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Abstract—We investigate the capacity bounds for a wireless
multicast relay network where two sources simultaneously mul-
ticast to two destinations through Gaussian channels with the
help of a full-duplex relay node. All the individual channel gains
are assumed to be time-invariant and known to every nodes in the
network. The transmissions from two sources and from the relay
use the same channel resource (i.e. co-channel transmission) and
the two source nodes are connected with an orthogonal error-free
backhaul. This multicast relay network is generic in the sense
that it can be extended to more general networks by tuning the
channel gains within the range [0,∞). By extending the proof of
the converse developed by Cover and El Gamal for the Gaussian
relay channel, we characterize the cut-set bound for this multicast
relay network. We also present a lower bound by using decoding-
and-forward relaying combined with network beam-forming.

I. INTRODUCTION

As shown in Fig. 1, we consider a relay-aided two-source

two-destination multiple multicast network where two source

nodes S1 and S2 multicast their individual message W1 at

rate R1 and W2 at rate R2, respectively, to both destinations

D1 and D2, with the help of a relay R. Two source nodes

can cooperate with each other through an orthogonal error-free

backhaul with capacity Cb. The relay forwards the information

it receives in previous time slot to both destinations. The

transmissions from S1, S2, and R use the same channel

resource (i.e. co-channel transmission) and mix up at all the

receiving terminals with independent Gaussian noise. The

individual channel gains gij≥0, i, j = 1, 2, r are assumed to be

time-invariant and known to every nodes in this network. The

model in Fig. 1 is generic since it covers a class of networks

by tuning the channel gains gij within the range [0,∞).
Such a system is interesting since it arises, for example, in a

wireless cellular downlink where two base stations multicast

multimedia information to two mobile terminals, one in each

cell, with the help of a dedicated relay deployed at the

common cell boundary. Since the base stations are connected

through the (fiber or microwave) backhaul, various cooperative

strategies can be used to boost the throughput.

The full understanding of such systems, even for the original

three-node relay network, is not ready yet. Since 1970s,

numerous research efforts have been casted on the relay

networks. Capacity bounds for three-node relaying networks

(source-relay-sink, or two cooperative sources and one sink)

have been studied in [1], [2], where the capacity regions for

degraded or reversely degraded scenarios are characterized.

Coding schemes have been investigated for multiple-access
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Fig. 1. Two source nodes S1 and S2, connected with backhaul, multicast
information W1 at rate R1 and W2 at rate R2 respectively to both destinations
D1 and D2 through Gaussian channels, with aid from a full-duplex relay R.

relay channels (MARC) [3], [4] involving multiple sources

and a single destination, and for broadcast relay channels

(BRC) [4], [5] where a single source transmits to multiple

destinations. Recent results on capacity bounds for multiple-

source multiple-destination relay networks, [6]–[9] and ref-

erences therein, have provided valuable insights. Apart from

introducing a dedicated relay, the rate region can also be en-

larged by cooperation among conferencing/cognitive encoders

[10]–[12] and/or among conferencing decoders [12] .

In this paper, we aim at characterizing the capacity upper

and lower bounds for the system shown in Fig. 1, where

relaying is combined with source cooperation. To simplify

our analysis, we will restrict our analysis with a full-duplex

relay and an error-free backhaul with sufficiently high capacity

(larger than the sum-rate, i.e. Cb>R1+R2). Extensions to a

half-duplex relay or low-rate backhaul (Cb<R1+R2) will be

left to future work. Note that, the high-rate backhaul makes

the capacity region (R1, R2) only bounded by R1+R2, which

makes our system closely related to the MIMO relay chan-

nels [13], [14], where S1 and S2 can be grouped together as a

virtual transmitter equipped with two antennas. As discussed

in our previous work [15] for the case without cross-link (i.e.

g12=g21=0), the capacity upper bounds derived based on the

MIMO relay channel [13], [14] are in general larger than the

cut-set bound: (i) the equality in (4) of [13] is achieved only

if when the relay has at least the same number of transmit

antennas compared with the virtual transmitter, which is not

the case here; (ii) the bound (9) of [14] is derived based on the

sum-power constraint, while in our case only per-antenna/node

power constraint is applied. Moreover, for the cases of low-

rate backhaul, the MIMO upper bounds developed in [13],

[14] seem irrelevant, but our proof developed here can still be

helpful by combining with the strategies in [10]–[12].



