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Abstract—Motivated by the framework of network equivalence
theory [1], [2], we present capacity lower bounding models for
wireless networks by construction of noiseless networks which
can be used to calculate an inner bound for the corresponding
wireless network. We first extend the “one-shot” lower bounding
model [6] to many-user scenarios, and then propose a two-step
update of the one-shot models to incorporate the broadcast nature
of wireless transmission. The main advantage of the proposed
lower bounding method is its simplicity and the fact that it can be
easily extended to larger networks. We demonstrate by examples
that the resulting lower bounds can even approach the capacity
in some setups.

I. INTRODUCTION

In [1] a new theory of network equivalence established

the equivalence of a point-to-point noisy channel and a

noiseless point-to-point bit-pipe as long as the throughput of

the latter equals the capacity of the former. For independent

multi-terminal networks, such as the multiple-access channel

(MAC), the broadcast channel (BC), and the interference

channel (IC), with two sources and/or two destinations, both

upper and lower bounding models were proposed in [2]–[4].

The bounding accuracy was investigated in [2] in terms of both

multiplicative and additive gaps between the upper and lower

bounds for general noisy networks containing a collection of

independent channels. In [3] the additive gap for Gaussian

networks and the multiplicative gap for binary networks were

specified for the cases when such noisy networks are only

composed of point-to-point and two-user MAC/BC channels.

The bounds obtained from network equivalence tools [2]–[4]

can be tight in some setups [4, Lemma 3.2]. By applying the

bounding models for the point-to-point channel [1] and the

two-user BC [2], [4] to a frequency-division AWGN relay

network, the capacity region was fully characterized in [5]

in the wideband (i.e., low SNR) regime if the BC originating

from the source node is physically degraded, or if the source

treats the stochastically degraded BC as physically degraded.

A class of one-shot bounding models were proposed in [6]

for the general MAC and for two-user BC with independent

noise, where channel emulation is done for each time instance.

The approach is hence called “one-shot” in contrast to [1],

[2] where channel emulation is done over infinite number of

channel uses based on a lossy source coding argument for

upper bounding models and a channel coding argument for

lower bounding models. As illustrated in Fig. 1 for the m-

user MAC and the two-user BC with independent noise, the
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Fig. 1. The one-shot bounding models developed in [6] for m-user MAC
and two-user BC. The white nodes indicated by nI are auxiliary operation
nodes, and all the channels li are noiseless point-to-point bit-pipes.

one-shot bounding model introduces auxiliary operation nodes

nI to specify the rate constraints on the sum rate via bit-pipe ls
and on each of the individual rates via bit-pipe li, and therefore

can be represented by a rate vector (Rls , Rl1 , Rl2 , · · · ). A

layering approach with a global information flow routing tech-

nique was proposed in [7] for non-coupled wireless networks1,

and this approach was proven to be approximately optimal in

the sense that the resulting capacity lower bounds are within

a multiplicative gap from the cut-set bound.

In this paper we provide a systematic scheme to construct

capacity lower bounding models for general wireless net-

works, where the dependence between coupled BC and MAC

components is handled by a two-step update procedure. As

demonstrated by examples, the resulting inner bounds can

approach capacity in some setups. Note that in this paper we

focus on constructing noiseless bounding networks that can

serve as the basis to compute capacity inner bounds, rather

than finding the capacity of a noiseless network which itself is

a very difficult problem [8], [9]. Our results on upper bounding

models can be found in [10].

The rest of the paper is organized as follows. We first extend

the one-shot lower bounding model to the m-user MAC and

BC in Sec. II and then use them to construct lower bounding

models for non-coupled networks in Sec. III. In Sec. IV we

present the two-step update method for coupled networks and

conclude this paper in Sec. V.

II. m-USER ONE-SHOT LOWER BOUNDING MODELS

The lower bounding model for the 2-user MAC in [6] can

be extended straightforwardly to the m-user MAC by choosing

an operating point in the capacity region of the MAC assuming

independent sources. We choose the point that can be achieved

1A network is said to be coupled if any of its point-to-point connections is
part of a MAC and a BC simultaneously. Otherwise it is non-coupled.



TABLE I
RATE CONSTRAINTS IN THE LOWER BOUNDING MODEL FOR

NON-DEGRADED BROADCAST CHANNELS WITH m RECEIVERS.

