
Operator Limits of Random Matrices

Diane Holcomb

with contributions from Bálint Virág

These notes were written for a short course taught by myself, Diane Holcomb,
at KTH in November-December of 2017. They incorporate notes written for a
short course taught by Bálint Virág at PCMI summer school in July 2017 which
were written as a collaboration between myself and Báling Virág. Portions of these
notes will also be based on a random matrices course given by Benedek Valkó at
University of Wisconsin circa Spring 2012.

The intention of the lectures here at KTH is to provide an introduction to the
type of operator convergence work that is becoming better known in the random
matrix community, but is still not widely studied or understood. Major contri-
butions to this area include the work of Alan Edelman, Ioana Dumitriu, Brian
Sutton, Jose Ramı́rez, Brian Rider, Bálint Virág, and Benedek Valkó. There will
naturally be portions of the area that I will not be able to cover in full detail in
the lecture. These notes will fill in some, though probably not all of these details.

I also would like to make a few notes about the style and organization of the
notes. The goal here is the introduction to the ideas underlying the field. Because
of this I will not be doing things in full generality, nor proving common statements
from random matrices. I hope that when I finish the notes each chapter will have a
first section that gives in some sense the narrative of the chapter. The lectures will
largely be drawn from these sections. Remaining sections will discuss the results
from the chapter in greater generality and/or prove statements left unproven in
the first section. The exception to this is chapter 1 which includes a variety of
preliminaries that are necessary for the remainder of the notes. The current version
is still very much a work in progress.

1





Contents

Chapter 1. The Gaussian Ensembles 5
1. The Gaussian Orthogonal and Unitary Ensembles 5
2. Global and local convergence 7
3. Tridiagonalization and spectral measure 9
4. β-ensembles 11

Chapter 2. The Wigner semi-circle law 15
1. Graph convergence 15
2. Wigner semicircle law 18

Chapter 3. The top eigenvalue and the Baik-Ben Arous-Pechet transition 19
1. The top eigenvalue 19
2. Baik-Ben Arous-Pechet transition 20

Chapter 4. The soft edge 23
1. The heuristic convergence argument 23
2. The bilinear form and making sense of the SAOβ 26
3. The discrete bilinear form and limits 29
4. Tails of the Tracy Widomβ distribution 31

Chapter 5. The hard edge 35
1. The heuristic convergence argument 35
2. The operator and spectrum convergence 39
3. Stochastic differential equations and the hard edge 39

Chapter 6. The Bulk Limit 41
1. The Szegö Recursion 41
2. Dirac operators 43
3. The Canonical system setup 46

Chapter 7. Operator limits via Stochastic Differential Equations 49
1. Characterizing the limits by differential equations 49
2. Transitions 50

Appendix. List of symbols 53

Appendix. Bibliography 55

3





CHAPTER 1

The Gaussian Ensembles

1. The Gaussian Orthogonal and Unitary Ensembles

One of the earliest random matrix models was introduced by Eugene Wigner
in the 1950’s. The model can be characterized in many ways, but we will start
with the following construction: let Mn be a symmetric matrix with

mij ∼ N (0, 1) for i < j, and mii ∼ N (0, 2).

The symmetry condition completes the description of the matrix. A matrix con-
structed in this way is said to be a member of the Gaussian Orthogonal Ensemble.
If we instead take mij ∼ CN (0, 1) ∼ X + iY a complex standard normal where
X and Y are independent with N (0, 1) distribution and the constraint Mn = M∗

n

we get the Gaussian Unitary ensemble.

Theorem 1.1. Suppose Mn has GOE or GUE distribution then Mn has eigen-
value density

(1) f(λ1, ..., λn) =
1

Zn

n∏
k=1

e−
β
4
λ2k
∏
i<j

|λi − λj|β

with β = 1 for the GOE and β = 2 for the GUE.

For convenience we will take Λ(n) = {λi}ni=1 to denote the set of eigenvalues of
the GOE or GUE. This notation will be used later to denote the eigenvalues or
points in whatever random matrix model is being discussed at the time.

Observe that for the joint density above we can move all the the terms into
the exponent giving us that

f(λ1, ..., λn) =
1

Zn
exp

[
−β

4

n∑
k=1

λ2
k + β

∑
i<j

log |λi − λj|

]
.

From this we can see that this is a model for n particles interacting through
a Hamiltonian with a potential V (x) = x2 and an interaction term log |x − y|.
These two terms work against each other, the potential term pushing the particles
together while the interaction term pushes them apart. Now consider the what
happens as n increases. The first sum has n terms while the second has

(
n
2

)
,

therefore as n tends to infinity the repulsion will be the dominant term. This
means that the points will be found further and further out and will not remain in
a compact interval. To put these two terms on the same scale we do the mapping
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Figure 1. Rescaled eigenvalues of a 1000×1000 GOE matrix

λi 7→
√
nxi. Then the joint density for the xi’s will be given by

fx(x1, ..., xn) =
e(

n
2) log

√
n

Znnn/2
exp

[
−nβ

4

n∑
k=1

x2
k + β

∑
i<j

log |xi − xj|

]

=
e(

n
2) log

√
n

Znnn/2
exp

[
−n2β

4

∫
x2dνn(x) + n2β

∫∫
log(x− y)dνn(x)dνn(y)

]
,

where here νn = 1
n

∑n
k=1 δxk is the empirical measure of the xi’s. Notice that the

original mapping was equivalent to scaling the eigenvalues down by a factor of
√
n

and so we get that

(2) νn =
1

n

n∑
k=1

δλi/
√
n.

If these measures converge as n→∞ it must be to the measure which minimizes
the energy of the system with Hamiltonian

H∞(σ) =
1

2

∫
x2dσ(x)−

∫∫
log(x− y)dσ(x)dσ(y).

This Hamiltonian is minimized by the semicircle measure σsc with density

dσsc
dx

=
1

2π

√
4− x2 1x∈[−2,2] = ρsc(x).

Exercise 1.2. Show that σsc minimizes H∞.

Theorem 1.3 (Wigner’s semi-circle law). Let νn be the sequence of measures
defined in (2). Then as n→∞

νn ⇒ σsc.

One way of thinking of this statement is to consider the histogram of the
rescaled eigenvalues of a large GOE matrix. This histogram will be approximately
semi-circular in shape. See figure 1. For a proof of the semicircle law involving
graph convergence see chapter 2.



2. GLOBAL AND LOCAL CONVERGENCE 7

1.1. Properties of the GOE. One of the most important properties of the
GOE after the fact that its eigenvalue density has an explicit form is that the
distribution of the GOE is invariant under orthogonal conjugation.

Theorem 1.4. Let Mn have GOE distribution and O be an independent or-

thogonal matrix. Then Mn
d
= OMnO

t.

Before proving the above theorem we need to introduce at least one other
description of the GOE.

Proposition 1.5. The following characterizations of the Gaussian Orthogonal
Ensemble are equivalent:

(1) Mn = M t
n with mii ∼ N (0, 2) and mij ∼ N (0, 1) for i < j all independent.

(2) Mn = Xn+Xt
n√

2
whre xi,j ∼ N (0, 1) all independent.

(3) Mn has density 1
Z

exp(−1
4
Tr MMT ) on the space of symmetric matrices.

Proof. If v is a standard normal vector and O is orthogonal then Ov
d
= v.

Therefore, for X = [v1, v2, ..., vn] i.i.d vectors we get OX
d
= X. Then using the

second description of the GOE we get that OXnO
T d

= Xn.
Alternatively, consider the third description of the GOE. We look at the trans-

formation X 7→ OXOT . The density will be invariant if we can show that
Tr XXT = Tr OXOT (OXOT )T and the Jacobian has a magnitude of 1. In-
deed we do get the equality of the traces because conjugation with an orthogonal
matrix fixes the eigenvalues. For the second part we need the following lemma:

Lemma 1.6. The Jacobian of X 7→ OXOT is 1.

This completes the proof of the previous lemma
�

proof of lemma 1.6. Let vX = (x11, x22, ..., xnn, x12, x13, ..., xn−1,n)T . Then
there is a matrixA with vOTXO = AvX . We need | detA|. LetD = diag(1, 1, ..., 1, 2, ..., 2)
(n 1’s and (n2 − n)/2 2’s). Then

vTXDvX = Tr XXT

moreover we get that

vTXA
TDAvX = vOTXODvOTXO = Tr XXT

Therefore ATDA = Dand so | detA|2 detD = detD which implies | detA| =
1. �

Remark 1.7. Similar results hold for the GUE, but the orthogonal matrix O
is replaced by a unitary matrix U .

2. Global and local convergence

The Wigner semi-circle law is an example of a global or macroscopic conver-
gence result. In this setting the rescaled eigenvalues {λi/

√
n}ni=1 accumulate on a

compact interval and so in the limit become indistinguishable from each other. If
we are instead interested in the local interactions between eigenvalues (the inter-
actions of eigenvalues with their neighbors) we need to be able to see the behavior
of individual points in the limit.
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Figure 2. Spectrum of a GOE scaled down to [−2, 2] and in natural scale.

Figure 2 shows the spectrum of a GOE on two different scales along with the
order of magnitude of the spacing. Notice that at this point if we took n → ∞
for either Λ(n)/

√
n or Λ(n) all of the points would become indistinguishable even

at the edge. To see where the spacing comes from consider the Wigner semi-circle
law. When n is large we get that for a < b ∈ [−2, 2]

#{xi = λi/
√
n ∈ [a, b]} ≈ n

∫ b

a

dσsc(x) = n

∫ b

a

1

2π

√
4− x2dx

When [a, b] = [a, a+δ] with a ∈ (−2, 2−δ) this become approximately the length of
the interval multiplied by ρsc evaluated at a. Therefore #{xi ∈ [a, b]} ≈ nδρsc(a)
(recall xi = λi/

√
n), meaning that there are order n points in any such interval

and the approximate spacing of the points is O(1/n).

Exercise 2.1. Check that the number of points xi in an interval of the form
[−2,−2 + δ] is on the order of n2/3 meaning that the spacing is O(n−2/3).

At this point we can see that the scale at which the points of a GOE will be
order 1 about will change depending on the location. We call the set (−2

√
n, 2
√
n)

the bulk of the spectrum and the points ±2
√
n the edge. In the bulk of the

spectrum we need to scale up by f(a)
√
n where f(a) is some function of a. At the

edge we need to scale up by n1/6. See Figure 2 for a picture of what is happening.
The limiting spectral measure (in this case the semi-circle) should be taken as a
guide for the correct scale at which to see local interaction but is not guaranteed
to give the right answer. In this case it does and we get the following results:

Theorem 2.2 ([7]). Let λ1 ≥ λ2 ≥ · · · denote the ordered eigenvalues of the
GOE then {

n1/6(2
√
n− λi)

}
i=1,...,k

⇒ {Λ1,Λ2, ...,Λk}
where Λi are the ordered eigenvalues of a certain random differential operator.

The differential operator and the theorem will be discussed in further detail in
chapter 4.

Theorem 2.3 ([9],[10]). Let Λ(n) be the set of eigenvalues of a GOE and
a ∈ (−2, 2) then

ρsc(a)
√
n(Λ(n) − a

√
n)⇒ Sine1

where Sine1 is a point process that may be characterized as the eigenvalues of a
certain random Dirac operator.
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Figure 3. Illustration of the correct scale to see local interactions.

Remark 2.4. These theorems were originally proved and stated using the in-
tegrable structure of the GOE. The GOE eigenvalues form a Pfaffian point process
with a kernel constructed from Hermite polynomials. The limiting processes may
be identified to looking at the limit of the kernel in the appropriate scale.

3. Tridiagonalization and spectral measure

Up to this point we have discussing the empirical measure associated to the
eigenvalues, but there is another measure that we can discuss which will turn out
to be useful. That is the spectral measure of a matrix A at a vector v. For this
section we will always take v = e1 the first coordinate vector.

Definition 3.1. Suppose you have a symmetric matrix A, we can define its
spectral measure (at the first coordinate vector) σA. The spectral measure is the
measure for which ∫

xkdσA = Ak11.

