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Professor Timo Seppäläinen, Professor, Mathematics

Professor Philip Matchett Wood, Assistant Professor, Mathematics

Professor Saverio Spagnolie, Assistant Professor, Mathematics



i

Abstract

The Gaussian Unitary and Orthogonal ensembles are among the most studied models

in random matrix theory. These models can be included in a one parameter family of

point processes with n points indexed by β called the β-Hermite (or Gaussian) ensemble.

These, and two related ensembles, the β-Laguerre and β-Jacobi, can be rescaled so that

on average the number of points in a fixed interval stays the same as n grows. The

resulting limit is a point process, which we will call a local limit. The work included

here can be divided into two types of results. The first is proof of convergence to the local

limits at the edge of the β-Jacobi ensemble. The second type of result is on properties

of the limiting point processes themselves.

The β-Jacobi ensemble can exhibit two different types of behaviors at its edge. These

behaviors give rise to two different limiting point processes: The Bessa,β process at the

hard edge, and the Airyβ at the soft edge. We prove convergence to the hard edge and

soft edge under appropriate conditions. This is joint work with Gregorio Moreno-Flores

and is published, see [32].

In the interior of the β-ensembles we get a different type of local limit, the Sineβ

process. This process is shift invariant and the expected number of points in an inter-

val of length λ is λ
2π

. We prove a large deviation result on the probability of seeing

approximately ρλ points as the size of the interval tends to infinity. This is joint work

with Benedek Valkó and has been submitted for publication, see [33]. Lastly we show a

similar large deviation result and a central limit theorem result for the number of points

in the Bessa,β process in the interval [0, λ] as λ tends to infinity. This work is as yet

unpublished.
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Chapter 1

Introduction and Background

The study of random matrices grew out of the work of Wishart (1920’s) in statistics,

and gained popularity with the work of Wigner (1950’s) in nuclear physics (see e.g. [58],

[57]). In the past 60 years random matrices remained objects of interest both from a

purely mathematical perspective and for their deep connections and applications to other

areas, both in and outside of mathematics. Mathematical connections include number

theory, knot theory, and algebraic geometry. Applications of random matrices are also

found in physics, statistics, finance, electrical engineering, and several other fields. The

applications can be found in such varying areas as microbiology where they are used to

model RNA folding, and condensed matter physics where they have been used to study

the conductance of new materials (see [2]).

The early models were mostly Hermitian and symmetric random matrices and re-

main a focus of the field. One of the classical models, introduced by Wigner, is obtained

by taking A to be a square matrix whose entries are independent standard normal ran-

dom variables (N (0, 1)), and considering the matrix M = (A + AT )/2. The matrix

M is a sample from the Gaussian Orthogonal Ensemble (GOE). Related models can

be constructed with complex or quaternion entries and using the appropriate adjoint,

the resulting matrix models are called the Gaussian Unitary and Gaussian Symplectic

Ensembles (GUE, GSE). These models remain central to the study of random matrices
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because they are some of the most approachable models to work with and share charac-

teristics with a broad range of other random matrix models. Other commonly studied

random matrix models include covariance (also called Wishart) matrices, MANOVA

matrices, and unitary matrices chosen randomly according to a Haar measure.

In the remainder of the introduction we will use the Gaussian ensembles to introduce

some of the types of problems of interest in random matrices. We will then use them

to introduce a generalization of random matrices known as β-ensembles. Lastly we will

give a brief overview of the work covered in this thesis.

1.1 Limits of the Gaussian ensembles

The type of question of interest here is what happens to the spectrum of the matrices

as the size of the matrix tends to infinity. There are two different scales on which we

consider this problem. The first of these is to look at the behavior of the eigenvalues

collectively, where and how densely they accumulate. The second is to look at the local

interaction of the eigenvalues.

One way of describing the collective behavior of the eigenvalues is to look at the

empirical spectral measure of the matrix. This is the measure that places a weight of

1/n on each eigenvalue. Let λ1, λ2, . . . , λn be the eigenvalues of a random matrix, then

we define the empirical spectral measure to be

νn(x) =
1

n

n∑
k=1

δλk(x).