In our previous work [16], we have successfully character-

ized the exact cut-set bound for the case without cross-link

by extending the proof of the converse developed by Cover

and El Gamal for the Gaussian relay channel, and verified

that this cut-set bound is tight (coincide with a lower bound)

when the transmitting power is lower than a sphere defined

by the individual channel gains. We extend this method to the

system in Fig. 1 and present capacity upper and lower bounds.

The rest of this paper is organized as follows. The system

model is introduced in Sec. II. Our main results are summa-

rized in Sec. III with the detailed proof of the cut-set bound

presented in Sec. IV. Numerical results are presented in Sec. V

with the concluding remarks presented in Sec. VI.

Notations: Capital letter X indicates a real valued random

variable and p(X) indicates its probability density/mass func-

tion. X(n) denotes a vector of random variables of length n
and I(X ; Y ) denotes the mutual information between X and

Y . C(x) = 1
2 log2(1 + x) is the Gaussian capacity function.

II. SYSTEM MODEL

Given an average transmit power constraint P , fixed channel

gain g, and noise power σ2, the signal-to-noise ratio (SNR) of

that link can be written as γ = g2P/σ2. We can therefore

characterize the transmission links only by their individual

SNR γ, without distinguishing the SNR contribution from the

transmit power or the channel gain. Therefore we can model

the system shown in Fig. 1 as follows

Y
(n)
1 =

√
γ11X

(n)
1 +

√
γ21X

(n)
2 +

√
γr1X

(n)
r + Z

(n)
1 ,

Y
(n)
2 =

√
γ21X

(n)
1 +

√
γ22X

(n)
2 +

√
γr2X

(n)
r + Z

(n)
2 ,

Y (n)
r =

√
γ1rX

(n)
1 +

√
γ2rX

(n)
2 +Z(n)

r ,

(1)

where γij ≥ 0, i, j = 1, 2, r are the effective SNR for the

corresponding links. X
(n)
i , Y

(n)
i , Z

(n)
i , i = 1, 2, r are n-

dimensional transmitted signals, received signals, and noise

at nodes S1, S2 and R, respectively. An average unit-power

constraints are applied to all the transmitted signals, i.e.,

1

n

n
∑

k=1

X2
i [k] ≤ 1. (2)

The noise components Zi[k], i = 1, 2, r and k = 1, ..., n are

i.i.d. zero-mean unit-variance Gaussian random variables.

III. MAIN RESULTS

Theorem 1: Define a rate region as

R1 + R2 ≤ C0 = sup
0≤α1,α2,ρ≤1

min{

C
(

(γ11+γ1r)α1+(1−ρ2)α1α2(
√

γ11γ2r−
√

γ21γ1r)
2

+(γ21+γ2r)α2 + 2ρ
√

α1α2(
√

γ11γ21+
√

γ1rγ2r)
)

,

C
(

(γ12+γ1r)α1+(1−ρ2)α1α2(
√

γ12γ2r−
√

γ22γ1r)
2

+(γ22+γ2r)α2 + 2ρ
√

α1α2(
√

γ12γ22+
√

γ1rγ2r)
)

,

C
(

γ11 + γ21 + γr1 + 2
√

ᾱ1γ11γr1 + 2
√

ᾱ2γ21γr1

+2(ρ
√

α1α2 +
√

ᾱ1ᾱ2)
√

γ11γ21

)

,

C
(

γ12 + γ22 + γr2 + 2
√

ᾱ1γ12γr2 + 2
√

ᾱ2γ22γr2

+2(ρ
√

α1α2 +
√

ᾱ1ᾱ2)
√

γ12γ22

)}

,

(3)
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Fig. 2. The sum multicast capacity is bounded by the cut-set bound based
on the four cuts shown in the figure.

where ᾱ1=1−α1 and ᾱ2=1−α2. For the system in Fig. 1 with

power constraints (2), its cut-set bound Ccut-set equals to C0.

Proof: The proof can be found in Section IV.

We also present a lower bound given by the cooperative

strategy network beam-forming (NBF) [16], which essentially

first generates the network coded message Wb at source nodes,

and then cooperates its transmission at S1 and S2 with the

relaying signal in a beam-forming fashion to take advantage

of the coherent combining gain. Since S1 and S2 transmit the

same network coded message Wb, the achievable sum-rate can

be split arbitrarily between them.

