

General Qualifying Condition

GQC

(GQC.a) ∇f0(x) ≥ 0 with non-zero rows

(GQC.b) |||∇f(x)||| < 1

There exists a k ∈ {1, 2, . . . } ∪∞ such that
(GQC.c) when k <∞, then

∇f(x)k ≥ 0

(GQC.d) when k > 1, then∣∣∣∣∣∣∣∣∣∑k−1
l=1 ∇f(x)

l
∣∣∣∣∣∣∣∣∣
∞
< q(x),

where q(x) , minj
mini[∇f0(x)]ij
maxi[∇f0(x)]ij

Qualifying Condition 3

Q3

(Q3.a) ∇f0(x) > 0

(Q3.b) |||∇f(x)|||∞ <
q(x)

1 + q(x)

This problem is Fast-Lipschitz if

∇f(x)=

[
∇tkftk(x) ∇tkftl(x)
∇tlftk(x) ∇tlftl(x)

]
and ∇f0(x)=

[
∇tkf0(x)
∇tlf0(x)

]
fulfils the condition (GQC) of Table B.3. Since ftl(x) = bl is constant, and f0(x) = tk+tl,
∇f(x) and ∇f0(x) simplify to

∇f(x) =

[
∇tkftk(x) 0
∇tlftk(x) 0

]
and ∇f0(x) =

[
1
1

]
.

Following the steps in [98], we can consider problem (B.17) with a fixed tl ∈ Xl and
with tk as the only variable, and then rewrite as

maximize
x

f0|tl(tk) (B.27a)

subject to tk ≤ ftk|tl(tk), (B.27b)
tk ∈ Xk. (B.27c)

For clarity, we refer to problem (B.27) as subproblem (B.27). We use Proposition 20 in [98]
to prove that problem (B.17) is Fast-Lipschitz. To this end, we need to prove the following:

(a) Subproblem (B.27) fulfils the (GQC) for all tl ∈ Xl;

(b.iii) It holds that for all x ∈ X
|||∇tlftk(x)|||∞

1− |||∇tkftk(x)|||∞
<

δtl(x)

∆tk(x)
, (B.28)
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where δtl(x) = ∇tlf0(x) and ∆tk(x) = ∇tkf0(x).

To prove (a) we need to check (GQC), and since the qualifying condition (Q3) implies
(GQC), we use (Q3) to subproblem (B.27). This is equivalent to check the following two
sub-conditions:

(Q3.a) ∇tkf0|tl(tk) > 0;

(Q3.b)
∣∣∣∣∣∣∇tkftk|tl(tk)

∣∣∣∣∣∣
∞ < q(tk)

1+q(tk) .

The gradients ∇tkf0|tl(tk),∇tkftk|tl(tk), and the function q(tk) are given by

∇tkf0|tl(tk) = 1,

∇tkftk|tl(tk) = 1− γu(x),

q(tk) = 1.

Since∇tkftk|tl(tk) is scalar, we have the following for (Q3.b):∣∣∣∣∣∣∇tkftk|tl(tk)
∣∣∣∣∣∣
∞ = |1− γu(x)| .

Notice that (Q3.a) is fulfilled because∇tkf0|tl(tk)=1>0. Let us now analyse (Q3.b):

|1− γu(x)| < 1

2
. (B.30)

Note that we can have (1− γu(x)) > 0, which implies the following bound on γ:

1

2u(x)
< γ <

1

u(x)
. (B.31)

As for the case when (1− γu(x)) < 0, we have the bound on γ as:

1

u(x)
< γ <

3

2u(x)
. (B.32)

To prove (b.iii), we need to first derive the gradients ∇tlftk(x), ∇tkftk(x), and also
δtl(x) and ∆tk(x), which are given by

∇tlftk(x) = −γv(x), (B.33a)
∇tkftk(x) = 1− γu(x), (B.33b)

δtl(x) = 1, (B.33c)
∆tk(x) = 1. (B.33d)

Since∇tlftk(x) and∇tkftk(x) are scalars, we have the following for (b.iii):

|||∇tlftk(x)|||∞ = |−γv(x)| ,
|||∇tkftk(x)|||∞ = |1− γu(x)| .
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Let us now analyse inequality (B.28):

γv(x)

1− |1− γu(x)|
< 1, (B.35a)

|1− γu(x)| < 1− γv(x), (B.35b)

which implies the following inequalities:

• 1− γu(x)>0 implies that 1− γu(x)<1− γv(x), and then

γ
(
v(x)− u(x)

)
< 0. (B.36)

Since γ > 0, inequality (B.36) is fulfilled if

v(x) < u(x), and if (B.37)

γ <
1

u(x)
. (B.38)

• 1− γu(x)<0 implies that −1 + γu(x)<1− γv(x), and then

γ
(
v(x) + u(x)

)
< 2,

1

u(x)
< γ <

2

v(x) + u(x)
.

Note that we also require that v(x) < u(x) when 1 − γu(x) < 0, because otherwise we
would have 2/(v(x) + u(x))<1/(u(x)), which violates the bound on γ defined above.

Based on the requirements from (a) and (b.iii), we have inequalities on γ that allow us
to use fixed point iterations to solve problem (B.17). To rely only on u(x), we choose the
case when 1− γu(x)>0, which results in the following requirement:

1

2u(x)
< γ <

1

u(x)
,

and v(x) < u(x). If for such conditions on tk and tl there is no γ that satisfies
inequality (B.20), then problem (B.17) is not Fast-Lipschitz.

B.9.3 Proof of Lemma 3

From Algorithm 3, the infeasibility of tk occurs when the upper or lower bound for tk is
reached and |h(x)| is not small enough (see line 10). From the expression of ftk(x) in
Eq. (B.18b), we can take its second derivatives with respect to tk and tl:

∂2ftk(x)

∂t2k
= − γ

αk
u(x), (B.40a)

∂2ftk(x)

∂t2l
=

γ

αl
v(x), (B.40b)

∂2ftk(x)

∂tk∂tl
= − γ

αlαk
exp

(
tk
αk

)
exp

(
tl
αl

)
. (B.40c)
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If tk hits the upper bound and |h(x)| is not small enough, we should increase tl,
because it increases ftk(x) since the function is monotonically non-decreasing in tl from
Eq. (B.40b). Then, this will cause a decrease in tk, because the function is monotonically
non-increasing in tk from Eq. (B.40a). Now, if tk hits the lower bound and |h(x)| is
not small enough, the behaviour is the opposite, and we should decrease tl, which also
decreases ftk(x) and later increases tk.

Therefore, if for a given tl we face later an infeasibility on tk, we should cut the branch
we used and go for the other direction in the search.
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Spectral Efficient and Fair User Pairing for Full-Duplex
Communication in Cellular Networks

José Mairton B. da Silva Jr., Gábor Fodor, and Carlo Fischione

Abstract

A promising new transmission mode in cellular networks is the three-node full-
duplex mode, which involves a base station with full-duplex capability and two half-
duplex user transmissions on the same frequency channel for uplink and downlink.
The three-node full-duplex mode can increase spectral efficiency, especially in the
low transmit power regime, without requiring full-duplex capability at user devices.
However, when a large set of users is scheduled in this mode, self-interference at the
base station and user-to-user interference can substantially hinder the potential gains
of full-duplex communications. This paper investigates the problem of grouping users
to pairs and assigning frequency channels to each pair in a spectral efficient and fair
manner. Specifically, the joint problem of user uplink/downlink frequency channel
pairing and power allocation is formulated as a mixed integer nonlinear problem
that is solved by a novel joint fairness assignment maximization algorithm. Realistic
system level simulations indicate that the spectral efficiency of the users having the
lowest spectral efficiency is increased by the proposed algorithm, while a high ratio of
connected users in different loads and self-interference levels is maintained.

C.1 Introduction

Traditional cellular networks operate in half-duplex (HD) transmission mode, in which a
user equipment (UE) or the base station (BS) either transmits or receives on any given
frequency channel. However, the ever increasing demand to support the transmission of
unprecedented data quantities has led the research community to investigate new wireless
transmission technologies. Recently, in-band full-duplex (FD) has been proposed as a
key enabling technology to drastically increase the spectral efficiency of conventional
wireless transmission modes. In-band FD has the potential to double the spectral effi-
ciency of traditional wireless systems operating in HD, such as time division duplex or
frequency division duplex modes [16,78]. Recent advances in antenna design, interference
cancellation algorithms, self-interference (SI) suppression techniques and prototyping of
FD transceivers have meant that, FD is becoming a realistic technology component of
advanced wireless – including cellular – systems, especially in the low transmit power
regime [17, 18].

FD transmission modes include bidirectional full-duplex and three-node full-duplex
(TNFD) modes [12]. In bidirectional full-duplex, two FD-capable nodes (either a UE or
the BS) transmit and receive on the same time-frequency resource. In contrast, TNFD
involves three nodes, but only one of them needs to have FD capability. The FD-capable
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Figure C.1: A full duplex cellular network employing TNFD with two UEs pairs. The
BS selects pairs of UE (pairing) and jointly schedules them for TNFD transmission by
allocating frequency channels in the UL and DL. As the figure illustrates, apart from SI,
TNFD experiences the new UE-to-UE interference that might limit the efficiency of FD
communications.

node transmits to its receiver node while receiving from another transmitter node on the
same frequency channel. In cellular networks, the BS is FD-capable and transmits in the
downlink (DL) and receives in the uplink (UL) from the HD UEs (Figure C.1). From
Figure C.1, it is clear that FD operation in a cellular environment experiences new types of
interference, aside from the inherently present SI.

Because of the level of UE-to-UE interference depends on the UE locations and
their transmission powers, coordination mechanisms are needed to mitigate the negative
effect of the interference on the spectral efficiency of the system [10]. A key element
of such mechanisms is UE pairing and frequency channel selection that determines
which UEs should be scheduled for simultaneous UL and DL transmissions on specific
frequency channels. As pointed out in [12], the simultaneous bidirectional communication
capabilities of the nodes in bidirectional full-duplex and TNFD networks mean that the
fairness among nodes may degrade by a factor of two compared with HD communications.
Despite that fairness is widely recognized as important and has been well investigated in
more traditional wireless communication context [91], to the best of our knowledge, max-
min fairness has not been addressed in the full-duplex literature for TNFD. Hence, it is
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crucial to design efficient and fair medium access control protocols and physical layer
procedures capable of supporting adequate pairing mechanisms that arise in full-duplex
communications.

In this paper we focus on the problem of joint frequency channel selection and transmit
power allocation assuming TNFD transmissions and a frequency selective wireless
environment. Specifically, we investigate schemes that maximize the spectral efficiency
of the user with the lowest achieved spectral efficiency. We formulate this problem as
a mixed integer nonlinear optimization, which we call the joint assignment and fairness
maximization (JAFM) problem, where the decision variables are the assignment matrices
of UL and DL, and where each element of the matrix is a binary variable indicating the
association of the user to a frequency channel. We show that the JAFM problem is a
non-deterministic polynomial-time (NP)-hard problem, implying that no optimal solution
in polynomial time can be obtained. We derive a closed-form approximate solution by
resorting to Lagrangian duality theory, and prove the optimal power allocation for the dual
problem. However, the closed-form assignment cannot be solved efficiently, because this
assignment problem is also NP-hard, but now with respect to the assignment variables.
Therefore, we propose a greedy solution to this assignment problem and evaluate the
optimal transmit powers for all UEs based on the results given by the dual solution. We
also show that the duality gap between the greedy solution and the primal is bounded and
diminishes as the number of frequency channels increases.

The remainder of the paper is organized as follows. Section C.2 discusses some relevant
and closely related works to our problem. Section C.3 presents the system model and
main parameters, followed by the problem formulation. In Section C.4, we study the
impact of the problem constraints based on the JAFM problem formulation, and show
that the SINR and power constraints create an admissible area on which UL and DL
users can share a frequency channel. In Section C.5 we analyse the proposed JAFM
problem and derive a closed-form approximate solution for the assignment and show
the optimal power allocation based on the Lagrangian dual problem. In Section C.6, we
propose a greedy approximation to the primal JAFM problem based on the dual problem
of Section C.5. Section C.7 presents numerical results and compares the performance of
the proposed solution with different assignments and power allocation, and the impact
of the users’ load and SI cancelling on the fairness of FD cellular networks. The results
show that our proposed solution outperforms existing methods from the literature, such
as random assignment without power control, and guarantees connection to more users,
and maintains a higher level of fairness. Moreover, we show that our joint assignment
and power allocation solution should not be split into separated procedures, because the
performance achieved by such splitting schemes is similar to a random assignment with
equal power allocation.

C.2 Related Works

The impact of FD radios on the design of cellular systems has been analysed only
relatively recently, in [10, 28, 78]. These works provide valuable insights into the design
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and performance of FD cellular systems in terms of rate and energy performance. However,
the problem of fair and efficient joint power and channel allocation has not been addressed.

Transmit power optimization for FD wireless networks is the topic of [119] and [120].
A dynamic power allocation scheme that maximizes the sum-rate of FD bidirectional
transmissions is developed in [119], while an optimal power control scheme for FD decode-
and-forward relaying systems is proposed in [120]. However, the results of these works are
not directly applicable to FD networks operating in TNFD mode, since the joint channel
and power allocation problem under fairness constraints has not been considered therein.

