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Abstract—We investigate cooperative strategies for relay-aided
multi-source multi-destination wireless networks with backhaul
support. Each source multicasts information to all destinations
using a shared relay. We study cooperative strategies based on
different network coding (NC) schemes, namely, finite field NC
(FNC), linear NC (LNC), and lattice coding. To further exploit the
backhaul connection, we also propose NC-based beam-forming
(NBF). We measure the performance in term of achievable rates
over Gaussian channels and observe significant gains over a
benchmark scheme. The benefit of using backhaul is also clearly
demonstrated in most of scenarios.

I. INTRODUCTION

Capacity bounds and various cooperative strategies for
three-node relaying networks (source-relay-sink, or two co-
operative sources and one sink) have been studied in [1], [2],
where successive decoding, sliding-window forward decoding
or backward decoding are used at the sink. The relay (or the
other source) uses decode-and-forward (DF) or compress-and-
forward (CF) to aid the transmission. Cooperative strategies
and coding schemes are investigated for multiple-access relay
channels (MARC) [3] involving multiple sources and a single
destination, and for broadcast relay channels (BRC) [3], [4]
where a single source transmits messages to multiple destina-
tions. Recent results on capacity bounds for multiple-source
multiple-destination relay networks, [5]–[7] and references
therein, have provided valuable insights into the benefits of
relaying, either half-duplex or full-duplex. Motivated by the
MAC channel at the relay node where different messages
add up by nature, various network coding (NC) approaches
can be introduced to boost the sum rate. For instance, in a
relay-aided two-source two-sink multicast network, achievable
rates for a full-duplex amply-and-forward (AF) relay with
analog NC have been studied in [6], and in [7] the relay uses
lattice codes to do physical layer NC. Apart from introducing
dedicated relay nodes to help the transmission, one can also
utilize cooperative strategies among sources and/or among
destinations [8], [9] through orthogonal conferencing channels.

In this paper, we aim at evaluating achievable sum-rate for
various cooperative strategies when source cooperation and
relaying are combined together. More specifically, we focus
on a relay-aided two-source two-destination multicast network
with backhaul support, as shown in Figure. 1. Sources S1 and
S2 multicast their own information (W1 and W2 respectively)
to geographically separated destinations D1 and D2, with the
help of a relay R. This model arises from downlink wireless
cellular networks where two base stations multicast to two
mobile terminals, one in each cell, with the help of a dedicated
relay deployed at the common cell boundary. Since the base
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Figure 1. Two source nodes S1 and S2, connected with backhaul, multicast
information W1 and W2 respectively to both destinations D1 and D2, with
aid from a full-duplex relay node R.

stations are connected through the (fiber or microwave) back-
haul, more general network coding schemes can be used at the
relay to cooperate with the sources’ transmission. This model
is interesting since it is a combination of relaying, MARC,
BRC, and sources cooperation. It can be extended to more
general networks by tuning the channel gains within the range
[0,∞). In this paper, we are interested in the scenario without
cross channels between S1 and D2, or S2 and D1. In wireless
cellular networks, such cross channels are normally too weak
to be used or technically suppressed by the system. We restrict
our analysis to fixed channel gains with a full-duplex DF relay.
Extensions of cooperative strategies developed in this paper to
general channel/relay setup are left to future work.

The rest of this paper is organized as follows. The system
model is introduced in Section II. Various cooperative strate-
gies are investigated in Section III and numerical results are
presented in Section IV.