Proposition 1: The capacity region is lower bounded by the

achievable rate region of NBF, which is the union of all rate

pairs (R1, R2) which satisfy R1 ≥ 0, R2 ≥ 0, and

R1 + R2 < min
{

C
(

(
√

α1γ1r +
√

α2γ2r)
2
)

,

C
(

(
√

α1γ11+
√

α2γ21)
2+(

√
ᾱ1γ11+

√
ᾱ2γ21+

√
γr1)

2
)

,

C((
√

α1γ12+
√

α2γ22)
2+(

√
ᾱ1γ12+

√
ᾱ2γ22+

√
γr2)

2)},

(4)

with the union taken over all 0 ≤ α1, α2 ≤ 1.

Proof: This result is a straightforward extension of Propo-

sition 4 in [16] by replacing the system model with (1) and

formulating the transmitted signals as

X
(n)
r,b = U (n)(Wb−1),

X
(n)
1,b =

√
α1V

(n)(Wb, Wb−1) +
√

ᾱ1U
(n)(Wb−1),

X
(n)
2,b =

√
α2V

(n)(Wb, Wb−1) +
√

ᾱ2U
(n)(Wb−1),

(5)

where 0 ≤ α1, α2 ≤ 1 are power allocation parameters, U (n),

V (n) are random codewords generated in the same way as

in [16]. Detailed description on encoding/decoding is skipped

due to space limitation. The constraints in (4) correspond to

successful decoding at R, D1, and D2, respectively.

IV. PROOF OF THE CUT-SET BOUND

By the maximum-flow min-cut theorem [17], the maximum

achievable sum-rate from the source nodes to any of the

destinations can be no larger than the minimum of the mutual

information flows across all possible cuts, maximized over a

joint distribution for the transmitted signals. The cut-set bound

between the two sources and each of the sink for the network

in Fig. 1 can be derived based on four cuts shown in Fig. 2 as

follows (the dimension super script (n) is suppressed hereafter

to simplify the notation)

R1 + R2 ≤ Ccut-set = sup
p(X1,X2,Xr)

min{

1

n
I(X1, X2; Y1, Yr|Xr),

1

n
I(X1, X2, Xr; Y1),

1

n
I(X1, X2; Y2, Yr|Xr),

1

n
I(X1, X2, Xr; Y2)}+ǫn,

(6)



where X1, X2 and Xr are potentially correlated, and ǫn→0
as n→∞. We will first find an upper bound Cupp ≥ Ccut-set

by using the new technique, and then find a lower bound

Ccut-set, G ≤ Ccut-set by restricting the source distribution to

Gaussian. Finally by showing that Ccut-set, G = Cupp we can

find the exact cut-set bound Ccut-set = Cupp = Ccut-set, G.

A. The upper bound Cupp

Following the conventional notation for the differential

entropy h(X) of a continuous valued random variable X , the

mutual information corresponding to cut 2 can be written as

I(X1, X2, Xr; Y1) = h(Y1) − h(Y1|X1, X2, Xr)

= h(Y1) − h(Z1) = h(Y1) −
n

2
log(2πe).

(7)

From the maximum entropy lemma [17], we get

h(Y1) ≤
n

∑

i=1

h(Y1,i) ≤
n

∑

i=1

1

2
log(2πeVar[Y1,i]), (8)

where the second equality is achieved when Y1,i is Gaussian

distributed. Hence

1

n
I(X1, X2, Xr; Y1) ≤

1

n

n
∑

i=1

1

2
log(Var[Y1,i])

≤
1

2
log(

1

n

n
∑

i=1

Var[Y1,i]),

(9)

where the last steps follow from Jensen’s inequality, with

Var[Y1,i] = 1+Var[
√

γ11X1,i +
√

γ21X2,i +
√

γr1Xr,i]. (10)

According to the law of total variance, for two random

variables X and Y on the same probability space, and the

variance of X is finite, then

Var[X ] = E(Var[X |Y ]) + Var[E(X |Y )].

