EL3210 Multivariable Feedback Control

Elling W. Jacobsen
Automatic Control Lab, KTH

Lecture 3: Introduction to MIMO Control (Ch. 3-4)

Outline

- Transfer-matrices, poles and zeros
- The closed-loop
- Performance measures and choice of norm
- The Small Gain Theorem and choice of norm
- Generalization of gain: SVD and the condition number
- Eigenvalues and the Generalized Nyquist Criterion
- Introduction to MIMO controller design
- A Generalized Control Problem

Multivariable Systems

Consider a MIMO systems with *m* inputs and *l* outputs

all signals are vectors

$$u = \begin{bmatrix} u_1 \\ u_2 \\ \vdots \\ u_m \end{bmatrix} \; ; \quad y = \begin{bmatrix} y_1 \\ y_2 \\ \vdots \\ y_l \end{bmatrix}$$

• the $I \times m$ transfer-matrix $G(s) = C(sI - A)^{-1}B + D$ has elements

$$G_{ij}(s) = \frac{y_i(s)}{u_i(s)}$$

• the system is said to be <u>interactive</u> is some input affects several outputs, i.e., G(s) can not be made diagonal.

Poles

The pole polynomial of a system with transfer-matrix G(s) is the least common denominator of all minors of all orders of G(s). The poles of the system are the zeros of the pole polynomial

The system is **input-output stable** if and only if the poles of G(s) are strictly in the complex left half plane.

Note:

- poles of G(s) are also poles of some $G_{ij}(s)$
- poles = eigenvalues of A in the state-space description.
- poles can only be moved by feedback

Zeros

Definition: z_i is a zero of G(s) if the rank of $G(z_i)$ is less than the normal rank of G(s)

The zero polynomial of G(s) is the greatest common divisor of all the numerators for the **maximum minors** of G(s), normed so that they have the pole polynomial as the denominator. The zeros of the system are the zeros of the zero polynomial.

Note:

- need only check the determinant for square systems, but make sure denominator equals pole polynomial!
- zeros usually computed from state-space description.
 See S&P, Ch. 4.
- zeros are invariant under feedback and can only be moved by parallell interconnections

Example 1

$$G(s) = \begin{pmatrix} \frac{2}{s+1} & \frac{1}{s+2} \\ \frac{s+3}{s+1} & \frac{2}{s+2} \end{pmatrix}$$

minors are all elements and the determinant

$$\det G(s) = \frac{1-s}{(s+1)(s+2)}$$

LCD: (s + 1)(s + 2), thus poles are s = -1, s = -2

• maximum minor, with pole polynomial as denominator, is the determinant, thus zero at s=1

Note: there is in general no relation between the zeros of G(s) and the zeros of its elements.

Example 2

$$G(s) = egin{pmatrix} rac{2}{s+1} & rac{1}{s+2} \ rac{-s+3}{s+1} & rac{2}{s+2} \end{pmatrix}$$

$$\det G(s) = rac{s+1}{(s+1)(s+2)}$$

- LCD of det G and elements is (s+1)(s+2), hence poles at s=-1, s=-2, zero at s=-1.
- No cancellation of pole and zero because they have different directions (see below)

Example 3

$$G(s) = \begin{pmatrix} rac{2}{s+1} & rac{1}{s+2} & rac{1}{s+2} \\ rac{s+3}{s+1} & rac{2}{s+2} & rac{s-2}{s+1} \end{pmatrix}$$

No zeros. Why?