Most of the recent works consider the joint subcarrier and power allocation prob-
lem [79] and the joint duplex mode selection, channel allocation, and power control
problem [32] in FD networks. The cellular network model in [79] is applicable to FD
mobile nodes rather than to networks operating in TNFD mode. The work reported in [32]
considers the case of TNFD transmission mode in a cognitive femto-cell context with
bidirectional transmissions from UEs and develops sum-rate optimal resource allocation
and power control algorithms. Our objective differs from that of [32] in that we aim at
maximizing the transmission rate of the low rate users and thereby taking into account
the fairness of the FD system. We do not consider the proposed algorithm for rate
maximization in our performance evaluation, because in [32] heterogeneous networks
with bidirectional transmission from UEs were considered, which substantially changes
the problem.

The aspects of fairness and quality of service (QoS) are addressed by [12, 121],
and [80]. Specifically, a QoS-driven power allocation approach for bidirectional FD links
is proposed by [121] and a heterogeneous statistical QoS provisioning framework is
developed in [80]. Both of those papers focus on the bidirectional FD link case without
considering the implications of TNFD transmissions. In contrast, [12] discusses both the
bidirectional and the TNFD modes and emphasizes the importance of fairness. However,
[12] does not provide a power control and channel allocation scheme that is developed with
such objectives in mind.

Several deliverables of the DUPLO project are related to our work [9]. These
deliverables provide methodology and numerical results on the performance of cellular and
ad hoc networks employing FD radios combined with power control, channel allocation
and other physical and medium access control layer algorithms. However, a fairness-
optimizing joint channel and power allocation has not been investigated in that project.

In the light of this survey of related literature, we summarize our main contributions as
follows:

• The problem formulation of JAFM and our proposed solution is new. This problem
is particularly important in practical systems employing TNFD mode, where its need
was first pointed out in [12].

• We propose a necessary condition for a pair of UL and DL users to share a frequency
channel based on the SI cancelling level of the system, which helps us to define the
admissible pairs for the assignment problem.

• Due to the intractability of JAFM, we propose a greedy joint assignment and fairness
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maximization algorithm (JAFMA) that is based on Lagrangian duality theory, where
we show that the duality gap between JAFMA and JAFM is bounded and diminishes
as the number of channels in the system increases.

• We evaluate JAFMA by a realistic system simulator and argue that the obtained
numerical results and the insights help design FD cellular networks.

C.3 System Model and Problem Formulation

C.3.1 System Model

We consider a single-cell cellular system in which only the BS is FD capable, whereas
the UEs operate in time division duplex mode, as illustrated in Figure C.1. In the example
scenario of Figure C.1, the BS is subject to SI and the UEs in the UL (UE1 and UE3)
cause UE-to-UE interference to UE2 and UE4 in DL. Table C.4 shows the main sets,
constants and variables used throughout the paper. We assume that within a large number
of connected users in the cellular network, a smaller subset of these users are selected by an
appropriate scheduler for data transmission in the UL and reception in the DL. The number
of UEs in the UL and DL is denoted by I and J , respectively. Their sum is constrained by
the total number of frequency channels in the system F , i.e., I ≤ F and J ≤ F . The set
of UL and DL users is denoted by I = {1, . . . , I} and J = {1, . . . , J}, respectively, and
the set of resources by F = {1, . . . , F}. In this paper we assume that at most one channel
is used by a UE.

Our system model includes a frequency selective environment, such that the composite
channel gains depend on the frequency. We assume that the path gains consist of small- and
large-scale fading. Specifically, let Gibf denote the path gain between transmitter i in the
UL and the BS on frequency channel f , whereas Gbjf denotes the path gain between BS
and the receiving UE j in the DL on frequency channel f , and Gijf denotes the interfering
path gain between transmitter i in the UL and the receiver j in the DL on frequency channel
f . The vector of transmit powers in the UL is denoted by pu = [Pu1 . . . P

u
I ], whereas the

vector of the DL transmit powers on the DL frequency channels is denoted by pd =
[P d1 . . . P

d
J ].

To take into account the residual value of the SI power that leaks to the receiver,
we define β as the SI cancellation coefficient, such that the SI power at the receiver
of the BS is βP dj when the transmit power is P dj . For example, at a transmit power of
20 dBm (100 mW), and assuming a noise floor around −90 dBm, the transmit SI has to
be cancelled by β =−110 dB to reduce it to the same level as the noise floor [16, 18].

As illustrated in Figure C.1, the UE-to-UE interference depends on the geometry of the
co-scheduled UL and DL users. For example, assuming a greater path loss between UE1

and UE4 than between UE1 and UE2, it may be advantageous to pair UE1 and UE4 for
simultaneous UL/DL transmission on the same frequency channel f . Therefore, the UE
pairing along with the channel allocation are key functions of the system. Accordingly, we
define two assignment matrices, Xu ∈ {0, 1}I×F for the UL and Xd ∈ {0, 1}J×F for the
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Table C.4: Definition of sets, constants and variables

Sets
F Set of frequency channels
I Set of UL users
J Set of DL users
Constants
β SI cancelling term
σ2 Thermal noise power on frequency channel f
γuth Minimum SINR required for UL users
γdth Minimum SINR required for DL users
Gbjf Path gain between BS and DL user j on frequency f
Gibf Path gain between UL user i and BS on frequency f
Pumax UL maximum transmit power
P dmax DL maximum transmit power
Variables
Pui Transmit power of UL user i
P dj Transmit power of DL user j
xuif Assignment of UL user i on frequency f
xdjf Assignment of DL user j on frequency f

DL, such that

xuif =

{
1, if UEi transmits in frequency f
0, otherwise,

and

xdjf =

{
1, if UEj receives in frequency f
0, otherwise.

The signal-to-interference-plus-noise ratio (SINR) at the BS due to transmitting user i
in the UL on frequency channel f is

γuif =
xuifP

u
i Gibf

σ2 +
∑J
j=1 x

d
jfβP

d
j

, (C.1)

where xuif accounts for usage of frequency channel f by UL user i, and the sum in the
denominator for the possible SI created by the simultaneous transmission by the BS on
frequency channel f . Similarly, the SINR at the receiving user j due to the BS on frequency
channel f is given by

γdjf =
xdifP

d
j Gbjf

σ2 +
∑I
i=1 x

u
ifP

u
i Gijf

, (C.2)

where the xdjf accounts for usage of frequency channel f by the BS and the sum in the
denominator for the intra-cell interference between UEi and UEj on frequency channel f .
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Thus, the spectral efficiency for each user is given by the Shannon Eq. (in bits/s/Hz)
for the UL and DL as

Cui =
∑F

f=1
Cuif =

∑F

f=1
log2(1 + γuif ), (C.3a)

Cdj =
∑F

f=1
Cdjf =

∑F

f=1
log2(1 + γdjf ), (C.3b)

where the sum over the frequency dimension is because at most one SINR is non-zero
along the frequency dimension.

C.3.2 Problem Formulation

Our goal is to jointly consider the problem of frequency assignment to UEs in the UL and
DL (pairing), while maximizing the minimum spectral efficiency of all users (max-min
spectral efficiency), thus increasing the fairness of the system. Specifically, the problem is
formulated as a joint assignment and fairness maximization (JAFM) problem as follows

maximize
Xu,Xd,pu,pd

min{Cui , Cdj }
∀i,j

(C.4a)

subject to
F∑
f=1

γuif ≥ γuth, ∀i, (C.4b)

F∑
f=1

γdjf ≥ γdth, ∀j, (C.4c)

Pui ≤ Pumax, ∀i, (C.4d)

P dj ≤ P dmax, ∀j, (C.4e)
I∑
i=1

xuif ≤ 1, ∀f, (C.4f)

F∑
f=1

xuif ≤ 1, ∀i, (C.4g)

J∑
j=1

xdjf ≤ 1, ∀f, (C.4h)

F∑
f=1

xdjf ≤ 1, ∀j, (C.4i)

xuif , x
d
jf ∈ {0, 1}, ∀i, j, f. (C.4j)

The optimization variables of JAFM are pu, pd, Xu Xd. Constraints (C.4b) and (C.4c)
ensure a minimum SINR to be achieved in the DL and UL, respectively. Constraints (C.4d)
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and (C.4e) limit the transmitting power and constraints (C.4f)-(C.4i) assure that only one
UE in the UL and DL can use frequency channel f and that any given frequency channel is
used by at most one UE in the UL and DL. Let us further denote by X the set of matrices
Xu and Xd that satisfy the constraints (C.4f)-(C.4j) and by P the set of vectors pu and pd

that satisfy the constraints (C.4d)-(C.4e).
JAFM is a mixed integer nonlinear programming (MINLP) problem that belongs to

the category of multi-level nonlinear bottleneck assignments, wherein the linear integer
sub-problem is NP-hard [103]. Therefore, to analyse JAFM, we develop an approximate
approach based on Lagrangian duality in Section C.5. Afterwards, by using the insights
given by the dual problem, we propose a greedy approximation to problem (C.4)
in Section C.6. Moreover, for simplicity we rename the primal problem (C.4) as P-JAFM.

Before analysing problem (C.4), we establish some preliminary results that will be
instrumental in establishing an approximate solution to problem (C.4) in the subsequent
sections.

C.4 Preliminary Results

In this section, we characterize the maximum number of users sharing the frequency
channel, and the region of the transmit power for which users can share frequency channels.
We use these two results in the following section to derive an approximate solution to
problem (C.4).

TNFD implies that an UL and a DL transmission share a frequency channel f . The
following lemma shows that in a TNFD system, complying with constraints (C.4f)-(C.4i),
the number of users sharing a frequency channel f is bounded.

Lemma 5. Consider optimization Problem (C.4). Then, for every frequency channel f and
feasible assignment matrices Xu and Xd, the following inequality holds∑I

i=1
xuif +

∑J

j=1
xdjf ≤ 2. (C.5)

Proof. Since I, J ≤ F , we have the inequality I + J ≤ 2F . Moreover, if we sum
constraints (C.4f) and (C.4h), we notice that

∑I
i=1 x

u
if +

∑J
j=1 x

d
jf is at most 2. �

Lemma 5 establishes that for feasible assignment matrices Xu and Xd, there can be
at most one pair of UL-DL users sharing a frequency channel f . We will use this result in
the following subsection to derive an approximate closed-form solution to the assignment
matrices of problem (C.4).

Now we turn our attention to characterize the admissible area of transmit powers for
which a pair of UL and DL users can share a frequency channel f . In problem C.4,
constraints (C.4b)-(C.4e) require a minimum SINR level for all users, implying that we
need to identify the set of corresponding transmit powers within the constraint setP . Based
on the SINR and power constraints of Problem C.4, we establish Lemma 6 to determine
whether a pair is admissible or not. We refer to the set of such powers as admissible areas
(Figure C.2).
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Figure C.2: The 3 admissible areas for a user i in the UL and a user j in the DL to share
a frequency channel f that fulfil constraints (C.4b)-(C.4e).

Figure C.2 shows three possible areas in terms of (P dj , P
u
i ) where both the UL and DL

users fulfil the minimum SINR requirement. In the figure, the lines lu and ld correspond
to constraints (C.4b) and (C.4c) whereas the rectangular area drawn by the dashed line
represents the constraint setP . The points Pumin and P dmin fulfil constraints (C.4b) and (C.4c)
with equality and HD transmission from both users, and can be calculated as

Pumin =
γuthσ

2

Gibf
, P dmin =

γdthσ
2

Gbjf
. (C.6)

The point K is the intersection point between the lines lu and ld, whereas points
L,M,N,O and Q help to define the admissible (dashed) area.

Figure C.2a shows the first area, where γuiMf > γuth and γdjMf ≥ γdth, with corner points
L, M and N . At corner point L, the UL user is at the maximum power Pumax while the
DL user fulfils constraint (C.4c) with equality, whose coordinates are (P djLf , P

u
max) where

P djLf is given by

P djLf =
γdth(σ2 + PumaxGiLjLf )

GbjLf
. (C.7)

Similarly, at corner point N the DL user is at maximum power P dmax while the UL user
fulfils constraint (C.4b) with equality, whose coordinates are (P dmax, PiNf )u where PuiNf is
given by

PuiNf =
γuth(σ2 + P dmaxβ)

GiNbf
. (C.8)

The second area is shown in Figure C.2b, where γuiMf > γuth and γdjMf < γdth, with
corner points O and N . The corner point N is the same as in the first area, but at corner
point O, the DL user is at maximum power P dmax and also fulfils constraint (C.4c) with
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equality. Thus, the coordinates of point O are (P dmax, P
u
iOf ), where PuiOf is given by

PuiOf =
P dmaxGbjOf − γdthσ2

GiOjOfγdth
. (C.9)

Finally, Figure C.2c shows the third area, where γuiMf ≤ γuth and γdjMf ≥ γdth, with
corner points L and Q. The corner point L is the same as in the first area, but at corner
pointQ, the UL user is at maximum power Pumax and fulfils constraint (C.4b) with equality.
Similarly to corner point O, the coordinates of point Q are (P djQf , P

u
max), where P djQf is

given by

P djQf =
PumaxGiQbf − γuthσ2

βγuth
. (C.10)

From constraints (C.4b)-(C.4e), we can derive the following Lemma that will help us
to determine if an admissible area exists for a given pair of UL and DL users. We say that
a pair of users is an admissible pair if an associated admissible area exists.