We can therefore rewrite (10) as

Var[Y1,i] = 1+Var[E(
√

γ11X1,i+
√

γ21X2,i+
√

γr1Xr,i|Xr,i)]

+ E(Var[
√

γ11X1,i+
√

γ21X2,i+
√

γr1Xr,i|Xr,i])

=1 + E(Var[
√

γ11X1,i+
√

γ21X2,i|Xr,i]) (11)

+ Var[
√

γ11E(X1,i|Xr,i)+
√

γ21E(X2,i|Xr,i)+
√

γr1Xr,i],

where

E(Var[
√

γ11X1,i+
√

γ21X2,i|Xr,i]) = E(γ11Var[X1,i|Xr,i]

+ γ21Var[X2,i|Xr,i]+2
√

γ11γ21Cov(X1,i, X2,i|Xr,i))

=γ11E(Var[X1,i|Xr,i]) + γ21E(Var[X2,i|Xr,i]) (12)

+ 2
√

γ11γ21E(Cov(X1,i, X2,i|Xr,i)),

and

Var[
√

γ11E(X1,i|Xr,i)+
√

γ21E(X2,i|Xr,i)+
√

γr1Xr,i]

≤E[(
√

γ11E[X1,i|Xr,i]+
√

γ21E[X2,i|Xr,i]+
√

γr1Xr,i)
2]

=γ11E(E2[X1,i|Xr,i])+2
√

γ11γr1E(Xr,iE[X1,i|Xr,i]) (13)

+γ21E(E2[X2,i|Xr,i])+2
√

γ21γr1E(Xr,iE[X2,i|Xr,i])

+γr1E(X2
r,i)+2

√
γ11γ21E(E[X1,i|Xr,i]E[X2,i|Xr,i]).

As in [1], define

ᾱ1 =
1

n

n
∑

i=1

E[E2(X1,i|Xr,i)], α1 ∈ [0, 1], (14)

then we have

1

n

n
∑

i=1

E[Var(X1,i|Xr,i)] =
1

n

n
∑

i=1

(E[X2
1,i]−E[E2(X1,i|Xr,i)])

=
1

n

n
∑

i=1

E[X2
1,i] −

1

n

n
∑

i=1

E[E2(X1,i|Xr,i)] ≤ α1, (15)

where the inequality comes from (2). Similarly we have

ᾱ2 =
1

n

n
∑

i=1

E[E2(X2,i|Xr,i)],
1

n

n
∑

i=1

E[Var(X2,i|Xr,i)] ≤ α2,

(16)

where α2 ∈ [0, 1]. On the other hand, as

Cov(X1,i, X2,i|Xr,i) = φi

√

Var(X1,i|Xr,i)Var(X2,i|Xr,i),

where |φi| ≤ 1 is the correlation coefficient, we have

1

n

n
∑

i=1

E[Cov(X1,i, X2,i|Xr,i)]

≤

√

√

√

√

1

n

n
∑

i=1

φiE[Var(X1,i|Xr,i)]
1

n

n
∑

i=1

φiE[Var(X2,i|Xr,i)]

≤
√

α1α2, (17)

where the first inequality is due to the Cauchy–Schwarz

inequality and the last step is given by (15) and (16). Given

that |φi| ≤ 1, we can introduce an auxiliary variable 0 ≤ ρ ≤ 1
such that

1

n

n
∑

i=1

E[Cov(X1,i, X2,i|Xr,i)] = ρ
√

α1α2. (18)

Also, using the Cauchy–Schwarz inequality we get

1

n

n
∑

i=1

E(Xr,iE[X1,i|Xr,i]) (19)

≤

√

√

√

√

1

n

n
∑

i=1

E[X2
r,i]

1

n

n
∑

i=1

E(E2[X1,i|Xr,i]) ≤
√

ᾱ1,

1

n

n
∑

i=1

E(Xr,iE[X2,i|Xr,i]) ≤
√

ᾱ2, (20)

1

n

n
∑

i=1

E(E[X1,i|Xr,i]E[X2,i|Xr,i]) ≤
√

ᾱ1ᾱ2. (21)

Now, substituting (11)–(21) into (9), and apply the same

approach also to cut 4, we get

1

n
I(X1, X2, Xr; Y1) ≤ C(γ11+γ21+γr1+2

√
ᾱ1γ11γr1

+2
√

ᾱ2γ21γr1 + 2(ρ
√

α1α2 +
√

ᾱ1ᾱ2)
√

γ11γ21), (22)

1

n
I(X1, X2, Xr; Y2) ≤ C(γ12+γ22+γr2+2

√
ᾱ1γ12γr2

+2
√

ᾱ2γ22γr2 + 2(ρ
√

α1α2 +
√

ᾱ1ᾱ2)
√

γ12γ22). (23)