Exercise 3.2. Check that if λ1, ..., λn are the eigenvalues of A then

σA =
∑
i

δλiϕi(1)2

where ϕi is the ith normalized eigenvector of A.

We say two symmetric matrices are equivalent if they have the same eigen-
values with multiplicity. This equivalence is well understood: two matrices are
equivalent if and only if they are conjugates by an orthogonal matrix (in group
theory language, the equivalence classes are the orbits of the conjugation action of
the orthogonal group). There is a canonical representative in each class, a diagonal
matrix with non-increasing diagonals.

Can we have a similar characterization for matrices with the same same spec-
tral measure?

Definition 3.3. A vector v is cyclic for an n× n matrix A if v,Av, ..., An−1v
is a basis for the vector space Rn.

Theorem 3.4. Let A and B be two matrices, then σA = σB if an only if
O−1AO = B where O is orthogonal of the form O11 = 1, O1i = 0 for i 6= 1.

Definition 3.5. A Jacobi matrix is a real symmetric tridiagonal matrix with
positive off-diagonals.
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Theorem 3.6. For all A there exists a unique Jacobi matrix J such that σJ =
σA

Proof of Existence. We will use the Householder transformation to take
an n× n symmetric matrix to a similar tridiagonal matrix. Write our matrix in a
block form,

A =

[
a bt

b C

]
Now let O be an (n− 1)× (n− 1) orthogonal matrix, and let

Q =

[
1 0
0 O

]
Then Q is orthogonal and

QAQt =

[
a (Ob)t

Ob OCOt

]
Now we can choose the orthogonal matrix O so that Ou is in the direction of the
first coordinate vector, namely Ou = |u|e1.

An expliction option for O is the following Householder reflection:

Ov = v − 2
〈v, w〉
〈w,w〉

w where w = b− |b|e1

Check that OOt = I, Ob = |b|e1.
Therefore

QAQt =


a |b| 0 . . . 0
|b|
0
... OCOt

0

 .
We now repeat the previous step, but this time choosing the first two rows and
columns to be 0 except having 1’s in the diagonal entries, and than again until
the matrix becomes tridiagonal. �

Exercise 3.7. Suppose e1 is cyclic. Apply Gram-Schmidt to the vectors
(e1, Ae1, ..., A

n−1) to get a new orthonormal basis. Show that A written in this
basis will be a Jacobi matrix.

Exercise 3.8. A tridiagonal matrix J is called a Jacobi matrix if the off
diagonal entries are all positive. We define the spectrum of J to be the measure
that satisfies

∫
p(x)dσ(x) = 〈e1, p(A)e1〉 for all polynomials p(x). Show that if J

and J ′ are two Jacobi matrices with σJ = σJ ′ then J = J ′.
Hint: Look at the moments of the measure.

3.1. Tridiagonalization and the GOE. When we do this tridiagonalization
procedure to the GOE we get a very clean result because of the invariance of the
distribution under independent orthogonal transformation.
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Proposition 3.9 ([8]). Let A be GOEn. There exists a random orthogonal
matrix fixing the first coordinate vector e so that

OAOt =


a1 b1 0 . . . 0

b1 a2
. . .

0
. . . . . . . . .

...
. . . an−1 bn−1

0 bn−1 an


with all entries indepdent, ai ∼ N (0, 2) and bi ∼ χn−i. In particular, OAOt = has
the same spectral measure as A.

For those unfamiliar with the chi distribution we make the following obser-
vations. Suppose that k is an integer and v is a vector of independent N (0, 1)

random variables of length k, then χk
d
= ‖v‖. The density of a χ random for k > 0

is given by

fχk(x) =
1

2
k
2
−1Γ(k/2)

xk−1e−x
2/2,

where Γ(x) is the Gamma function.

Proof. The argument above can be applied to the random matrix. After the
first step, OCOt will be independent of a, b and have a GOE distribution. This is
because GOE is invariant by conjugation with a fixed O, and O is only a function
of b. So conditionally on a,b, both C and OCOt have GOE distribution. �

Exercise 3.10. Let Xn×m be an n×m matrix with xi,j ∼ N (0, 1) (not sym-
metric nor Hermitian). The distribution of this matrix is invariant under left and
right multiplication by independent Unitary matrices. Show that such a matrix X
may be lower bidiagonalized such that the distribution of the singular values is the
same for both matrices. Note that the singular values of a matrix are unchanged
by multiplication by a unitary matrix.

(1) Start by coming up with a matrix that right multiplied with A gives you
a matrix where the first row is 0 except the 11 entry.

(2) What can you say about the distribution of the rest of the matrix after
this transformation to the first row?

(3) Next apply a left multiplication. Continue using right and left multipli-
cation to finish the bidiagonalization.

4. β-ensembles

Exercise 4.1. For every spectral measure σ there exists a symmetric matrix
with that spectral measure. This implies that there exists a Jacobi matrix with
this spectral measure.
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Let

An =
1√
β


a1 b1 0 . . . 0

b1 a2
. . .

0
. . . . . . . . .

...
. . . an−1 bn−1

0 bn−1 an


That is a tridiagonal matrix with a1, a2, ..., an ∼ N(0, 2) on the diagonal and
b1, ..., bn−1 with bk ∼ χβ(n−k) and everything independent. Recall that if z1, z2, ...
are iid N(0, 1) then z2

1 + · · ·+ z2
k ∼ χ2

k.
If β = 1 then An is similar to a GOE matrix (the joint density of the eigenvalues

is the same). If β = 2 then An is similar to a GUE matrix.

Theorem 4.2 ([2]). If β > 0 then the joint density of the eigenvalue of An is
given by

f(λ1, ..., λn) =
1

Zn,β
e−

β
4

∑n
i=1 λ

2
i

∏
1≤i<j≤n

|λi − λj|β.

Before we start the proof we begin with a few observations. In the matrix An
the off-diagonal entries are bi > 0, and there are 2n− 1 variable in the matrix.

We wish to compute the Jacobian of the map (λ, q) → (a, b). To do this we
work by going through the moments.

mk =

∫
xkdσ =

∑
λki q

2
i

We look at maps from both sets to (m1, ...,m2n−1). These are simple transforma-
tions. We will write down the appropriate matrices and hope we can find their
determinants. F

Theorem 4.3 (Dumitriu, Edelman, Krishnapur, Rider, Virág, [2, 5]). Let V
be a potential (think convex) and a, b are chosen from then density proportional to

exp (−TrV (J))
n−1∏
k=1

bkβ−1
n−k

then the eigenvalues have distribution

f(λ1, .., λn) =
1

Z
exp

(
−
∑
i

V (λi)

)∏
i<j

|λi − λj|β

and the qi are independent of the λ with (q1, ..., qn) = (ϕ1(1)2, ..., ϕn(1)2) have
dirichlet(β

2
, ..., β

2
) distribution.

Suppose we have the sequence {(ai, bi), i ≥ 1} with the distribution from the
theorem. This is a Markov Chain. This holds no matter which polynomial you
choose, though you might need to take bigger blocks of (ai, bi).
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4.1. The β-Laguerre ensemble. We finish this section by introducing a few
more classical random matrix models and their associated β-ensembles. Suppose
that you have a rectangular matrix n×p matrix Xn with p ≥ n and xi,j ∼ N (0, 1)
all independent. The matrix

Mn = XnX
t
n

is a symmetric matrix which may be thought of as a sample covariance matrix
for a population with independent normally distributed traits. As in the case of
the Gaussian ensembles we could have started with complex entries and looked
instead at XX∗ to form a Hermitian matrix. The eigenvalues of this matrix have
distribution

(3) fL,β(λ1, ..., λn) =
1

Zβ,n,p

n∏
i=1

λ
β
2

(p−n+1)−1

i e−
β
2
λi
∏
j<k

|λj − λk|β,

with β = 1. This generalizes to the β-Laguerre ensemble which is a set of points
with density fL,β. The matrix model Mn is part of a wider class of random matrix
models called Wishart matrices. This class of models was originally introduced
by Eugene Wigner in the 1920’s.

As in the case of the Gaussian ensembles there is a limiting spectral measure
when the eigenvalues are in the correct scale.

Theorem 4.4 (Marchenko-Pastur law). Let λ1, ..., λn have β-Laguerre distri-
bution,

νn =
1

n

n∑
i=1

δλi/n,

and suppose that n
p
→ γ ∈ (0, 1]. Then as n→∞

(4) νn ⇒ σmp, where
dσmp
dx

= ρmp(x) =

√
(γ+ − x)(x− γ−)

2πγx
1[γ−,γ+],

and γ± = (1±√γ)2.

Notice that this density can display different behavior at the lower end point
depending on the value of γ. In particular if γ = 1 then γ− = 0 and so the lower
end of the spectrum is 0 and the density simplifies to.

ρmp(x) =
1

2π

√
4− x
x

1[0,4].

In this case the lower edge has an asymptote at 0, however for any γ < 1 we get
that the lower edge has the same

√
x type behavior that we see at the edge of the

semi-circle distribution.
As in the case of the β-Hermite ensemble there exists a tridiagonal matrix

model which has joint eigenvalue distribution fL,β.

Theorem 4.5. Let

Lβ,p =
1√
β


χβp χ̃β(n−1)

χβ(p−1) χ̃β(n−2)

. . . . . .
χβ(p−n+2) χ̃β

χβ(p−n+1)
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with the χ and χ̃ random variables independent χ-distributed random variables
with the parameter given by the subscript. Then the eigenvalues of Lβ,pL

t
β,p have

β-Laguerre distribution give in equation (3).

4.2. Circular β-ensemble. We introduce one final classical β-ensemble. The
circular orthogonal and unitary ensembles are defined by choosing an orthogonal or
unitary matrix according to Haar measure on the spaces of orthogonal or unitary
matrices respectively. When a matrix is chosen according to this distribution its
eigenvalues fall on the circle and their joint density is given by

(5) fC(eiθ1 , ..., eiθn) =
1

Z

∏
j<k

|eiθj − eiθk |β

with β = 1 or 2 for the orthogonal or unitary ensembles respectively. A set of
points on the circle that has joint density (5) is call a circular β-ensemble. This
matrix model does not have a corresponding tridiagonal representation. Instead
there is a corresponding matrix model called a CMV matrix which is a 5-diagonal
matrix with a particular structure. This CMV matrix may be defined by looking
at a sequence of numbers called Verblunsky coefficients. These coefficients will be
discussed further in Chapter 6.



CHAPTER 2

The Wigner semi-circle law

1. Graph convergence

The proof of the Wigner semi-circle law given here will rest on a graph conver-
gence argument, so we begin by introducing the notions of convergence needed for
the proof and the connection between graph and spectral convergence. We will try
to give examples throughout this section so the precise nature of the convergence
is easier to understand.

Example 1.1. Suppose that A is the adjacency matrix of a graph G. We can
label the vertex corresponding to the first coordinate vector. Then Ak11 is the sum
over weighted paths that are length k and return to the starting vertex.

What is the connection between graph convergence and spectral measure? We
will be interested in taking limits of rooted graphs. The notion of spectral measure
will be useful in this context. In particular we can define the spectral measure of
a rooted graph in the following way:

Definition 1.2. Let (G, ρ) be a rooted graph and AG its adjacency matrix
where ρ corresponds to the first coordinate vector. We define the spectral measure
of G rooted at ρ to be the spectral measure of AG.

Definition 1.3. Suppose you have a sequence of graphs Gn with a distin-
guished vertex we call the root. We say that a sequence of graphs converges if any
ball around the root stabilizes at some point.

Examples 1.4. We give two examples

(1) Suppose we take the n cycle with any vertex chosen as the root. This
converges to Z in the limit

(2) Suppose we have the k by k grid with vertices at the intersection. If
we choose a vertex at the center of the grid as the root, we will get
convergence to Z2.

Proposition 1.5. If (Gn, ρn) converges to (G, ρ) is the sense of rooted local
convergence, then the spectral measure of the graphs converge.