II. SYSTEM MODEL

To simplify our analysis, we consider a symmetric channel
gain scenario in Figure 1 (extension to non-symmetric channel
gains is straightforward),

Y
(n)
1 = X

(n)
1 + bX(n)

r + Z
(n)
1 , (1a)

Y
(n)
2 = X

(n)
2 + bX(n)

r + Z
(n)
2 , (1b)

Y (n)
r = aX

(n)
1 + aX

(n)
2 + Z(n)

r , (1c)

where a ≥ 0 is the normalized channel gain for the source-
relay links and b ≥ 0 for the relay-destination links. X

(n)
i ,

Y
(n)
i , Z

(n)
i , i = 1, 2, r are n-dimensional transmitted signals,

received signals, and noise at nodes S1, S2 and R, respectively.
The noise components Zi(k), i = 1, 2, r and k = 1, ..., n
are i.i.d. zero-mean unit-variance Gaussian random variables.
Assuming perfect synchronization, S1 and S2 can cooperate
with R and get coherent combining gains (i.e., beamforming)
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at the sinks, as stated in [1]–[3]. An average power constraint

1

n

n∑
k=1

X2
i (k) ≤ Pi, i = 1, 2, r, (2)

is assumed throughout this paper. We note that in practice,
the backhaul has much higher capacity and lower error rates
than the forward wireless channels. To ease our analysis and
gain some insight on the original problem, in this paper
the backhaul is assumed to be error-free and of unbounded
capacity. This makes our system directly related to the MIMO
relay channel scenario, as studied in e.g. [11]. However, we
emphasize three main differences between the system model
investigated in this paper and the scenario with a single source
equipped with two transmit antennas: Each source/antenna is
subject to individual power constraint; the DF relay combines
messages from each source by performing NC rather than
forwarding them separately through orthogonal channels; co-
operative strategies proposed for this model can be directly
extended to the finite-rate backhual scenario with the help of
superposition coding or time-sharing strategies. However, the
capacity upper bounds derived for the MIMO relay channel,
e.g., Theorem 3.1 in [11] which motivated by the cut-set
bound, are still relevant here.

III. COOPERATIVE STRATEGIES

Source Si, i = 1, 2, similar to [1]–[3], [5], divides its
messages Wi into B blocks Wi,1, Wi,2, . . . , Wi,B with ki bits
each. The transmission is completed over B+1 blocks. At the
first block the two sources exchange Wi,1 over the backhaul
and meanwhile broadcast them over the relay channels; in
block t, source Si exchanges Wi,t through the backhual
and broadcasts its codeword X

(n)
i,t , which is a function of

(Wi,t, W1,t−1, W2,t−1), over the relay channels; in block B+1
only Wi,B is broadcasted. As each transmission is over n
channel uses, and assuming that using the backhual is free, the
overall rate is Bki

(B+1)n bits per channel use, which converges

to Ri = ki

n
when B goes to infinity. In what follows, we

shall investigate the achievable rates for different cooperative
strategies with network coding and backhaul.

A. Finite-field Network Coding with DF (DF+FNC)

After receiving Y
(n)
r,t−1, R decodes (Ŵ1,t−1, Ŵ2,t−1) jointly

by maximum-likelihood or typical sequence decoding, and
forms network coded information Wr,t = Ŵ1,t−1 ⊕ Ŵ2,t−1

(in GF(2)). If the lengths of W1,t−1 and W2,t−1 are not equal,
i.e., R1 �= R2, we can append zeros at the end of the shorter
message. Then at block t, R picks up a codeword1 U (n)(Wr,t)
corresponding to Wr,t from a codebook and transmits

X
(n)
r,t =

√
PrU

(n)(Wr,t). (3)

S1 and S2, exchanging W1,t−1 and W2,t−1 via the backhaul
in block t − 1, knows Wr,t if decoding at R is reliable. By
cooperating with R, S1 and S2 at block t transmit

X
(n)
1,t =

√
α1P1V

(n)
1 (W1,t) +

√
(1 − α1)P1U

(n)(Wr,t), (4a)

X
(n)
2,t =

√
α2P2V

(n)
2 (W2,t) +

√
(1 − α2)P2U

(n)(Wr,t), (4b)

1We relate the message to its codeword in the way of an encoder function,
and their dependence will be omitted where appropriate. Each codeword is
generated in the usual memoryless fashion.