For cut 1 we have

I(X1, X2; Y1, Yr|Xr) = h(Y1, Yr|Xr)−h(Y1, Yr|X1, X2, Xr)

=h(Y1, Yr|Xr)−h(Y1|X1, X2, Xr)−h(Yr|X1, X2, Xr) (24)

= h(Y1, Yr|Xr)−h(Z1)−h(Zr) = h(Y1, Yr|Xr)−n log(2πe)

≤ 1
2

∑n

i=1 log
(

(2πe)2|Ki|
)

−n log(2πe) = 1
2

∑n

i=1 log (|Ki|) ,

where the second equality in (24) comes from the fact that Y1

and Yr are independent given (X1, X2, Xr) and the inequality

is due to the maximum entropy lemma [17], with equality

achieved by joint Gaussian distributed (Y1,i, Yr,i) with condi-

tional covariance matrices Ki, which is defined by

Ki =

[

E(Var[Y1,i|Xr,i]) E[Cov(Y1,i, Yr,i|Xr,i)]
E[Cov(Y1,i, Yr,i|Xr,i)] E(Var[Yr,i|Xr,i])

]

.

Obviously, the covariance matrices Ki are positive semi-

definite. Since the function log |K| is concave [18], we can

thus bound the throughput of cut 1 from (24) as follows

1

n
I(X1, X2; Y1, Yr|Xr) ≤

1

2
log

(
∣

∣

1
n

∑n

i=1Ki

∣

∣

)

=
1

2
log

(

1
n

∑n

i=1E(Var[Y1,i|Xr,i])
1
n

∑n

j=1E(Var[Yr,j |Xr,j])

−
(

1
n

∑n

i=1E[Cov(Y1,i, Yr,i|Xr,i)]
)2

)

. (25)

Furthermore, since

E(Var[Y1,i|Xr,i]) = 1 + E(Var[
√

γ11X1,i+
√

γ21X2,i|Xr,i]),

E(Var[Yr,i|Xr,i]) = 1 + E(Var[
√

γ1rX1,i+
√

γ2rX2,i|Xr,i]),

E[Cov(Y1,i, Yr,i|Xr,i)] =
√

γ11γ1rE(Var[X1,i|Xr,i]) +
√

γ21γ2rE(Var[X2,i|Xr,i])

+(
√

γ11γ2r +
√

γ21γ1r)E[Cov(X1,i, X2,i|Xr,i)],

by combining with (12) and (15)–(18), we can conclude that

1

n
I(X1, X2; Y1, Yr|Xr) ≤

C
(

(γ11+γ1r)α1+(1−ρ2)α1α2(
√

γ11γ2r−
√

γ21γ1r)
2

+(γ21+γ2r)α2 + 2ρ
√

α1α2(
√

γ11γ21+
√

γ1rγ2r)
)

. (26)

Similarly, we can bound the throughput of cut 3 as follows

1

n
I(X1, X2; Y2, Yr|Xr) ≤

C
(

(γ12+γ1r)α1+(1−ρ2)α1α2(
√

γ12γ2r−
√

γ22γ1r)
2

+(γ22+γ2r)α2 + 2ρ
√

α1α2(
√

γ12γ22+
√

γ1rγ2r)
)

. (27)

By substituting (22) (23) (26) (27) into (6) and n→∞,

comparing the resulting region to (3) we can conclude that

Ccut-set ≤ Cupp = C0.

B. The lower bound Ccut-set, G

By restricting p(X1, X2, Xr) in (6) to be Gaussian, we can

partition X1, X2 and Xr as follows

Xr = U, (28a)

X1 =
√

(1 − ρ)α1S1 +
√

ρα1V +
√

(1 − α1)U, (28b)

X2 =
√

(1 − ρ)α2S2 +
√

ρα2V +
√

(1 − α2)U, (28c)

where S1, S2, V, U are n-dimensional independent Gaussian

random vectors with zero-mean and unit-variance. Auxiliary

variables 0≤α1, α2, ρ≤1 are introduced to represent the po-

tential correlation among X1, X2 and Xr due to cooperation.