Now specialize to the Gaussian ensembles, that is let the λi be the eigenvalues of an n by

n GOE, GUE, or GSE matrix. Then as n tends to infinity we can check that we expect



3

the largest and smallest eigenvalues to be around ±2
√
n. If we rescale the spectrum by

1/
√
n then we get the following theorem:

Theorem 1.1 (Wigner). Let λ1, λ2, . . . , λn be the eigenvalue of a GOE, GUE, or GSE

matrix, and let

µn =
1

n

n∑
k=1

δλk/
√
n(x)

then

µn ⇒ ρsc a.s. where
dρsc
dx

=
1

2π

√
4− x2.
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Figure 1.1: Histogram of rescaled

eigenvalues of a 1000 × 1000 GUE ma-

trix

The meaning of this statement can be seen

from Figure 1.1, which shows a histogram of the

eigenvalues of a 1000 by 1000 GUE matrix scaled

by 1/
√
n. From this picture we can clearly see

the emergence of the semicircle mentioned.

Remark 1.2. The Wigner semicircle law holds

more generally then stated above. Take any n×n

symmetric or Hermitian matrix with entries be-

low the diagonal i.i.d. with mean 0 and variance

1, and diagonal entries i.i.d. mean 0 and variance 1. Then when rescaled by 1/
√
n the

empirical spectral density converges to the semicircle distribution. (See e.g. [3])

This type of limit describes the global behavior of the eigenvalues, but tells you

nothing about the interactions between the eigenvalues. In order to look at what happens

on a local scale we need to rescale so the expected number of eigenvalues in an interval

remains constant. In the case of the Gaussian ensembles we have n eigenvalues on an
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interval of size 4
√
n, this suggests that we need to look at a subinterval on the order

of 1/
√
n. Indeed, in the limit, after rescaling the eigenvalues up by

√
n we arrive at

a point process. In the case of β = 2, if we take Λn to be the set of eigenvalues,

then the precise statement is that 1
π

√
nΛn converges in distribution to the Sine process,

which may be described through its n-point correlation functions. These are given by

determinantal formulas with entries p(xi, xj) =
sinπ(xi−xj)
π(xi−xj) . (see e.g. [28], and for more

on determinantal point processes see [34]).

Observe that by looking at 1
π

√
nΛn we are looking at the local behavior of the eigen-

values near 0, and notice that 0 is in the interior of the spectrum (that is, in the middle

of the semicircle formed by the eigenvalues). We refer to this as bulk of the spectrum,

and the Sine process as the bulk limiting process. If we rescale appropriately at another

point in the interior of the spectrum we find this same limiting process. In other words

the local behavior is the same everywhere in the interior. In the case of the GUE this

would be anywhere in (−2
√
n, 2
√
n) as we can see from Figure 1.1.

We can find a similar result at the edge of the spectrum, though with a different

limiting process. Notice that at the very edge of the spectrum from Wigner’s semicircle

law we get that the number of points in the interval [−2
√
n, (−2 + ε)

√
n] is approx-

imately n
∫ −2+ε

−2
ρsc(x)dx ∼ nCε3/2. This suggests that in order to look at the local

behavior we need ε on the order of n−2/3, which means we need to look at the interval

[−2
√
n,−2

√
n+n−1/6]. Indeed, appropriately centered and rescaled by n1/6 the bottom

eigenvalues converge the Airy2 process, which can again be described through its cor-

relation functions. This time the determinantal formulas are written in terms of Airy

functions. See [28] for further details.
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1.2 β-ensembles

The Gaussian ensembles introduced above remain important to the study of random

matrices in part because we can write down an explicit joint density for the eigenvalues.

Let Mn be an n× n GOE, GUE, or GSE matrix, then the eigenvalue have joint density

pH(λ1, . . . , λn) =
1

Zn,β

∏
1≤i<j≤n

|λi − λj|β
n∏
i=1

e−
β
4
λ2i (1.1)

where β is equal to 1, 2 and 4 for the GOE, GUE, and GSE respectively. Note, that

the constant β/4 in the exponential can be easily changed via linear scaling, but not

the exponent in the first product. As a generalization of the Gaussian ensembles we

can consider the density in (1.1) for any β > 0, this is called the Gaussian (or Hermite)

β-ensemble. We will denote this by H(n, β).

