EL3210 Multivariable Feedback Control

Elling W. Jacobsen
Automatic Control Lab, KTH

Lecture 3: Introduction to MIMO Control (Ch. 3-4)
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Outline

@ Transfer-matrices, poles and zeros

@ The closed-loop

@ Performance measures and choice of norm

@ The Small Gain Theorem and choice of norm

@ Generalization of gain: SVD and the condition number
@ Eigenvalues and the Generalized Nyquist Criterion

@ Introduction to MIMO controller design

@ A Generalized Control Problem

Lecture 3:MIMO Systems EL3210 MIMO Control 2/42



Multivariable Systems

Consider a MIMO systems with m inputs and / outputs

u y

G —

@ all signals are vectors

)] 14

(07] Y2
u= . ; y =

Um Vi

@ the / x mtransfer-matrix G(s) = C(s/ — A)~'B + D has elements

yi(s)
Gj(s) =
9= ts)
@ the system is said to be interactive is some input affects several
outputs, i.e., G(s) can not be made diagonal.
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]
Poles

The pole polynomial of a system with transfer-matrix G(s) is the
least common denominator of all minors of all orders of G(s). The
poles of the system are the zeros of the pole polynomial

The system is input-output stable if and only if the poles of G(s) are
strictly in the complex left half plane.

Note:

— poles of G(s) are also poles of some Gj(s)
— poles = eigenvalues of A in the state-space description.
— poles can only be moved by feedback
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Zeros

Definition: z; is a zero of G(s) if the rank of G(z)) is less than the
normal rank of G(s)

The zero polynomial of G(s) is the greatest common divisor of all
the numerators for the maximum minors of G(s), normed so that they
have the pole polynomial as the denominator. The zeros of the system
are the zeros of the zero polynomial.

Note:
— need only check the determinant for square systems, but make
sure denominator equals pole polynomial!

— zeros usually computed from state-space description.
See S&P, Ch. 4.

— zeros are invariant under feedback and can only be moved by
parallell interconnections
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Example 1

2 1
G(S)=<§¢% S?)

S+1 s+2

@ minors are all elements and the determinant

1—s

det G(s) = )

LCD: (s+ 1)(s+2), thus polesare s = —1,s = -2

@ maximum minor, with pole polynomial as denominator, is the
determinant, thus zero at s = 1

Note: there is in general no relation between the zeros of G(s) and the
zeros of its elements.
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Example 2

2 1
G(s) = <_‘“’s,++13 352>

S+1 S+

s+1
det G(S) = m

@ LCD of det G and elements is (s + 1)(s + 2), hence poles at
s=-1,s=-2,zeroats = —1.

@ No cancellation of pole and zero because they have different
directions (see below)
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IR
Example 3

i
|_.
|_.

G(s)= (35 *2° §5
S+1 S+ S+1

No zeros. Why?
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Zero and Pole Directions

@ If zis a zero of G(s) then
G(2)u; =0-y,

where u, and y, are the zero input and output directions,
respectively

@ If pis a pole of G(s) then

G(p)up = oo p

where up and y, are the pole input and output directions,
respectively

— Note that u, = Bfg and Yp = Ct where g and t are the
corresponding left and right eigenvectors of A
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IS
A Trivial Example

@ Forzeroats =1

1
u =y =

@ Forpoleats=1 o

0

Up =Yp = |4
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——
The Closed Loop System

from block diagram

e=-Sr+SGyd—-Tn

where
S=(I+GK)'; T=GK(+GK)

@ similar to SISO case, e.g., want magnitude of S(jw) “small” for
reference tracking and disturbance rejection

= need scalar measure for size of Sand T
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——
Side remark: transfer-functions from block diagrams

To derive transfer-function from an input to an output
@ start from output and move against the signal flow towards input
@ write down the blocks, from left to right, as you meet them

© when you exit a loop, add the term (I + L)~ where L is the loop
transfer-function evaluated from exit

© parallell paths should be treated independently and added
together

Also useful, the “push through” rule

Al + BA)™' = (1+ AB)'A

Lecture 3:MIMO Systems EL3210 MIMO Control 12/42



Vector (spatial) Norms

@ The p-norm for a constant vector
1
IXllp = (ZilxlP) P

@ Most common

e p = 1: sum of absolute values of elements
e p = 2: Euclidian vector length
@ p = oo: maximum absolute value of elements

@ Signal perspective: spatial norms essentially "sum up channels”
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Induced Matrix Norms

@ Consider the static system y = Ax
@ The maximum amplification from input x to output y

|| - ljp - the induced p-norm
o p=1:|Ali = max; (X a;|) (maximum column sum)
o p=o00: ||Allicc = max;(X;|a;|) (maximum row sum)

o p=2:|A|i2 = 5(A) = /p(A"A) (maximum singular value)
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Temporal (signal) Norms

@ The temporal p-norm, or the L,-norm, of a signal e(t) is defined as

lello=( z,-|e,-(r)\f’dr)1/p

o p=1:e()|r = [ Zilei(r)dr
o p=2: elt)a ~ /[ Za(r)Far
o p= oot [le()]lx = sup, (maxilei(7)])