where 0 ≤ α1, α2 ≤ 1 are power allocation parameters
for cooperation. V

(n)
1 , V

(n)
2 are codewords from independent

codebooks. S1 and S2 synchronize their transmission with R
so that X

(n)
i (More precisely, only the part of relaying signal

U (n)) can be coherently added with X
(n)
r , i.e.,

Y
(n)
1,t =

√
α1P1V

(n)
1 + (

√
(1 − α1)P1 + b

√
Pr)U

(n) + Z
(n)
1 ,

(5a)

Y
(n)
2,t =

√
α2P2V

(n)
2 + (

√
(1 − α2)P2 + b

√
Pr)U

(n) + Z
(n)
2 ,
(5b)

Y
(n)
r,t =a

(√
(1 − α1)P1 +

√
(1 − α2)P2

)
U (n) + Z(n)

r

+ a
√

α1P1V
(n)
1 + a

√
α2P2V

(n)
2 . (5c)

Assuming Ŵ1,t−1 was successfully decoded by D1, at the
end of block t, D1 recovers (Ŵr,t, Ŵ1,t) jointly from Y

(n)
1,t ,

and then decodes Ŵ2,t−1 = Ŵr,t ⊕ Ŵ1,t−1, and similarly
for D2. The relay R detects jointly (Ŵ1,t, Ŵ2,t) from (5c)
by first cancelling out U (n). Since the channel is additive
memoryless Gaussian, there exist joint Gaussian variables
(V

(n)
1 , V

(n)
2 , U (n)) such that the mutual information between

channel input and output can be maximized, similar to [7].
The achievable rate region is therefore obtained as

R1<min
{
C(a2α1P1), C(α1P1), C((

√
(1−α2)P2+b

√
Pr)

2)
}

,

R2<min
{
C(a2α2P2), C(α2P2), C((

√
(1−α1)P1+b

√
Pr)

2)
}

,

R1+R2<min
{
C(P1+b2Pr+2b

√
(1−α1)P1Pr), (6)

C(a2(α1P1+α2P2)), C(P2+b2Pr+2b
√

(1 − α2)P2Pr)
}

,

with the union taken over 0 ≤ α1, α2 ≤ 1. Here, C(x) =
1
2 log2(1+x) is the Gaussian capacity function. The constraints
in R1 correspond to the conditions that W1 can be decoded
reliably at R, at D1, and that the network coded information
Wr can be decoded at D2. It is similar for R2. The constraints
in R1 + R2 refer to successful decoding at D1, R, and D2,
respectively.

For the symmetric scenario with P1 = P2 = Pr = P and
R1 = R2 = R, by setting α1 = α2 = α, (6) becomes

R < max
0≤α≤1

min

{
1

2
log2(1 + αP ),

1

4
log2(1 + 2a2Pα),

1

4
log2(1 + (1 + b2 + 2b

√
1 − α)P )

}
. (7)

Without backhual, S1 and S2 cannot know/estimate Wr and
therefore cannot cooperate with R, i.e. α1 = α2 = 1. Hence,
no coherent combining gain can be achieved.

B. Linear Network Coding with DF (DF+LNC)

Similar to the cooperative strategies with a DF relay dis-
cussed in [3] for the MARC and in [7] for multiple multicast,
two sources cooperate in their transmission with R. When
linear network coding (LNC) is used in the signal domain, R
essentially performs superposition coding. As in Sec. III-A, R
decodes (Ŵ1,t−1, Ŵ2,t−1) at the end of block t− 1, and then
at block t it transmits

X
(n)
r,t =

√
αrPrU

(n)
1 (Ŵ1,t−1) +

√
(1 − αr)PrU

(n)
2 (Ŵ2,t−1),



where U
(n)
1 (Ŵ1,t−1) and U

(n)
2 (Ŵ2,t−1) are codewords from

independent codebooks and 0 ≤ αr ≤ 1 is the power
allocation parameter. Meanwhile S1 and S2 cooperate their
transmission with R and transmit

