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Abstract—The framework of network equivalence theory de-
veloped by Koetter et al. introduces a notion of channel emulation
to construct noiseless networks as upper/lower bounding models
for the original noisy network. This paper presents scalable upper
bounding models for wireless networks, by firstly extending the
“one-shot” bounding models developed by Calmon et al. and
then integrating them with network equivalence tools. A channel
decoupling method is proposed to decompose wireless networks
into decoupled multiple-access channels (MACs) and broadcast
channels (BCs). The main advantages of the proposed method is
its simplicity and the fact that it can be extended easily to large
networks with a complexity that grows linearly with the number
of nodes. It is demonstrated that the resulting upper bounds can
approach the capacity in some setups.

I. INTRODUCTION

A theory of network equivalence has been established in [1],

[2] by Koetter et al. to characterize the capacity of a large

memoryless noisy network: the original noisy network is first

decomposed into many independent single-hop noisy channels;

each of the single-hop noisy channels is then replaced by its

corresponding upper bounding model (resp. lower bounding

model) consisting of only noiseless bit-pipes; the capacity

of the resulting noiseless network serves as an upper (resp.

lower) bound for the capacity of the original noisy network.

A noisy channel N and a noiseless bit-pipe C are said to

be equivalent if the capacity region of any arbitrary network

that contains N remains unchanged after replacing N by

C. For independent single-hop multi-terminal channels, such

as the multiple-access channel (MAC), the broadcast channel

(BC), and the interference channel (IC), operational frame-

works for constructing upper and lower bounding models

have been proposed in [2], and explicit bounding models for

2-user MAC/BC/IC have been constructed in [2]–[4]. The

constructive proofs presented in [1], [2] are based on a notion

of channel emulation. The lower bounding models (denoted

by Cl⊆N ) are established by showing that any code that

runs reliably over the stacked network Cl (N parallel replicas

of Cl) can also run over N with similar error probability

using channel coding arguments. The upper bounding models

N⊆Cu are constructed based on lossy source coding argu-

ments over the stacked networks. A class of bounding models

proposed in [5] by Calmon et al. introduces an auxiliary node

for each BC/MAC such that the sum rate is characterized

by channel emulation over stacked networks as in [1], [2],

whilst all individual rates are characterized by emulating the

transmission over each channel use (hence named “one-shot”).

The bounds obtained by network equivalence tools can be

tight in some setups, as shown in [4] for a multiple unicast

network composed of 2-user BCs, and in [6] for a frequency-

division AWGN relay network in the wideband regime. How-

ever, it is non-trivial to apply the network equivalence tools to

bound the capacity of wireless networks owing to the broadcast

nature of radio transmission. On one hand, the bounding

models proposed in [2] for m-user MAC/BC contain (2m−1)
bit-pipes1, leading to computational inefficiency when m is

large. On the other hand, the received signal at a terminal

may contain several broadcasted signals, which creates de-

pendence among several transmitter-receiver pairs. Although

such dependence has been partially incorporated into ICs, the

whole family of multi-hop channels (e.g., relay channels) have

been excluded from consideration since the channel emulation

techniques are developed for single-hop channels.

In this paper, we present a simple but efficient method that

can construct upper bounding models for wireless networks,

at a complexity that grows linearly with the number of nodes.

The main advantage of our proposed bounding models are

their simplicity and the fact that they can be easily extended to

large networks. We demonstrate by examples that the resulting

upper bounds can be tight (approaching the capacity) in some

setups. Throughout this paper, we assume that the distortion

components (e.g., noise) are independent from desired signals.

We further assume that the distortion components within a

coupled BC are independent, though we still allow noise

correlation within a non-coupled BC.

There are other methods aiming at either emulating a noisy

channel or characterizing the capacity of wireless networks.

For point-to-point channels, the same upper bounding models

established in [1] have also been developed in [7] for discrete

memoryless channels with finite-alphabet, and in [8] under

the notion of strong coordination, where total variation (i.e.,

an additive gap) is used to measure the difference between

the desired and the empirical joint distributions of a pair

of sequences. The concept of channel emulation [1], [2], on

the other hand, focuses on the set of jointly typical input-

output pairs and the difference between the empirical joint

1For an m-user IC, the number of bit-pipes in [2] is up to m(2m−1).
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distribution (averaged over ensembles of channel emulators)

and the desired distribution is quantified by a multiplicative

gap to ensure a small probability of error events. As we focus

on characterizing capacity (bounds) rather than reconstructing

(exact) common randomness, we shall follow the network

equivalence framework [1], [2].