Exercise 1.6. Consider paths of length n rooted at the left end point. This
sequence converges to Z+ in the limit. What is the limit of the spectrum? It is the

· · · → · · · · · ·

Figure 1. Rooted n-cycles to Z

15
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Wigner semi-circle law, since the moments are Dyck paths. But one can prove this
directly, since the paths on length n are easy to diagonalize. This is an example
where the spectral measure has a different limit than the eigenvalue distribution.

Definition 1.7. Suppose you wish to construct a graph on n vertices with a
given degree sequence (d1, ..., dn). The configuration model may be constructed
by attaching the appropriate number of half edges to the vertices and choosing a
uniformly at random perfect matching of the half edges.

Exercise 1.8. Suppose you have the random d-regular graph on n vertices in
the configuration model. Then in the limit this converges to the d-regular infinite
tree in the limit.

Definition 1.9. Benjamini-Schramm convergence: We define this conver-
gence for unrooted graphs. Choose a vertex uniformly at random to be the root.
If this converges in distribution in with respect to rooted convergence to a random
rooted graph, we say the graphs converge in this sense.

This is essentially asking for convergence of the local statistics.

Proposition 1.10. Suppose we have a finite graph G and we choose a vertex
uniformly at random. This defines a random graph and its associated random
spectral measure σ. Then Eσ = µ is the eigenvalue distribution.

Proof. Recall that for the spectral measure of a matrix (and so a graph) we
have

σ(G,ρ) =
n∑
i=1

δλiϕ
2
i (ρ)

Since ϕi is of length one, we have∑
ρ∈V (G)

ϕi(ρ)2 = 1

hence

EσG,ρ =
1

n

∑
ρ∈V (G)

σG,ρ = µG.

�

Examples 1.11. The following are examples of Banjamini-Schram conver-
gence:

(1) A cycle graph converges to the graph of Z.
(2) A path of length n converges to the graph of Z.
(3) Large box of Zd converges to the full Zd lattice.

Notice that for the last two the probability of being in a neighborhood of the edge
goes to 0 and so the limiting graph doesn’t see the edge effects.

Exercise 1.12. Say a sequence of d-regular graphs Gn with n vertices is of
essentially large girth if for every k the number of k-cycles in Gn is o(n). Show
that Gn is essentially large girth if and only if it Benjamini-Schramm converges
to the d-regular tree.
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Exercise 1.13. (harder) Show that for d ≥ 3 the d-regular tree is not the
Benjamini-Schramm limit of finite trees.

How does this help? We will get that σn → σ∞ in distribution and also in
expectation. By bounded convergence, the eigenvalue distributions will converge
as well: µn = Eσn → Eσ∞.

We can also consider the case where G are weighted graphs. This corresponds
to general symmetric matrices A. In this case we require that the neighborhoods
stabilize and the weights also converge. Everything goes through.

Example 1.14 (The spectral measure of Z). We use Bejamini-Schram con-
vergence of the cycle graph to Z. We begin by computing the spectral measure of
the n-cycle Gn. We get that A = T + T t where

T =


0 1

0 1
. . . . . .

. . . 1
1 0


The eigenvalues of 2T will be the roots of unity. We can think of this as A =
(T+T−1

2
)2. So think of this as having the eigenvalues uniformly spaced on a circle

of radius 2. The spectrum will be given by the projection of these points onto the
real line. In the limit this will become the projection of the uniform measure on
the circle. This gives you the arcsine distribution.

σZ =
1

2π
√

4− x2
1x∈[−2,2] dx

Exercise 1.15. Let Bn be the unweighted finite binary tree with n levels.
Suppose a vertex is chosen uniformly at random from the set of vertices. Give the
distribution of the limiting graph.

Exercise 1.16. Let (G, ρ) be a rooted graph, we define the spectrum of
(G, ρ) to be the measure that satisfies that for all polynomials p(x) we get that∫
p(x)dµ(x) = 〈e1, p(A)e1〉 where we take the root to correspond to the first row

and column of the matrix.

(1) Suppose a graph Gn has the n× n adjacency matrix

A =


0 1
1 0 1

1
. . . . . .
. . . 0 1

1 0


What is the graph with adjacency matrix A?

(2) Suppose we root Gn at the vertex corresponding to the first row and
column. What is limit of (Gn, ρn)?

(3) Suppose we choose the root uniformly at random. What is the limit of the
graph? What is the spectrum of the limiting graph? This is a distribution
you have seen before.
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Exercise 1.17. Let A be a rescaled n × n Dumitriu-Edelman tridiagonal
matrix

A =
1√
βn


b1 a1

a1 b2 a2

a2
. . . . . .
. . . bn−1 an−1

an−1 bn

 , ai ∼ χβ(n−i), bi ∼ N (0, 1)

all independent, and suppose that A is the adjacency matrix of a weighted graph.

(1) Draw the graph with adjacency matrix A. (There can be loops)
(2) Suppose a root for your graph is chosen uniformly at random, what is the

limiting distribution of your graph?
(3) What is the limiting spectral measure of the graph rooted at the vertex

corresponding to the first row and column?
(4) What is the limiting spectral measure of the unweighted graph?

2. Wigner semicircle law

Note that a Jacobi matrix can be thought of the adjacency matrix of a weighted
path with loops.

Exercise 2.1. Check that χn −
√
n

P−−−→
n→∞

N (0, 1/2).

Proof 1. Take the previous graph, divide all the labels by
√
n and then take

a Benjamini-Schramm limit.
What is the limit? Z, but then we need labels. The labels in a randomly rooted

neighborhood will now be the square root of a single uniform random variable in
[0, 1]. Call this U . Then the edge weights are

√
U . Recall that µn → Eσ. In the

case where U was fixed we would just get a scaled arcsine measure.
Choose a point uniformly on the circle of radius

√
U and project it down to

the real line. But this point is in fact a uniform random point in the disk. This
gives us the semicircle law.

µsc =
1

2π

√
4− x21x∈[−2,2] dx.

�

Proof 2. We take the rooted limit where we choose the root to be the matrix
J/
√
n corresponding to the first coordinate vector.

In the limit this graph converges to Z+. Therefore σn → σZ+ = ρsc. This
convergence is weak convergence in probability.

So going back to the full matrix model of GOE, we see that the spectral
measure at an arbitrary root converges weakly in probability to µsc. But then this
must hold also if we average the spectral measures over the choice of root (but not
the randomness in the matrix).

Thus we get µn → µsc in probability. �

Dilemma: The limit of the spectral measure should have nothing to do with
the limit of the eigenvalue distribution in the general case. This tells you that the
Jacobi matrices that we get in the case of the GOE are very special.



CHAPTER 3

The top eigenvalue and the Baik-Ben Arous-Pechet
transition

1. The top eigenvalue

The eigenvalue distribution of the GOE converges after scaling by
√
n to the

Wigner semi-circle law. From this, it follows that the top eigenvalue, λ1(n) satisfies
for every ε > 0

P (λ1(n)/
√
n > 2− ε)→ 1

the 2 here is the top of the support of the semicircle law. However, the upper
bound does not follow and needs more work. This is the content of the following
theorem.

Theorem 1.1 (Füredi-Komlós).

λ1(n)√
n
→ 2 in probability.

This holds for more general Wigner matrices; we have a simple proof for the
GOE case.

Lemma 1.2. If J is a Jacobi matrix (a’s diagonal, b’s off-diagonal) then

λ1(J) ≤ max
i

(ai + bi + bi−1)

Here we take the convention b0 = bn = 0.

Proof. Observe that J may be written as

J = −AAT + diag(ai + bi + bi−1)

where

A =


0
√
b1

−
√
b1

√
b2

−
√
b2

√
b3

. . . . . .


and AAt is nonnegative definite. So for the top eigenvalues we have

λ1(J) ≤ −λ1(AAT ) + λ1(diag(ai + bi + bi−1)) ≤ max
i

(ai + bi + bi−1).

We used sublinearity of λ1, which follows from the Rayleigh quotient representa-
tion. �

If we apply this to our setting we get that

λ1(GOE) ≤ max
i

(Ni, χn−i + χn−i+1) ≤ 2
√
n+ c

√
log n

19
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the right inequality is an exercise (using the Gaussian tails in χ) and holds with
probability tending to 1 if c is large enough. This completes the proof of Theorem
1.1.

This gives you that the top eigenvalue cannot go further than an extra log n
outside of the spectrum. Indeed we have that

λ1(GOE) = 2
√
n+ TW1n

−1/6 + o(n−1/6)

so this result from before is not optimal.

2. Baik-Ben Arous-Pechet transition

Historically one of the areas that random matrices have been used is to study
correlations. When considering principle component analysis we use the Wishart
model to study what would happen if we just had noise and nothing else? How
likely is it that the correlations that we see are more than chance?

Wishart consider matrices Xn×m with independent entries and studies the
eigenvalues of XX t. We will take the noise matrix X to have i.i.d. normal entries.
We study rank one perturbations and consider the top eigenvalue. Consider the
case n = m.

Theorem 2.1 (BBP transition).

1

n
λ1

(
Xdiag(1 + a2, 1, 1, ..., 1)X t

)
→ ϕ(a)2

where

ϕ(a) =

{
2 a ≤ 1

a+ 1
a

a ≥ 1

Heuristically, correlation in the populations appears in the asymptotics in the
top eigenvalue of the data only if it is sufficiently large, a > 1. Otherwise, it gets
washed out by the fake correlations coming from noise.

We will prove the GOE analouge of this theorem, and leave the Wishart case
as an exercise.

One can also study the fluctuations of the eigenvalues. In the case a < 1 you
get Tracy-Widom. In the case a > 1 you get Gaussian fluctuations. Very close to
th point a = 1 you get a deformed Tracy-Widom.

The GOE analogue is the following.

Theorem 2.2 (Top eigenvalue of GOE with nontrivial mean).

λ1(GOEn +
a√
n

11t)→ ϕ(a)

where 1 is the all-1 vector, and 11t is the all-1 matrix.

It may be suprising how little change in the mean in fact changes the top
eigenvalue!

We will not use the following theorem, but will include it only to show where
the function φ comes from. It will also motivate the proof for the GOE case.

Theorem 2.3.

λ1(Z+ + loop of weight a on 0) = ϕ(a)
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We will leave this as an exercise for the reader.

Heuristics. The spectrum of Z+ is absolutely continuous. This doesn’t
change unless a is big enough. Why? there is an eigenvector (1, a−1, a−2, ...)
which is only in `2 when a > 1. Moreover this has eigenvalue a+ 1

a
. �

Proof of GOE case. The first observation is that because the GOE is an
invariant ensemble, we can replace 11t by vvt for any vector v having the same
length as the vector 1. We can replace the perturbation with

√
nae1e

t
1. Such

perturbations commute with tridiagonalization.
Therefore we can consider Jacobi matrices of the form

J(a) =
1√
n

 a
√
n+N1 χn−1

χn−1 N2 χn−2

. . . . . . . . .


Case 1: a ≤ 1. Since the perturbation is positive, we only need an upper bound.
We use the maximum bound from before. For i = 1, the first entry, there was a
room of size

√
n. For i = 1 the max bound still holds.

Case 2: a > 1
Now fix k and let v = (1, 1/a, 1/a2, ..., 1/ak, 0, ..., 0). We get that the error

from the noise will be of order 1/
√
n so that∥∥∥∥J(a)

v
− v(a+

1

a
)

∥∥∥∥ ≤ ca−k

with probability tending to 1.
Now if for a symmetric matrix A and a vector v of length at least 1 we have

‖Av − xv‖ < ε, then A has an eigenvalue ε-close to x.
Thus J(a) has an eigenvalue λ∗ that is ca−k-close to a+ 1/a.
We now need to check that this eigenvalue will actually be the maximum.

Lemma 2.4. Consider adding a positive rank 1 perturbation to a symmetric
matrix. Then the eigenvalues of the two matrices will interlace and the shift under
perturbation will be to the right.