X
(n)
1,t =

√
α′

1P1U
(n)
1 +

√
α′′

1P1U
(n)
2 +

√
(1 − α′

1 − α′′
1 )P1V

(n)
1 ,

X
(n)
2,t =

√
α′

2P2U
(n)
2 +

√
α′′

2P2U
(n)
1 +

√
(1 − α′

2 − α′′
2 )P2V

(n)
2 ,

where 0 ≤ α′
i, α

′′
i ≤ 1, i = 1, 2, are power allocation

parameters. V
(n)
1 (W1,t, W1,t−1) and V

(n)
2 (W2,t, W2,t−1) are

codewords from independent codebooks.
At the end of block t, R uses the forward decoding

technique [3] and decodes (W1,t, W2,t) reliably from Y
(n)
r,t

if n is large, its past detection is correct, and

nR1 ≤ I
(
X

(n)
1 ; Y (n)

r |U (n)
1 , U

(n)
2 , X

(n)
2 , X(n)

r

)
, (8a)

nR2 ≤ I
(
X

(n)
2 ; Y (n)

r |U (n)
1 , U

(n)
2 , X

(n)
1 , X(n)

r

)
, (8b)

n(R1 + R2) ≤ I
(
X

(n)
1 , X

(n)
2 ; Y (n)

r |U (n)
1 , U

(n)
2 , X(n)

r

)
, (8c)

where X1, X2, Xr are independent given (U1, U2). At D1 and
D2, on the other hand, we use backward decoding as follows.
At block B+1, no new message is transmitted and the received
signal at D1 (D2) only depends on (W1,B , W2,B), which can
be decoded reliably if
nR1≤min

{
I(X

(n)
1 , X

(n)
r ; Y

(n)
1 |U

(n)
2 ), I(X

(n)
r ; Y

(n)
2 |U

(n)
2 , X

(n)
2 )

}
,

nR2≤min
{

I(X
(n)
2 , X

(n)
r ; Y

(n)
2 |U

(n)
1 ), I(X

(n)
r ; Y

(n)
1 |U

(n)
1 , X

(n)
1 )

}
,

n(R1 + R2) ≤ min
{

I(X
(n)
1 , X

(n)
r

; Y
(n)
1 ), I(X

(n)
2 , X

(n)
r

; Y
(n)
2 )

}
,

(9)

are satisfied. After decoding (W1,B , W2,B) successfully, only
W1,B−1 and W2,B−1 are unknown in Y

(n)
1,B and Y

(n)
2,B , and we

can repeat this process backwards until all the messages are
recovered. Applying the Gaussian conditions in (8) and (9),
after some algebra the achievable rate region can be found as

R1 < min
{
C

(
(1 − α′

1 − α′′
1 )P1 + [

√
α′

1P1 + b
√

αrPr]
2
)

,

C(a2P1(1 − α′
1 − α′′

1 )), C
(
[
√

α′′
2P2 + b

√
αrPr]

2
)}

,

(10)

R2< min
{
C((1−α′

2−α′′
2 )P2 + [

√
α′

2P2 + b
√

(1−αr)Pr]
2) ,

C(a2P2(1 − α′
2 − α′′

2)), C([
√

α′′
1P1 + b

√
(1 − αr)Pr ]

2)
}

,

R1 + R2< min
{
C(a2(1−α′

1−α′′
1 )P1 + a2(1−α′

2−α′′
2 )P2) ,

C(P1 + b2Pr + 2b
√

P1Pr [
√

α′
1αr +

√
α′′

1 (1 − αr)]) ,

C(P2 + b2Pr + 2b
√

P2Pr[
√

α′′
2αr +

√
α′

2(1 − αr)])

}
,

with the union taken over 0 ≤ αr, α
′
1, α

′′
1 , α′

2, α
′′
2 ≤ 1,

α′
1 + α′′

1 ≤ 1, α′
2 + α′′

2 ≤ 1. The constraints in R1 refer
to the condition that W1 can be decoded at D1, R, and D2,
respectively, and similarly for R2. For R1 + R2, the three
terms correspond to the constraint that (W1, W2) can be jointly
decoded at R, D1, and D2, respectively.