Rate Ri, i = 1 2 3 · · · 2
m − 1

i : {0, 1}m 0..001 0..010 0..011 · · · 1..111

{Dn}, n = 1 2 2, 1 · · · m, . . ., 3, 2, 1

by successive decoding, from the strongest received signal to

the weakest.

The lower bounding model for the 2-user BC in [6] only

considers private messages to each receiver. For the m-user

BC, each of these private messages dedicated for one specific

receiver may also be decoded by another receiver due to the

broadcast nature of wireless transmission, and such overheard

messages can be useful when this m-user BC is part of a larger

network. We therefore introduce a rate vector of length 2m,

R = [Ri : i = 0, 1, . . . , 2m−1], (1)

to represent the lower bounding model for the m-user BC.

As illustrated in Table I, Ri is the rate constraint to ensure

simultaneously successful decoding of the multicast (or unicast

if i=2n−1, n=1, . . . ,m) message by a subset of receivers.

The intended receivers are given by the locations of ‘1’ in

the length-m binary expression of the index i. For example,

R3 is the constraint for the multicast rate to receivers D2

and D1, and R2m−1 is the constraint for multicast rate to all

receivers. Note that (1) contains both point-to-point bit-pipes

(carrying unicast messages) and point-to-points bit-pipes (i.e.,

hyper-arcs carrying multicast messages). The constraint on the

sum rate, represented by R0, is defined as the sum of all the

individual rate constraints, i.e., R0 ,
∑2

m−1

i=1
Ri.

For non-degraded channels, the rate vector R can contain at

most 2m non-zero entries in the worst case scenario. However,

for statistically degraded m-user BCs (e.g., scalar Gaussian

BCs), the number of non-zero entries in R can be limited

to at most m+1 by creating a physically degraded channel

via proper coding schemes2. We illustrate this by a m-user

Gaussian BC.

A. Example: Gaussian BC with m Receivers

Consider a Gaussian BC (X , p(y|x),
∏m

i=1
Yi) where Yi is

the output signal at receiver Di with received SNR γi (the

noise power is assumed to be 1 throughout this paper). Without

loss of generality, assuming γ1≤γ2≤ · · · ≤γm, we divide the

total information into m distinct messages {Wi, i=1, . . . ,m}.

By superposition coding of Wi with power allocation pa-

rameter βi∈[0, 1],
∑m

i=1
βi=1 at the source and successive

interference cancellation at each receiver, successful decoding

of Wi can be realized at a set of receivers {Dn, n=i, . . . ,m}
at multicast/unicast rate

R2m−2i−1 < C

(

βiγi

1 + γi
∑m

j=i+1
βj

)

, (2)

2Although such coding strategy is not optimal in general for stochastically
degraded BCs, the rate loss will vanish in low SNR regime [5] if the source
treats the channel as if it were physically degraded.

where C(x) , 1

2
log(1+x). For example, successful decoding

of W1 can be realized at all receivers with a multicast rate of

R2m−1, and successful decoding of Wm can only be realized

at receiver Dm with a unicast rate of R2m−1 . The resulting

rate vector is therefore

R = [R0, R2m−2i−1 : i = 1, . . . ,m], (3)

where the sum rate constraint R0 is

R0 =

m
∑

i=1

R2m−2i−1 =

m
∑

i=1

1

2
log

(

1 + γi
∑m

j=i βj

1 + γi
∑m

j=i+1
βj

)

=
1

2
log(1 + γ1) +

1

2

m
∑

i=2

log

(

1 + γi
∑m

j=i βj

1 + γi−1

∑m
j=i βj

)

.

The last equality comes from the fact that
∑m

i=1
βi = 1.

Since γi−1≤γi, the function f(x) , 1+xγi

1+xγi−1

is monotonically

increasing on x ∈ [0, 1], with its maximum 1+γi

1+γi−1

achieved

when x=1. It is straightforward to show

R0 ≤ C(γm),

where the equality is achieved when βm=1 (i.e, βi=0 for all

i 6=m). On the other hand, the sum-rate is upper bounded by

RBC =
1

2
log

(

1 +

m
∑

i=1

γi

)

,

which can be achieved only if full cooperation among all

receivers is possible. The gap between the upper and the lower

bounds on the sum rate, measured in bits per channel use, is

∆BC =
1

2
log

(

1 +
∑m

i=1
γi

1 + γm

)