@ Signal perspective: temporal norms "sum up in time”
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(Induced) System Norms

System gains for LTIl system y = G(s)u

[ull2 [[Ulo
1yll2 | 1G(S)lloo | 00
Y lloo | IIG(S)ll2 | I9(D)]l+

System norms on diagonal are induced norms

The Lo-gain for LTI systems equals the H,,-norm

)l
1G(S)l=0 = SUP 1)

= sgp a(G(iw))

— sup,, picks maximum frequency, 7(-) picks maximum direction
— & generalizes the concept of frequency dependent amplification
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Comparison of Ho- and H..-norm

Given system
e= N(s)w

@ [IN|2 < 1:
e w(t)=4(t) implies |le(t)|2 < 1
o |lw(t)|2 < 1 implies sup;, |e(t)| < 1
o w(t) white noise with unit variance, then variance of e(t) < 1

@ |N|o < 1:
e w(t) = sin(wt) implies sup; |e(t)| < 1
o |[w(t)|l2 < 1 implies |le(t)|l2 < 1

Ho reasonable choice for nominal performance (cf LQG), H, looks at
worst case but can be used with Small Gain Theorem and therefore
useful for robustness analysis.
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The Small Gain Theorem

Small Gain Theorem. Consider a system with a stable loop
transfer-function L(s). Then the closed-loop system is stable if

IL(w)|| <1 Vw

where || - || denotes any matrix norm satisfying the multiplicative
property |AB|| < [|A] - [|B]|

@ The maximum singular value &(L) satisifies the multiplicative
property
@ We will prove the Thm later when we consider robustness
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MIMO Frequency Domain Analysis

frequency response (in phasor notation)
y(w) = G(jw)u(w)

@ Amplification for SISO system:

Y@ Yo g
u@) o GU)

— depends on frequency w only

@ Amplification for MIMO system: define amplification as

1y (w)ll2
lu(w)ll2

— depends on frequency w and on direction of input u(w)
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Static Example
s01- (3 %9)
() = (%) Beo

1 1.9 Iyll2
u= = y= D £ =32
(—1) Y (4-1) lull2

@ amplification varies with at least a factor 32 with input direction
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Example contd

@ amplification as a function of input direction

3.5

IVl lul,

0
du
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Maximum and Minimum Gains (for fixed w)
Maximum amplification:

ly@ll2 _ _/a
P Tt~ 7 GV

& — the maximum singular value

Minimum amplification:

Iy(@)le |
8 Ju() e ~ = (GULD

o — the minimum singular value

Thus,

Wyl _ = o
o (G(jw)) < 1)l <5 (G(jw))
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Singular Value Decompositon — SVD

Let G = G(jw) at a fixed w. SVD of G

G=UxzVvH

@ Y =diag(oy,09,...0k), kK = min(l, m)
— 0 =01 >02>...> 0k =g — singular values

o U= (uy,Ug,...,u)
— u; - orthonormal output singular vectors (output directions)
@ V=(v1,Vo,...,Vm)

— v; - orthonormal input singular vectors (input directions)

Input-output interpretation

GV,' = oju;

input in direction v; gives output in direction u; with amplification o;
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SVD of Example

60 =(; 1)

SVD yields
U— —-0.42 —-0.91) s _ 320 O V- -0.70 -0.71
- \-091 o042 )" \ 0O 0093/ "\ 071 -0.70

@ thus, moving inputs in opposite directions has large effect and
moves outputs in the same direction
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The Condition Number
_3(G)

@ a condition number v(G) >> 1 implies strong directional
dependence of input-output gain: ill-conditioned system

@ to compensate for ill-conditioning, controller must also have widely
differing gains in different directions; sensitive to model uncertainty

@ scaling dependent ill-conditioning may not be a problem, e.g.,

100 0
o= (' %)

has v = 100, but can be reduced to 1 by scaling inputs/outputs

@ minimized condition number often used instead
7*(G) = min ~(D; GD»)

Dy,Ds
25/42

Lecture 3:MIMO Systems EL3210 MIMO Control



SVD generalizes the concept of amplification, but not
phase

@ singular values generalize the concept of amplification (amplitude)
@ but, no similar definition of phase for singular values

@ however, phase can be generalized if we instead consider the
eigenvalues \; of G
Guyi = iUy

arg \; gives phase lag for eigenvector direction uy;

@ eigenvalues of transfer-matrices useful for analysis of closed-loop
stability
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——
Generalized Nyquist Theorem

Theorem 4.9 Let P, denote the number of open-loop RHP poles in
the loop gain L(s). Then the closed-loop system (1 + L(s))~" is stable
iff the Nyquist plot of det(l+L(s))

(i) makes P, anti-clockwise encirclements of the origin, and
(i) does not pass through the origin

@ Proof: note that det(/ + L(s)) = c(‘ﬁjgg (see S&P, p. 151) and apply
Argument Variation Principle

@ plot of det (/ + L(jw)) for w € [—o0, ] is the generalized version of
the Nyquist plot.