Lemma 6. Consider optimization Problem (C.4). A pair of an UL user i and a DL user
j sharing frequency channel f is an admissible pair if the residual SI term is such that
β ≤ βmax

ijf , where βmax
ijf is

βmax
ijf =



Gbjf (PumaxGibf − γuthσ2)

γuthγ
d
th(PumaxGijf + σ2)

, if γdjMf > γdth,

P dmaxGbjfGibf − σ2γdth(Gijfγ
u
th +Gibf )

γuthγ
d
thP

d
maxGijf

,

if γdjMf ≤ γdth.

(C.11)

Proof. See Appendix C.9.3. �

Based on the previous result, a pair of UL and DL users is admissible if that pair fulfils
Lemma 6. As we will see in the next section, once this is guaranteed, the optimal transmit
powers lie in the admissible area to which the pair belongs.

C.5 Solution via Lagrange Dual Problem

In this section we analyse JAFM through duality theory, where we first derive an equivalent
version of problem (C.4) in Section C.5.1, which will help us to mathematically treat
the objective function (C.4a) as a linear function. In Section C.5.2 we form the partial
Lagrangian function and derive a closed-form solution for the assignments Xu,Xd,
and in Section C.5.3 we show that the optimal power allocation, given a pair of users
reusing frequency channel f , is within the admissible areas shown in Section C.4. Finally,
Section C.5.4 summarizes the insights given by the solution of the dual problem, which are
important to develop the greedy approximation of problem (C.4) on Section C.6, named
JAFMA.
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C.5.1 Problem Transformation

As a first step of solving problem (C.4), we consider the standard equivalent hypo-
graph [110, Sec. 3.1.7] form of problem (C.4), where one new variable and two more
constraints are included:

maximize
Xu,Xd,pu,pd,t

t (C.12a)

subject to Cui ≥ t,∀i, (C.12b)

Cdj ≥ t,∀j (C.12c)

Constraints (C.4b)-(C.4j) (C.12d)

where t > 0 is an additional variable with respect to (C.4). Notice that problem (C.12),
similarly to problem (C.4a), is a MINLP. It is possible to relax its integer constraints, but
the resulting problem is not convex as established by the following result.

Result 1. The continuous relaxation of problem (C.12), given by letting Xu ∈ [0, 1]I×F

and Xd ∈ [0, 1]J×F , is not convex.

Proof. See Appendix C.9.1. �

It is important to know that the relaxed problem is not convex, because it shows that
relaxing the integer constraint does not lead to a problem that can be solved by conventional
solvers and methods, which motivates us to develop an alternative solution approach.

C.5.2 Solution for Assignment Matrices Xu,Xd

We can now form the partial Lagrangian function by considering constraints (C.12b)-
(C.12d) of problem (C.12) and ignoring the integer constraints (C.4f)-(C.4j). To this end,
we introduce Lagrange multipliers λu, λd, δu, δd , where the superscript u denotes
the dimension of I and d of J , respectively. The partial Lagrangian is a function of the
Lagrange multipliers and the optimization variables Xu,Xd,pu,pd, t as follows:

L(λu,d, δu,d,Xu,d,pu,d, t) , t

(
I∑

i=1

λu
i +

J∑
j=1

λd
j − 1

)
+

I∑
i=1

(
δui

(
γu

th −
F∑

f=1

γu
if

)
− λu

i C
u
i

)

+

J∑
j=1

(
δdj

(
γd

th −
F∑

f=1

γd
jf

)
− λd

jC
d
j

)
, (C.13)

where by a slight abuse of notation we introduce λu,d to denote the two vectors λu and
λd, and we assume Xu,Xd ∈ X , and pu,pd ∈ P .

Let g(λu,d, δu,d) denote the dual function obtained by minimizing the partial La-
grangian (C.13) with respect to the Lagrange multipliers and variable t. Thus, the dual
function is

g(λu,d, δu,d) = inf
t∈R+ Xu,d∈X pu,d∈P

L(λu,d, δu,d,Xu,d,pu,d, t) (C.14a)
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g(λu,d, δu,d) =


inf

Xu,d∈X pu,d∈P

[∑
i

qui (X
u,d,pu,d) +

∑
j

qdj (X
u,d,pu,d)

]
, if

∑
i λ

u
i +

∑
j λ

d
j = 1

−∞, otherwise, (C.14b)

where from equality (C.14b) follows that the linear function t
(∑I

i=1 λ
u
i +

∑J
j=1 λ

d
j − 1

)
is lower bounded when it is identically zero, and qui (Xu,d,pu,d) and qdj (Xu,d,pu,d) are

qui (Xu,d,pu,d) , δui
(
γuth −

∑F

f=1
γuif

)
− λui Cui , (C.15a)

qdj (Xu,d,pu,d) , δdj
(
γdth −

∑F

f=1
γdjf

)
− λdjCdj . (C.15b)

Notice that we can find the infimum of qui (Xu,d,pu,d) as

inf
Xu,d∈X
pu,d∈P

qui (Xu,d,pu,d) = δui

(
γuth − γ

u,max
if(i)

)
− λui log2

(
1 + γu,max

if(i)

)
, (C.16)

where f (i) = arg max
f

γu,max
if and γu,max

if = maxpu,d∈P γ
u
if . We define γu,max

if as

the maximum SINR that UL user i can achieve on frequency resource f , where the
maximization is done over the power variables pu,d ∈ P . Note that γu,max

if is a function
of the given assignment matrices Xu,d, and it should be evaluated for the DL user
that is receiving in frequency resource f . Due to constraints (C.4f)-(C.4j) on the partial
Lagrangian and using Lemma 5, the summations in (C.15) include a single frequency
channel that maximizes the γu,max

if in (C.16). Then, the chosen f (i) is unique, because
a UL user cannot be connected to more than one frequency channel. Based on this, we
propose a solution for xuif and xdjf given by

xu?if(i) =

1, if f (i) = arg max
f

γu,max
if

0, otherwise,
(C.17a)

xd?jf(j) =

1, if f (j) = arg max
f

γd,max
jf

0, otherwise.
(C.17b)

Remark 2. Recall we need to find the dual function (C.14b) of problem (C.4), which
includes the infimum of the partial Lagrangian function (C.14a). This requires finding the
infimum of qui (Xu,d,pu,d) and qdj (Xu,d,pu,d) as in (C.15), and (C.16). These infima are
obtained at xu?if and xd?jf , given by Eqs (C.17), because Eqs. (C.17) assign to UL and DL
users frequency channels f (i)and f (j) that maximizes γu,max

if and γd,max
jf , thus minimizing

qui (Xu,d,pu,d) and qdj (Xu,d,pu,d).
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Note that from Eqs. (C.17) and constraints (C.4f)-(C.4h), we can uniquely associate
a user i in the UL with a frequency channel f and do the same with a user j in the DL.
However, the solutions are still intertwined through the SINRs γuif and γdjf . This implies
that if an UL user changes its allocation, this modification will impact the DL users, whose
modifications are then reflected in the SINRs γuif and γdjf , which makes the problem of
finding the assignment matrix complex. Due to the high complexity of this solution, we
use the results from Section C.5.3 and Section C.5.4 to reformulate Eqs. (C.17) as an NP-
Hard problem in Section C.6, where we propose a greedy approximation solution whose
solution is the assignment matrices searched for in Eqs. (C.17).

C.5.3 Solution for pu,pd

Since the SINR from the UL is not separable from that of the DL, they must be analyzed
jointly. We therefore need to find the powers that jointly minimize expression (C.14b)
g(λu,d, δu,d), thus we can formulate the subproblem of power setting as

minimize
pu,pd

−
I∑
i=1

(
δui γ

u
if(i) + λui log2(1 + γuif(i))

)
−

J∑
j=1

(
δdj γ

d
jf(j) + λdj log2(1 + γdjf(j))

)
(C.18a)

subject to pu,pd ∈ P, (C.18b)

where it is assumed that all the frequencies f(i) and f(j) have been assigned without the
terms related to γuth and γdth, since these terms are constant and do not affect the problem
in (C.18).

The following lemma reveals an important property of the optimal transmit powers that
will be useful in finding the solutions to (C.18).

Lemma 7. Consider optimization Problem C.18. The optimal transmit power pair
(Pu?i , P d?j ) of a user pair sharing the same frequency channel has at least one component
equal to either Pumax or P dmax.

Proof. Suppose that there is a user i′ or j′ that do not share the same frequency channel.
Then the interference term is zero and the SINR is equal to the signal-to-noise ratio (SNR)
and the maximum power minimizes the objective sum of problem (C.18) for these users.
Alternatively, suppose user i in the UL shares the frequency channel f with user j in the
DL.

User i is only associated with user j and vice-versa, since these users use the same
frequency channel, i.e., f(i) = f(j). Therefore, the optimization for these two users can
be taken independently of all the other users.
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The objective function can be redefined as

O(Pui , P
d
j ) ,

δui P
u
i Gibf

σ2 + P dj β
+ λui log2

(
1 +

Pui Gibf
σ2 + P dj β

)
+

δdjP
d
j Gbjf

σ2 + Pui Gijf
+

λdj log2

(
1 +

P dj Gbjf

σ2 + Pui Gijf

)
(C.19)

Thus, we have that for α ∈ R, α > 1 and pu,pd ∈ P:

O(αPui , αP
d
j ) =

δui P
u
i Gibf

σ2

α + P dj β
+ λui log2

(
1 +

Pui Gibf
σ2

α + P dj β

)
+

δdjP
d
j Gbjf

σ2

α + Pui Gijf

+ λdj log2

(
1 +

P dj Gbjf
σ2

α + Pui Gijf

)
Note that O(αPui , αP

d
j ) > O(Pui , P

d
j ). Therefore, similarly to [101], the optimal power

pair (Pu?i , P d?j ) is bounded by the maximum power constraints (Pumax, P
d
max), which

concludes the proof. �

From this lemma it follows that we must look for solutions into the two functions of the
form O(Pui , P

d
max) and O(Pumax, P

d
j ). Next, the following result establishes that the points

that maximize O(Pui , P
d
j ) are in the corner points of the constraint set P .

Lemma 8. The function O(Pui , P
d
max) given in Eq. (C.19) is convex for positive Pui and is

maximized at the corner points of the constraint set P .

Proof. See Appendix C.9.2. �

Lemma 8 implies that to maximize O(Pui , P
d
j ) we must look in the corner points of

the constraint set P . Moreover, as shown in Section C.4, we should look in a subset of P
in order to fulfil the SINR constraints (C.4b)-(C.4c), the admissible area of pair i and j.
Based on the optimal transmit powers and the closed-form solution for the assignment, we
will now analyse the Lagrange dual problem and use its implications to develop the greedy
approximation of P-JAFM on Section C.6.

C.5.4 Insights from the Dual

Once the transmit powers are determined looking for the corner points in the admissible
area of the UL-DL pairs as shown in Section C.4, we can formulate the Lagrange dual
problem to problem (C.12) as

maximize
λu,d, δu,d

g(λu,d, δu,d) (C.20a)

subject to
∑I

i=1
λui +

∑J

j=1
λdj = 1, (C.20b)

λui , λ
d
j , δ

u
i , δ

d
j ≥ 0,∀i, j, (C.20c)
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where recall that g(λu,d, δu,d) is the solution of problem (C.14b). Notice that we can
interpret the dual problem above as a weighted sum spectral efficiency maximization of
both UL and DL users, where the weights are chosen based on a convex combination of
both users’ spectral efficiencies.

For every pair, it is necessary to decide which corner point within the admissible area
will be used. Since the values of λu,d are tied through Eq. (C.17) and the SINRs, we need
to check all possible combinations of the admissible areas of different pairs. However, by
analyzing the structure of the dual function, we note that δu,d are lower bounded by 0 and
the terms δui

(
γuth − γuif

)
and δdj

(
γdth − γdjf

)
are negative for a pair (i, j) associated with

frequency f .
Since the dual maximizes g(λu,d, δu,d) and the terms above are negative, either the

SINRs are equal to the minimum (γuth or γdth), or δu,d is 0. Thus, the terms with δu,d do
not impact g(λu,d, δu,d). The dual maximizes the negative convex combination of the
spectral efficiencies of UL and DL, which results in a value close to 1 for the λu,d related
to the user with minimum spectral efficiency in the system, implying that the optimal value
of the Lagrange dual problem is close to the negative of the minimum spectral efficiency
in the system. Moreover, recall that the closed-form solutions for Xu,d on (C.17) are still
tied through the SINRs γuif and γdjf , meaning that the solution for the assignment is still
complex.

C.6 Approximate Solution via Greedy Method

Given the results on the closed-form solution to the assignment problem (C.17) the optimal
power allocation problem (C.18) from Section C.5, we can solve the dual problem by
checking exhaustively which pair of UL and DL users jointly solve Eq. (C.17), where
the power allocation for each pair is given by the solution of the admissible areas (see
Section C.5.3). Furthermore, Section C.5.4 showed that the dual problem (C.20) maximizes
the user with minimum spectral efficiency in the system. Therefore, we can solve the dual
problem by selecting the pair of UL and DL users that maximize the spectral efficiency of
the user with minimum spectral efficiency of the pair.