<
1

2
log(m), (4)

where the inequality comes from the assumption γi ≤ γm
for all i. Hence, for the m-user Gaussian BC with receivers

in isolation, feedback and receiver cooperation can increase

the sum capacity by at most 1

2
log(m) bits. The gap becomes

considerably smaller at low SNR or when the SNR for each

link diverges. For example, with γ1=1, γ2=2, γ3=100 (e.g, 0,

3, 20dB, respectively), the gap

∆BC =
1

2
log

(

1 + 1 + 2 + 100

1 + 100

)

≈ 0.02,

is much smaller than 1

2
log(3) ≈ 0.79.

III. BOUNDING MODELS FOR NON-COUPLED NETWORKS

We illustrate the bounding procedure by a non-coupled

noisy network N shown in Fig. 2, where the source node S1

multicasts the message W1 at rate R1 to the destinations D1

and D3, and S2 multicasts W2 at rate R2 to the destinations D2

and D3, with the aid of a full-duplex relay R. The point-to-

point connections S1-D1 and S2-D2 are independent binary

symmetric channels with crossover probability ǫ1 and ǫ2,

respectively. The MAC ending at R and the BC originating

from R are Gaussian channels with effective link SNR γir
and γrj , i=1, 2, j=1, 2, 3, respectively, and the relative order

will determine the structure of the lower bounding model.
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Fig. 2. A non-coupled noisy network N (left) with independent binary symmetric channels, a 2-user MAC and a 3-user BC, and one example of its lower
bounding networks (right) consisting of noiseless point-to-point and point-to-points bit-pipes (carrying multicast messages at rate R′

6
and R′

7
, respectively).

By [1], the point-to-point connection S1-D1 (resp. S2-D2)

can be replaced by a noiseless bit-pipe with throughput equal

to its capacity 1−H(ǫ1) (resp. 1−H(ǫ2)), without affecting

the capacity of the original network. For the MAC with link

SNRs γ1r and γ2r, the lower bounding model is given by

Cl,MAC = (R′
ds
, R′

d1
, R′

d2
),

where

R′
ds

= C(γ1r + γ2r),

R′
d1

=

{

C(γ1r), γ1r ≥ γ2r,

R′
ds

− C(γ2r), γ1r < γ2r,

R′
d2

= R′
ds

−R′
d1
.

The lower bounding model for the BC can be constructed

according to (3) based on the realization of the channel SNRs

γrj , j = 1, 2, 3. Assuming we have γr1 ≤ γr2 ≤ γr3, the

corresponding lower bounding can be written as

Cl,BC = [R′
0, R

′
4, R

′
6, R

′
7], (5)

where

R′
7 = C

(

γr1β1

1 + γr1(1− β1)

)

,

R′
6 = C

(

γr2β2

1 + γr2(1− β1 − β2)

)

,

R′
4 = C (γr3(1− β1 − β2)) ,

R′
0 = R′

4 +R′
6 +R′

7,

with β1, β2 ≥ 0, β1 + β2 ≤ 1 as power allocation parameters

for superposition encoding at R. As explained in Sec. II, R′
7

represents the multicast rate to all the destination nodes, R′
6

represents the multicast rate to destinations D2 and D3, and R′
4

represents the unicast rate to D3. Note that the lower bounding

model in (5) will be different when the order of channel SNRs

changes. The resulting lower bounding network Cl is shown in

Fig. 2, where the redundant bit-pipe constraint R′
0 is removed

(therefore the auxiliary node for the BC is merged into R).

Given each valid realization of (β1, β2), there is a valid

lower bounding network Cl(β1, β2) for the original network N,

and the corresponding achievable rate region can be described

by the pentagon

Cl(β1, β2)=







0 ≤ R1≤ min{1−H(ǫ1) +R′
7, R′

d1
},

0 ≤ R2≤ min{1−H(ǫ2) +R′
6, R′

d2
},

R1+R2≤ min{R′
4+R′

6+R′
7, R′

ds
}.

(6)

0 0.2 0.4 0.6 0.8 1 1.2 1.4
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

R
1

R
2

 

 
Outer bound

Inner bound

Fig. 3. The capacity inner bound for the noisy network N obtained from its
lower bounding network Cl, with ǫ1 = 0.02, ǫ2 = 0.04, γ1r = 3, γ2r = 4,
γr1 = 1, γr2 = 2, and γr3 = 8. The outer bound is obtained from its upper
bounding network Cu developed in [10].