Zero and Pole Directions

• If z is a zero of G(s) then

$$G(z)u_z=0\cdot y_z$$

where u_z and y_z are the zero input and output directions, respectively

• If p is a pole of G(s) then

$$G(p)u_p=\infty\cdot y_p$$

where u_p and y_p are the pole input and output directions, respectively

- Note that $u_p = B^H q$ and $y_p = Ct$ where q and t are the corresponding left and right eigenvectors of A

A Trivial Example

$$G(s) = \begin{pmatrix} \frac{s-1}{s+1} & 0\\ 0 & \frac{s+1}{s-1} \end{pmatrix}$$

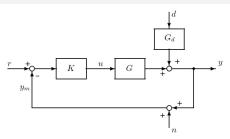
• For zero at s=1

$$u_z = y_z = \begin{bmatrix} 1 \\ 0 \end{bmatrix}$$

• For pole at s = 1

$$u_p = y_p = \begin{bmatrix} 0 \\ 1 \end{bmatrix}$$

The Closed Loop System



from block diagram

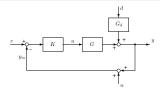
$$e = -Sr + SG_dd - Tn$$

where

$$S = (I + GK)^{-1}$$
; $T = GK(I + GK)^{-1}$

- similar to SISO case, e.g., want magnitude of $S(j\omega)$ "small" for reference tracking and disturbance rejection
 - \Rightarrow need scalar measure for size of S and T

Side remark: transfer-functions from block diagrams



To derive transfer-function from an input to an output

- start from output and move against the signal flow towards input
- write down the blocks, from left to right, as you meet them
- **3** when you exit a loop, add the term $(I + L)^{-1}$ where L is the loop transfer-function evaluated from exit
- parallell paths should be treated independently and added together

Also useful, the "push through" rule

$$A(I + BA)^{-1} = (I + AB)^{-1}A$$

Vector (spatial) Norms

• The *p*-norm for a constant vector

$$||x||_p = \left(\sum_i |x_i|^p\right)^{1/p}$$

- Most common
 - p = 1: sum of absolute values of elements
 - p = 2: Euclidian vector length
 - $p = \infty$: maximum absolute value of elements
- Signal perspective: spatial norms essentially "sum up channels"

Induced Matrix Norms

- Consider the static system y = Ax
- The maximum amplification from input x to output y

$$||A||_{ip} = \max_{x \neq 0} \frac{||Ax||_p}{||x||_p}$$

- $\|\cdot\|_{\mathit{ip}}$ the induced p-norm
 - p = 1: $||A||_{i1} = \max_{j} (\Sigma_{i} |a_{ij}|)$ (maximum column sum)
 - $p = \infty$: $||A||_{i\infty} = \max_i (\Sigma_i |a_{ij}|)$ (maximum row sum)
 - p = 2: $||A||_{i2} = \bar{\sigma}(A) = \sqrt{\rho(A^H A)}$ (maximum singular value)

Temporal (signal) Norms

• The temporal p-norm, or the L_p -norm, of a signal e(t) is defined as

$$\|e(t)\|_{p} = \left(\int_{-\infty}^{\infty} \Sigma_{i} |e_{i}(\tau)|^{p} d\tau\right)^{1/p}$$

- p = 1: $||e(t)||_1 = \int_{-\infty}^{\infty} \Sigma_i |e_i(\tau)| d\tau$
- p = 2: $\|e(t)\|_2 = \sqrt{\int_{-\infty}^{\infty} \Sigma_i |e_i(\tau)|^2 d\tau}$
- $p = \infty$: $\|e(t)\|_{\infty} = \sup_{\tau} (\max_i |e_i(\tau)|)$
- Signal perspective: temporal norms "sum up in time"

(Induced) System Norms

System gains for LTI system y = G(s)u

	$ u _2$	$\ u\ _{\infty}$
$ y _2$	$\ G(s)\ _{\infty}$	∞
$\ y\ _{\infty}$	$ G(s) _2$	$ g(t) _1$

System norms on diagonal are induced norms

The L_2 -gain for LTI systems equals the H_{∞} -norm

$$\|G(s)\|_{\infty} = \sup_{u \neq 0} \frac{\|y(t)\|_2}{\|u(t)\|_2} = \sup_{\omega} \bar{\sigma}(G(i\omega))$$