However, such exhaustive solution demands an extremely high number of iterations
that depend on the number of frequency channels, which in practical cellular systems is
essentially impossible due to the high number of frequency channels. Thus, in order to
use the results from Section C.5 and solve the dual problem (C.20) in an efficient manner,
we reformulate the dual problem (C.20) on Section C.6.1 to solve the assignment and
propose a greedy approximation on Section C.6.2 that aims at maximizing the sum of the
minimum spectral efficiency of the UL-DL pairs, named JAFMA. Finally, in Section C.6.3
we discuss the efficiency and complexity of JAFMA when compared to the P-JAFM (C.4)
and dual (C.20) problems.
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C.6.1 The Dual as a 3-Dimensional Assignment Problem

As seen in Lemma 6, the SI cancellation term β must fulfil β ≤ βmax
ijf for every assigned

pair of UL user i and DL user j on frequency channel f . Thus, an algorithm that aims to
solve the JAFM problem needs to identify the UL-DL user candidates for every frequency
f . Notice that due to the minimum SINR constraints (C.4b) and (C.4c) in JAFM, a given
UL user i or DL user j may not have a pair with which it would form an admissible pair.
On the other hand, once a pair fulfils Lemma 6, there is an admissible area where both
users fulfil constraints (C.4b) and (C.4c).

From the reasoning in Section C.5.4 and using Lemma 8, it follows that we can
select the corner point that maximizes the minimum spectral efficiency of the two users
in the pair, and thereby maximizes the sum of the minimum spectral efficiencies over all
pairs. Note that the power allocation problem (C.18) formulation comes from minimizing
qui (Xu,d,pu,d) + qdj (Xu,d,pu,d) for the admissible pair (i, j). Thus, we can use the
observations on maximizing the sum of the minimum spectral efficiency to reformulate the
solution for the assignment (C.17) as an axial 3-dimensional assignment problem (3-DAP)
given by:

maximize
X

I∑
i=1

J∑
j=1

F∑
f=1

sijfxijf (C.21a)

subject to
J∑
j=1

F∑
f=1

xijf = 1, ∀i, (C.21b)

I∑
i=1

F∑
f=1

xijf = 1, ∀j, (C.21c)

I∑
i=1

J∑
j=1

xijf = 1, ∀f, (C.21d)

xijf ∈ {0, 1}, ∀i, j, f. (C.21e)

The matrix S=[sijf ]∈RI×J×F represents the minimum spectral efficiency of the pair of
users i and j on frequency channel f , which is explicitly defined as sijf =min{Cuif , Cdjf}.
We define X=[xijf ]∈{0, 1}I×J×F as the binary assignment matrix. Recall that Cuif and
Cdjf depend on the powers, thus we select the power vector from the corner point (P dj , P

u
i )

that maximizes sijf . The selection of the corner point that maximizes sijf is according to
the solution of problem (C.18), which uses Lemma 8 to assure that the optimal solution is
indeed one of the corner points.

Remark 3. From Remark 2 it follows that we can assign UL and DL users frequency
channels f(i) and f(j) that maximize γu,max

if and γd,max
jf from the minimization of

qui (Xu,d,pu,d) and qdj (Xu,d,pu,d), and this is precisely the formulation of the axial
3-DAP (C.21). Therefore, the solutions to problem (C.21) are the assignment matrices
searched for in equation (C.17) and together with the optimal power allocation, solves
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the dual problem (C.20). For clarity, we rename the axial 3-DAP (C.21) problem as the
D-JAFM problem to indicate its connection with the dual problem.

The D-JAFM problem has (n!)2 possible assignments and is a well known NP-hard
problem [103, Section 8.2]. Therefore, by using the insights in the preceding section, we
develop a greedy algorithm to solve D-JAFM and approximate the P-JAFM problem.

C.6.2 A Greedy Approximation Solution to the JAFM Problem

Differently from other works that reduce the assignment problem (C.21) to two-dimensions [32],
we aim at jointly assigning the pairs to frequencies. We propose a greedy algorithm with
reduced complexity to solve the D-JAFM problem, where using the power allocation
from Section C.5.3 we approximate P-JAFM problem. Algorithm 7 shows the steps of
the proposed greedy solution, called joint fairness assignment maximization algorithm
(JAFMA). JAFMA evaluates βmax

ijf for every user and frequency (see line 5). If the
assumptions of Lemma 6 are fulfilled for the pair (i, j) on frequency channel f , JAFMA
evaluates the powers that maximize the minimum spectral efficiency sijf based on the
admissible area for the pair (see Figure C.2 and line 7 of Algorithm 7).

Once we have the sijf for all the admissible pairs, JAFMA sorts the matrix S in
descending order of the minimum spectral efficiency of users in the pair (see line 14).
If the maximum value is not unique, JAFMA selects the pairs that attain this maximum
and within these pairs, JAFMA selects the pair with maximum sum of spectral efficiency
(see line 17). If the maximum is unique, select the pair and frequency that achieves that
maximum (see line 19).

If there is a pair that has not been assigned to a frequency channel, JAFMA checks
which user (either UL or DL) has higher spectral efficiency and assigns the frequency
channel to it (see lines 22-23). As for the non-selected user, JAFMA accounts it for the
disconnected users statistics (see line 24), which will help us to later define the ratio of
connected users. At the end, JAFMA removes the assigned users and frequency channels
from the matrix S and continues the loop over all users until all users have been assigned
to a frequency channel (see lines 29-30).

When I + J < 2F , i.e., when there are more resources than pairs, JAFMA selects
the pair with minimum spectral efficiency and reassigns the newly available resources to
the users in the selected pair starting from the user with minimum spectral efficiency (see
line 32). The users will select the frequency channel that gives the highest path gain within
the available resources (see line 35 and 38). This loop will continue until all the initially
available resources have been used. At the end, JAFMA selects the pairs that maximize the
minimum spectral efficiency within each pair, which means that JAFMA maximizes the
sum of the pairwise minimum spectral efficiencies of the system.

With JAFMA in hand, we can compare its performance with existing algorithms
to assign and to allocate power that current system designers use. For the frequency
assignment, the simplest solution is a random allocation of frequency channel to UL and
DL users [122]. For the power allocation, the common solution is equal power allocation
(EPA) with maximum power transmission for UL users and for the BS [100, 123]. In
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Algorithm 7 Joint Fairness Assignment Maximization Algorithm (JAFMA)

1: Input: Gibf , Gbjf , Gijf , β, P
u
max, P

d
max

2: for i = 1 to I do
3: for j = 1 to J do
4: for f = 1 to F do
5: Evaluate βmax

ijf according to Eq. (C.11)
6: if β ≤ βmax

ijf (see Lemma 6) then
7: Evaluate the corner point (P d

j , P
u
i ) that maximizes sijf = min{Cu

if , C
d
jf} (see Section C.4 )

8: end if
9: end for

10: end for
11: end for
12: Ia = Ja = Fa = ∅ ← Sets of assigned users and resources are initially empty
13: while | Ia |6= I and | Ja |6= J do
14: smax = max sijf , ∀i, j, f ← Sort in descending order sijf
15: if smax is not unique then
16: Smax ← Set of users with minimum spectral efficiency of the pair equals to smax
17: (i?, j?, f?) = argmaxSmax

Cu
if + Cd

jf ← Select the pair and frequency with maximum sum of the
spectral efficiency within the set of users Smax

18: else
19: (i?, j?, f?) = argmax smax ← Select the pair and frequency with maximum minimum spectral

efficiency
20: end if
21: if smax = 0← If this pair is not admissible then
22: Assign the frequency channel to the user with maximum spectral efficiency using maximum power

(either Pu
max or P d

max)
23: Assign Pu

max or P d
max for the chosen user

24: Assign 1 in the assignment matrix (either xui?f? or xdj?f? ) to the selected user and 0 to the non-selected

25: else
26: xui?f? = 1 and xdj?f? = 1

27: Evaluate (P d
j? , P

u
i? ) using the admissible areas and the SINRs and spectral efficiencies using

Eqs. (C.1)-(C.3)
28: end if
29: Ia = Ia ∪ {i?}, Ja = Ja ∪ {j?}, Fa = Fa ∪ {f?} ← Update the set of assigned resources
30: Remove the already assigned users and frequency (i?, j?, f?) from sijf
31: end while
32: while | Fa |6= F do
33: (i?, j?, f?) = argminIa,Ja,Fa

{Cu
if , C

d
jf} ← Get the users and frequency with minimum spectral

efficiency within the already assigned
34: Fav = (F \ Fa) ∪ {f?} ← New set of available resources
35: Select the frequency channel f† within Fav that gives the highest desired path gain for the user with

minimum spectral efficiency selected (Gibf if UL or Gbjf if DL)
36: Fa = Fa ∪ {f†} ← Update the set of assigned resources
37: Fav = (Fav \ {f†})← Update the set of available resources
38: Select the frequency channel f̂ within Fav that gives the highest desired path gain now for the other user

that was reusing frequency f?

39: Fa = Fa ∪ {f̂} ← Update the set of assigned resources
40: end while
41: Output: Xu,Xd,pu,pd
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Section C.7 we will compare the performance of JAFMA with different variations of a
random assignment and EPA.

C.6.3 Discussion

The complexity of JAFMA relies on sorting in descending order the values of minimum
spectral efficiency of every pair on the frequency channel, which can be interpreted as
sorting a matrix with dimensions I × J × F (see the matrix element sijf on line 7). With
the heap sorting algorithm, the worst-case solution has complexity of O(n log n) [124],
where n is the size of the vector. Since the matrix to be sorted has size I × J × F ,
we represent it as a vector of size IJF , and assuming that I = J = F , the worst-
case complexity of the greedy solution is O(F 3 logF ). If compared with the exhaustive
solution of D-JAFM that has worst-case complexity of O(F !2) and considering F = 10,
JAFMA requires O(103) while D-JAFM requires O(1013). Although problem (C.21) has
been studied before, to the best of our knowledge, our proposed greedy solution has never
been proposed. Other heuristics were developed for this problem [108, Section 10.2.5],
but they rely on metaheuristics, graph theory, and on some simplifications of the cost sijf .
These other solutions cannot be used in our case, because they either require unacceptable
simplifications or are computationally too complex.

Remark 4. To analyse the performance of the proposed JAFMA, let us assume that X?

and XG are the optimal solution of D-JAFM and the one given by JAFMA, respectively,
and let the objective function (C.21a) be c(X). In Hausmann et al. [114, Corollary 4], it
is proved in a more general context of problem (C.21) (intersection of matroids) that any
greedy solution, without specifying any particular solution, yields a performance guarantee
of 1/3, i.e., c(XG)/c(X?) ≥ 1/3. Therefore, our greedy solution is an approximated
solution of D-JAFM. Moreover, as we will see in the numerical results on Section C.7, the
proposed JAFMA has a tighter performance than the guaranteed for any greedy algorithm.

Note that problem (C.21) aims at solving the closed-form solution of the assign-
ment (C.17) taking into account the optimal power allocation (see Section C.5.3) and
insights from the dual problem (see Section C.5.4), which shows that D-JAFM has its
basis on the dual problem (C.20). Therefore, it is necessary to take into account the
duality gap between D-JAFM and P-JAFM problems. Recall that the objective function
of P-JAFM (C.4) is the minimum spectral efficiency of UL and DL users.

Based on the works of Weeraddana et al. [125], we show in Proposition 1 that the
relative duality gap diminishes when the total number of resources in the system F
increases. The concept of relative duality gap is extended to the relative optimality gap,
where d? can also be the solution given by JAFMA.

Proposition 1. Consider p? as the optimal solution of problem P-JAFM in (C.4), and d?

as the optimal solution of problem D-JAFM in (C.21), and that the number of UL users, I ,
and DL users, J , do not increase with the frequency channels. The duality gap (p?−d?)/p?
diminishes as the number of frequency channels increases.

Proof. See Appendix C.9.4. �
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Table C.5: Simulation parameters

Parameter Value
Cell radius 100m
Number of UL UEs [I = J ] [4 19 25]
Monte Carlo iterations 400

Carrier frequency 2.5GHz
System bandwidth 5MHz
Number of freq. channels [F ] [25]
LOS path-loss model 34.96 + 22.7 log10(d)
NLOS path-loss model 33.36 + 38.35 log10(d)
LOS probability min(18/d, 1)(1− exp(−d/36)) + exp(−d/36)
Shadowing st. dev. LOS 3 dB
Shadowing st. dev. NLOS 4 dB
Thermal noise power [σ2] −116.4 dBm/channel
Average user speed 3 km/h
User antenna height 1.5m
BS antenna height 10m
SI cancelling level [β] [−70 − 100] dB

UE max power [Pu
max] 24 dBm

BS max power [P d
max] 24 dBm

Minimum SINR [γu
th = γd

th] [0 5] dB

With the characterization of the duality gap and the performance loss between the
proposed greedy algorithm and optimal solution of the dual, we recall here that the
proposed algorithm JAFMA is an approximated primal solution to problem (C.4).