The rest of the paper is organized as follows. We extend

the one-shot bounding model to m-user MACs/BCs in Sec. II

and present the channel decoupling method in Sec. III. We

illustrate our upper bounding method in Sec. IV and conclude

in Sec. V. Omitted proofs can be found in [9].

II. BOUNDING MODELS FOR NON-COUPLED MACS/BCS

Given an MAC/BC with m transmitters/receivers, our upper

bounding model is represented by a length-(m+1) vector

Cu , (Rs, R1, . . . , Ri, . . . , Rm), (1)

where Ri is the rate constraint on transmitter/receiver i, and

Rs is the sum rate constraint. Constraints on subsets of users,

R(S) ,
∑

i∈S

Ri, S ⊂ {1, . . . ,m}, and |S| ≥ 2, (2)

are omitted, which results in a looser but simpler upper bound.

We choose the simple structure for its low complexity and the

fact that it facilitates channel decoupling in a natural way.

To simplify notation, for k = 1, . . . ,m, we represent a

collection of k random variables {X1, X2, . . . , Xk} by X[1:k]

and their corresponding realizations {x1, x2, . . . , xk} by x[1:k].

A. MACs with m Transmitters

For an m-user MAC (
∏m

i=1 Xi, p(y|x[1:m]),Y), two one-

shot bounding models have been developed in [5],

Cu,MAC,1 = (Rs=RMAC , Ri= log(|Xi|), ∀i), (3)

Cu,MAC,2 = (Rs= log(|Y|), Ri=max
p(x)

I(Xi;Zi), ∀i), (4)

where |X | is the cardinality of X and

RMAC = max
p(x[1:m])

I(X[1:m];Y ). (5)

Here Zi is the auxiliary random variable for Xi such that

p(y|x[1:m]) =
∑

y=f(z1,...,zm)

m
∏

i=1

p(zi|xi), (6)

where f :
∏Zi → Y is a predefined function to emulate the

channel output, and the summation is over all feasible z[1:m].

Note that the two one-shot models focus solely either on

the sum rate or on individual rates. We propose here a new

upper bounding model Cu,MAC,new(α), α ∈ [0, 1], as follows

Rs = max
p(v[1:m])

I(V[1:m];Y ), Ri = max
p(x)

I(Xi;Vi), (7)

where V[1:m] are auxiliary random variables with a probability

function p(y|v[1:m]) such that

p(y, v[1:m]|x[1:m]) = p(y|v[1:m])p(v[1:m]|x[1:m]), (8)

p(v[1:m]|x[1:m]) =
∏m

i=1 p(vi|xi), (9)

X1X1

X2X2

YY

I(X1;V1)

I(X2;V2)

I(V1, V2;Y ) log(|X1|)

log(|X2|)
I(X1, X2;Y |U)

I(X1;U)

Fig. 1. The general model Cu,MAC,new (left) and the model developed
in [2, Theorem 6] (right) for a 2-user MAC. The label on each bit-pipe is the
minimum rate of the corresponding bit-pipe for any given p(x1, x2).

and {p(vi|xi), ∀i} can be chosen to minimize
∑

iRi. The

parameter α ∈ [0, 1], which indicates how much “noisy effect”

has been incorporated into the sum rate constraints Rs, is

determined by p(y|v[1:m]).
Remark 1: Cu,MAC,new(α) provides a tradeoff between the

bounding accuracy on the sum rate and on each of individual

rates. It includes the two one-shot models as special cases:

setting α=1 (all distortion for Rs) will generate Cu,MAC,1,

which give us a tighter bound RMAC on the sum rate but

looser constraints on all individual rates; setting α=0 will

produce Cu,MAC,2, which leads to looser bound on the sum

rate but tighter bounds on individual rates.

1) 2-user MACs: For 2-user MACs, it is interesting to

compare two upper bounding models: Cu,MAC,new and the

model developed in [2, Theorem 6], as illustrated in Fig. 1.