For the symmetric scenario, by setting α′
1 = α′

2 = α′,
α′′

1 = α′′
2 = α′′, and αr = 1/2, (10) can be translated to

the following equal rate constraint

R < max
α′≥0, α′′≥0
0≤α′+α′′

≤1

min
{

C
(
[1 − α′′ + b2/2 + b

√
2α′]P

)
,

1
2C

(
2a2P (1−α′−α′′)

)
, C

(
[α′′ + b2/2 + b

√
2α′′]P

)
,

1
2C

(
[1 + b2 + b

√
2α′ + b

√
2α′′]P

)
.

Without the backhaul, the relaying signal is only partially
known by the source nodes, i.e., setting α′′

1 = α′′
2 = 0 instead.

C. Physical Layer Network Coding by Lattice Coding

In contrast to Sec. III-A where R first decodes (W1, W2)
and then generates a NC message Wr, the relay can directly
decode the NC message from Y

(n)
r by using a nested lattice

encoding and decoding strategy, as stated in [7], [10]. Without
loss of generality, we assume that P1 ≤ P2 (hence R1 ≤ R2).
S1 encodes W1,b via a nested lattice code with power 0 ≤ δ ≤
P1 and cooperates with the relaying signal with the rest power.
S2 splits its message W2,b into two parts [W ′

2,b, W
′′
2,b], where

W ′
2,b has the same length as W1,b, and encodes W ′

2,b with
power δ using the same nested lattice code, and encodes W ′′

2,b

using a random code with power 0 ≤ ε ≤ P2 − δ. The rest
power of S2 is used to cooperate with the relay. The following
rate region can be proved (proof is omitted here due to space
limitation) to be achievable by using lattice code

R1<min
{
C(− 1

2 + a2δ), C(δ), C((
√

P2−δ−ε + b
√

Pr)
2)

}
,

R2<min
{
C(− 1

2 + a2δ + a2ε/2), C(δ + ε),

C((
√

P1 − δ + b
√

Pr)
2)

}
, (11)

R1 + R2 < min
{
C

(
δ + (

√
P1 − δ + b

√
Pr)

2
)

,

C
(
δ + ε + (

√
P2 − δ − ε + b

√
Pr)

2
)}

,

with the union taken over 0 ≤ δ ≤ P1 and 0 ≤ ε ≤ P2 − δ.
The first term in R1 (R2) comes from the constraint at R
when using a nested lattice encoding and decoding strategy.
For the symmetric scenario, by setting ε = 0, δ = Pα we get

R < max
0≤α≤1

min
{
C(αP ), C(− 1

2 + a2Pα),

C((b +
√

1 − α)2P ), 1
2C((1 + b2 + 2b

√
1 − α)P )

}
. (12)

Without the backhual, the network coded message is not
known by the source nodes, i.e., δ = P1 and ε = P2 − P1.

D. Network Coding Based Beam-forming with DF (DF+NBF)

We propose a new strategy performing network coding
at S1 and S2 rather than R, requiring B + 2 blocks in
total: (W1,t−1, W2,t−1) are exchanged via the backhaul during
block t − 1; at block t they are network coded into Wt and
transmitted; at block t + 1, Ŵt is transmitted by R. At block
t, the transmitted signals over the relay channels are

X
(n)
r,t =

√
PrU

(n)(Ŵt−1) (13)

X
(n)
i,t =

√
αiPiV

(n)(Wt, Wt−1) +
√

(1 − αi)PiU
(n), i = 1, 2.