C.7 Numerical Results

In this section we consider a single cell system operating in the urban micro environment
assuming 2.5 GHz carrier frequency and a system bandwidth of 5 MHz [106, 115, 116].
The maximum number of frequency channels is F = 25 that corresponds to the number
of available frequency channel blocks in the frequency domain of a 5 MHz long term
evolution (LTE) system [106]. The total number of served UE varies between I + J =
8...50, where we assume that after UE pairing the number of UE transmitting in UL (I)
is equal to the number of UE receiving in DL (J). The parameters of this system are set
according to Table C.5.

To evaluate the performance of JAFMA in this environment, we use the RUdimentary
Network Emulator (RUNE) as a basic platform for system simulations [117] and extended
it to FD cellular networks. The RUNE FD simulation tool allows to generate the
environment of Table C.5 and perform Monte Carlo simulations using either an exhaustive
search algorithm to solve problem (C.4) or JAFMA.

In order to understand and quantify the gap between the initially proposed JAFM
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in (C.4) (P-JAFM), the dual problem converted to axial 3-DAP in (C.21) (D-JAFM) and
the greedy solution named JAFMA, we analyse the relative duality gap between the three
algorithms in Section C.7.1. In Sections C.7.2 and C.7.3 we compare the performance of
JAFMA for different users’ loads and SI cancelling levels, respectively, with three other
algorithms:

1. Random assignment with EPA, named R-EPA;

2. Assignment according to JAFMA but with EPA, named AF-EPA;

3. Random assignment with power allocation according to JAFMA, named R-FMA.

Recall that other algorithms previously proposed for rate maximization, e.g. [32], are
not considered here because our scenario does not suit the solution proposed by them.
Although the sum rate maximization and fairness trade-off is not analysed, we aim to
solve an essential problem, which is how to achieve fairness and how fair can we be using
full-duplex communications. For a careful analysis of the rate-fairness trade-off in general
wireless networks, see for example [126].

C.7.1 Analysis of Optimality Gap

To evaluate the optimality gap between the proposed JAFMA, P-JAFM and D-JAFM, we
evaluate the objective function of problem (C.4), i.e., the minimum spectral efficiency of
UL and DL users.

Recall from Section C.3.2 and Section C.6.2 that the P-JAFM and D-JAFM are NP-
hard, thus we solve them by exhaustive search for scenarios with a small number of
users and frequency channels. Specifically, for P-JAFM and D-JAFM, we consider a small
system with reduced number of users, 4 UL and DL users, and frequency channels, where
we increase its number from 4 to 8. Moreover, we consider a SI cancelling level of
−100 dB, i.e., with β =−100 dB and γuth = γdth = 0 dB.

Figure C.3 shows the cumulative distribution function (CDF) of minimum spectral
efficiency among all UL and DL users, which is the objective function of problem (C.4),
and an important performance indicator of cellular networks. At full load, when all
users need to use FD transmission, the relative gap between JAFMA and P-JAFM is
approximately 69 % at the 50th percentile. Similarly, the gap between D-JAFM and
P-JAFM is approximately 57 %. Moreover, notice that in approximately 30 % of the Monte
Carlo iterations at least one user was disconnected. However, the number of resources
increases, both JAFMA and D-JAFM get closer to P-JAFM: approximately 1 % for JAFMA
and 0.6 % for D-JAFM at the 50th percentile.

Figure C.4 shows the CDF of the relative optimality gap for the same configuration as
that used in Figure C.3, and here we highlight how close JAFMA is to the optimal solution
achieved by P-JAFM. At high load the relative optimality gap is approximately 67 % for
JAFMA and 50 % for D-JAFM at the 50th percentile. When the number of channels is
increased to 8, in 59 % of the cases the gap is approximately zero for JAFMA and at most
14 %. These figures clearly show that the optimality gap diminishes with an increasing
number of resources as proved in Appendix C.9.4.
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Figure C.3: CDF of the minimum spectral efficiency among all users. We notice that as
we increase the number of frequency channels in the system, the gap between JAFM and
P-JAFM diminishes, where in the 50th percentile this relative gap is approximately 1 %.

0 20 40 60 80 100

Relative Optimality Gap [%]

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

C
D

F

JAFMA-F=4

D-JAFM-F=4

JAFMA-F=5

D-JAFM-F=5

JAFMA-F=6

D-JAFM-F=6

JAFMA-F=7

D-JAFM-F=7

JAFMA-F=8

D-JAFM-F=8

Figure C.4: CDF of the relative optimality gap of JAFMA and D-JFMA with P-JFMA. We
clearly see that the optimality gap diminishes when the number of frequency channels is
increased, where in 57 % of the cases the gap is approximately zero for JAFMA.
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Figure C.5: CDF of the ratio of connected users in the system for different users’ load.
Notice that JAFMA guarantees connection to at least 92 % in a system with 19 UL and DL
users and 82 % in a system with 25 UL and DL users. Thus, JAFMA is able to maintain a
high ratio of connected users although the system is completely loaded.

C.7.2 Fairness Performance Analysis for Different Users’ Loads

In this subsection we study the performance of JAFMA and compare it with R-EPA,
AF-EPA and R-FMA in terms of the achieved ratio of connected users and the achieved
fairness measured by the well known Jain’s fairness index [91]. To characterize the fairness
achieved by this system, we employ a modified versions of Jain’s index that is weighed by
the number of connected users [91]. In simple terms, the modified Jain’s fairness index
punishes the algorithms that disconnect users rather than considering the connected users
only, which is given by

Jmod =
(
1− Nd

I + J

) (∑I+J
k Ck

)2
(I + J)

∑I+J
k C2

k

, (C.22)

where Ck is the spectral efficiency of user k (either UL or DL) and Nd is the number
of disconnected users. Note that Nd represents how many users, within the ones that
are scheduled to transmit, cannot communicate with the BS fulfilling a minimum SINR
threshold γth.

We analyse how the fairness of the system changes with different users’ load
considering γuth = γdth = 5 dB and a SI cancelling level of −70 dB, i.e., with β =−70 dB.
Recall that the SINR threshold γth also impacts the number of disconnected users. Due to
this sensitivity, we consider a high minimum SINR threshold, which allows us to evaluate
if full-duplex communications can guarantee such threshold.

Figure C.5 shows the CDF of the ratio of connected users, where 100 % means that all
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Figure C.6: CDF of the modified Jain’s fairness index among all UL and DL users for
different users’ load. We notice that as we increase the number of users JAFMA increases
its relative difference to AF-EPA and R-FMA, with 35 % at the 50th percentile.

users are connected and use a frequency channel. Notice that for 19 UL and DL users the
percentage of connected users with JAFMA is at least 92 % (lowest ratio of connected users
in the right axis), while for AF-EPA is at least 66 %, for R-FMA is at least 61 % for R-EPA
is at least 55 %. Notice that R-FMA crosses AF-EPA, meaning that the power allocation
for pairs randomly assigned can improve connection of the users, instead of assigning
them in a proper manner and allocating maximum power. For 25 UL and DL users, the
performance of all algorithms is degraded, but JAFMA still shows superior performance
guaranteeing connection to at least 82 % of all users. In contrast, AF-EPA has at least 50 %,
R-FMA has at least 54 % and R-EPA at least 56 % connected users. Notice that R-EPA has
a higher connection ratio than AF-EPA, meaning that considering only the assignment of
JAFMA should not be taken into consideration alone, but also with the power allocation.
Moreover, R-FMA crosses R-EPA, but they are still close, showing that in a high load the
gain of optimizing the power allocation for a pair randomly allocated is negligible. This
result shows that JAFMA maintains a high ratio of connected users although the system is
fully loaded and that the fairness assignments and power allocation of JAFMA should not
be split and merged with other techniques.

Figure C.6 shows the CDF of modified Jain’s fairness index among all UL and
DL users. Notice that for 19 UL and DL users the relative difference is already clear
between JAFMA, AF-EPA and R-FMA, approximately 23 % at the 50th percentile. The
performance between AF-EPA and R-FMA is similar for at least 50 % of the cases (see
above 50th percentile), thus regardless of how good the assignment or power allocation
are, if they are taken into consideration alone they will have the same effect in the fairness.
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Figure C.7: CDF of the ratio of connected users in the system for different values of β.
Notice that JAFMA guarantees connection to at least 82 % in a system with high SI level,
i.e., JAFMA guarantees a high connection ratio to users in system with severe SI.

As expected, R-EPA has poor performance, not only because of the random assignment of
frequency channels but also because of using EPA with maximum power, which increases
the SI in the UL. As the load of the system increases to 25 UL and DL users, the relative
difference between JAFMA and AF-EPA increases to 35 % at the 50th percentile. JAFMA
achieves the highest modified Jain’s fairness index for different users’ load, meaning that
not only the fairness of the system is maintained but also the ratio of connected users is
improved. Again, we notice that considering only one feature of JAFMA, either fairness
assignment or power allocation, does not perform much better than a simple random
allocation with maximum power, thus JAFMA should be used as it is.

C.7.3 Fairness Performance Analysis for SI Cancelling Levels

It is important to understand the impact of SI on the performance of JAFMA To this end,
we now assume a high user load with 25 UL and DL users and vary β as −70 dB and
−100 dB, i.e., from a system with severe SI level to a modest SI level.

Figure C.7 shows the CDF of the ratio of connected users for different SI cancelling
levels, i.e., for different values of β. Notice that when β is −100 dB, JAFMA guarantees
connection to at least 92 % of all users, while AF-EPA has at least 86 %, R-FMA has at least
78 % and R-EPA guarantees at least 70 %. The difference between AF-EPA and R-FMA is
more clear now, which shows that with modest SI cancelling there is an improvement in
optimizing only the assignment instead of only the power allocation. When β increases to
−70 dB, all algorithms guarantee connection to fewer users than before. However, JAFMA
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Figure C.8: CDF of the modified Jain’s index among all UL and DL users for different
SI cancelling levels. We notice that as β increases, the relative difference between JAFMA
and AF-EPA also increases.

clearly outperforms the other algorithms, guaranteeing connection to at least 82 % of all
users, while AF-EPA decreases to 50 %, R-FMA decreases to 55 % and R-EPA to 56 %.
Again, we see that considering only the assignment or power allocation of JAFMA, the
performance is worse or the same as using a random assignment, as the performance of
AF-EPA and R-FMA show.

Figure C.8 shows the modified Jain’s fairness index and we notice that for β =−100 dB
the relative difference between JAFMA and AF-EPA is approximately 4 % while between
JAFMA and R-EPA is 62 % at the 50th percentile. Notice that as expected from Figure C.7,
there is a relative gain of approximately 26 % of optimizing the assignment instead of
the power allocation, as it is shown by the difference between AF-EPA and R-FMA at
the 50th percentile. However, when we increase β to −70 dB, the relative difference
between JAFMA and AF-EPA at the 50th percentile is approximately 56 % and higher
than the relative difference between JAFMA and R-EPA, which is approximately 35 %
and the relative difference between JAFMA and R-FMA (approximately 28 %). Notice
that as β increases, the relative difference between JAFMA with AF-EPA and R-FMA
increase, where AF-EPA becomes worse than R-EPA and R-FMA becomes close to
R-EPA. Therefore, JAFMA should be taken into account as a joint algorithm for different
SI levels, where neither the assignment nor the power allocation should be split to create
new techniques.



C.8. Conclusion 111

C.8 Conclusion

In this paper we considered the joint problem of user pairing and frequency channel
selection in FD cellular networks. Specifically, our objective was to maximize the
minimum spectral efficiency of the user with the lowest achieved spectral efficiency. This
problem was posed as a mixed integer nonlinear optimization, called JAFM, which was
shown to be NP-hard. We resorted to Lagrangian duality and developed a closed-form
solution for the assignment and found the optimal power allocation. Since the closed-
form solution could not be solved explicitly, we used duality theory, combined with a
greedy solution algorithm, JAFMA, to approximate the primal problem. We derived the
duality gap between JAFMA and the primal problem, and we showed that JAFMA has
a guaranteed performance, which allowed us to denominate as a greedy approximation
to the primal problem. The numerical results showed that JAFMA improved the spectral
efficiency of the users with low spectral efficiency and achieved the highest ratio of
connected users in a wide range of scenarios.

The results also indicated that the optimization of the assignment and power allocation
should be solved jointly; otherwise, a random allocation with EPA achieves a similar
performance. In future works, we intend to study distributed schemes to jointly assign
UL and DL users to frequency channels, to inspect in details the rate-fairness trade-off,
and to analyse the impact of multi-cell interference in the fairness of FD systems.

C.9 Appendix

C.9.1 Proof of Result 1

To check if the problem (C.12) is convex, we need to preliminary check that all the
inequality constraints are convex, thus we start with constraint (C.12b). Suppose that user i
in the UL is interfering with user j in the DL, where user i is transmitting only on frequency
channel f , i.e., xuif = 1. Thus, constraint (C.12b) can be rewritten as

(2t − 1)(σ2 +
∑J

j=1
xdjfP

d
j β)− Pui Gibf ≤ 0. (C.23)

If the Hessian of inequality (C.23) with respect to variables t, xjf , Pui , P
d
j is positive semi-

definite, then problem (C.12) is convex. However, the second leading minor is not positive,
which implies that the matrix is not positive semi-definite, i.e., constraint (C.23) is not
convex. Since we proved that a simpler version of the relaxed problem is not convex, the
general version cannot be convex either.
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Figure C.9: Illustrative plot ofO(Pui , P
d
max) that shows the possible maxima of the function

and its transitions in the poles.