On one hand, setting V1=X1 and V2=X2 in Cu,MAC,new

results in the same upper bounding model as in [2, Theorem 6]

when U=∅. On the other hand, if we choose V1=U and a

deterministic function f : U×V2 → Y such that y=f(u, v2)
and p(y, u, v2|x1, x2)=p(u|x1)p(v2|x2)p(y|x1, x2), we have

I(X1, X2;Y |U) = H(Y |U)−H(Y |X1, X2, U)

= H(V2|U)−H(V2|X2)

≤ H(V2)−H(V2|X2) (10)

= I(X2;V2) ≤ log(|X2|),
with equality in (10) if and only if X1, X2 (and thus U, V2)

are independent. Combined with the fact that

0 ≤ I(X1, X2;Y |U) ≤ log(|Y|) = I(U, V2;Y ), (11)

we can see that Cu,MAC,new has a tighter bound for user 1

but looser for user 2.

2) m-user Gaussian MAC: Given noise power σ2=1 at the

receiver and transmit power constraint γi for Xi, i=1, . . . ,m,

we construct the new upper bounding model Cu,MAC,new(α)
as follows. Let Zi, i = 0, . . . ,m, be independent Gaussian

random variable with zeros mean and variance αi>0 such that

α0 = α and
∑m

i=1 αi=1−α. By choosing Vi = Xi + Zi and

Y = V1 + . . .+ Vm + Z0, (12)

we can obtain from (7) that

Rs(α) =
1

2
log

(

1 +

(
∑m

i=1

√
γi
)2

+ 1− α

α

)

, (13)

Ri(α) =
1

2
log

(

1 +
γi
αi

)

, i = 1, . . . ,m. (14)
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One way to determine the noise partitioning parameters αi is

to solve the following optimization problem

min
α1,...,αm

∑m
i=1 log

(

1 + γi

αi

)

,

subject to
∑m

i=1 αi = 1− α,
αi > 0.

(15)

It is convex and by Lagrangian methods [10] we have,

α∗
i =

1

2
(
√

γi(γi + 4µ)− γi), i = 1, . . . ,m,

where µ satisfies

1

2

∑m
i=1

(

√

γi(γi + 4µ)− γi

)

= 1− α. (16)

Although solving this problem in closed-form is challeng-

ing, its upper and lower bounds can be determined as shown

by Lemma 1 below. Since the LHS of (16) is monotonously

increasing with respect to µ, it is simple to find µ numerically

by evaluating (16) within the region specified by Lemma 1.

Lemma 1: Given α ∈ [0, 1] and all γi > 0, we have

1− α

m
+

(1− α)2

m

1
∑

i γi
≤ µ ≤ 1− α

m
+

(1− α)2

m2

1

mini γi
,

where both equalities hold if and only if γ1 = . . . = γm.

From Lemma 2 below, we can see that the freedom of

adjusting α∈[0, 1] in the optimized noise partition (15) can

not improve the sum rate constraint

RMAC =
1

2
log
(

1 + (
∑m

i=1

√
γi)

2
)

. (17)

This is intuitive as RMAC is achievable when all the source

nodes can cooperate.

Lemma 2: Given all γi > 0, for any α ∈ [0, 1], we have

min{Rs(α),
∑m

i=1 Ri(α)} ≥ RMAC , (18)

with equality when α = 1.

B. BCs with m Receivers

For m-user BCs, a straightforward generalization from [5]

will give us the following upper bounding models,

Cu,BC,1 , (RBC , log(|Y1|), . . . , log(|Ym|)), (19)

Cu,BC,2 , (log(|X |), R1, . . . , Rm), (20)

RBC = max
p(x)

I(X ;Y[1:m]), Ri = max
p(x)

I(X ;Yi), (21)

where Cu,BC,2 is only valid for independent noise at receivers,

i.e., when the transition probability can be factorized as

p(y[1:m]|x) =
m
∏

i=1

p(yi|x).

Below we show step-by-step how to combine the point-to-

point channel emulation2 developed in [1] with the Covering

Lemma [11] and the Joint Typicality Lemma [11] to construct

a new and better upper bounding model. Let [l1, l2, . . . , lm]

2As previously mentioned, the channel emulation is done over a stacked
network which consists of N replicas of the original BC.

denote a permutation of the m receivers and [Y1, Y2, . . . , Ym]
be the corresponding channel outputs, we have

Cu,BC,new = (Rs, Rl1 , . . . , Rlk , . . . , Rlm), (22)

Rlk = max
p(x)

I(X ;Y[1:k]), Rs = max
p(x)

I(X ;Y[1:m]), (23)

where Rlk is the rate constraint to receiver lk and Rs is the

sum rate constraint.