by substituting (28) into (1), we can derive from (6) that

Ccut-set ≥ Ccut-set, G = sup
0≤α1,α2,ρ≤1

min
1

2n

n
∑

i=1

{ (29)

log(Var[Y1,i]), log(Var[Y2,i]), log (|K1,i|) , log (|K2,i|)}+ǫn,

where ǫn→0 as n→∞, and for i = 1, ..., n we have

Var[Y1,i] =1+ρ̄α1γ11+ρ̄α2γ21+ρ(
√

α1γ11+
√

α2γ21)
2

+(
√

ᾱ1γ11 +
√

ᾱ2γ21 +
√

γr1)
2,

Var[Y2,i] =1+ρ̄α1γ12+ρ̄α2γ22+ρ(
√

α1γ12+
√

α2γ22)
2

+(
√

ᾱ1γ12 +
√

ᾱ2γ22 +
√

γr2)
2, (30)

|K1,i| = (1+ρ̄α1γ11+ρ̄α2γ21+ρ(
√

α1γ11+
√

α2γ21)
2)

∗(1+ρ̄α1γ1r+ρ̄α2γ2r+ρ(
√

α1γ1r+
√

α2γ2r)
2)

−(
√

γ11γ1rα1+
√

γ21γ2rα2+(
√

γ11γ2r+
√

γ21γ1r)ρ
√

α1α2)
2,

|K2,i| = (1+ρ̄α1γ12+ρ̄α2γ22+ρ(
√

α1γ12+
√

α2γ22)
2)

∗(1+ρ̄α1γ1r+ρ̄α2γ2r+ρ(
√

α1γ1r+
√

α2γ2r)
2)

−(
√

γ12γ1rα1+
√

γ22γ2rα2+(
√

γ12γ2r+
√

γ22γ1r)ρ
√

α1α2)
2.

By substituting (30) into (29) and letting n→∞, comparing

the resulting region to (3) we can conclude that

Ccut-set ≥ Ccut-set, G = C0.

Recall that Ccut-set, G ≤ Ccut-set ≤ Cupp, we can finally

conclude that Ccut-set = C0, i.e., Theorem 1 holds.

V. NUMERICAL RESULTS

We present the numerical results of the cut-set bound and

the NBF lower bound on the capacity regions with different

link quality. Unless stated otherwise, the following heuristic

parameters will be used: The S1–D1 link SNR γ11=5dB,

the source-destination link SNR γ22=10dB, the source-relay

link SNR γ1r=γ2r=10dB, the relay-destination link SNR

γr1=γr2=10dB, and the cross-link SNR γ12=γ21=0dB.

In Fig. 3 we investigate the impact of the relay-destination

link quality on the capacity region. When the R–D1 link is

not strong, the R–D2 link SNR γr2 is not a limiting factor

and therefore the capacity will monotonically increase with

γr1 until it is large enough to reach the bottleneck set by γr2,

as demonstrated in Fig. 3. The gap between the cut-set bound

the NBF lower bound is always less than 0.1 bits/channel use.

In Fig. 4 we fix the S2–R link SNR γ2r and vary the SNR

of the S1–R link. When the S2–R link is poor (γ2r = 0dB),

the S1–R link is the only reliable channel between S1, S2 and

R and therefore its quality has a large impact on the capacity.

When the S2–R link is strong, however, S1 can communicate

with R reliably via S2 thanks to the backhual, even for a

poor S1–R link. The impact of γ2r will diminish when γ1r

becomes very large, as shown in the zoom-in plot. Note that

the decoding requirement at relay for NBF introduces a large

gap when both γ1r and γ2r are small.
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Fig. 4. Capacity bounds for varying S1 −R link SNR γ1r .

In Fig. 5 we show the impact of the source-relay link

for weak and strong cross-link quality. Obviously the NBF

strategy does not utilize the benefit from the cross-link when

the source-relay connection is not good enough. When the

source-relay link is good, as shown in Fig. 6, the achievable

rate of NBF increases with improved cross-link quality until

the decoding at the relay becomes the bottleneck. The cut-set

bound has no restriction on decoding at R and therefore will

increase with the improved cross-link quality.

VI. CONCLUSION

We have derived the cut-set bound for backhaul-supported

wireless multicast relay networks with cross-link and provided

achievable rate based on network beam-forming strategy. The

gap between the cut-set bound and the achievable rate is not

large in general, as illustrated in the numerical results. Since

the NBF strategy cannot take full advantage of the cross-link,

a better scheme has to be sought in further work.
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