- \sup_{ω} picks maximum frequency, $\bar{\sigma}(\cdot)$ picks maximum direction
- $-\bar{\sigma}$ generalizes the concept of frequency dependent amplification

Comparison of \mathcal{H}_2 - and \mathcal{H}_{∞} -norm

Given system

$$e = N(s)w$$

- $||N||_2 < 1$:
 - $w(t) = \delta(t)$ implies $||e(t)||_2 < 1$
 - $||w(t)||_2 < 1$ implies $\sup_t |e(t)| < 1$
 - w(t) white noise with unit variance, then variance of e(t) < 1
- $||N||_{\infty} < 1$:
 - $w(t) = \sin(\omega t)$ implies $\sup_{t} |e(t)| < 1$
 - $||w(t)||_2 < 1$ implies $||e(t)||_2 < 1$

 \mathcal{H}_2 reasonable choice for nominal performance (cf LQG), \mathcal{H}_{∞} looks at worst case but can be used with Small Gain Theorem and therefore useful for robustness analysis.

The Small Gain Theorem

Small Gain Theorem. Consider a system with a stable loop transfer-function L(s). Then the closed-loop system is stable if

$$||L(j\omega)|| < 1 \quad \forall \omega$$

where $\|\cdot\|$ denotes any matrix norm satisfying the multiplicative property $\|AB\| \le \|A\|\cdot\|B\|$

- The maximum singular value $\bar{\sigma}(L)$ satisfies the multiplicative property
- We will prove the Thm later when we consider robustness

MIMO Frequency Domain Analysis

frequency response (in phasor notation)

$$y(\omega) = G(j\omega)u(\omega)$$

• Amplification for SISO system:

$$\frac{|y(\omega)|}{|u(\omega)|} = \frac{y_0}{u_0} = |G(j\omega)|$$

- depends on frequency ω only
- Amplification for MIMO system: define amplification as

$$\frac{\|y(\omega)\|_2}{\|u(\omega)\|_2}$$

- depends on **frequency** ω and on **direction** of input $u(\omega)$

Static Example

$$G(0) = \begin{pmatrix} 1 & -0.9 \\ 2 & -2.1 \end{pmatrix}$$

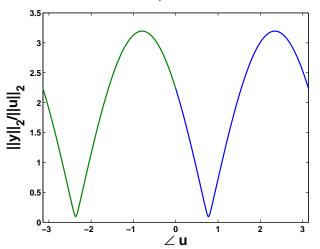
$$u = \begin{pmatrix} 1 \\ 1 \end{pmatrix} \Rightarrow y = \begin{pmatrix} 0.1 \\ -0.1 \end{pmatrix} : \frac{\|y\|_2}{\|u\|_2} = 0.1$$

$$u = \begin{pmatrix} 1 \\ -1 \end{pmatrix} \Rightarrow y = \begin{pmatrix} 1.9 \\ 4.1 \end{pmatrix} : \frac{\|y\|_2}{\|u\|_2} = 3.2$$

amplification varies with at least a factor 32 with input direction

Example cont'd

amplification as a function of input direction



Maximum and Minimum Gains (for fixed ω)

Maximum amplification:

$$\max_{u\neq 0} \frac{\|y(\omega)\|_2}{\|u(\omega)\|_2} = \bar{\sigma} \left(G(j\omega)\right)$$

 $\bar{\sigma}$ – the maximum singular value

Minimum amplification:

$$\min_{u\neq 0} \frac{\|y(\omega)\|_2}{\|u(\omega)\|_2} = \underline{\sigma}(G(j\omega))$$

 $\underline{\sigma}$ – the minimum singular value

Thus,

$$\underline{\sigma}(G(j\omega)) \leq \frac{\|y(\omega)\|_2}{\|u(\omega)\|_2} \leq \bar{\sigma}(G(j\omega))$$