Step I: Fix a channel input distribution pX(x). As defined

in [1], let Â
(N)
ǫ (X) be a subset of the “classical” typical

set T
(N)
ǫ (X) such that for any xN∈Â(N)

ǫ (X) as the input

to the BC, the probability that the corresponding output

sequences {yN1 , yN2 , . . . , yNm} are not jointly typical with xN

is smaller than a predefined threshold3. Furthermore, let

pY[1:k]
(y[1:k]), k=1, . . . ,m, be marginal distributions obtained

from p(x, y[1:m]) = p(y[1:m]|x)pX(x), and define a series of

conditional distributions as follows

p(yk+1|y[1:k]),
{

0, pY[1:k]
(y[1:k])=0,

pY[1:k+1]
(y[1:k+1])

pY[1:k]
(y[1:k])

, otherwise.
(24)

Step II: Generate independently at random 2NR′

1 sequences

{yN1 (w1) : w1=1, . . . , 2NR′

1}, each according to
∏

i pY1(y1,i).

For any sequence xN∈Â(N)
ǫ (X), by the Covering Lemma,

lim
N→∞

Pr
(

∃w1∈[1 : 2NR′

1 ] s.t. (xN , yN1 (w1)) ∈ T (N)
ǫ1

)

= 1,

if R′
1 > I(X ;Y1)+δ1(ǫ1) for some ǫ1 > ǫ > 0 and δ1(ǫ1) > 0

that goes to zero as ǫ1 → 0. Following the channel emulation

argument [1], we define a mapping function α1(x
N ) as

α1(x
N ) =

{

w1, if ∃w1 s.t. (xN , yN1 (w1)) ∈ T
(N)
ǫ1 (XY1),

1, otherwise.

If there is more than one sequence that is jointly typical with

xN , then α1(x
N ) chooses one of them uniformly at random.

Step III: For each sequence yN1 (w1), generate indepen-

dently 2NR′

2 sequences {yN2 (w1, w2) : w2=1, . . . , 2NR′

2},

each according to
∏

i p(y2,i|y1,i(w1)), where p(y2|y1) is de-

fined in (24). Given w1 = α1(x
N ) which implies

Pr
(

(xN , yN1 (w1)) ∈ T (N)
ǫ1

(XY1)
)

→ 1 as N → ∞, (25)

and according to the Joint Typicality Lemma, for all w2 ∈ [1 :
2NR′

2 ], we have

Pr((xN , yN1 (w1), y
N
2 (w1, w2)) ∈ T (N)

ǫ2
(XY1Y2))

≥ 2−N(I(X;Y2|Y1)+δ2(ǫ2)), (26)

for ǫ2 > ǫ1 and some δ2(ǫ2) > 0 that goes to zeros as ǫ2 → 0.

For w2 ∈ [1 : 2NR′

2 ], define an event ET (w2) as follows

ET (w2) , (xN , yN1 (w1), y
N
2 (w1, w2)) ∈ T (N)

ǫ2
(XY1Y2),

then we have

Pr
(

∃w2 s.t. ET (w2)
)

≥ 2N(R′

2−I(X;Y2|Y1)−δ2(ǫ2)), (27)

which goes to 1 as N → ∞ if R′
2 > I(X ;Y2|Y1) + δ2(ǫ2).

3Typical sequences with larger decoding error probability are expurgated.

2014 IEEE International Symposium on Information Theory

243



We also define a mapping function α2(x
N , w1) such that

α2(x
N , w1) =

{

w2, if ∃w2 s.t. ET (w2),
1, otherwise.

(28)

If there is more than one candidate satisfying the joint typical-

ity condition, α2(·) chooses one of them uniformly at random.

Step IV: For k=3, . . . ,m, we treat the set of se-

quences {yN1 (w1), . . . , y
N
k−1(wk−1)} as one unit and re-

peat Step III, which generates the corresponding sequences

{yNk (w[1:k−1], wk) : wk=1, . . . , 2NR′

k}, the mapping function

αk(x
N , w[1:k−1]), and the rate constraint

R′
k > I(X ;Yk|Y[1:k−1]) + δk(ǫk), (29)

where ǫk > ǫk−1, and δk(ǫk) > 0 that goes to zeros as ǫk → 0.

Step V: Define a channel emulator with codebook

{yNk (w1, . . . , wk) : k=1, . . . ,m,wk=1, . . . , 2R
′

k}, (30)

an encoder α(xN )=[α1(·), . . . , αm(·)], and a decoder

α−1
k (w[1:k]) for receiver lk, k=1, . . . ,m. For any input xN ,

α(xN ) generates a sequence (w1, w2, . . . , wm) of N
∑m

i=1 R
′
i

bits that are transmitted to the auxiliary node nI , which then

forwards (w1, . . . , wk) (of N
∑k

i=1 R
′
i bits) to receiver lk.