The finite point process H(n, β) is no longer directly related to the original matrix

models, but there does exist a related tridiagonal matrix model whose eigenvalues have

the appropriate distribution. The model originally introduced by Dumitriu and Edelman

[17] is as follows: Let

Hβ ∼
1√
2



N(0, 2) χ(n−1)β

χ(n−1)β N(0, 2) χ(n−2)β

. . . . . . . . .

χ2β N(0, 2) χβ

χβ N(0, 2)


(1.2)

then the joint density of the eigenvalues of Hβ is given by (1.1). The tridiagonal matrix

model in integral to the study of the β-ensemble. There is another interpretation of this

model in terms of log gases. In particular the eigenvalue density given in (1.1) can be
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identified with the Boltzmann factor of a log-gas model, more work on this can be found

in the physics literature [28].

The β-Hermite ensemble is one example of a family of distributions that may be

considered. More generally if we have a joint density function of the form

p(λ1, . . . , λn) =
1

Zn,β

∏
1≤i<j≤n

|λi − λj|β
n∏
i=1

eV (λi)

for some function V , we call a set of points distributed according to such a function a

β-ensemble. There are several other classical matrix models that also generalize to β-

ensembles. These include, but are not limited to Wishart matrices with Gaussian entries

which generalize to the β-Laguerre ensemble, and MANOVA matrices which generalize

to the β-Jacobi ensemble.

The model considered by Wishart [58] can be described as follows: Let Mn×m de-

note the space of n × m matrices with complex (resp. real) valued entries. Take a

matrix X ∈ Mn×m with independent complex (resp. real) Gaussian entries; then

M = XXT ∈ Mn×n is said to have a (n,m)-Wishart distribution. It corresponds

to the sample covariance matrix for a sample drawn from a multivariate complex (resp.

real) normal distribution. The joint eigenvalue density given by

pL(λ1, λ2, . . . , λn) =
1

Zβ,n,m

n∏
i=1

λ
β
2

(m−n+1)−1

i e−
β
2
λi
∏
j<k

|λj − λk|β (1.3)

where β = 1, 2 for real and complex initial entries respectively. Taking any β > 0 we

call the resulting object the β-Laguerre ensemble, which we will denote by L(n,m, β).

As in the β-Hermite case, there is a tridiagonal matrix model whose eigenvalues are

distributed according to (1.3), see [17] for more details.

The MANOVA matrix model also comes from statistics. We take an n1 by n matrix

M with each entry independently drawn from the standard normal distribution, and



7

consider the matrix X = MTM . This is one of the n by n Hermitian matrix models

introduced by Wishart. If we assume n1 ≥ n we know the resulting matrix is almost

surely invertible and so A = X1/2(X + Y )−1X1/2 where Y is constructed in the same

manner with parameters n2, n is well defined. Consideration of this type of matrix first

arose in statistics (MANOVA, or multivariate analysis of variance, uses the base matrix

model to study the interdependence of several dependent and independent variables).

The resulting matrix A is again Hermitian and joint density function of its eigenvalues

is given by

pJ(λ1, . . . , λn) =
1

Zβ,n,n1,n2

n∏
i=1

λai (1− λi)b
∏
j<k

|λj − λk|β 1{λi∈[0,1], ∀ i} (1.4)

where a = β
2
(n1 − n + 1) − 1, b = β

2
(n2 − n + 1) − 1, Z is a constant dependent on

the parameters, n1, n2 ≥ n and β = 1. If instead of drawing from the standard normal

distribution we had chosen a complex normal distribution, we would have had the same

joint density function with β = 2. These cases were extensively studied by Johnstone in

[37].

Note that the eigenvalues lie inside the interval [0, 1], unlike the Gaussian or Wishart

cases where the spectrum is unbounded. Taking β > 0 the resulting object is called the

β-Jacobi ensemble, we will denote this ensemble by J(n, n1, n2, β). The corresponding

tridiagonal matrix model is introduced in Section 3.1.1.

1.3 Limits of β-ensembles

For the β-ensembles we can study the same type of questions as in the case of the GUE.