Singular Value Decompositon – SVD

Let $G = G(j\omega)$ at a fixed ω . SVD of G

$$G = U\Sigma V^H$$

- $\Sigma = diag(\sigma_1, \sigma_2, \dots \sigma_k), \ k = min(I, m)$ • $\bar{\sigma} = \sigma_1 > \sigma_2 > \dots > \sigma_k = \underline{\sigma}$ - singular values
- $U = (u_1, u_2, \ldots, u_l)$
 - $-u_i$ orthonormal output singular vectors (output directions)
- $V = (v_1, v_2, \dots, v_m)$
 - v_i orthonormal input singular vectors (input directions)

Input-output interpretation

$$Gv_i = \sigma_i u_i$$

input in direction v_i gives output in direction u_i with amplification σ_i

SVD of Example

$$G(0) = \begin{pmatrix} 1 & -0.9 \\ 2 & -2.1 \end{pmatrix}$$

SVD yields

$$U = \begin{pmatrix} -0.42 & -0.91 \\ -0.91 & 0.42 \end{pmatrix}; \ \Sigma = \begin{pmatrix} 3.20 & 0 \\ 0 & 0.093 \end{pmatrix}; \ V = \begin{pmatrix} -0.70 & -0.71 \\ 0.71 & -0.70 \end{pmatrix}$$

 thus, moving inputs in opposite directions has large effect and moves outputs in the same direction

The Condition Number

$$\gamma(G) = \frac{\bar{\sigma}(G)}{\underline{\sigma}(G)}$$

- a condition number γ(G) >> 1 implies strong directional dependence of input-output gain: ill-conditioned system
- to compensate for ill-conditioning, controller must also have widely differing gains in different directions; sensitive to model uncertainty
- scaling dependent ill-conditioning may not be a problem, e.g.,

$$G = \begin{pmatrix} 100 & 0 \\ 0 & 1 \end{pmatrix}$$

has $\gamma =$ 100, but can be reduced to 1 by scaling inputs/outputs

minimized condition number often used instead

$$\gamma^*(G) = \min_{D_1, D_2} \gamma(D_1 G D_2)$$

SVD generalizes the concept of amplification, but not phase

- singular values generalize the concept of amplification (amplitude)
- but, no similar definition of phase for singular values
- however, phase can be generalized if we instead consider the eigenvalues λ_i of G

$$Gu_{xi} = \lambda_i u_{xi}$$

 $\arg \lambda_i$ gives phase lag for eigenvector direction u_{xi}

 eigenvalues of transfer-matrices useful for analysis of closed-loop stability

Generalized Nyquist Theorem

Theorem 4.9 Let P_{ol} denote the number of open-loop RHP poles in the loop gain L(s). Then the closed-loop system $(I + L(s))^{-1}$ is stable iff the Nyquist plot of det(I+L(s))

- (i) makes Pol anti-clockwise encirclements of the origin, and
- (ii) does not pass through the origin
 - Proof: note that $\det(I+L(s))=c\frac{\phi_{cl}(s)}{\phi_{ol}(s)}$ (see S&P, p. 151) and apply Argument Variation Principle
 - plot of $\det(I + L(j\omega))$ for $\omega \in [-\infty, \infty]$ is the generalized version of the *Nyquist plot*.
 - note that the critical point is 0 with this definition.

Eigenvalue loci

the determinant can be written

$$\det(I+L) = \prod_i (1+\lambda_i(L))$$

change in argument (phase) as s traverses the Nyquist contour

$$\Delta \arg \det [1 + L(j\omega)] = \sum_{i} \Delta \arg (1 + \lambda_{i}(j\omega))$$

- thus, can count the total number of encirclements of the origin made by all the graphs of $1 + \lambda_i(j\omega)$, or equivalently, the encirclements of -1 made by all $\lambda_i(j\omega)$
- the Nyquist plot of $\lambda_i(L)$ are called *eigenvalue loci*

Why not eigenvalues for gain?