At receiver lk, the decoding function α−1
k (w[1:k]) selects a

sequence from the codebook {yNk } based on the received

information bits, i.e.,

α−1
k (w1, . . . , wk) = yNk (w1, . . . , wk).

Note that the rate constraints in (29) should be satisfied for

k=1, . . . ,m, and for all pX(x). Let N → ∞ and ǫm → 04,

the upper bounding model (22) can be characterized by

Rlk =

k
∑

i=1

R′
i = max

p(x)
I(X ;Y[1:k]), k=1, . . . ,m, (31)

Rs = Rlm = max
p(x)

I(X ;Y[1:m]). (32)

The second equality in (31) comes from the fact that

I(X ;Y[1:k])=I(X ;Y1)+I(X ;Y2|Y1)+ . . .+I(X ;Yk|Y[1:k−1]),

and the first equality in (32) comes from Step V.

Compared to the upper bounding model Cu,BC,1 specified

in (19), the new model Cu,BC,new maintains the tight sum rate

constraint RBC as specified in (21) and meanwhile improves

all the individual rate constraints.

Remark 2: There are in total m! different permutations of

l1, . . . , lm, each leading to a different upper bounding model

following our construction method. For each of these upper

bounding models, the sum rate constraint and one of the

individual rate constraints are tight. Depending on the needs,

we can select a specific permutation in our design.

Remark 3: For BC with m=2 receivers, the proposed up-

per bounding model has two different layouts Cu,BC,a =
(RBC , R1, RBC) and Cu,BC,b=(RBC , RBC , R2), where the

latter turns out to be equivalent to the model in [2, Theorem 5].

This is not surprising as the channel emulation codebook used

4As 0<ǫ<ǫ1< . . . <ǫm, letting ǫm→0 implies that all of them go to zero.

in our construction is generated in the same way as in [2]:

superposition encoding. The proof in [2] is restricted for BC

with m=2 receivers but provides an explicit error analysis. In

contrast, our construction is valid for any m but only claims

that the error probability can be made arbitrarily small. As

a result, a discretization procedure [11] is necessary when

extending our results from finite-alphabet channels to more

general (e.g., Gaussian) channels5.

III. CHANNEL DECOUPLING FOR COUPLED NETWORKS

If a wireless connection between two nodes is part of both

a BC and a MAC (i.e., the BC and the MAC are coupled), we

can always identify an independent multiple-input multiple-

output sub-network (
∏n

l=1 Xl, p(y[1:m]|x[1:n]),
∏m

k=1 Yk) that

contains the coupled BC/MAC. This sub-network should be

the smallest in size in the sense that it does not contain

any independent channels. That is, for any non-trivial com-

plementary subsets (S, Sc) and (D,Dc) of {1, . . . , n} and

{1, . . . ,m}, respectively,

p(y[1:m]|x[1:n]) 6= p(y[D]|x[S])p(y[Dc]|x[Sc]). (33)

We then partition the original network into decoupled BCs and

MACs, whose transaction functions are constructed based on

p(y[1:m]|x[1:n]) as follows.

For the decoupled MAC X[S]→Yj the marginal distribution

p(yj |x[1:n]), more precisely p(yj |x[S]), preserves the possibil-

ity of source cooperation (allowing all possible p(x) as in

the original network). Therefore we choose it to describe the

decoupled MAC with received signal Yj and then construct the

upper bounding model following the techniques developed in

Sec. II-A. Note that we still have a valid upper bound by

considering individually each of the decoupled MACs, since

I(X[1:n];Y[1:m]) = h(Y[1:m])− h(Y[1:m]|X[1:n])

= h(Y[1:m])−
∑k

l=1 h(Y[Dl]|X[1:n])

≤ ∑k
l=1 h(Y[Dl])− h(Y[Dl]|X[1:n])

=
∑k

l=1 I(X[1:n];Y[Dl]),

where the inequality is due to the correlation among Y[1:m],

and the second equality comes from the assumption that

distortion components in coupled BCs are independent, i.e.,

the exists a set partition D1, . . . , Dk of {Y[1:m]} such that

p(y[1:m]|x[1:n]) =

k
∏

l=1

p(y[Dl]|x[1:n]).