S1 and S2 synchronize their transmission with R like beam-
forming so that the received signals can coherently add up at
both D1 and D2, but not at R due to wave propagation [12].
By performing forward decoding at the relay and backward
decoding at destinations, the achievable rate region becomes

R1 + R2 < min
{

C(P1 + b2Pr + 2b
√

(1 − α1)P1Pr), (14)

C(a2(α1P1 + α2P2)), C(P2 + b2Pr + 2b
√

(1 − α2)P2Pr)
}

,

with the union taken over the power allocation parameters
0 ≤ α1, α2 ≤ 1. The terms in (14) indicate the constraint at
D1, R, and D2, respectively.

For the symmetric scenario, by setting α1 = α2 = α in (14)
we get

R < max
0≤α≤1

min
{

1
2C(2a2Pα), 1

2C((1 + b2 + 2b
√

1 − α)P )
}

.

(15)

Without the backhual, this strategy is impossible.

E. Time Sharing Relay with DF (DF+TD)

To illustrate the gain of network coding, we consider a
cooperative strategy where the relay helps two sources alter-
natively, i.e., R is time shared by S1 and S2. In contrast to
the orthogonal scheme described in Sec. IV of [5] for the
interference relay channel without backhaul, S1 and S2 in our
scheme cooperate via R. During block t, W1,t and W2,t are
exchanged via the backhaul and the transmission over the relay
channels is divided into two parts. During the first part of block
t, the transmitted signals are

X
(n)
1,t1

=
√

α1P1

β
V

(n)
1 (W1,t, W2,t−1)+

√
(1−α1)P1

β
U

(n)
2 (W2,t−1),

X
(n)
r,t1

=
√

PrU
(n)
2 (W2,t−1), X

(n)
2,t1

= 0,

where 0 ≤ α1 ≤ 1 is the power allocation parameter and
0 ≤ β ≤ 1 is the time sharing parameter. Note that the
transmission power P1/β is used in X

(n)
1,t1

to meet the average
power constraint (2). The relay decodes W1,t given W2,t−1 and
then encodes it to U

(n)
1 (W1,t). Similarly, during the remaining

part of block t, the transmitted signals are

X
(n)
2,t2

=

√
α2P2

1 − β
V

(n)
2 (W2,t, W1,t)+

√
(1−α2)P2

1−β
U

(n)
1 (W1,t),

X
(n)
r,t2

=
√

PrU
(n)
1 (W1,t), X

(n)
1,t2

= 0.

At the end of block t, R decodes W2,t given W1,t, and D1

can retrieve (W1,t, W2,t−1) reliably using sliding-window de-
coding based on the received signals during block t. Similarly,
after the first part of block t + 1, D2 can decode (W2,t, W1,t)
reliably based on signals received from the first part of block
t+1 and the second part of block t. The achievable rate region
is therefore defined by

R1 < min
{
βC(α1a

2P1/β), βC(α1P1/β)+(1 − β)C(b2Pr),

(1 − β)C
(
b2Pr+P2/(1 − β)+2b

√
(1 − α2)P2Pr/(1 − β)

)}
,
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Figure 2. Effects of the relay-destination channel gain b2 on the achievable
rates with backhaul, when P/σ2 = 5dB and the source-relay channel gain
a2 = 10dB. The rate gains compared to the schemes without backhaul are
also presented in the sub-figure.

R2<min
{
(1−β)C

(
α2a2P2

1−β

)
, (1−β)C

(
α2P2

1−β

)
+βC(b2Pr),

βC
(
b2Pr + P1/β + 2b

√
(1 − α1)P1Pr/β

)}
,

R1 + R2 < min
{
(1 − β)C(b2Pr) (16)

+ βC
(
b2Pr + P1/β + 2b

√
(1 − α1)P1Pr/β

)
,

βC(b2Pr)+ (1 − β)C(b2Pr+
P2

1−β
+2b

√
(1−α2)P2Pr

1−β
)

}
,

with the union taken over all 0 ≤ α1, α2 ≤ 1 and 0 ≤ β ≤ 1.
The three constraints in R1 (R2) correspond to the condition
that W1,t (W2,t) is able to be decoded at the relay, D1 (D2),
and D2 (D1) respectively. The first term of R1 + R2 in (16)
is the decoding constraint at D1 and the second term refers to
successful decoding at D2.