- eigenvalues are "gains" for the special case that the inputs and outputs are completely aligned (same direction); not too useful for performance.
- also, generalization of gain should satisfy matrix norm properties
 - $\|G_1 + G_2\| \le \|G_1\| + \|G_2\|$ triangle inequality
 - $\|G_1G_2\| \le \|G_1\|\|G_2\|$ multiplicative property

The maximum eigenvalue $\rho(G) = |\lambda_{max}(G)|$ (spectral radius) is **not a** norm

Singular values for performance

Recall that the control error for setpoints is given by

$$e = Sr$$

hence

$$\underline{\sigma}\left(\mathcal{S}(j\omega)\right) \leq \frac{\|\boldsymbol{e}(\omega)\|_2}{\|\boldsymbol{r}(\omega)\|_2} \leq \bar{\sigma}\left(\mathcal{S}(j\omega)\right)$$

- thus, to keep error "small" for all directions of setpoint r we require $\bar{\sigma}\left(S(j\omega)\right)$ small
- more generally, introduce a frequency-dependent performance weight $w_P(s)$ such that performance requirement is

$$\frac{\|\boldsymbol{e}\|_2}{\|\boldsymbol{r}\|_2} \leq \frac{1}{|\boldsymbol{w}_P(j\omega)|} \ \forall \omega \ \Leftarrow \ \bar{\sigma}(\boldsymbol{S}) \leq \frac{1}{|\boldsymbol{w}_P|} \ \forall \omega \ \Leftrightarrow \ \|\boldsymbol{w}_P \boldsymbol{S}\|_{\infty} < 1$$

Introduction to Multivariable Control Design

diagonal (decentralized control)

$$K(s) = diag(k_1(s) k_2(s) \dots k_m(s))$$

- no attempt to compensate for directionality in G(s)
- decoupling control

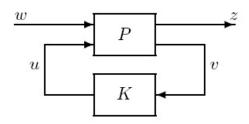
$$K(s) = k(s)G^{-1}(s)$$

- full compensation for directionality in G(s)
- "cheap" disturbance compensation, $e = SG_d d$

$$ar{\sigma}(SG_d)=1 \ orall \omega \quad \Rightarrow \quad SG_d=U_1 \quad ext{s.t.} \quad ar{\sigma}(U_1)=\underline{\sigma}(U_1)=1$$
 yields $K(s)=G^{-1}(s)G_d(s)U_1^{-1}(s)$

does in general not provide decoupling

General Control Problem Formulation



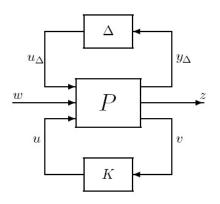
Design aim: find controller K that minimizes some norm of the transfer-function from w to z

- **1** signal based approach, e.g., $w = [r \ d \ n]^T$ and $z = [e \ u]^T$
- ② shaping the closed-loop, e.g., minimize $\| [w_P S \ w_T T]^T \|$. Identify z and w so that

$$z = [w_P S \ w_T T] w$$

See S&P on how to derive P for the two cases

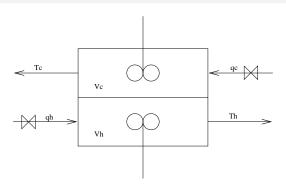
Including uncertainty in the formulation



minimize norm of transfer-function from w to z in the presence of the uncertainty $\Delta(s)$ with bound $\|\Delta\|_{\infty} \le 1$

more on this later

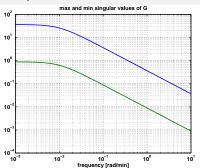
The role of uncertainty - control of heat-exchanger



- *Problem:* control temperatures T_C and T_H using flows q_C and q_H .
- Model:

$$\begin{pmatrix} T_c \\ T_H \end{pmatrix} = \frac{1}{100s+1} \begin{pmatrix} -18.74 & 17.85 \\ -17.85 & 18.74 \end{pmatrix} \begin{pmatrix} q_C \\ q_H \end{pmatrix}$$