By interlacing,

λ2(J(a)) ≤ λ1(J) = 2 + o(1) < a+ 1/a− cak

if we chose k large enough. Thus the eigenvalue λ∗ we identified must be λ1. �

Exercise 2.5. Suppose you have Z+ with a loop of weight a on the end and let
λ1(a) be the largest eigenvalue the graph. We can think of this as a rank 1 positive
definite pertubation of Z+. By interlacing this means that the largest eigenvalue
will shift to the right under the perturbation. Prove the following lower bound:

(6) λ1(a) ≥

{
2 a ≤ 1

a+ 1
a

a > 1





CHAPTER 4

The soft edge

1. The heuristic convergence argument

The distribution of top eigenvalue of the β-Hermite ensemble has nice closed
formulas in the case of β = 1, 2, 4. The goal here is to give the characterization of
the top eigenvalue for general β. To do this we look at the geometric structure of
the tridiagonal matrix.

Simulations show that the eigenvectors corresponding to the top eigenvalues of
the matrix tend to be supported in the first o(n) coordinates. This suggests that
we in some sense need to look at the top corner of the matrix in order to see the
behavior of the top eigenvalue.

Now suppose that you have the matrix

A =


0 1
1 0 1

1 0
. . .

. . . . . .


We look at the matrix A − 2I, and we look at the action of this matrix on the
first order m entries of a vector, where we guess that m = nα, with α to be
determined later. Let f : R+ → R and vf = (f(0), f(1/m), f(2/m), ..., f(n/m))t.
Then B = m2(A− 2I) acts as a discrete second derivative on f , in the sense that
Bvf ≈ vf ′′ .

Returning to the β-Hermite case, by Exercise 2.1, for k � n we have

χn−k ≈
√
β(n− k) +N (0, 1/2) ≈

√
β(
√
n− k

2
√
n

) +N (0, 1/2)

Now we consider the matrix

mγ(2
√
nI − J) ≈

mγ
√
n


2 −1
−1 2 −1

−1 0
. . .

. . . . . .

+
mγ

2
√
n


0 1
1 0 2

2 0 3

3 0
. . .

. . . . . .

+
mγ

√
β


N1 Ñ1

Ñ1 N2 Ñ2

Ñ2 N3
. . .

. . . . . .
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Now assume that we have m = nα for some α. What choice of α should we make?
For the first term we want

mγ
√
n


2 −1
−1 2 −1

−1 0
. . .

. . . . . .


to behave like a second derivative. This means that mγ

√
n = m2 which gives

2α = αγ + 1/2. We do a similar analysis on the second term. We want this
term to behave like multiplication by t. for this we want mγ√

n
= 1

m
which gives

αγ − 1/2 = −α. Solving this system we get α = 1/3 and γ = 1/2. For the
noise term, multiplication by it should yield a distribution (in the Schwarz sense),
which means that its integral over intervals should be of order 1. In other words,
the average of m noise terms times mγ should be of order 1. This gives γ = 1/2,
consistent with the previous computations.

This means that we need to look at the section of the matrix that is m = n1/3

and we rescale by n1/6. That is we look at the matrix

n1/6(2
√
n− Jn)

acting on functions with mesh size n−1/3.

Exercise 1.1. Show that in this scaling, the second matrix in the expansion
above has the same limit as the diagonal matrix with 0, 2, 4, 5, 6, .... on the diagonal
(scaled the same way).

The final piece that we need to check is what happens to the final matrix
with noise terms. We may use a similar trick to the previous exercise in order to
consider the matrix given by

Wn =


N1

N2 + 2Ñ1

N3 + 2Ñ2

. . .


With the exception of the first entry all the of the diagonal entries are now inde-
pendent 2N (0, 1). In order to consider the action of Wn on a vector vf we need
to look at the ‘integrated version’ via Riemann sums. In particular we consider

m1/2

√
β

bxmc∑
k=1

1

m
(Wnvf )k =

m−1/2

√
β

bxmc∑
k=1

Wkkf(k/m).
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and we consider the entries of Wn to be the increments of some process Y (x) with

Y ( k
m

)− Y (k−1
m

) = m−1/2

2
Wkk. Then we may write

m−1/2

√
β

bxmc∑
k=1

(Wnvf )k =
2√
β

bxmc∑
k=1

f( k
m

)
(
Y ( k

m
)− Y (k−1

m
)
)

≈ 2√
β

bxmc∑
k=1

(
f( k

m
)− f(k−1

m
)
)
Y ( k

m
)

≈ 2√
β

1

m

bxmc∑
k=1

f ′( k
m

)Y ( k
m

)⇒ 2√
β

∫ x

0

f ′(s)bsds

We’ve integrated and done an integration by parts here, so the noise term should
actually give a contribution of 2√

β
b′x in the limit.

Conclusion. This matrix acting on functions with this mesh size behaves like
a differential operator. That is

Hn = n1/6(2
√
n− Jn) ≈ − ∂2

x + x+
2√
β
b′x = SAOβ

here b′x is a white noise. This operator will be called the Stochastic Airy operator
(SAOβ). We also set the boundary condition to be Dirichlet. This conclusion can
be made precise.

There are two problems at this point that must be overcome in order to make
this convergence rigorous. The first is that we need to actually be able to make
sense of that limiting operator. The second is that the matrix even embedded
an an operator on step functions acts on a different space that the SAOβ so we
need to make sense of what the convergence statement should actually be. The
following are the main ideas behind the operator convergence.

Ideas on the operator convergence.

(1) Embed Rn into L2(R) via

ei 7→
√
m1[ i−1

m
, i
m

).

This gives an embedding of the matrix J acting on a subspace of L2(R+).
(2) It is not clear what functions the Stochastic Airy Operator acts on at this

point. Certainly nice functions multiplied by the derivative of Brownian
motion will not be functions, but distributions. The only way we get
nice functions as results if this is cancelled out by the second derivative.
Nevertheless, the domain of SAOβ can be defined.

In any case, these operators act on two completely different sets of
functions. The matrix acts on piecewise constant functions, while SAOβ

acts on some exotic functions.
(3) The nice thing is that if there are no zero eigenvalues, both H−1

n and J−1

can be defined in their own domains, and the resulting operators have
compact extensions to the entire L2.

The sense of convergence we have is

‖H−1
n − A−1

β ‖2→2 → 0.
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This is called norm resolvent convergence, and it implies convergence of
eigenvalues and eigenvectors if the limit has discrete simple spectrum.

(4) The simplest way to deal with the limiting operator and the issues of
white noise is to think of it as a bilinear form. This is the approach we
follow in the next section. The kth eigenvalue can be identified using the
Courant-Fisher characterization.

Exercise 1.2. We will consider cases where a matrix An×n can be embedded as
an operator acting on the space of step function with mesh size 1/mn. In particular
we can encode these step functions in to vectors vf = [f( 1

mn
), f( 2

mn
), ..., f( n

mn
)]t.

Let A be the matrix

A =


−1 1

−1 1
. . . . . .
−1


For which kn to we get knAvf → f ′?

Exercise 1.3. Let A be the diagonal matrix with diagonal entries (1, 4..., n2).
Find a kn such that knAvf converges to something nontrivial in the limit. What
is kn and what does the limit converge to?

Exercise 1.4. Let J be a Jacobi matrix (tridiagonal with positive off-diagonal
entries) and v be an eigenvector with eigenvalue λ. The number of times that v
changes sign is equal to the number of eigenvalues above λ. More generally the
equation Jv = λv determines a recurrence for the entries of v. If we run this
recurrence for an arbitrary λ (not necessarily an eigenvalue) and count the number
of times that v changes sign this still gives the number of eigenvalues greater than
λ.

(1) Based on this gives a description of the number of eigenvalues in the
interval [a, b].

(2) Suppose that vt = (v1, ..., vn) solves the recurrence defined by Jv = λv.
What is the recurrence for rk = vk+1/vk? What are the boundary condi-
tions for r that would make v and eigenvector?

2. The bilinear form and making sense of the SAOβ

Recall the Airy operator

Af = −∂2
x + xf

acting on L2(R+) with boundary condition f(0) = 0. The equation Af = 0 has
two solutions Ai(x) and Bi(x), called Airy functions. Note that the solution of
(A− λ)f = 0 is just a shift of these functions by λ.

Since only Ai2 is integrable, the eigenfunctions A are the shifts of Ai with the
eigenvalues the amount of the shift. We know that the kth zero of the Ai function

is at zk = −
(

3
2
πk
)2/3

+ o(1), therefore to satisfy the boundary conditions the shift
must place a 0 at 0, so the kth eigenvalue is given by

(7) λk = −zk =

(
3

2
πk

)2/3

+ o(1)
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The asymptotics are classical.
For the Airy operator A and a.e. differentiable, continuous functions f with

f(0) = 0 we can define

‖f‖2
∗ := 〈Af, f〉 =

∫ ∞
0

f 2(x)x+ f ′(x)2 dx.

Let L∗ be the space of such functions with ‖f‖∗ <∞

Exercise 2.1. Show that there is c > 0 so that

‖f‖2 ≤ c‖f‖∗
for every f ∈ L∗. In particular, L∗ ⊂ L2.

Recall the Rayleigh quotient characterization of the eigenvalues λ1 of A.

λ1 = inf
f∈L∗,‖f‖2=1

〈Af, f〉.

More generally, the Courant-Fisher characterization is

λk = inf
B⊂L∗,dimB=k

sup
f∈B,‖f‖2=1

〈Af, f〉

where the infimum is over subspaces B.
For two operators we say A ≤ B if any f ∈ L∗

〈f, Af〉 ≤ 〈f,Bf〉.

Exercise 2.2. If A ≤ B, then λk(A) ≤ λk(B).

Our next goal is to define the bilinear form associated with the Stochastic Airy
operator on funcitons in L∗. Clearly, the only missing part is to define∫ ∞

0

f 2(x)b′(x) dx.

At this point you could say that this is defined in terms of stochastic integration,
but the standard L2 theory is not strong enough – we need it to be defined in the
almost sure sense for all functions in L∗. We could define it in the following way:

〈f, b′f〉“ = ”

∫ ∞
0

f 2(x)b′(x)dx = −
∫ ∞

0

2f ′(x)f(x)b(x)dx

This is now a perfectly fine integral, but it may not converge. The main idea will
be to write b as its average together with an extra term.

b(x) =

∫ x+1

x

b(s)ds+ b̃(x) = b̄(x) + b̃(x)

In this decomposition we will get that b̄ is differentiable and b̃ is small. The
averaging term decouples quickly (at time intervals of length 1), so this term is
analogous to a sequence of i.i.d. random variables. We define the inner product
in terms of this decomposition

〈f, b′f〉 :=

∫ ∞
0

f 2(x)b̄′(x)dx− 2

∫ ∞
0

f ′(x)f(x)b̃(x)dx.

This is well defined because we have the following bounds:
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Exercise 2.3. There exists a random constant C so that we have the following
inequality of functions:

(8) |b̄′|, |b̃| ≤ C
√

log(2 + x)

Now we return to the Stochastic Airy operator, the following lemma with give
us that the operator is bounded from below.

Lemma 2.4. We have

−CI + (1− ε)A ≤ SAOβ ≤ (1 + ε)A+ CI

for some random constant C. This may also be written as

(9) −C‖f‖2
2 + (1− ε)‖f‖2

∗ ≤ 〈f, SAOβf〉 ≤ (1 + ε)‖f‖2
∗ + C‖f‖2

2

The upper bound here implies that the bilinear form is defined for all functions
f ∈ L∗. The lemma will follow from the fact that

b′ ≤ ε(1 + ε)A+ cI,

in the sense of operators.

Proposition 2.5. The eigenvalues of SAOβ admit a variational characteriza-
tion.

Proof for Λ0. Let Λ̃0 = inf{〈f, SAOβ〉 : f ∈ L∗, ‖f‖2 = 1}, then we may

choose a minimizing sequence fn ∈ L∗, ‖fn‖2 = 1 with 〈fn, SAOβ〉 → Λ̃0. From
equation (9) we get that the fn may be chosen so that ‖fn‖∗ ≤ B for some constant
B (a function of the brownian path). Therefore we can choose a subsequence which
converges to some function f0 uniformly on compact subsets, in L2, and weakly
in H1. Using bounds on b̃ and b̄ from equation (8) we get that for ε > 0 we may
choose X so that

〈fn, SAOβfn〉 = ‖f‖2
∗ − ‖f‖2

2 +
4√
β

∫ X

0

f(x)f ′(x)b′(x)dx+ E

where |E| ≤ ε‖f‖2
∗. Taking the limit as n→∞ we see that the middle two terms

converge and ‖f0‖2
∗ ≤ lim inf ‖fn‖2

∗. Taking ε → 0 we get that 〈f0, SAOβf〉 ≤
Λ̃0. The definition of Λ̃0 gives the opposite inequality. Therefore we have that
〈f0, SAOβf〉 = Λ̃0 meaning that the infimum is achieved at some function f0. It
remains to be shown that f0 is an eigenfunction, that is, for any test function ϕ
we have 〈ϕ, SAOβf0〉 = Λ〈ϕ, f0〉.