For decoupled BCs, we introduce a group of axillary random

vectors Zi,[Zi,1, . . . , Zi,m], i=1, . . . , n, and a predefined

function y=g(z1, . . . , zn), where y,[y1, . . . , ym], such that

p(y[1:m]|x[1:n]) =
∑

y=g(z1,...,zn)

n
∏

i=1

p(zi|xi), (34)

5As described in [11, Chp. 3.4.1], the transition function of a continuous-
alphabet channel should be “well-behaved” to facilitate the discretization and
quantization procedure. We shall not mention this explicitly in the subsequent
sections when applying our results to Gaussian channels.
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where zi is the corresponding “output” vector if Xi = xi

were the only input signal. We then construct upper bounding

models for the decoupled BC based on the transition prob-

ability p(zi|xi). Given y=g(z1, . . . , zn), and the fact that

Xi −Xj −Zj forms a Markov chain for all i 6= j, we have

I(X[1:n];Y[1:m]) ≤ I(X[1:n];Z1, . . . ,Zn) (35)

= h(Z1, . . . ,Zn)−
∑n

i=1 h(Zi|Xi) (36)

≤ ∑n
i=1 h(Zi)−

∑n
i=1 h(Zi|Xi) (37)

=
∑n

i=1 I(Xi;Zi), (38)

where the equality in (36) comes from (34). Hence focusing

on each individual decoupled BC still gives us a valid upper

bound on the original coupled network.

IV. ILLUSTRATIVE EXAMPLE

In Fig. 2(a) we focus on a layered multiple-unicast noisy

network where n source-destination pairs are assisted by n
intermediate relaying nodes. It is a modified version of [4,

Fig. 3]6 by replacing the orthogonal transmissions to the

relaying nodes with MACs to formulate a coupled network.

Assuming all transmission channels are identical, the channel

in red color is the bottleneck. If all channels are Gaussian

with link SNR γ, we can construct an upper bounding model

as shown in Fig. 2(b) by first performing channel decoupling

as described in Sec. III, and then substituting the upper

bounding models developed in Sec. II to replace BCs at

source nodes by Cu,BC,a = (Rb, R,Rb), BCs at intermediate

relaying nodes by Cu,BC,b = (Rb, Rb, R), and MACs by

Cu,MAC,new(α) = (Rs, R
′, R′), where

R =
1

2
log (1 + γ) , Rb =

1

2
log (1 + 3γ) , (39)

R′ =
1

2
log (1 + γ/(1−α)/2) , (40)

Rs =
1

2
log (1 + (4γ + 1−α)/α) . (41)

Note that although the value of Rs and Rc in Fig. 2(b) may

change by varying α ∈ [0, 1], the red-color link of capacity

R is always the bottleneck, and therefore the sum rate of all

the parallel unicasts is upper bounded by R. This is actually

the capacity as each source node can successfully transmit B
packets at rate R over (Bn+1) transmission blocks (see [9]),

which leads to a sum rate

nBR

Bn+ 1
=

nR

n+ 1/B
→ R, when B → ∞.

It worth noting that the cut-set bound of this network is nR,

which can be arbitrarily larger than R as n goes unbounded.

V. SUMMARY

In this work we have extended the upper bounding models

for two-user MACs/BCs to many-user scenarios and proposed

a channel decoupling method to decompose the coupled net-

work into decoupled BCs/MACs. We have demonstrated that

6The network of [4, Fig. 3] is obtained from the multiple-unicast network
in [12, Fig. 1] which consists of point-to-point bit-pipes only.

W1 W2 Wn

Ŵ1 Ŵ2 Ŵn

Wn−1

Ŵn−1

(a) multiple unicast over a coupled noisy network

W1 W2 Wn

Ŵ1 Ŵ2 Ŵn

Wn−1

Ŵn−1

R

R

R

RR

RR

R
RsRsRs RbRb Rb

RbRb Rb

RcRc

Rc

Rc

RcRc

(b) upper bounding model with Rc = max{Rb, R
′}.

Fig. 2. Multiple unicast transmission over a coupled noisy network (a) and
its upper bounding model (b). All channels are Gaussian with identical link
SNR γ, and the channel in red color is the bottleneck.

the resulting upper bounds can approach capacity in some

setups. The proposed methods for constructing upper bounding

models, simple and computationally efficient, can be easily ex-

tended to large networks. Combined with the lower bounding

models [9], they provide additional tools for characterizing the

capacity region of general wireless networks.
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