C.9.2 Proof of Lemma 8

We take the first derivative of O(Pui , P
d
max) with respect to Pui , which is given by

∂O(Pui , P
d
max)

∂Pui
=

δui Gibf
σ2 + P dmaxβ

−
δdjP

d
maxGijfGbjf

(σ2 + Pui Gijf )2
+

λui Gibf
ln(2)(Pui Gibf + P dmaxβ + σ2)

−

λdjP
d
maxGijfGbjf

ln(2)(Pui Gijf + P dmaxGbjf + σ2)(σ2 + Pui Gijf )
(C.24)

We notice from Eq. (C.24) that the derivative has three distinct poles all of which are
located at negative powers, namely Pui,l tends to ∞ for l = 1, 2, 3, since the function is
continuous for positive powers, tends to infinity as Pui tends to infinity, and is given by the
sum of a strictly decreasing function and a strictly increasing function, thus it must have
a U shape for positive Pui . These are inflection points for the derivative. Therefore, the
function must look like Figure C.9, and thus for Pui > 0 the function is convex and it is
maximized in the corner points of the interval [0, Pumax].

C.9.3 Proof of Lemma 6

In Figure C.2, we can find the coordinates of point K (PjK , PiK) by solving the system
of equations

PuiKGibf
σ2 + P djKβ

= γuth,
P djKGbjf

σ2 + PuiKGijf
= γdth, (C.25)
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which gives the following coordinates

PuiK =
γuthσ

2(GbjKf + βγdth)

GbjKfGiKbf − βGiKjKfγuthγdth
, (C.26a)

P djK =
γdthσ

2(GiKjKfγ
u
th +GiKbf )

GbjKfGiKbf − βGiKjKfγuthγdth
. (C.26b)

However, the pointK needs to be constrained to the boxed region defined by the power
constraints, thus we get the following inequalities

0 <
γuthσ

2(GbjKf + βγdth)

GbjKfGiKbf − βGiKjKfγuthγdth
≤ Pumax, (C.27a)

0 <
γdthσ

2(GiKjKfγ
u
th +GiKbf )

GbjKfGiKbf − βGiKjKfγuthγdth
≤ P dmax. (C.27b)

Inspired by [102] and using inequalities (C.27), we can derive now an upper bound
for the SI cancellation term for any two users i and j that share a frequency channel f
and fulfil constraints (C.4b)-(C.4e), i.e., any user in the area with parallel lines defined by
points above K and within the boxed area. The bound is β ≤ βmax

ijf , where βmax
ijf is given by

βmax
ijf =


βu ,

Gbjf (PumaxGibf − γuthσ2)

γuthγ
d
th(PumaxGijf + σ2)

,

βd ,
P dmaxGbjfGibf − σ2γdth(Gijfγ

u
th +Gibf )

γuthγ
d
thP

d
maxGijf

.

(C.28)

Thus, β ≤ βmax
ijf = min{βu, βd}. To understand when βu and βd are chosen, we see that

βu > βd when γdjMf ≤ γdth, i.e., min{βu, βd} = βd. In the other case, βu ≤ βd when
γdjMf > γdth, i.e., min{βu, βd} = βu. Therefore,

βmax
ijf =

{
βu, if γdjMf > γdth,

βd, if γdjMf ≤ γdth.
(C.29)

Therefore, a pair of UL and DL users is admissible on frequency channel f if the
evaluated βijf fulfils inequality β ≤ βmax

ijf .
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C.9.4 Proof of Proposition 1

Based on the work of Weeraddana et al. [125], the proof of the duality gap relies on three
assumptions of an equivalent version of problem (C.12). Let us define it as

minimize −
∑F

f=1
min{tuf , tdf} (C.30a)

subject to
∑F

f=1
Cuif ≥

∑F

f=1
tuf ,∀i, (C.30b)∑F

f=1
Cdjf ≥

∑F

f=1
tdf ,∀j (C.30c)

Constraints (C.4b)-(C.4j) (C.30d)
0 ≤ tuf ≤ tumax + Cunu

f f
,∀f (C.30e)

0 ≤ tdf ≤ tdmax + Cdnd
ff
,∀f (C.30f)

where the variables are tu,d, Xu,d and pu,d. We define nuf = arg maxi∈I C
u
if and

ndf = arg maxj∈J C
d
jf , with tumax, t

d
max < ∞ as upper bound of both optimal solution

components tu?f and td?f of problem (C.30). For example, we use tumax = maxi∈I,f∈F C
u
if

and tdmax = maxj∈J ,f∈F C
u
jf throughout this article. Similarly to [125], we can show

that problem (C.30) is equivalent to the original MINLP (C.12) and the optimal value P ?

of (C.30) is equal to the optimal value p? of MINLP (C.12), i.e., P ? = p?.
From now on, we refer to problem (C.30) as the modified MINLP from (C.12), which

is in a similar form of Proposition 4 from [125] (indices i and j have a different meaning
in that work), where

1. J = F and J = F ;

2. yf = (zuf , z
d
f ,p

u,pd, tuf , t
d
f ) ∈ Ry , with zuf = (xuif )i∈I , zdf = (xdjf )j∈J and

y = 2(I + J + 1);

3. ff (yf ) = −
∑F
f=1 min{tuf , tdf} ;

4. Yf =

{(
(xuif )i∈I , (x

d
jf )j∈J , (P

u
i )i∈I , (P

d
j )j∈J , t

u
f , t

d
f

)
∣∣∣∑I

i=1 x
u
if ≤ 1,

∑J
j=1 x

d
jf ≤ 1, ∀f, xuif , xdjf ∈ {0, 1},

Pui ≤ Pumax,∀i, P dj ≤ P dmax,∀j, tuf ∈
[
0, tumax + Cunu

f f

]
tdf ∈

[
0, tdmax + Cd

nd
ff

]}

5. h1
f (yf ) =

(
tuf − Cu1f , . . . , tuf − Cunu

f f
, . . . , tuf − CuIf

)
∈ RQ1 , with Q1 = I ,

h2
f (yf ) =

(
tdf − Cd1f , . . . , tdf − Cdnd

ff
, . . . , tdf − CdJf

)
∈ RQ2 , with Q2 = J ,
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h3
f (yf ) =

(
− γu1f , . . . ,−γunu

f f
, . . . ,−γuIf

)
∈ RQ3 , with Q3 = I ,

h4
f (yf ) =

(
− γd1f , . . . ,−γdnd

ff
, . . . ,−γdJf

)
∈ RQ4 , with Q4 = J ;

6. b1 = b2 = 0 and b3 =
(
−γuth, . . . ,−γuth

)
∈ RQ3 ,b4 =

(
−γdth, . . . ,−γdth

)
∈ RQ4 .

Assumptions 1 and 2 from [125] can be proved without problems, but not Assumption
3. Since we have 4 different inequality constraints, we need to prove that every one holds,
because we can imagine a concatenation of the inequality constraints with dimensionQ1 +
Q2 +Q3 +Q4 that fulfils Assumption 3.

Let ỹ be any vector in conv(Yf ) and let us first analyse the constraint related to
h1
f (yf ). From the definition of h̃(ỹ) [125, Eq. (28)], we can express it as h̃1

f (ỹ) =∑y+1
k=1 α

kh1
f (yk), for some yk ∈ Yf and αk such that ỹ =

∑y+1
k=1 α

ky,
∑y+1
k=1 α

k = 1,
αk ≥ 0. For problem (C.12), we have

h̃1
f (ỹ) =

∑
k
αk
(
tu,kf − Cu,k1f , . . . , t

u,k
f − Cu,knu

f f
, . . . , tu,kf − Cu,kIf

)
, (C.31a)

=
∑

k

(
αk tu,kf − αk Cu,k1f , . . . , α

k tu,kf − αk Cu,knu
f f
, . . . , αk tu,kf − αk Cu,kIf

)
,

(C.31b)

=
∑

k

(
αk tu,kf − 0, . . . , αk tu,kf − αk Cu,knu

f f
, . . . , αk tu,kf − 0

)
, (C.31c)

≥
∑

k

(
0, . . . ,−αk Cu,knu

f f
, . . . , 0

)
, (C.31d)

≥
(

0, . . . ,−Cunu
f f
, . . . , 0

)
, (C.31e)

= h1
f (y), (C.31f)

where zuf = (0, . . . , 1, . . . , 0)i∈I and tuf = 0, with the other vectors of the solution
y defined in accordance with any feasible solution. Note that (C.31c) follows from the
assumption that a feasible solution for xuif is to assign the user nuf = arg maxi∈I C

u,k
if ,

which leaves xuif = 0 for i 6= nuf and if we take the minimum value of tf , we will
have (C.31d). Moreover, since

∑y+1
k=1 α

k = 1, αk ≥ 0, we have that−αk Cu,knu
f f
> −Cu,knu

f f
.

Thus, we have proved that h̃1
f (ỹ) ≥ h1

f (y), and a similar proof can be done for h2
f .

Now, we have that for h3
f

h̃3
f (ỹ) =

∑
k
αk
(
− γu,k1f , . . . ,−γ

u,k
nu
f f
, . . . ,−γu,kIf

)
, (C.32a)

=
∑

k

(
− αk0, . . . , αk − γu,knu

f f
, . . . ,−αk0

)
, (C.32b)

≥
(

0, . . . ,−γunu
f f
, . . . ,−0

)
, (C.32c)

= h3
f (y), (C.32d)

and in a similar manner as before, we have proved that h̃3
f (ỹ) ≥ h3

f (y). The same idea
can be applied to h4

f (y) and therefore, all inequalities fulfil Assumption 3 of [125].
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Therefore, since we proved that Assumptions 1-3 hold for the modified MINLP (C.30)
and together with Proposition 4, we have

p? − d? ≤ (2(I + J) + 1)
(

min{tumax, t
d
max}+ ρf

)
, (C.33)

where the inequality follows from sup
f
f(yf )= 0 and inf

f
f(yf ) = −min

{
max
i,f

Cuif ,max
j,f

Cdjf

}
.

Inequality (C.33) ensures that the numerator of the relative duality gap is bounded above
by a fixed number, due to power constraints the maximum spectral efficiency is bounded
above, which is dependent of the total number of frequency channels F , and because I
and J do not increase with F . Moreover, we note that when F → ∞, p? increases due to
more resources available. Therefore, we conclude that the relative duality gap (p?−d?)/p?
diminishes as F →∞.
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On the Sum Rate-Fairness Trade-Off in Full-Duplex
Cellular Networks

José Mairton B. da Silva Jr.,Gábor Fodor, and Carlo Fischione

Abstract

To increase the spectral efficiency of wireless networks without requiring full-
duplex capability of user devices, a potential solution is the recently proposed three-
node full-duplex mode. To realize this potential, networks employing three-node full-
duplex transmissions must deal with self-interference and user-to-user interference,
which can be managed by frequency channel and power allocation techniques.
Whereas previous works investigated either spectral efficient or fair mechanisms, a
scheme that balances these two metrics among users is investigated in this paper.
This balancing scheme is based on a new solution method of the multi-objective
optimization problem to maximize the weighted sum of the per-user spectral efficiency
and the minimum spectral efficiency among users. The mixed integer non-linear
nature of this problem is dealt by Lagrangian duality. Based on the proposed solution
approach, a low-complexity centralized algorithm is developed, which relies on large
scale fading measurements that can be advantageously implemented at the base
station. Numerical results indicate that the proposed algorithm increases the spectral
efficiency and fairness among users without the need of weighting the spectral
efficiency. An important conclusion is that managing user-to-user interference by
resource assignment and power control is crucial for ensuring spectral efficient and
fair operation of full-duplex networks.

D.1 Introduction

Due to recent advancements in antenna and digital baseband technologies, as well as
radio-frequency/analog interference cancellation techniques, in-band full-duplex (FD)
transmissions appear as a viable alternative to traditional half-duplex (HD) transmission
modes [12]. The in-band FD transmission mode can almost double the spectral efficiency
of conventional HD wireless transmission modes, especially in the low transmit power
domain [12, 107]. However, due to the increasing demand for supporting the transmission
of large data quantities in scarce spectrum scenarios [12,127], and thanks to the continued
advances in self-interference (SI) cancellation technologies, FD is being considered as a
technology component beyond small cell and short range communications [10, 18].

A viable introduction of FD technology in cellular networks consists in making the base
station (BS) FD-capable, while letting the user equipments (UEs) operate in HD mode.
This transmission mode is termed three-node full-duplex (TNFD) [12], in which only one
of the three nodes (i.e., two UEs and the cellular BS) must have FD and SI suppression
capability. In a TNFD cellular network, the FD-capable BS transmits to its receiving UE,
while receiving from another UE on the same frequency channel.
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Figure D.1: An example of cellular network employing FD with two UEs pairs. The BS
selects pairs UE1-UE4 and UE2-UE3, represented by the ellipses, and jointly schedules
them for FD transmission by allocating frequency channels in the UL and DL. To
mitigate the UE-to-UE interference, it is advantageous to co-schedule DL/UL users for
FD transmission that are far apart, such as UE1-UE2 and UE3-UE4.