Look at

fε =
f0 + εϕ

‖f0 + εϕ‖2

differentiating in ε we find
d

dε
〈f, SAOβfε〉|ε=0

This means that we have a minimum at ε = 0, and so the directional derivative
in the direction of ϕ is 0. This shows that (f0,Λ0) is an eigenfunction/eigenvalue
pair for SAOβ.

�
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Exercise 2.6. Prove the bounds in the previous statement, and the following

|b̄′| ≤ Cε + εx, |b̃|2 ≤ Cε + εx.

Using these bound we get the following bound:

|〈f, b′f〉| ≤ Cε‖f‖2
2 + ε〈f, Af〉+ ε

∫
(f ′)2dx+

1

ε

∫
f 2(Cε2 + ε2x)dx

≤ C ′ε‖f‖2
2 + 2ε〈f, Af〉

Corollary 2.7. The eigenvalues of SAOβ satisfy

λβk
k2/3

→
(

2π

3

)2/3

a.s.

Proof. It suffices to show that a.s. for every rational ε > 0 there exists
Cε > 0 so that

(1− ε)λk − Cε ≤ λβk ≤ (1 + ε)λk + Cε

where the λk are the Airy eigenvalues (7). But this follows from the operator
inequality of Lemma 2.4 and Exercise 2.2. �

If you look at the empirical distribution of the eigenvalues as k →∞ then the
“density” behaves like

√
λ. More precisely, the number of eigenvalues less then λ

is of order λ3/2. This is the Airy-β version of the Wigner semicircle law. We only
see the edge of the semicircle here.

3. The discrete bilinear form and limits

We have characterized the eigenvalues of the limiting distribution by a vari-
ational problem. In order to handle the convergence question we use the same
formulation for the finite n problem. We will discuss the discrete to continuous
convergence in a slightly simplified case. Assume that Hn has the form

(Hnv)k = n2/3(−vk−1 + 2vk − vk+1) +
k

n1/3
vk + n1/6 2√

β
Nkvk,

where Nk ∼ N (0, 1) are independent and we take v0 = vn+1 = 0. Then the bilinear
form in Rn is given by

〈v,Hnv〉 ≈ n2/3

n∑
k=1

vk(−vk+1 + 2vk − vk−1) +
1

n1/3

n∑
k=1

kv2
k +

2n1/6

√
β

n∑
k=1

v2
kNk

≈ n2/3

n∑
k=1

(vk − vk−1)2 +
1

n1/3

n∑
k=1

kv2
k +

2n1/6

√
β

n∑
k=1

v2
kNk.

This is the traditional inner product on Rn. In order to consider the inner product
with respect to step functions in L2 we use the embedding

ei 7→ n1/61[ i−1

n1/3
, i

n1/3
),
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and so we need to multiply the existing bilinear form by n−1/3. We define the new
bilinear form on step functions in L2 given by

〈f,Hnf〉n =
1

n1/3
〈vf , Hnvf〉

= n1/3

n∑
k=1

(f( k−1
n1/3 )− f( k−2

n1/3 ))2 +
1

n2/3

n∑
k=1

kf 2( k−1
n1/3 ) +

2n−1/6

√
β

n∑
k=1

f 2( k−1
n1/3 )Nk.

and the norm defined by

‖f‖2
∗,n = n1/3

∑
(f( k−1

n1/3 )− f( k−2
n1/3 ))2 + n−1/3

∑
f 2( k−1

n1/3 ).

Using this norm and the standard L2 we can get bounds on the bilinear form
similar to those in the limiting case.

Lemma 3.1. For some random constant C almost surely we get

−C‖f‖2
2 + (1− ε)‖f‖2

∗,n ≤ 〈f,Hnf〉n ≤ (1 + ε)‖f‖2
∗,n + C‖f‖2

2.(10)

Lastly we introduce the projection operator Pn which projects any function f
onto the step function defined by the vf introduced earlier.

Now that we have the L2 framework for the finite n case we can discuss the
limits. We start by showing the following convergence statements:

n−1/3

bn1/3xc∑
k=1

k

n1/3
⇒ x2

2

n−1/6

bn1/3xc∑
k=1

Nk ⇒ b(x).

These together with some tightness conditions will be enough to show that for
ϕ, f ∈ L∗ we get

〈Pnϕ,HnPnf〉n → 〈ϕ, SAOβf〉.

Lemma 3.2. Suppose we have a sequence fn ∈ L∗,n with ‖fn‖∗,n < K and
‖fn‖2 = 1, then there exists f ∈ L∗ and subsequence nk such that

(1) fn → f weakly in L2 and n1/3
(
fn(x+ n1/3)− fn(x)

)
→ f ′ weakly in L2.

(2) fnk → f in L2.
(3) For any ϕ ∈ C∞0 , 〈Pnϕ,Hnfnk〉 → 〈ϕ, SAOβf〉

Once this lemma is established we can turn to the actual eigenvalue conver-
gence.

Lemma 3.3. Let λk,n denote the kth smallest eigenvalue of Hn, then for k ≥ 1
we have λk = lim inf λk,n ≥ Λk.

Proof for k = 1. Assume λ1 < ∞. Since the eigenvalues of Hn are uni-
formly bounded from below we can find a subsequence for which λ1,nj → λ1. The
corresponding eigenfunctions have L∗n uniformly bounded and so there is a fur-
ther subsequence along which the L2 limit of the eigenfunctions exists. Call this
function f1. This gives us that

λ1〈ϕ, f1〉 = lim
j→∞

λ1,nj〈Pnjϕ, f1,nj〉 = lim
j→∞
〈Pnjϕ,Hnjf1,nj〉 = 〈ϕ, SAOβf1〉
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which gives us that f1 is an eigenfunction with eigenvalue λ1. By definition this
gives us that λ1 ≥ Λ1. �

Lemma 3.4. For k ≥ 1 we have λk,n → Λk and fn,k →L2 fk.

Proof for k = 1. Let f ε1 be in an ε neighborhood of f1 in the L∗ norm, where
f1 is the eigenfunction of SAOβ with eigenvalue Λ1. Then define g1,n = Pnf1 by
using the variational characterization of λk,n we get that

lim supλk,n ≤ lim sup
n→∞

〈g1,n, Hng1,n〉
〈g1,n, g1,n〉

= Λ1 +O(ε).

Now recall that lemma 3.2 implies that any subsequence of f1,n has a further
subsequence converging in L2 to some function f . We now know that g must
satisfy SAOβg = λ1g therefore g = f1 and so f1,n →L2 g.

�

4. Tails of the Tracy Widomβ distribution

Definition 4.1. We define the Tracy-Widom-β distribution

TWβ = −λ1(Aβ)

In the case β = 1, 2 this is consistent with the classical distribution.

If we look at the distribution of the Tracy-Widomβ distribution it will look
at the distribution of the tails we will get the the right tail is approximately

exp(−2
3
βa3/2) and on the left tail we get exp(−β+o(1)

24
a3). We will prove the left

tail.

Theorem 4.2.

P (TWβ < −a) = exp(−β + o(1)

24
a3) as a→∞

Proof of the upper bound. Suppose we have λ1 > a, this implies that
for all f we get the bound

〈f, Aβf〉 ≥ a‖f‖2
2.

Therefore we are interested in the probability

P

(
‖f ′‖2

2 + ‖
√
xf‖2

2 +
2√
β

∫
f 2b′dx ≥ a‖f‖2

2

)
=?

Notice that the first two terms are deterministic, but we can study the distribution
of the third term. In particular understood in the sense of Itô we get that

2√
β

∫
f 2b′dx

d
=

2√
β

∫
f 2(x)dbx

The variance of this term will be given by the quadratic variation which is 4
β
(
∫
f 4dx) =

4
β
‖f‖4

4. This leads us to computing

P
(
‖f ′‖2

2 + ‖
√
xf‖2

2 +N‖f‖2
4 ≥ a‖f‖2

2

)
=?
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where N is a normal random variable with variance 4/β. Using the standard tail
bound for a normal random variable we get
(11)

P
(
‖f ′‖2

2 + ‖
√
xf‖2

2 +N‖f‖2
4 ≥ a‖f‖2

2

)
≤ 2 exp

(
−β(a‖f‖2

2 − ‖f ′‖2
2 − ‖f

√
x‖2

2)2

8‖f‖4
4

)
We want to optimize over possible choices of f . It turns out the optimal f will
have small derivative, so we will drop the derivative term and then optimize the
remaining terms. That is we wish to maximize.

(a‖f‖2
2 − ‖f

√
x‖2

2)2

‖f‖4
4

With some work we can show that the optimal function will be approximately
f(x) ≈

√
(a− x)+. This needs to be modified a bit in order to keep the derivative

small, so we cut this function off and replace is with a linear piece

f(x) =
√

(a− x)+ ∧ (a− x)+ ∧ x
√
a

We can check that

a‖f‖2
2 ∼

a3

2
‖f‖ ∼ O(a) ‖

√
xf‖2 ∼ a3

6
‖f‖4

4 ∼
a3

3
.

Using these values in equation (11) give us the correct upper bound.
�

Proof of the lower bound. We begin by introducing the Riccati trans-
form: Suppose we have an operator

L = −∂xx + V (x)

then the eigenvalue equation is

λf = (−∂xx + V (x))f

We can pick a λ and attempt to solve this equation. The left boundary condition
is given, so you can check if the solution satisfies f ∈ L∗, which would give you
an eigenfunction. Most of the time this won’t be true, but we can still gain
information by studying these solutions. To study this problem we first make the
transformation

p =
f ′

f
, which gives p′ = V (x)− λ− p2, p(0) =∞.

Under this transformation we have the following:

Proposition 4.3. Choose λ, we will have λ < λ1 if an only if the solution to
the Ricatti equation does not blow up.

We can draw the slope field: If we take the case V (x) = 0 and λ = 0 we
will get that there is aright facing parabola p2 = x where the upper branch is
attracting and the lower branch is repelling. The drift will be negative outside the
parabola and positive inside. Shifting the initial condition to the left is equivalent
to shifting the λ to the right, so this picture may be used to consider the problem
for all λ.

Now suppose we put back in the b′. The solution of the Ricatti equation is
now a diffusion. In this case we have that there is some positive chance of the
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diffusion moving against the drift, including crossing the parabola. If we use P−λ,y
to denote the probability measure associated with starting our diffusion with initial
condition p(−λ) = y, then we get

P (λ1 > a) = P−a,+∞ (p does not blow up)

We can bound this below by starting our particle at 1.

P−a,+∞ (p does not blow up) ≥ P−a,1 (p does not blow up)

We now bound this below by requiring that our diffusion stays in p(x) ∈ [0, 2] on
the interval x ∈ [−a, 0) and then choosing convergence to the upper edge of the
parabola after 0. This gives

P−a,1 (p does not blow up)

≥ P−a,1 (p stays in [0, 2] for x < 0) · P0,0 (p does not blow up) .

Notice that the second event does not depend on a and so will just be some
constant. We focus on the first event.

We can do a Girsanov change of measure to determine the likelihood. This
change of measure moves us to working on the space where p is replaces by a
standard brownian motion (started at 1). The Radon-Nikodym derivative of this
change of measure may be computed explicitly. We compute

P−a,1 (p stays in [0, 2] for x < 0) = E−a,1 [1(px ∈ [0, 2], x ∈ (−a, 0))]

= E−a,1

[
exp

(
β

4

∫ 0

−a
(x− b2)db− β

8

∫ 0

−a
(x− b2)2dx

)
1(bx ∈ [0, 2], x ∈ (−a, 0))

]
.