By setting α1 = α2 = α and β = 1
2 , (16) becomes

R < max
0≤α≤1

min
{

1
4 log2

(
1 + P (2 + b2 + 2b

√
2 − 2α)

)
,

1
4 log2

(
1+2αP+b2P+2αb2P 2

)
, 1

4 log2

(
1+2a2Pα

)
,

(17)
1
8 log2

(
1 + b2P )(1 + P (2 + b2 + 2b

√
2 − 2α)

)}
.

Without backhaul, sources can only encode over their own
messages. Therefore we have α1 = α2 = 1 and the first term
in (17) reduces to 1

4 log2(1 + b2P ).

IV. NUMERICAL RESULTS

We focus on the symmetric scenario and compare the
achievable equal rate R, and demonstrate rate gains by using
network coding and utilizing the backhaul. The capacity upper
bound derived in [11], Theorem 3.1, by setting M1 = 2 and
M2 = 1 and modifying the channel matrices accordingly,
serves as a baseline to evaluate our strategies.

In Fig. 2, we investigate the impact of the relay-destination
link quality b2 on the achievable rates for different cooperative
strategies, with fixed source-relay channel gain a2 = 10dB and
the transmit power P/σ2 = 5dB. With backhaul, substantial
rate gains can be achieved by performing LNC or NBF
compared to the time sharing relay. Network coding in the
finite field or by using lattice code is preferred for small b2.
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Figure 3. Effects of the source-relay channel gain a2 on the achievable rates
with P/σ2 = 5dB and the relay-destination channel gain b2 = 0dB.
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Figure 4. Effects of the source-destination SNR P/σ2 on the achievable
rates with channel gains (a2, b2) = (10, 10)dB.

Significant gain of using backhaul, as shown in the sub-figure,
can be obtained for a poor relay-destination link (small b2).

In Fig. 3 we fix P/σ2 = 5dB and b2 = 0dB instead and
vary the source-relay link quality (a2). Rate gains by using
network coding are significant in a large range of a2 values.
Note that when the source-relay link quality is comparable to
the source-destination link, i.e. a2 is around 0dB, the lattice
coding strategy is preferred. The gain by using backhual is
significant for all schemes for a2 larger than 0dB.

We also look into the asymptotic performance of different
strategies under a fixed channel gain a2 = b2 = 10dB, as
shown in Fig. 4. For low and medium SNR, LNC and NBF are
preferred. For high SNR, lattice codes perform the best. Since
the relay is connected by high quality channels, i.e. (a2, b2) =
(10, 10)dB, the rate gain by using backhaul is not significant.

To illustrate the performance of using lattice coding, we
compared it to the NBF at fixed P/σ2 = 5dB, shown in Fig. 5.
The relative rate gain of NBF compared with lattice coding
is also shown as the contour plot. NBF outperforms lattice
coding except when a2 is around 0dB. The performance of
LNC, not shown here to make the figure readable, is almost
the same as NBF in all the regions.

V. CONCLUSIONS

We have considered a relay-aided two-source two-sink
wireless multicast network with a backhual link between the
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Figure 5. DF+NBF (15) vs. Lattice Coding (12) with P/σ2 = 5dB.

source nodes. Different network-coding-based strategies are
investigated and compared with a benchmark scheme where
relay is time shared by source nodes. Significant rate gains
have been demonstrated. In general, linear network coding and
NC-based beam-forming strategies give the best performance.
Lattice code based strategy is preferred for high SNR or
when the source-relay and source-destination channels are
comparable. FNC, which only performs modulo-2 addition in
the finite field, suffers very limited performance loss in most of
the cases. Further, we show significant rate gains compared to
the scenarios without backhaul in various channel conditions.

For the future work, we will extend the cooperative strate-
gies in this work to finite-rate backhaul and derive a tighter
upper bound than Cupper in [11].
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