An example of a cellular network employing TNFD with two UEs pairs is illustrated
in Figure D.1. Note that apart from the inherently present SI, FD operation in a cellular
network must also deal with the UE-to-UE interference, indicated by the red dotted lines
between UE1-UE4 and UE2-UE3. The level of UE-to-UE interference depends on the UEs
locations and propagation environments and their transmission powers. To mitigate the
negative effects of the interference on the spectral efficiency of the system, coordination
mechanisms are needed [10]. Two key elements of such mechanisms are UE pairing and
power allocation, that together determine which UEs are scheduled for simultaneous
uplink (UL) and downlink (DL) transmissions, and at which power UL and DL UEs
will transmit or receive. Consequently, it is crucial to design efficient and fair medium
access control protocols and physical layer procedures capable of supporting adequate
coordination mechanisms.

A typical and natural objective for many physical layer procedures for FD cellular
networks proposed in the literature is to maximize the sum spectral efficiency [32, 79].
The authors in [79] consider a joint subcarrier and power allocation problem, but without
taking into account the UE-to-UE interference. The work reported in [32] considers
the application of TNFD transmission mode in a cognitive femto-cell scenario with
bidirectional transmissions from UEs, and develops sum-rate optimal resource allocation
and power control algorithms.

Another important objective is to improve the fairness and per-user quality of service
(QoS) of FD cellular networks, as emphasized in [12,30,80,107]. In our previous work, we
proposed a weighted sum spectral efficiency maximization, where the weights represent
path-loss compensation and are thus related to the rate distribution and fairness in the
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system [107]. The results showed that FD cellular networks can outperform current HD
mode if appropriate SI cancellation and pairing schemes are employed. A heterogeneous
statistical QoS provisioning framework, focusing on the bidirectional FD link case without
considering the implications of TNFD transmissions is developed in [80]. The work
in [12] emphasizes the importance of fairness and that it may degrade by a factor of
two compared with HD communications. However, the authors do not provide power
control and channel allocation schemes that are developed with such objectives in mind. In
contrast, our previous work [30] formulated the maximization of the minimum spectral
efficiency problem and proposed a max-min fair power control and channel allocation
solution.

However, the interplay between weighted sum spectral efficiency maximization and
fairness for FD cellular networks has not been studied. Therefore, in this work we aim to
fill this research gap by proposing a multi-objective optimization problem to maximize
simultaneously both the weighted sum spectral efficiency and the minimum spectral
efficiency of all users. Such an optimization problem poses technical challenges that are
markedly different from those investigated in our previous works [30, 107]. In particular,
we develop an original and new solution approach based on the use of the scalarization
technique to convert the multi-objective into a single-objective mixed integer nonlinear
programming (MINLP) problem that considers jointly user pairing and UL/DL power
control. Due to the complexity of the MINLP problem proposed, our novel solution
approach relies on Lagrangian duality and the associated centralized algorithm based on
the dual problem. This centralized solution is tested in a realistic system simulator that
indicates that the solution is near-optimal, and increases the sum spectral efficiency and
fairness among the users. An important feature of the proposed solution is that there is no
need to consider weights in the sum spectral efficiency as done in previous works from
the literature [107]. This is advantageous, because defining the weights in a weighted sum
objective function is typically cumbersome and difficult in practice.

The numerical results also indicate that measuring and taking into account UE-to-UE
interference is crucial for both overall spectral efficiency and fairness. When UE-to-UE
interference is neglected, as in [79], the results are approximately as good as using random
assignment and equal power allocation among all users.

D.2 System Model and Problem Formulation

D.2.1 System Model
We consider a hexagonal single-cell cellular system in which the BS is FD capable, while
the UEs served by the BS are HD capable, as illustrated by Figure D.1. In the figure, the
BS is subject to SI, and the UEs in the UL (UE2 and UE4) cause UE-to-UE interference
to co-scheduled UEs in the DL, that is to UE3 and UE1 respectively. The number of UEs
in the UL and DL is denoted by I and J , respectively, which are constrained by the total
number of frequency channels in the system F , i.e., I ≤ F and J ≤ F . The sets of UL
and DL users are denoted by I = {1, . . . , I} and J = {1, . . . , J}, respectively.

In this paper, we assume that fading is slow and frequency flat, which is an adequate
model from the perspective of power control in existing and forthcoming cellular net-
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works [101, 104]. Let Gib denote the path gain between transmitter UE i and the BS, Gbj
denote the path gain between the BS and the receiver UE j, and Gij denote the interfering
path gain between the UL transmitter UE i and the DL receiver UE j.

The vector of transmit power levels in the UL by UE i is denoted by pu = [Pu1 . . . P
u
I ],

whereas the DL transmit powers by the BS is denoted by pd = [P d1 . . . P
d
J ]. We define β as

the SI cancellation coefficient to take into account the residual SI that leaks to the receiver.
Then, the SI power at the receiver of the BS is βP dj when the transmit power is P dj .

As illustrated in Figure D.1, the UE-to-UE interference depends heavily on the
geometry of the co-scheduled UL and DL users, which in turn is determined by the co-
scheduling or pairing of UL and DL users on the available frequency channels. Therefore,
UE pairing is a key function of the system. To capture the pairing of UE pairs, we define
the pairing matrix, X ∈ {0, 1}I×J , such that

xij =

{
1, if the UL UEi is paired with the DL UEj ,
0, otherwise.

The signal-to-interference-plus-noise ratio (SINR) at the BS of transmitting user i and
the SINR at the receiving user j of the BS are given by

γui =
Pui Gib

σ2 +
∑J
j=1 xijP

d
j β

, γdj =
P dj Gbj

σ2 +
∑I
i=1 xijP

u
i Gij

, (D.1)

respectively, where xij in the denominator of γui accounts for the SI at the BS, whereas xij
in the denominator of γdj accounts for the UE-to-UE interference caused by UEi to UEj ,
and σ2 is the noise power. The achievable spectral efficiency for each user is given by the
Shannon equation for the UL and DL as Cui = log2(1 + γui ) and Cdj = log2(1 + γdj ),
respectively.

In addition to the spectral efficiency, we weight the achievable spectral efficiencies by
constant weights, which are denoted by αui and αdj , respectively. The purpose of these
weights is to allow the system designer to choose between the commonly used sum rate
maximization and important fairness related criteria such as the well known path loss
compensation typically employed in the power control of cellular networks [100]. The
weights αui and αdj can account for sum rate maximization by setting αui = αdj = 1, or for
path loss compensation by setting αui = G−1

ib and αdj = G−1
bj .

D.2.2 Problem Formulation
Our goal is to maximize both the weighted sum spectral efficiency and the minimum
spectral efficiency of all users, jointly considering the assignment of UEs in the UL and
DL (pairing). This multi-objective optimization problem can be transformed to a single-
objective optimization problem through the scalarization technique [110, Sec. 4.7.4]. We
choose (1 − µ) as the weight for the weighted sum spectral efficiency and µ for the
minimum spectral efficiency, where µ ∈ [0, 1]. Specifically, we formulate the problem



D.3. Solution Approach Based on Lagrangian Duality 123

as

maximize
X,pu,pd

(
1− µ

)(∑I

i=1
αui C

u
i +

∑J

j=1
αdjC

d
j

)
+ µ min

∀i,j
{Cui , Cdj } (D.2a)

subject to Pui ≤ Pumax, ∀ i, (D.2b)

P dj ≤ P dmax, ∀ j, (D.2c)∑I

i=1
xij ≤ 1, ∀ j, (D.2d)∑J

j=1
xij ≤ 1, ∀ i, (D.2e)

xij ∈ {0, 1}, ∀ i, j. (D.2f)

The optimization variables are pu, pd and X. Constraints (D.2b) and (D.2c) limit the
transmit powers, whereas constraints (D.2d)-(D.2e) assure that only one UE in the DL can
share the frequency resource with a UE in the UL and vice-versa. For the sake of clarity,
we denote the solution to problem (D.2) as P-OPT.

Problem (D.2) belongs to the category of MINLP, which is known for its high
complexity and computational intractability [128]. To find a near-to-optimal solution to
problem (D.2) we establish an original approach using the dual problem, as described in
Section D.3. However, the complexity of the dual problem solution might be prohibitive
in practical cellular systems, which motivates the reformulation of the dual problem in
Section D.4, whose proposed solution in Algorithm 8 is denoted C-HUN.

D.3 Solution Approach Based on Lagrangian Duality
D.3.1 Problem Transformation
As a first step of solving problem (D.2), we consider the standard equivalent hypo-
graph [110, Sec. 3.1.7] form of problem (D.2), where the new variable t and two more
constraints are introduced. Note that the hypograph simplifies the problem formulation,
because it allows to use a linear function of the variable t instead of the minimum between
two nonlinear functions with the other variables.

maximize
X,pu,pd,t

(
1− µ

)(∑I
i=1 α

u
i C

u
i +

∑J
j=1 α

d
jC

d
j

)
+ µt

subject to Cui ≥ t,∀i, (D.3a)

Cdj ≥ t,∀j (D.3b)

Constraints (D.2b)-(D.2f),

where t > 0 is an additional variable with respect to (D.2). Notice that problem (D.3),
similarly to problem (D.2), is a MINLP.

D.3.2 Solution for X and pu,pd

From problem (D.3), we form the partial Lagrangian function by taking into account
constraints (D.3a)-(D.3b) and ignoring the integer (D.2d)-(D.2f) and power allocation
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constraints (D.2b)-(D.2c). To account for these constraints, it is assumed that X ∈ X
and pu,pd ∈ P , where X and P are sets in which the assignment constraints and power
allocation constraints are fulfilled, respectively. The Lagrange multipliers associated with
problem (D.3) are λu, λd, where the superscripts u and d denote UL and DL, and the
vectors have dimensions of I × 1 and J × 1, respectively.

The partial Lagrangian is a function of the Lagrange multipliers and the optimization
variables X,pu,pd as follows:

L(λu,λd,X,pu,pd) , −
(

1− µ
)( I∑

i=1

αui C
u
i +

J∑
j=1

αdjC
d
j

)
− µt+

∑I

i=1
λui

(
t− Cui

)
+
∑J

j=1
λdj

(
t− Cdj

)
. (D.4)

It is useful to rewrite the partial Lagrangian function as

L(λu,λd,X,pu,pd) = t
(∑I

i=1
λui +

∑J

j=1
λdj − µ

)
−

I∑
i=1

(
λui + (1− µ)αui

)
Cui

−
J∑
j=1

(
λdj + (1− µ)αdj

)
Cdj . (D.5)

Let g(λu,λd) denote the dual function obtained by minimizing the partial Lagrangian
function (D.5) with respect to the variables X,pu,pd. Thus,

g(λu,λd) = inf
X∈X pu,pd∈P

L(λu,λd,X,pu,pd) (D.6a)

g(λu,λd) =


inf

X∈X pu,pd∈P

[∑
i q
u
i (X,pu,pd) +∑

j
qdj (X,pu,pd)

]
, if

∑
i

λui +
∑
j

λdj = µ

−∞, otherwise, (D.6b)

where it follows from equality (D.6b) that the linear function t
(∑I

i=1 λ
u
i +

∑J
j=1 λ

d
j −µ

)
is lower bounded when it is identically zero, and

qui (X,pu,pd) , −
(
λui + (1− µ)αui

)
Cui , (D.7a)

qdj (X,pu,pd) , −
(
λdj + (1− µ)αdj

)
Cdj . (D.7b)

The infimum of the dual function (D.6b) is obtained when the SINR of the UL-DL
pairs is maximized. We can therefore write an initial solution for the assignment xij as
follows:

x?ij =

1, if (i, j) = arg max
i,j

(
qui + qdj

)
0, otherwise,

(D.8)
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where, for simplicity, we denote an ordinary pair of UL-DL users as (i, j). With the
assignment solution given by (D.8) and recalling that xij ∈ X , an UL user can be uniquely
associated with a DL user. However, x?ij is still tied through the SINRs in the UL and DL,
γui and γdj , respectively. With this, the solution for the assignment is still complex and –
through qui and qdj – is intertwined with the optimal power allocation.

Recall that from Eq. (D.6b) we must find the infimum of the sum between terms in
Eqs. (D.7). Thus, with the initial solution for the assignment problem of finding X, we can
now evaluate the power allocation assuming that the pairs (i, j) are already formed. The
power allocation problem is formulated as follows:

maximize
pu,pd

∑I

i=1

(
λui + (1− µ)αui

)
Cui +

∑J

j=1

(
λdj + (1− µ)αdj

)
Cdj (D.9a)

subject to pu,pd ∈ P, (D.9b)

where the minimization of negative sums is converted to the maximization of positive
sums. From the results of [101], it follows that the optimal transmit power allocation will
have either Pui or P dj equal to Pumax or P dmax, given that i and j share a frequency channel
and form a pair. Therefore, the optimal power allocation is found within the corner points
of (Pui , P

d
j ): (0, P dmax), (Pumax, 0) or (Pumax, P

d
max). If a user (either in the UL or DL) is not

sharing the resource, i.e., assigned to a frequency channel alone, then its transmit power is
simply Pumax or P dmax. With the assignment and power allocation solutions, we now need to
find the optimal Lagrange multipliers λu and λd.