As with the GUE we will begin by looking at the limits of the empirical spectral density.
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We will then take a look the local limit that shows up in the bulk of the β-ensembles.

Lastly we will look at the point process limits at the edge of the ensembles.

1.3.1 Limits of the empirical spectral measures

Recall that in the case of the Gaussian ensembles (the GOE/GUE/GSE models) we

had that appropriately rescaled the empirical spectral density converged in distribution

to the semicircle law (see Theorem 1.1). There are similar theorems that hold for the

Wishart and MANOVA matrices, but with different limiting distributions. The empirical

spectral densities of the β-ensembles converge to the same distributions you get in the

original matrix models. More precisely we have the following results:

Theorem 1.3 (see e.g. [28]). 1. Let λ1, λ2, ..., λn ∼ H(n, β), then

1

n

n∑
i=1

δλi/
√
n(x)⇒ ρsc(x) a.s. as n→∞. (1.5)

2. Let λ1, λ2, ..., λn ∼ L(n,m, β) and assume n/m→ γ ∈ (0, 1], then

1

n

n∑
i=1

δλi/m ⇒ ρmp(x) a.s. as n→∞ (1.6)

where ρmp is the Marchenko-Pastur distribution with

dρmp
dx

=
1

2πγx

√
(b− x)(x− a)1(a ≤ x ≤ b), a = (1−√γ)2, b = (1 +

√
γ)2.

(1.7)

3. Let λ1, λ2, ..., λn ∼ J(n, n1, n2, β) with n1, n2 > n, n1/n → γ1 ∈ [1,∞), and

n2/n→ γ2 ∈ [1,∞), then 1
n

∑
i δλi converges weakly to ρ(x) a.s. as n→∞, where

ρ(x) =
2π

γ1 + γ2

·
√

(Λ+ − x)(x− Λ−)

x(1− x)
.
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Here Λ± denotes the upper and lower edges of the spectrum which are given by

Λ± =

(√
γ1(γ1 + γ2 − 1)

γ1 + γ2

±
√
γ2

γ1 + γ2

)2

. (1.8)

These limiting densities help us identify the interior (or bulk) and edges of the spec-

trum in the limit. They also help to find the scale of which the local interactions will

be visible. We use this in the discussion of the local limits the follows.

1.3.2 The local limits in the bulk

Recall that by local limit we are referring to a point process that captures the local

interactions of the eigenvalues. In the case of the GUE we had that rescaled by
√
n in

the limit the eigenvalues converged in distribution to a determinantal point process we

called the Sine process. There is a similar statement for the β-Hermite ensemble. In this

case the limiting point process is dependent on β and is denoted by Sineβ. This process

will be characterized through its counting function rather then its correlation functions.

Characterization of this process and proof of convergence in the case of the β-Hermite

ensemble was done by Valkó and Virág [54].

The Sineβ process as the bulk limit is not unique to the β-Hermite ensemble. Ap-

propriately rescaled this same limit if found in the bulk of the β-Laguerre and -Jacobi

ensembles ([35], [7]). Notice that the only dependence in the limit is on β, meaning

that, in the limit, the extra parameters in these ensembles have no impact on the local

interactions in interior. The behavior at the edge of the spectrum is more diverse.
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1.3.3 Limits at the edge

Recall that at the edge of the GUE we had that centered and rescaled by n1/6 the

eigenvalues converged in distribution to the Airy2 process. As with the bulk we have a

similar statement for the edges of the β-Hermite ensemble. In particular, if Λn denotes

the collection of the ordered eigenvalues of H(n, β), then n1/6(2
√
n − Λn) converges in

distribution to a point process Airyβ, which depends only on β. This limiting point

process can be characterized in two ways. The first is that it is the ordered eigenvalues

of a stochastic differential operator. The second is again through its counting function.

This type of behavior will be called a soft edge [49].