We then take the union of all achievable rate regions to find

the final capacity inner bound

Cl(R1, R2) =
⋃

β1,β2≥0, β1+β2≤1

Cl(β1, β2).

As shown in Fig. 3, we have compared the capacity in-

ner bound Cl(R1, R2) obtained from the noiseless bounding

networks Cl and the outer bound developed in [10], for the

original noisy network N with ǫ1 = 0.02, ǫ2 = 0.04, γ1r = 3,

γ2r = 4, γr1 = 1, γr2 = 2, and γr3 = 8. The gap between the

inner and the outer bound is within 0.1 bits on the sum rate,

and within 0.4 bits on individual rates.

IV. BOUNDING MODELS FOR COUPLED NETWORKS

The lower bounding model designed for non-coupled net-

works assumes isolated source/destination nodes, which is

not the case in wireless networks. A transmit signal can

be designed for multiple destinations (as in BC) and the

received signal may consist of signals from several source

nodes (as in MAC) and thus interfere with each other. When

a noisy connection between two nodes is part of both a BC

and a MAC, the bounding models have to be updated. We

demonstrate how the update is done step by step as follows.

Note that the proposed method will ensure a valid lower

bounding network, without claiming its optimality.



A. Inner Bounds with Updated Lower Bounding Models

Step I: Network Decomposition

Given a noisy network, we first identify all the broadcast

and multiple-access channels. For each m-user BC, we in-

troduce an auxiliary node with one input channel connected

to the transmitter, and m output channels each connected to a

receiver. For each n-user MAC, we introduce an auxiliary node

with n input channels each connected to a transmitter, and one

output channel connected to the receiver. If a node is both the

receiver of a MAC and the transmitter of a BC, we introduce

two auxiliary nodes, one for the receiving functionality and

one for the transmitting functionality.

Step II: Apply Lower Bounding Models for point-to-

point, BC, and Non-coupled MAC Channels

We replace each point-to-point channel with a bit-pipe of

the same capacity. Each BC and each non-coupled MAC, i.e.,

a MAC where none of its input signals is part of the output

of a BC, is replaced with the corresponding lower bounding

models as described in Sec. II.

Step III: Construct Lower Bounds for Coupled MAC

If (some of) the input signals to a MAC are the output

signals from BCs, part of the received signals cannot be

decoded and therefore behaves as interference. The original

lower bounding models for non-coupled MAC, which assumes

that all input signals can be decoded, need to be updated

based on the sum power of the interfering signals. This can be

calculated by taking into account the signal structure of each

input source node. We illustrate this procedure by a coupled

m-user Gaussian MAC.

Example: Gaussian MAC with m Transmitters

Consider a Gaussian MAC N = (
∏m

i=1
Xi, p(y|x),Y),

where Xi is an input signal with SNR γi. If Xi can only be

observed by the receiver in channel N, all the components

of Xi can be fully decoded by the receiver. If Xi is the

transmitted signal from a broadcasting source node, it may

contain components that are not intended to be decoded by the

receiver owing to rate and power allocation at the broadcast

node, as described in Sec. II. The component of Xi that cannot

be decoded by the receiver behaves as interference during

the decoding process. We denote the power of the interfering

component by Γi, and the exact value can be obtained from the

power allocation parameters chosen by the corresponding BC

that transmits Xi. We have Γi = 0 if all messages contained

in Xi are intended for successful decoding, and Γi = γi if

nothing is to be decoded. After careful examination of the

structure of all the input signals, we can calculate the total

power of interfering components contained in Y as follows

PI =

m
∑

i=1

Γi, (7)

out of which

PI,i = PI − Γi =
∑

j 6=i

Γj (8)

is the amount of interference power introduced by input signals

other than Xi. We call PI,i the “extrinsic interference” of Xi.

We can now construct the lower bounding model for the

MAC N based on the effective SNR, which is defined as

γ̂i =
γi − Γi

1 + PI

, i = 1, ...,m. (9)

Step IV: Rate Adjustment for Coupled BCs

For i=1, . . . ,m, let a noisy connection X-Yi be part both

of a m-user BC transmitting X and a MAC whose received

signal is Yi, and denote the corresponding link SNR by γi.