D.3.3 Dual Problem Solution
We need to find the Lagrangian multipliers λui and λdj , which also appear in the objective
function of problem (D.9). Given the optimal power allocation problem (D.9), the dual
function can be written as

g(λu,λd) = −
I∑
i=1

λui C
u
i −

J∑
j=1

λdjC
d
j − h(Cui , C

d
j ), (D.10)

where the term h(Cui , C
d
j ) is the weighted sum of UL and DL spectral efficiencies, which

are independent of λui and λdj , and do not impact the dual problem. Therefore, the dual
problem of (D.9) can be formulated as

minimize
λu, λu

∑I

i=1
λui C

u
i +

∑J

j=1
λdjC

d
j (D.11a)

subject to
∑I

i=1
λui +

∑J

j=1
λdj = µ, (D.11b)

λui , λ
d
j ≥ 0,∀i, j, (D.11c)

where the maximization of negative sums is converted to the minimization of positive
sums. The dual problem (D.11) is a Linear Programming (LP) problem in the variables λui
and λdj .
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It is convenient to rewrite the dual problem (D.11) in the standard LP form as [129, Sec.
4.2]:

minimize
λ

cTλ (D.12a)

subject to aλ = b, (D.12b)
λ ≥ 0, (D.12c)

where c = [Cu1 . . . CuI C
d
1 . . . CdJ ]T , the variable vector is λ = [λu1 . . . λuI λ

d
1 . . . λdj ]

T ,
the constraint vector a = 1T , and b = µ. Since a has rank 1, we can separate the
components of λ into two subvectors [129, Sec. 4.3], one consisting of (I+J−1) nonbasic
variables λN (all of which are zero), and another consisting of 1 basic variable λB , which
is equal to b. Therefore, we have a single nonzero λB , either in the UL or DL, whose index
B corresponds to the user with minimum spectral efficiency.

Therefore, using the results on the solution to the assignment problem (D.8), the
optimal power allocation problem (D.9) from Section D.3.2, the dual problem (D.11) can
be solved by checking exhaustively which pair of UL and DL users jointly solve Eq. (D.8),
where the power allocation for each pair is within the corner points of set P . Nevertheless,
for a large number of users, this exhaustive search solution might not be practical due to the
large number of iterations. Because of this property, we will reformulate the dual problem
and propose a centralized solution in Section D.4.

D.4 Centralized Solution based on the Lagrangian Dual Problem

D.4.1 Insights from the Dual Problem
In Section D.3.3, we showed that the dual problem (D.11) maximizes the user with
minimum spectral efficiency in the system. To this end, we can initially set one λ equal
to µ and exhaustively check which one maximizes the power allocation problem (D.9).
However, such exhaustive solution demands large number of iterations that depend on the
number of simultaneously served UL and DL users. Consequently, such solution is not
viable in practical systems.

Notice that the minimum spectral efficiency that a user can achieve is 0, because of the
binary power control solution in problem (D.9). Therefore, whenever one user in the pair
is not transmitting (has zero power), the λ associated with that user will be nonzero, which
leads to the non-uniqueness of λ. To reduce the complexity on the search of the nonzero λ,
we assume that for each pair there is a λ which equals µ, whose index corresponds to the
user with the minimum spectral efficiency of that pair.

D.4.2 Centralized Solution to Reformulated Dual Problem
Based on the reasoning on the non-uniqueness of λ above and using the results from
Section D.3, we reformulate the dual problem (D.11) to solve the assignment in Eq. (D.8).
We propose a solution that aims at jointly maximizing the sum of the minimum spectral
efficiency of the UL-DL pairs and the sum spectral efficiency. To this end, we rewrite the
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Algorithm 8 Centralized Algorithm at the BS

1: Input: αu
i , α

u
i , Gibf , Gbjf , Gijf , β, P

u
max, P

d
max

2: for i = 1 to I do
3: for j = 1 to J do
4: Evaluate the corner point (Pu

i , P
d
j ) that maximizes sij = (1−µ)(αu

i C
u
i +αd

jC
d
j )+µmin{Cu

i , C
d
j }

5: end for
6: end for
7: With sij , evaluate the optimal assignment using Hungarian algorithm
8: Output: X,pu,pd

solution in Eq. (D.8) as an assignment problem given by

maximize
X

∑I

i=1

∑J

j=1
sijxij (D.13a)

subject to
∑I

i=1
xij = 1, ∀j, (D.13b)∑J

j=1
xij = 1, ∀i, (D.13c)

xij ∈ {0, 1}, ∀i, j, (D.13d)

where the matrix S = [sijf ] ∈ RI×J can be understood as the benefit of pairing UL user
i with DL user j. It is given by sij = (1 − µ)(αui C

u
i + αdjC

d
j ) + µmin{Cui , Cdj } for a

pair (i, j) assigned to the same frequency. Constraint (D.13b) ensures that the DL users are
associated with exactly one UL user. Similarly, constraint (D.13c) ensures that each UL
user must be associated with a DL user.

Computing the optimal assignment as given by problem (D.13) requires checking (I +
J)! assignments [103, Section 1]. Alternatively, the Hungarian algorithm can be used in a
fully centralized manner [103, Section 3.2], which has worst-case complexity of O

(
(I +

J)3
)

. Algorithm 8 summarizes the steps to solve problem (D.13) using the Hungarian
algorithm. The inputs to Algorithm 8 are all the path gain between UL users, DL users and
the BS. The BS runs Algorithm 8 and acquires or estimates the channel gains, which are
measured and feedback by the served UEs using signalling mechanisms standardized by
3rd Generation Partnership Project (3GPP) [104]. The most challenging measure to obtain
is the UE-to-UE interference path gain for the pair (i, j), but due to recent advances in
3GPP for device-to-device communications, this measurement can be obtained by sidelink
transmissions and receptions [130].

Once all inputs are available, the optimal power allocation for all possible pairs needs to
be evaluated (see line 4). Algorithm 8 evaluates which corner point the pair (i, j) belongs
to, and stores sij for later use. With sij at hand, the assignment problem (D.13) can be
solved by using the Hungarian algorithm [103, Section 3.2] (see line 7). The outputs of
the algorithm (see line 8) are the assignment matrix X, and the optimal power allocation
vectors pu, pd. The complexity of Algorithm 8 hinges on creating the matrix S, which,
recall, has a complexity O(3IJ), and on the Hungarian algorithm, which has worst-case
complexity of O

(
(I + J)3

)
.
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Table D.6: Simulation parameters

Parameter Value
Cell radius 100 m
Number of UL UEs [I = J] [4 25]
Monte Carlo iterations 400
Carrier frequency 2.5 GHz
System bandwidth 5 MHz
Number of freq. channels [F ] [4 25]
LOS path-loss model 34.96 + 22.7 log10(d)
NLOS path-loss model 33.36 + 38.35 log10(d)
Shadowing st. dev. LOS and NLOS 3 dB and 4 dB
Thermal noise power [σ2] −116.4 dBm/channel
SI cancelling level [β] −100 dB

Max power [Pu
max] = [Pd

max] 24 dBm

D.5 Numerical Results and Discussion

In this section we consider a single cell system operating in the urban micro environ-
ment [106]. The maximum number of frequency channels is F = 25 that corresponds to
the number of available frequency channel blocks in a 5 MHz long term evolution (LTE)
system [106]. The total number of served UE are I + J = 8 and I + J = 50, where we
assume that I = J . We set the weights αui and αdj based on either sum rate maximization
(SR), or path loss compensation rule (PL). For SR, we set αui = αdj = 1, whereas for PL
we set αui = G−1

ib and αdj = G−1
bj . The parameters of the simulations are set according to

Table D.6.
To evaluate the performance of the proposed centralized solution in Algorithm 8,

we use the RUdimentary Network Emulator (RUNE) as a basic platform for system
simulations and extended it to FD cellular networks [117]. The RUNE FD simulation tool
allows to generate the environment of Table D.6 and to perform Monte Carlo simulations
using either an exhaustive search algorithm to solve problem (D.2) or the centralized
Hungarian solution.

Initially, we compare the optimality gap between the exhaustive search solution of
problem (D.2), named P-OPT, and our proposed solution using Algorithm 8 with the
optimal power allocation and the centralized Hungarian algorithm for the assignment,
named C-HUN. In the following, we compare our proposed centralized solution with a
basic FD solution with random assignment and equal power allocation for UL and DL
users, named herein as R-EPA. In addition, we also consider a modified version of C-HUN
that does not take into account UE-to-UE interference, named C-NINT. The motivation for
C-NINT is to analyse how important the consideration of UE-to-UE interference is to the
fairness and the sum spectral efficiency of the system.

Figure D.2 shows the objective function in Eq. (D.2a) between P-OPT and C-HUN as
a measure of the optimality gap. We assume a small system with reduced number of users,
4 UL and DL users, and frequency channels, where we assume µ= [0.1 0.5 0.9] and with
αui =αdj =1 to represent SR. Moreover, we consider a SI cancelling level of β=−100 dB.
Notice that the difference between the P-OPT and C-HUN decreases when µ increases. For
instance, for µ= 0.1 the relative difference between P-OPT and C-HUN is approximately
33 %, whereas for µ= 0.9 this difference decreases to 26 %. In addition, the value of the
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Figure D.2: CDF of the objective function in Eq. (D.2a) for different values of µ. Notice
that the optimality gap between P-OPT and C-HUN decreases with µ. Moreover, the
objective function decreases with µ, which is expected because of the reduction of the
term with sum spectral efficiency.

objective function also decreases with µ because the term with the sum spectral efficiency
also decreases.

Figure D.3 shows Jain’s fairness index for the proposed solution C-HUN, the modified
solution C-NINT that does not consider UE-to-UE interference, and the basic benchmark
solution R-EPA. We assume a system fully loaded with 25 UL, DL users, and frequency
channels, where we analyse the impact of the solutions for different weights of αui and αdj ,
which are denoted SR for sum rate maximization, and PL for path-loss compensation. The
value of µ is 0.9, which implies that we aim at a more fair scenario. The SI cancelling level
is −100 dB, i.e., β =−100 dB. We notice that the difference between SR and PL for the
proposed solution C-HUN is negligible, which implies that we can achieve similar levels of
fairness without using weights on αui and αdj . Conversely, there is a gain of approximately
16 % between C-HUN and C-NINT at the 50-th percentile irrespectively of the weights
on αui and αdj . In addition, there is practically no difference between C-NINT and R-
EPA, which implies that using advanced solutions for pairing and power allocation without
considering UE-to-UE interference bring losses to the system, and is as good as doing
everything randomly and setting maximum power to all users. Thus, our proposed solution
C-HUN is able to improve fairness in the system by approximately 16 % in comparison
with the benchmark solution R-EPA.

Figure D.4 shows the sum spectral efficiency of the system for C-HUN, C-NINT, and
R-EPA, where we assume the same parameters as the ones used for Figure D.3. As before,
the difference between SR and PL for the proposed solution C-HUN is negligible, implying
that also for the sum spectral efficiency there is practically no difference between using
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Figure D.3: CDF of Jain’s fairness index for µ= 0.9 and different different weights of αui
and αdj . Notice that C-HUN achieves similar performance for SR and PL, which implies
that for high values of µ SR is enough to achieve high fairness in the system. Also, C-NINT
is as good as a R-EPA, but with higher complexity.
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Figure D.4: CDF of the sum spectral efficiency for all users. We notice that C-HUN is also
able to improve the sum spectral efficiency with respect to C-NINT and R-EPA. Moreover,
C-HUN with SR has practically the same performance as PL, implying that the weights on
αui and αdj are not necessary for high values of µ.
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weights on αui and αdj . As noted earlier, there is a gain of approximately 17 % between
C-HUN and C-NINT at the 50-th percentile for SR weights on αui and αdj . Also, note that
C-NINT for SR is slightly outperformed by R-EPA, and for PL, C-NINT is as good as R-
EPA. This clearly shows that UE-to-UE interference needs to be taken into account if the
system wants to maximize sum spectral efficiency. Therefore, C-HUN improves the sum
spectral efficiency of the system by approximately 17 % in comparison with the benchmark
solution R-EPA. Overall, we notice that when µ is high, there is no need to use weights
on αui and αdj to improve the sum spectral efficiency or/and fairness of the system. In
addition, the UE-to-UE interference needs to be taken into account if the system also wants
to improve the sum spectral efficiency or/and fairness. Regardless of how the assignment
and power allocation are performed, if UE-to-UE interference is not taken into account, the
results are approximately as good as using random assignment and equal power allocation
among all users.
D.6 Conclusion
In this paper we investigated the multi-objective problem of balancing sum spectral
efficiency and fairness among users in FD cellular networks. Specifically, we scalarized
the problem to maximize the weighted sum spectral efficiency and the minimum spectral
efficiency of the users, where now we can tune the weights to move towards sum spectral
efficiency maximization or fairness. This problem was posed as a mixed integer nonlinear
optimization, and given its high complexity, we resorted to Lagrangian duality. However,
the solution of the dual problem was still prohibitive for networks with large number of
users. Thus, we used the observations and results of the dual problem to propose a low-
complexity centralized solution that can be implemented at the cellular base station. The
numerical results showed that our centralized solution improved the sum spectral efficiency
and fairness regardless of the weights on the sum spectral efficiencies of UL and DL users.
Furthermore, the UE-to-UE interference needs to be taken into account, because otherwise
irrespectively of how the assignment and power allocation are performed, the performance
in terms of sum spectral efficiency and fairness will be close to a random assignment and
equal power allocation among users.
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