Singular values of plant



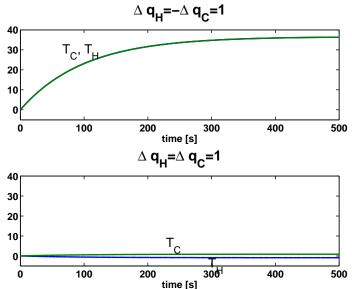
High-gain direction:

$$\bar{v} = \begin{pmatrix} 1 \\ -1 \end{pmatrix} \quad \Rightarrow \quad \bar{u} = \begin{pmatrix} 1 \\ 1 \end{pmatrix}$$

Low-gain direction:

$$\underline{v} = \begin{pmatrix} 1 \\ 1 \end{pmatrix} \quad \Rightarrow \quad \underline{u} = \begin{pmatrix} 1 \\ -1 \end{pmatrix}$$

Step Responses



Decentralized control

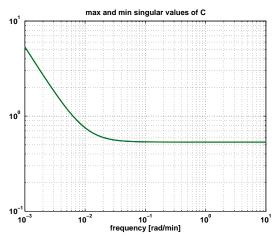
Employ controller

$$C(s) = egin{pmatrix} c_1(s) & 0 \ 0 & c_2(s) \end{pmatrix}$$

and use inverse based loop shaping for each loop,

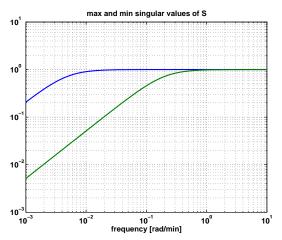
$$c_i(s) = rac{\omega_c}{s} rac{1}{g_{ii}(s)}$$
; $\omega_c = 0.1$

Singular values of decentralized controller



same gain in all directions, no compensation for directionality in G

Singular values of sensitivity function



poor performance in some directions

Decoupling control

Employ decoupler

$$C(s) = \frac{\omega_c}{s} G^{-1}(s)$$

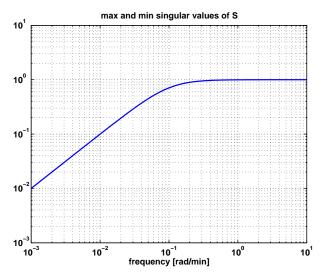
- Compensates for plant directionality by employing high (low) gain in low-gain (high-gain) direction of plant.
- Yields for sensitivity

$$S = \frac{s}{s + \omega_c}I$$

i.e., same sensitivity in all directions.

• Excellent (nominal) performance.

Singular values of sensitivity function



Good performance in all directions

Impact of uncertainty

Assume model is uncertain such that

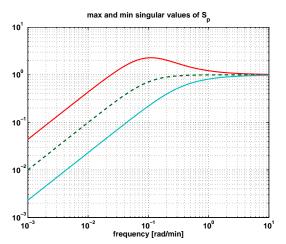
$$G_p = G(I + \Delta); \quad \Delta = \begin{pmatrix} 0.1 & 0 \\ 0 & -0.1 \end{pmatrix}$$

Corresponds to 10% input uncertainty:

$$q_H = 1.1 q_{Hc}$$
 $q_C = 0.9 q_{Cc}$

 Note: all variables are deviations from nominal values, so uncertainty is on the change of the flows

Singular values of S_p



small uncertainty completely ruins performance (but no problems with stability)

Program

- Next lecture: inherent limitations in MIMO control (Ch.6)
- Lectures 5-8:
 - modeling uncertainty, analysis of robust stability (Ch. 7-8)
 - analysis of robust performance (Ch.8)
 - design/synthesis for robust stability and performance (Ch.9-10)
 - LMI formulations of robust control problems, control structure design, course summary