Notice that

β

4

∫ 0

−a
(x− b2)db ∼ O(a), and

β

8

∫ 0

−a
(x− b2)2dx ≈ − β

24
a3,

which gives us the desired lower bound.
�





CHAPTER 5

The hard edge

1. The heuristic convergence argument

We change from working with the β-Hermite ensemble to working with the
β-Laguerre ensemble introduced in subsection 4.1. Recall that for Λ(n) with β-
Laguerre distribution and

νn =
1

n

n∑
k=1

δλk/n

we get that νn converges weekly to the Marchenko-Pastur distribution with pa-
rameter n

p
→ γ 4. We made the observation that if γ = 1 than the Marchenko

Pastur density has an asymptote at 0. This suggests that the local behavior in this
case should be different than the soft edge limit discussed in the previous section.
This turns out to be true some of the time. In particular if p and n differ by a
constant a, or p − n = an → a then the local behavior will be something called
hard-edge behavior. In the intermediate regime where an → ∞, an/n → 0 it is
expected that the behavior is soft edge and so the limiting process will be Airyβ.
For this regime there is a partial result in the case β = 2 for an ∼ c

√
n by Deift,

Menon, and Trogdon (see [1]), but otherwise the problem remains open.
The process is called a hard-edge process because it happens when the spec-

trum of a random matrix is forced against some hard constraint. Recalling the
full matrix models for β = 1, 2 we observe that the matrices are positive definite.
This gives a hard lower constraint of 0 for the eigenvalues. If p is close to n than
this hard constraint on the lower edge will be felt and so result in different local
behavior.

For the remainder of this section we replace the parameter p used in the orig-
inal description of the β-Laguerre ensemble with n + a giving us a as the extra
parameter. This gives us joint density

fL,β(λ1, ..., λn) =
1

Zβ,n,a

n∏
i=1

λ
β
2

(a+1)−1

i e−
β
2
λi
∏
j<k

|λj − λk|β.

We can also rewrite the associated bidiagonal matrice Lβ,a which has singular
values distributed according to fL,β. This now has the form.

Lβ,a =
1√
β


χβ(n+a) χ̃β(n−1)

χβ(n+a−1) χ̃β(n−2)

. . . . . .
χβ(a+2) χ̃β

χβ(a+1)

 .
Using the same heuristic arguments that were used in the soft-edge case Edel-

man and Sutton conjectured that the singular values of Lβ,a scaled up by
√
n

35
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should converge to the the singular values of the operator

Lβ,a = −
√
x
d

dx
+

a

2
√
n

+
1√
β
b′(x)

where b′ is understood as white noise. This is the case, but rather than following
the same method of proof we instead work with the inverses. There are several
reasons for working with the inverses instead of the original matrices. First the
inverse of Lβ,aL∗β,a will be an integral operator and we can also treat the matrix
inverses as integral operators on the same space. Showing convergence of these
integral operators particularly in this case turns out to be easier that showing
convergence to a differential operator.

There is another reason we choose to use the integral operators here but did
not in the case of the soft edge and that is because these matrices are all positive
definite. The shifted matrix we considered in the case of the soft edge could
have negative eigenvalues. We we show convergence of the eigenvalues we do
this by showing convergence of the operator norm. This gives convergence of the
eigenvalue with largest absolute value. This is only enough information if we also
know these eigenvalues to be positive.

Recall that we want to show that the eigenvalues near 0 converge in distribution
to the eigenvalues of some operator. Our final statement should be something like

m2
nΛ(n) ⇒ {Λ1,Λ2, ....}

where the Λi are the eigenvalues of some differential operator. If that limiting
operator also has strictly positive eigenvalues this is equivalent to showing the
convergence of the top eigenvalues of the inverses. We choose to work with m2

n

instead of mn because we break the problem in half to start with by working with
the bidiagonal matrices which both need to be scaled up by mn.

In this setting we can take advantage of the natural embedding of matrices
as integral operators into L2[0, 1] that works as follows: let A = ai,j ∈ Rn×n and
xi = i/n then there exists a natural operator embedding into L2[0, 1] that does
not chance the spectrum given by

(Af)(x) =
n∑
j=1

ai,jn

∫ xj

xj−1

f(x)dx for x ∈ [xi−1, xi).

In order to work with this embedding we first need to have an inverse to our
original matrices.

Lemma 1.1. For any lower bidiagonal matrix B = [bi,j] the inverse if it exists
is lower triangular given by

B−1
i,j =

(−1)i+j

bi,i

i−1∏
k=j

bk+1,k

bk,k
for j ≤ i.
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In order to make this inverse as nice as possible we will conjugate our bidiagonal
matrix by an orthogonal matrix in order to get

Ma,β =
1√
β


χβ(a+1)

−χ̃β χβ(a+2)

−χ̃β2
. . .
. . . χβ(n+a−1)

−χ̃β(n−1) χβ(n+a)

 .
If we consider the matrix (mnMa,β)−1 embedded as an operator we get that

(
m−1
n M−1

a,βf
)
(x) =

bnxc∑
j=1

n
√
β

mnχβ(bnxc+a)

bnxc−1∏
k=j

χ̃βk
χβ(k+a)

∫ xi

xj−1

fdx.

This is an integral operator Kn
β,a with discrete kernel

(12)

knβ,a(x, y) =
n
√
β

mnχβ(bnxc+a)

exp

[
i−1∑
k=j

log χ̃βk − logχβ(k+a)

]
1x∈[xi−1,xi)1y∈[xj−1,xj).

Our goal at this point is to determine the proper choice of m as well as the limit of
knβ,a in the n→∞ limit. There are two separate pieces, the exponential piece and

the leading term. Recall the interpretation of χ2 as the sum of normal random
variables. Therefore the law of large number implies

χβ(bnxc+a)√
n

a.s.−−−→
n→∞

√
x.

Therefore we should choose mn =
√
n and we get

(13)

√
nβ

χβ(bnxc+a)

⇒ 1√
x

for x ∈ (0, 1].
For the exponential term begin by recording the following information about

χ random variables.

Proposition 1.2. Let χr be a chi random variable with index r > 0, then as
r →∞

E[logχr] =
1

2
log r − 3

2r
+O(1/r2) Var[logχr] =

1

2r
+O(1/r2),

while E[(logχr − E logχr)
2m] = O(r−m) for positive integer m.

Exercise 1.3. Use the expected value expansion from Proposition 1.2 to show
that

(14) lim
n→∞

bnxc∑
k=bnyc

(E log χ̃βk − E logχβ(k+a)) =
a

2
log(y/x).

for y < x ∈ (0, 1].

This takes care of the mean of the exponential term, but we still need to
determine what happens to the noise. For that we use the following theorem.
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Theorem 1.4 (After Theorem 1.3, Chapter 7 of [3]). Let yn,k be a sequence
of mean-zero processes starting at 0 with independent increments ∆yn,k. Assume

nE(∆yn,k)
2 = f(k/n) + o(1), nE(∆yn,k)

4 = o(1)

uniformly for k/n in compact sets of [0, T ) with continuous f ∈ L1
loc[0, T ). Then

yn(t) = yn,bntc ⇒
∫ t

0
f 1/2(s)db(s). with a standard brownian motion b (in the Sko-

rohod topology).

This may be used to show that

(15)
n∑

k=bnxc

(logχβ(k+c) − E logχβ(k+c))⇒
∫ 1

x

1√
2βz

db(z).

for a standard brownian motion b.
Conclusion. The limits in (13) (14), and (15) suggest thatKn

β,a should converge
to some limiting kernel operator with kernel

(16) kβ,a(x, y) = x−
1+a
2 exp

[∫ x

y

dbz√
βz

]
ya/21y<x.

As in the case of the soft-edge this statement may be made precise.
As a full statement about the inverse operators we should have the following:

n((MT
a,β)−1M−1

a,b f)(x)⇒
∫ 1

x

∫ y

0

x
a
2 e

∫ y
x

dbs√
βsy−a+1e

∫ y
z

dbs√
βs z

a
2 f(z)dzdy

To get to a differential operator characterization of the point process we con-
sider the eigenvalue equation which gives us

f(x) = λ

∫ 1

x

∫ y

0

x
a
2 e

∫ y
x

dbs√
βsy−a+1e

∫ y
z

dbs√
βs z

a
2 f(z)dzdy

=

∫ 1

0

(xz)a/2
(∫ 1

x∨y
e
−2

∫ 1
y

dbs√
βsy−(a+1)dy

)
e
∫ 1
x

dbs√
βs e

∫ 1
z

dbs√
βsf(z)dz

where in the final line we switched the order of integration. We now make the sub-

stitution g(x)x−a/2e
−

∫
x1 dbs√

βsf(x) and use the time change
∫ 1

x
1√
x
dbs = b̂(log(1/x))

for some new Brownian motion b̂. Then

g(x) = λ

∫ 1

0

(∫ 1

x∨z
e
− 2√

β
b̂(log 1/y)

y−(a+1)dy

)
g(z)zae

2√
β
b̂(log 1/z)

dz.

we make a final change of variables x, y, z 7→ e−x, e−y, e−z to get

h(x) = λ

∫ ∞
0

(∫ x∧y

0

e
− 2√

β
b̂(z)
eazdz

)
h(y)e−(a+1)ye

2√
β
b̂(y)
dy.

From the speed and scale characterization of a diffusion we can say that the
generator of a diffusion with speed measure m(dx) and scale measure s(dx) is
given by dm

dx
d
dx

[ ds
dx

d
dx

] and its inverse operator acting on a function ψ is given by

−
∫∞

0
(
∫ x∧y

0
s(dz)ψ(y)m(dy). This gives us that for Gβ,a = (K∗β,aKβ,a)

−1 we get

(17) Gβ,a = − exp[(a+ 1)x+
2√
β
b(x)]

d

dx

(
exp[−ax− 2√

β
b(x)]

d

dx

)
.
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2. The operator and spectrum convergence

Now that we have identified the limiting operator we will state the actual
operator convergence statement and then give the proof of convergence of the
spectrum.

Lemma 2.1. Let Kβ,a be the integral operator with kernel kβ,a defined in (16),
and Kβ,a the integral operator with kernel defined in (12). Both operators are al-
most surely Hilbert-Schmidt and for any sequence of Kn

β,a there exists a subsequence

n′ along which Kn′

β,a converges to Kβ,a in Hilbert-Schmidt norm with probability 1.
That is

lim
n′→∞

∫ 1

0

∫ 1

0

|kn′β,a(x, y)− kβ,a(x, y)|2dxdy = 0, almost surely.

Now that we have this we need to show that this implies convergence of the
eigenvalues. To do this as in the case of the soft edge we use the Rayleigh char-
acterization of the eigenvalues so that if we take λ1(n) < λ2(n) < ... to be the
ordered eigenvalue of the β-Laguerre ensemble then we get

nλ1(n) = inf
‖v‖`1=1

〈v, nMT
a,βMa,βv〉 =

(
sup
‖f‖L2=1

〈f, (Kn
β,a)

TKn
β,af〉

)−1

= ‖(Kn
β,a)

TKn
β,a‖−1

where the final norm is the L2 → L2 operator norm. Convergence in Hilbert-
Schmidt norm of the subsequence Kn′

β,a → Kβ,a gives us that for f ∈ L2 we have

(Kn′

β,a)
TKn′

β,af → KT
β,aKβ,af in L2. This is strong convergence of the operators

and will imply convergence of the operator norms ‖(Kn′

β,a)
TKn′

β,a‖ → ‖KT
β,aKβ,a‖.

Since all of the operators involved are Hilbert-Schmidt these norms are exactly
the largest eigenvalue of each operator giving us convergence of the eigenvalues.