@ note that the critical point is 0 with this definition.
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Eigenvalue loci

@ the determinant can be written
det(/+ L) = JJ(1 + Ni(L))
i

@ change in argument (phase) as s traverses the Nyquist contour

Aargdet[1 + L(jw)] =Y Aarg (1 + \i(jw))

@ thus, can count the total number of encirclements of the origin
made by all the graphs of 1 + \;(jw), or equivalently, the
encirclements of —1 made by all \;(jw)

@ the Nyquist plot of \;(L) are called eigenvalue loci
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Why not eigenvalues for gain?

@ eigenvalues are “gains” for the special case that the inputs and
outputs are completely aligned (same direction); not too useful for
performance.

@ also, generalization of gain should satisfy matrix norm properties
= |Gi + Gz|| < ||G1]| + ||Gz]| - triangle inequality
— [|G1Gz|| < ||Gill|| Gzl - multiplicative property

The maximum eigenvalue p(G) = |\max(G)| (spectral radius) is not a
norm
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Singular values for performance
Recall that the control error for setpoints is given by
e=3Sr

hence

< le@le _ o
2(S() < [ < 7 ()

@ thus, to keep error “small” for all directions of setpoint r we require
7 (S(jw)) small

@ more generally, introduce a frequency-dependent performance
weight wp(s) such that performance requirement is

lels 1 ] 1
< —Vw < 7(S)<—VYw & [[wpS|e <1
Iz < TweGi) (9 <
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Introduction to Multivariable Control Design

@ diagonal (decentralized control)
K(s) = diag (ki(s) ko(s) - . . km(s))

— no attempt to compensate for directionality in G(s)

@ decoupling control
K(s) = k(s)G™'(s)
— full compensation for directionality in G(s)

@ “cheap” disturbance compensation, e = SGyd
7(SGy)=1Vw = 8SGy=U; s.t. d(Uj)=ca(Uy) =1
yields K(s) = G (s)Gq(s)U; ()

— does in general not provide decoupling
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General Control Problem Formulation

w Z
—_— EE—

P

[
Lai

Design aim: find controller K that minimizes some norm of the
transfer-function from w to z

@ signal based approach, e.g., w=[rdn]" and z=[e u]"

@ shaping the closed-loop, e.g., minimize || [wpS wrT]" |. Identify
z and w so that
z=[wpS wrT]w

See S&P on how to derive P for the two cases
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Including uncertainty in the formulation

A -«
UA Ya
w - Z
— P —
(2 v
K e

minimize norm of transfer-function from w to z in the presence of the
uncertainty A(s) with bound [|A]|s < 1

more on this later
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The role of uncertainty - control of heat-exchanger

Tc

chﬂ

Ve
gh Th
—%% =
Vh

@ Problem: control temperatures T and Ty using flows ¢ and qy.

@ Model:
.\ 1 —~18.74 17.85\ (qc
Ty) 100s+1\—-17.85 18.74) \ gy
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Singular values of plant

max and min singular values of G
T T

High-gain direction:

Low-gain direction:

() - ()
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|
Step Responses

0 100 200 300 400 500
time [s]
Ag,=Aq.=1
q,=0d.
40 T T T T
30f R
20f b
10f R
T
0 C
. . T !
0 100 200 3001 400 500
time [s
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Decentralized control

Employ controller

C(s)=(01((,s) 0 )

C2(S)
and use inverse based loop shaping for each loop,
We 1

(s)= "¢ . we=0.1
=5 gisy o0
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Singular values of decentralized controller

max and min singular values of C
10 T

10

-1

10

10° 107 107" 10° 10"
frequency [rad/min]

same gain in all directions, no compensation for directionality in G
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Singular values of sensitivity function

max and min singular values of S
T

10° 107 107" 10° 10"
frequency [rad/min]

poor performance in some directions
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Decoupling control

@ Employ decoupler
C(s) = %6‘1(3)

@ Compensates for plant directionality by employing high (low) gain

in low-gain (high-gain) direction of plant.
@ Yields for sensitivity

sS=—2 4
S+ We
i.e., same sensitivity in all directions.

@ Excellent (nominal) performance.
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Singular values of sensitivity function

max and min singular values of S

10"
frequency [rad/min]

Good performance in all directions
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Impact of uncertainty
Assume model is uncertain such that

. /(01 0
Gp = G(I + A); A_<O _0_1)

Corresponds to 10% input uncertainty:

gy =1.19H: 9c = 0.99¢

@ Note: all variables are deviations from nominal values, so
uncertainty is on the change of the flows
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Singular values of S,

max and min singular values of S 0

10"

10° 107 107" 10° 10
frequency [rad/min]

small uncertainty completely ruins performance (but no problems with
stability)
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Program

@ Next lecture: inherent limitations in MIMO control (Ch.6)

@ Lectures 5-8:
— modeling uncertainty, analysis of robust stability (Ch. 7-8)
— analysis of robust performance (Ch.8)
— design/synthesis for robust stability and performance (Ch.9-10)
— LMI formulations of robust control problems, control structure
design, course summary
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