After Step III, we can obtain from (8) the extrinsic interference

power PI,i, caused by input signals other than X in the

coupled MAC with output Yi. Without loss of generality,

assuming γ1≤ . . .≤γm, the rate constraints R′
2m−2i−1 defined

in (2) should be adjusted by taking into account the extrinsic

interference power PI,k for all k ∈ Si , {i, . . . ,m}, i.e.,

R′
2m−2i−1 = min

k∈Si

C

(

γkβi

1 + PI,k + γk
∑m

j=i+1
βj

)

. (10)

The sum rate constraint is adjusted accordingly. Note that the

minimum operation in (10) comes from the fact that given

γi ≤ . . . ≤ γm we cannot guarantee

γi

1 + PI,i

≤ . . . ≤
γm

1 + PI,m

.

Here we simply keep the structure of the original lower

bounding model unchanged without claiming its optimality.

Step V: Construct an Inner Bound for the Resulting

Noiseless Network

The resulting lower bounding network consists of only

noiseless bit-pipes, but it may contain hyper-arcs (point-to-

points bit-pipe) that carry the same data from one point to

multiple points if the original noisy network has broadcast

channels. The problem of finding the optimal scheme to

manage the data flows over such noiseless networks is in

general open. However, there exist many heuristic (and thus

suboptimal in general) methods, see [11] for example, for

constructing a valid inner bound.

Step VI: Take the Union of all Valid Inner Bounds

When superposition coding is used in constructing the lower

bounding model for a BC, there are an infinite3 number of

lower bounding models due to the power allocation parame-

ters. We can construct a valid lower bound for each of these

bounding models and then take the union of all valid lower

bounds to form the final inner bound.

B. Illustrative Example: Multiple Multicast Relay Networks

We illustrate the performance of our lower bounding meth-

ods based on a generic4 wireless multicast relay network

shown in Fig. 4, where two source nodes S1 and S2, connected

with a two-way backhaul (of rate C12 and C21), multicast the

message W1 at rate R1 and W2 at rate R2, respectively, to

both destinations D1 and D2 through Gaussian channels, with

an aid from a full-duplex relay node R.

3In practice we have a finite number of power allocation parameters, which
may result in a slightly looser inner bound.

4By setting some parameters to zero, it covers many interesting networks.
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Fig. 5. Capacity bounds on sum rate for high-rate backhaul scenario without
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In Fig. 5 we focus on the high-rate backhaul scenarios and

investigate the sum rate as a function of the relay-destination

channel quality without cross-links (i.e.,γ12 = γ21 = 0).

Our lower bounding methods discard any possibility of source

cooperation and therefore suffers some performance degrada-

tion (less than 0.4 bits from the capacity upper bound [12])

in low and medium SNR regions. In the high SNR region

where the network is limited by channel quality rather than

source cooperation, our equivalence lower bound can approach

the capacity (within 0.1 bits). The achievable rates obtained

by the partial-decode-and-forward (pDF+LNC) scheme [12]

and by the short-message noisy network coding (SNNC) with

message exchange scheme [13] are plotted as references.

In a low-rate backhaul scenario shown in Fig. 6, the capacity

inner bound obtained from our lower bounding networks is

“tight” in the sense that its gap from a genie-aided capacity

outer bound developed in [12] is within 0.2 bits on individual

rates and vanishes on sum rate. Interestingly, in this setup

the equivalence inner bound outperforms the inner bounds

obtained by pDF+LNC [12] and by SNNC [13].

V. SUMMARY

In this work we have presented capacity lower bounding

models for wireless networks. We have extended the bounding

models for the two-user BC to many-user scenarios and

established the gap on the sum rate between the upper and

lower bounding models. We have proposed a two-step update

method to construct lower bounds for coupled networks. It has

been shown in [5] that network equivalence tools can provide
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Fig. 6. Achievable rate regions in a low-rate backhaul scenario where the
equivalence inner bound approaches the capacity region.

tight upper bound for some network setups. Interestingly,

we have demonstrated by examples that network equivalence

lower bounds can also approach capacity. The proposed lower

bounding method, simple and computationally efficient, can

be easily extended to larger networks. It therefore provides an

additional powerful tool for characterizing the capacity region

of general wireless networks.
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