From this we may show convergence of the eigenfunctions. Define {fn} and f
to be the eigenvalues of Jn = (Kn

β,a)
TKn

β,a and J = KT
β,aKβ,a respectively. Since

{fn} is uniformly bounded in L2 it has a weakly convergent subsequence with limit
function f∞. Then for all ϕ ∈ L2 we get that

〈ϕ, Jf∞〉 = lim
n′→∞

〈ϕJn′fn′〉 = lim
n′→∞

〈ϕ, λ1,n′fn′〉 = Λ1〈ϕ, f∞〉

since this holds for all ϕ we get that f∞ is the eigenfunction of J associated to Λ1.
Since every subsequence has a further subsequence that converges to f this gives
us that limn→∞ fn = f .

In order to get convergence of the next eigenvalue we consider a sequence of
functions |fn − f | → 0 in L2 and for a function g ∈ L2 we denote by Pg the
projection onto the orthogonal compliment of g. Then we will get that there
exists a subsequence along which Pfn(Kn

β,a)
TKβ,a → Pf (Kβ,a)

TKβ,a.
Now using norms of these operators we get convergence of the next next largest

eigenvalue. We can induct using projections to get convergence of the largest k
eigenvalues for any finite k.

3. Stochastic differential equations and the hard edge

As in the case of the soft edge operator we may consider the eigenvalue equation
in order to get a related differential equation. If we consider again the eigenvalue
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equation for the inverse operator we see

h(x) = λ

∫ ∞
0

(∫ x∧y

0

e
− 2√

β
b̂(z)
eazdz

)
h(y)e−(a+1)ye

2√
β
b̂(y)
dy.

We may compute that the derivative is

h′(x) = −λe−
2√
β
b̂(x)

eax
∫ ∞
x

h(y)e−(a+1)ye
2√
β
b̂(y)
dy

For the next derivative we need to define it in the sense of Itô. Making use of this
we get

dh′(x) =
2√
β
h′(x)db(x) +

(
(a+ 2

β
)h′(x)− λe−xh(x)

)
dx

dh(x) = h′(x)dx

We use the Riccati map p(x) = h′(x)/h(x) which is valid away from the zeros of
h. We get

dp(x) =
2√
β
p(x)db(x) +

(
(a+ 2

β
)p(x)− p2(x)− λe−x

)
dx

We can use this Ricatti transformation in order to describe the counting function
of the eigenvalue process.

Theorem 3.1 ([6]). Let Λ0(β, a) < Λ1(β, a) < ... be the ordered eigenvalues of
Gβ,a, and let P∞,t denote the law induced by p(· : β, a, λ) started at +∞ at time t,
and restarted at +∞ and time m upon any m <∞, p(m) = −∞. Then,

P (Λ0(β, a) > λ) = P∞,0(p never hits 0),(18)

P (Λk(β, a) < λ) = P∞,0(p hits 0 at least k + 1 times).(19)

In other words the counting function of the eigenvalue process is the number of
times that pλ(t) hits 0.



CHAPTER 6

The Bulk Limit

The original description of the bulk limit process was through a process called
the Browning Carousel first introduced by Valkó and Virág in [9]. The limiting
process introduced there could also be described in terms of a system of coupled
stochastic differential equations which gave the counting function of the process.
In particular let αλ satisfy

(20) dαλ = λ
β

4
e−

β
4
tdt+ Re

[
(e−iαλ − 1)dZ

]
,

where Zt = Xt + iYt with X and Y standard Brownian motions and αλ(0) = 0.
The αλ are coupled through the noise term. Define Nβ(λ) = 1

2π
limt→∞ αλ(t), then

Nβ(λ) is the counting function for Sineβ.
More recent work characterizes this same limit process as the eigenvalues of a

certain Dirac operator. In order to work with this material we need some back-
ground in orthogonal polynomials and Dirac operators, we give this background
first and then move on to the proof of convergence.

1. The Szegö Recursion

Suppose we have an n×n unitary matrix U . To this matrix there is associated
a spectral measure µn on the unit circle which satisfies∫

∂D
p dµn = 〈p(U)e1, e1〉 =

n∑
i=1

p(λi)〈vi, e1〉2

for polynomials p. We use the notation qi = 〈vi, e1〉 and refer to the qi as the
spectral weights. To this spectral measure there is associated a sequence of n
Verblunsky coefficients α0, α1, ..., αn−1 ∈ C, which give the recurrence relation for
the polynomials orthogonal with respect to the measure µn.

More generally there is a bijection between measures µ on ∂D and sequences of
Verblunsky coefficients {αk}∞k=0 where αk ∈ D. In the case of µn mentioned above
we have |αn−1| = 1 and αk = 0 for k ≥ n. We define the family of orthogonal
polynomials Φ0(z),Φ1(z), ... on the unit circle to be the polynomials with respect
to the spectral measure µ. We simultaneously define the conjugate polynomials
Φ∗k(z) = zkΦk(1/z). The families Φ and Φ∗ obey the recurrence

Φk+1 = zΦk(z)− ᾱkΦ∗k(z)

Φ∗k+1 = Φ∗k(z)− αkzΦk(z)

41
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with initial condition Φ0(z) = Φ∗0(z) = 1. This recurrence can be encoded into a
matrix equation by[

Φk+1(z)
Φ∗k+1(z)

]
=

[
z −ᾱk
−αkz 1

] [
Φk(z)
Φ∗k(z)

]
(21)

=

[
1 −ᾱk
−αk 1

] [
z 0
0 1

] [
Φk(z)
Φ∗k(z)

]
= AkZ

[
Φk(z)
Φ∗k(z)

]
(22)

Where we use Ak and Z to denote the first and second matrices in that row
respectively. Making use of the recurrence we have that[

Φk+1(z)
Φ∗k+1(z)

]
= AkZAk−1Z · · ·A0Z

[
1
1

]
We will get that z is an eigenvalue of the original matrix U , or in the support

of the spectral measure µn if and only if [Φn(z),Φ∗n(z)]t is parallel to [0, 1]t. This
condition may be transformed to[

ᾱn−1

1

]
‖ Z

[
Φn−1(z)
Φ∗n−1(z)

]
= ZAn−2Z · · ·A0Z

[
1
1

]
.(23)

1.1. From products to conjugations. We “change the basis” of the func-
tions that we study. Instead of tracking the vectors with the orthogonal polyno-
mials we define the functions fk+1(λ) given by by

fk+1(λ) = e−iλ(k+1)/2(Ak−1Ak−2 · · ·A0)−1

[
Φk(e

iλ)
Φ∗k(e

iλ)

]
= e−iλ(k+1)/2M−1

k

[
Φk(e

iλ)
Φ∗k(e

iλ)

](24)

where Mk = Ak−1Ak−2 · · ·A0. From this definition we can compute

fk+1(λ) = e−iλ(k+1)/2M−1
k Ak−1Z

[
Φk−1(z)
Φ∗k−1(z)

]
= e−iλ(k+1)/2M−1

k Ak−1ZMk−1e
iλk/2

(
e−iλk/2M−1

k−1

[
Φk−1(z)
Φ∗k−1(z)

])
= e−iλ/2M−1

k−1ZMk−1fk(λ)

=

[
e−iλ/2 0

0 eiλ/2

]Mk−1

fk(λ).

Where we use the notation ZA = A−1ZA. Now recall the condition in (23).
Written in terms of the fks we get that λ is an eigenvalue[
ᾱn−1

1

]
‖Mn−1fn(λ), which can be rewritten as M−1

n−1

[
ᾱn−1

1

]
‖ fn(λ).

Notice that the parallel condition means that it is enough to consider the ratio of
the two entries of the vector. To this end we introduce the notation

P
[
x
y

]
= x/y,

Which gives that z is an eigenvalue if and only if

P(An−2 · · ·A0)−1

[
ᾱn−1

1

]
= PZMn−1ZMn−2 · · ·ZM0

[
1
1

]
.
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1.2. The geometric picture. We make use of a correspondence between
linear fractional transformations and 2× 2 matrices. In particular we have

A =

[
a b
c d

]
7→ mA(w) =

aw + b

cw + d
.

A few observations

(1) This mapping preserves structure in that

mAB(w) = mA(mB(w)) = mA ◦mB(w).

(2) Z maps to rotation by z (recall that z ∈ D).[
z 0
0 1

]
7→ mZ(w) = zw

(3) Assume we have A−1ZA where A is a bijection on D. Then mZA(w) will
be conformal rotation about the point mA−1(0).

(4) Let P be defined as before then

mA(0) = PA
[

0
1

]
and mA(1) = PA

[
1
1

]
.

Now the evolution of the Γk may be studied as follows: We define the points

bk = mM−1
k

(0) = P(Ak−1 · · ·A0)−1

[
0
1

]
.(25)

These points bk will form a walk in the disk. Now in the geometric picture we get
that mZMk (w) is rotation by z around the point bk. We also define the points

Xk(z) = mZMk ···ZM0 (1) = PZMkZMk−1 · · ·ZM0

[
1
1

]
.(26)

Notice that the circle ∂D is fixed under these transformations so Xk(z) ∈ ∂D for
all z.

In the framework we should think of the sequence of points {Xk(z)} as being
obtained in the following way: Xk is obtained from the point Xk−1 by rotat-
ing about the point bk by z where the angle of ration is the hyperbolic angle.
In this set up we get that z is an eigenvalue if and only if Xk−1(z) = b∗ =

P(An−2 · · ·A0)−1

[
ᾱn−1

1

]
. Notice that both of these points lie on the unit circle

because ᾱn−1 ∈ ∂D. So we can think of b∗ as a “target” point.

2. Dirac operators

One way of understanding a Dirac operator is as the square root of a second
order differential operator. That is, for some second order differential operator L
(for example the Laplacian) we are looking for a first order differential operator
D such that D2 = L. Let us begin with the classical examples.

Example 2.1 (1-dimensional Laplacian). Suppose L is the 1-dimensional Lapla-

cian L = − d2

dt2
. The natural choice is D = i d

dt
. This D is formally self-adjoint.
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That is suppose we have f, g :∈ C∞(R,C) then

〈Df, g〉L2 = i

∫ ∞
−∞

f ′(t)g(t)dt = −i
∫ ∞
−∞

f(t)g′(t)dt = 〈f,Dg〉.

By considering f decomposed into its real and imaginary parts f(t) = u(t) + iv(t)
we get Df(t) = iu′(t)− v′(t)

Df(t) = D

[
u(t)
v(t)

]
=

[
u(t)
v(t)

]
=

[
0 −1
1 0

]
d

dt

[
u(t)
v(t)

]
=

[
0 −1
1 0

]
d

dt
f(t).

This is the type of system that we will be considering.
Now consider this same system acting on functions f : R+ → R2 with boundary

condition f(0) = (1, 1)t. Let us look at the eigenvalue equation for this system,
this gives us

λf(t) =

[
0 −1
1 0

]
f ′(t)(27)

this may be rewritten in the classical differential equation form to give us

f ′(t) = λ

[
0 1
−1 0

]
f(t)

This is now a standard ODE system so we may solve by diagonalizing and taking
the exponential. This gives us

f(t) = S

[
e−iλ 0

0 eiλ

]
S−1f(0).

2.1. A Dirac operator from the Szegö recurrsion. Recall from the pre-
vious section we had that

fk+1(λ) =

[
eiλ/2 0

0 e−iλ/2

]Mk

fk(λ).

Now define M(t) = Mbntc for t ∈ [0, 1) and consider the differential operator τ
acting on functions g : [0, 1)→ C2 given by

τg = 2

[
−i 0
0 i

]Mt

g′(t)

with boundary conditions

g(0) ‖ u0 :=

[
1
1

]
and g(1) ‖ u1 := M−1

n−1

[
ᾱn−1

1

]
.

Then the solution of the eigenvalue equation τg = µg satisfies

g′(t) =

[
iµ/2 0

0 −iµ/2

]M(t)

g(t)

which we can solve explicitly on the intervals [ k
n
, k+1

n
) giving us

g(k+1
n

) =

[
ei

µ
2n 0
0 e−i

µ
2n

]M(k/n)

g( k
n
).
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At this point we can see that gµ(k/n) = fk(µ/n) and so the eigenvalues of τ are
given by

{µ ∈ R : eiµ/n is an eigenvalue of the Szegö recursion}.

Notice that Mk has the form

[
pk qk
q̄k p̄k

]
with |pk|2 − |qk|2 since the Ak have

this form and the property is inherited. Recall our definition of bk = − qk
pk

=

PM−1
k

[
0
1

]
, then we can compute[
−i 0
0 i

]Mk

=
1

1− |bk|2

[
1 + |bk|2 2bk

2b̄k 1 + |bk|2
] [
−i 0
0 i

]
.

If we take b(t) = bbntc for t ∈ [0, 1] we can write τ in a new form

(28) τg =
2

1− |b|2

[
1 + |b|2 2b

2b̄ 1 + |b|2
] [
−i 0
0 i

]
g′, t ∈ [0, 1)

acting on functions g : [0, 1) → C2 with initial and end conditions [1, 1]t and
[b(1), 1]t.

2.2. Circular β-ensembles. We look at the n-point measure on the circle
introduced in section 4.2 with joint intensity

f(θ1, ..., θn) =
1

Zn,β

∏
j<k

|eiθj − eiθk |β.

We further equip a spectral measure with (q2
1, ..., q

2
n) ∼Dirichlet(β

2
, ..., β

2
). For the

cases β = 1, 2 and 4 this is the distribution of the spectral measure induced by the
Haar measure on Orthogonal, Unitary or Symplectic matrices. With this choice of
spectral measure the associated Verblunsky coefficients will be independent with
rotationally invariant distribution and

|αk|2 ∼

{
Beta (1, β

2
(n− k − 1)) k < n− 1

1 k = n− 1

Recall that if X ∼ Beta(a, b) then

EX =
a

a+ b
, VarX =

ab

(a+ b)2(a+ b+ 1)
.

From this sequence of Verblunsky coefficient we can define the points bk by

bk = PM−1
k

[
0
1

]
.(29)

In order to get some sort of limit we will need to show that {bk} is a random walk
path that converges in some sense to a hyberbolic Brownian motion. If we get
this that the Dirac operator defined with the piecewise constant R will in some
sense converge to a Dirac operator driven by the hyperbolic Brownian motion.
This operator will have the same form at (28) but the random walk path b will be
replaced by a hyperbolic Brownian motion.

In order to make this convergence statement precess we actually begin by
moving from the hyperbolic disk model to the half place. We then show that the
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inverse operators are Hilbert-Schmidt integral operators that converge in Hilbert-
Schmidt norm at some rate. This gives convergence of the eigenvalues.

3. The Canonical system setup

The Dirac operator associated to the Laplacian is the nicest case of a more
general framework. In particular we will consider operators of the form

(30) Jv′(t) = λR(t)v(t), J =

[
0 −1
1 0

]
Notice that this is the same framework as in equation (27) except that there is
an extra matrix R(t). We will take R(t) to be an integrable positive definite real
2 by 2 matrix valued function. Notice that such a system may be defined for R
semi-definite, but with the choice strictly positive definite we there is an associated
differential operator τ given by

τv(t) = R−1(t)Jv′(t).

since R(t) is positive semi-definite it has a unique representation

R =
f

y

[
1 −x
−x x2 + y2

]
=

f

detX
X tX, where X =

[
1 −x
0 y

]
where f > 0, y > 0 and x ∈ R. The map X 7→ R is a bijection between the
affine group and all positive definite 2× 2 matrices of determinant 1. We specify
boundary conditions and study solutions to the equation

λv(t) = R−1(t)v′(t), v(0) = u0, v(T ) = uT .

These solutions will correspond to rotating a point on the boundary of H the
upper half plane around the point x(t) + iy(y) at rate λ (in the hyperbolic angle).

3.1. An associated Hilbert space and inverses. For any R(t) positive
definite for t ∈ [0, T ) and that there exists some nonzero vector v∗ ∈ R2 with∫ T

0
ut∗R(t)u∗dt <∞, then we can define the Hilbert space L2

R[0, T ) equipped with
the inner product

〈v, w〉R =

∫ T

0

v(t)R(t)w(t)dt

We now have that τ acts on functions f : [0, T )→ R2 with ‖f‖2
R = 〈f, f〉R <∞.

This means that for different R our differential operators will act on different
spaces. In particular if we try to do the discrete to continuous convergence ar-
gument our operators do not all act on the same space. In order to get around
this we may work instead with the operators τ̂ = XτX−1. This τ̂ is a self-adjoint
operator acting on v such that Xv ∈ dom(τ) ⊂ L2. Moreover the spectrum of τ̂
is the same as that of τ .

In order to prove the final convergence statement we actually show convergence
the inverses of these τ̂ operators. The inverse operator τ̂−1 is a Hilbert-Schmidt
integral operator with kernel

Kτ̂−1(x, y) =
1

2

(
X(x)u0(X(y)uT )t1(x < y) +X(x)uT (X(y)u0)t1(y < x).

)
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3.2. From H to D. For any operator τ that is defined as in (30) there is a
corresponding operator τ̃ with the same spectrum where instead of tracking the
path x+ iy in the half-plane model we instead work in the Poincaré disk model.

Let Ũ be the linear transformation corresponding to the Cayley map U(z)
(conformal with (∞, 1,−1) 7→ (1,−i, i)),

Ũ =
1√
2

[
1 −i
1 i

]
and consider the operator

τ̃u(t) = Ũτ(Ũ−1u(t)) = ŨR−1(t)JŨ−1u′(t)

defined on functions u : [0, 1]→ C2. Direct computation shows that

τ̃u(t) =
1

f(t)(1− |γ(t)|2)

[
1 + |γ(t)|2 2γ(t)

2γ̄(t) 1 + |γ(t)|2
] [
−i 0
0 i

]
u′(t),

where γ(t) = U(x(t) + iy(t)) is the image of the driving path in the disk model.
Notice that this form is identical the one we found by considering the operator
associated to the Szegö recursion. Therefore we can move from that operator to
the half plane and use the structure developed there.





CHAPTER 7

Operator limits via Stochastic Differential Equations

1. Characterizing the limits by differential equations

Recall that in chapters 4 and 5 we gave a characterization of the eigenvalue
processes for the two operators by looking at the eigenvalue equation and consider-
ing the Ricatti transformation of the associated functions that solve the equation
(possibly not eigenfunctions if they do not satisfy the boundary conditions). We
also had a description of the bulk process Sineβ in terms of its counting function.
For the bulk process we began by defining the diffusion αλ with

(31) dαλ = λ
β

4
e−

β
4
tdt+ Re

[
(e−iαλ − 1)dZ

]
,

where Zt = Xt + iYt with X and Y standard Brownian motions and αλ(0) = 0.
The αλ are coupled through the noise term. Define Nβ(λ) = 1

2π
limt→∞ αλ(t), then

Nβ(λ) is the counting function for Sineβ. This diffusion equation simplifies further
in the case where λ is fixed. In particular we may rewrite the martingale part in
the following way:

Re

[∫ t

0

(e−iαλ − 1)dZ

]
= Re

[∫ t

0

(e−iαλ/2 − eiαλ/2)e−iαλ/2dZ

]
= Re

[∫ t

0

(e−iαλ/2 − eiαλ/2)(dX(λ) + idY (λ)

]
d
=

∫ t

0

2 sin
(αλ

2

)
dY (λ)

where X(λ) and Y (λ) are standard Brownian motions (depending on λ). This gives
us that for a fixed λ the diffusion αλ satisfies the SDE

dαλ = λ
β

4
e−

β
4
tdt+ 2 sin

(αλ
2

)
dBt, αλ(0) = 0.

In this section we will focus on proving results about the counting function
Nβ(λ). Many of these results can also be proved in a similar way for the hard
edge. This is because we can get a similar characterization for the hard edge
process. Recall from chapter 5 we have that the Ricatti diffusion pλ satisfying

dp(x) =
2√
β
p(x)db(x) +

(
(a+ 2

β
)p(x)− p2(x)− λe−x

)
dx

may be used to define the counting function of the eigenvalue process. We can
perform a change of variables to get this into a form where the counting function
may be more easily identified. In particular if we take ϕa,λ to satisfy the diffusion

(32) dϕa,λ =
β

2
(a+ 1

2
) sin

(ϕa,λ
2

)
dt+ βλe−βt/8dt+

sinϕa,λ
2

dt+ 2 sin
(ϕa,λ

2

)
dBt

49
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with initial condition ϕa,λ(0) = 2π. Then we can define

Ma,β(λ)
d
= lim

t→∞

⌊
1

4π
ϕa,λ(t)

⌋
.

This will be the counting function for the singular values of Gβ,a. The counting

function of the eigenvalue process is obtained by looking at Ma,β(
√
λ). For conve-

nience for the rest of the chapter we will use Bessa,β to denote this singular value
process.

2. Transitions

Before computing probabilities of various rare events we will start by showing
a transition from the singular value process Bessa,β to the bulk process Sineβ. To
do this we need to show that the finite dimensional marginals of the counting
function near λ converge to those of Nβ(x) as λ goes to infinity. We can get the
counting function of intervals near λ by considering Ma,β(λ + x) −Ma,β(λ). In
order to get a diffusion that describes this counting function we need to consider
what is the relationship between two diffusions that satisfy stochastic differential
equations of the form (32) for λ and λ+ x which are coupled through their noise
terms. Let ψa,λ,x = ϕa,λ+x − ϕa,λ, then the SDE for ψa,λ,x is

dψa,λ,x =
β

2
(a+ 1/2)Im

[
ei
ϕa,λ

2

(
e−i

ψa,λ,x
2 − 1

)]
dt+

1

2
Im
[
eiϕa,λ

(
e−iψa,λ,x − 1

)]
dt

+ βxe−βt/8dt+ Im
[
ei
ϕa,λ

2

(
e−i

ψa,λ,x
2 − 1

)]
dBt,(33)

with initial condition ψa,λ,x(0) = 0. This follows from standard Itô techniques
together with the application of angle addition formulas. The idea here is that
the oscillatory integrals will be “small.”

To start we want to determine what is the behavior of ψa,λ,x at finite time as
λ → ∞. If we can determine this and then show that the impact of the large
time behavior of the diffusion is irrelevant this will be enough to determine the
behavior of the counting function in the limit.

Proposition 2.1. For any fixed T and c we get that∫ T

0

eicϕa,λ
(
e−icψa,λ,x − 1

)
dt

P−→ 0.

This immediately gives us that the first line of (33) will vanish in the λ→∞
limit. Now consider what happens to the noise term. Define

Xλ(t) =

∫ t

0

cos
(ϕa,λ

2

)
dBs and Yλ(t) =

∫ t

0

sin
(ϕa,λ

2

)
ds.

In the limit we can compute the quadratic variations

[Xλ]t =

∫ t

0

cos2
(ϕa,λ

2

)
ds =

∫ 2

0

cos2
(ϕa,λ

2

)
=
t

2
+

∫ t

0

cos (ϕa,λ) ds
P−→ t

2

Similarly we may compute

[Yλ]t
P−→ t

2
and [Xλ, Yλ]t

P−→ 0.
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At this point the martingale central limit theorem gives us that (Xλ, Yλ) ⇒
1√
2
(W (1),W (2)) where W (1) and W (2) are independent standard Brownian motions.

Therefore

Im

∫ T

0

[
ei
ϕa,λ

2

(
e−i

ψa,λ,x
2 − 1

)]
dBt ⇒ Im

1√
2

∫ T

0

(
e−i

ψ̂a,x
2 − 1

)
(dW (1) + idW (2))

d
= Re

1√
2

∫ T

0

(
e−i

ψ̂x
2 − 1

)
(dW (2) + idW (1)).

All together if ψa,λ,x has a limit ψ̂x this limit should satisfy the SDE

dψ̂x = βxe−βt/8 +
1√
2

[(
e−i

ψ̂x
2 − 1

)
dZ
]
.

We can check that this is just a time and space changed version of the αx diffusion.
In particular we get that

Theorem 2.2 ([4]). Let a > 0 and β > 0 fixed, then

(34)
1

4
(Bessa,β − λ)⇒ Sineβ

as λ→∞.





List of symbols

⇒ convergence in distribution/measure
P−→ convergence in probability

a.s.−→ convergence almost surely
d
= equality in distribution
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