This limiting point process, unlike the limit in the bulk, is not the only process

found at the edge of the β-Laguerre and -Jacobi ensembles. It is also possible that these

ensembles display a different type of behavior at the edge of the spectrum. To see why

this might be expected consider the Marchenko-Pastur distribution which is found as a

limit of the empirical spectral density of the β-Laguerre ensemble (1.7). This limiting

distribution can exhibit two very different types of behavior at the lower edge of the

support. In the case where n/m→ 1 we get a limiting density with

dρmp
dx

=
1

2πγ
√
x

√
2− x1(0 ≤ x ≤ 2).

This gives us an asymptote at x = 0. Returning to the distribution of the β-Laguerre

ensemble, this means that the lower edge is converging to 0, but the joint density by

construction requires that the eigenvalues be nonnegative, which imposes a hard con-

straint at the origin. Indeed in the case where m = n + a when appropriately rescaled

the smallest k eigenvalues of the β-Laguerre ensemble converge in distribution to a point

process dependent on β and a. We will call this process the ‘Stochastic Bessel Process’
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and denote it by Bessa,β. This names comes from the fact that for β = 2 this process

can again be characterized by its n-point correlation functions, this time the necessary

determinant being composed of Bessel functions (see e.g. [28]). Characterization of the

limiting point process as well as the proof of convergence was done by Ramı́rez and

Rider in [48].

For m/n→ γ 6= 1 the lower edge of the Marchenko-Pastur distribution behaves like

the
√
x function near 0. This is the same as the behavior at the top and bottom of the

semicircle in the β-Hermite limit. In this case, that is m/n→ γ 6= 1, the appropriately

rescaled lower edge of the β-Laguerre ensemble converges to the Airyβ process [49].

The regime in between these two, that is m/n→ 1, but m = n+ an where an →∞,

should fall into the case of the soft edge, but the actual result remains unproven. The

upper edge of the β-Laguerre ensemble falls into the soft edge regime regardless of the

limit of m/n.

The last thing that remains is to discuss the limiting behavior at the edge of the β-

Jacobi ensemble. As with the β-Laguerre ensemble, this ensemble can exhibit both soft

and hard edge behavior, but the behavior can change at both its upper and lower edges.

The n1 parameter determines the behavior at the lower edge, while the n2 parameter

determines the behavior at the upper edge. In particular, if n1 = n + a then the

lower edge converges to Bessa,β, and similarly for the upper edge if n2 = n + a. If

n1/n → γ1 6= 1, then the lower edge converges to Airyβ, and similarly for the upper

edge if n2/n → γ2 6= 1. As in the β-Laguerre ensemble, the transitional case remains

unproven. The proof of the limits in the β-Jacobi case is one part of the work in this

thesis.
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1.3.4 Universality of the point process limits

The universality conjecture is that these local limits are the correct limits for any reason-

able matrix model, and this does not depend on the on the limiting empirical spectral

density. For example if one takes M with M = M∗ with mi,j any complex random

variables with mean 0 and variance 1 for i < j, and mi,i real with mean 0 and variance

1, then for Λn the eigenvalues of M we have 2
√
nΛn ⇒ Sine2. This has been proved

under certain conditions by Erdős, Yau, and several coauthors, and independently by

Tao and Vu, see [25, 24, 23, 52]. Related work shows that the bulk limit also holds for

a wide family of β-ensembles [7]. It has also been proved that the edge limit holds for a

large family of β-ensembles [8, 42]. In this sense we can understand these point process

limits which describe the local interaction of the eigenvalues to be a type of universal

behavior.

1.4 Summary of Results

The results of this thesis can be divided into two types. The first of these is the proof of

convergence of the β-Jacobi ensembles to the local limits at the edge of the spectrum.

The second of these are on properties of the limiting point processes. This includes

large deviation results for the Sineβ and Bessa,β process, as well as a CLT for the Bessa,β

process. In particular we show the following:

For the β-Jacobi ensemble, with joint density given by (1.4) we show that when

appropriate centered and rescaled we get convergence to the limiting point processes for

both the hard and soft edge. For the soft edge this means that for lim inf n1/n > 1 the

ordered eigenvalue when appropriated centered and rescaled converge in distribution to
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the stochastic Airy process. The result will be stated precisely for the upper edge of

the spectrum, that is for lim inf n2/n > 1, but symmetry gives the lower edge as well.

For the hard edge we have that for n1 − n→ a, the ordered eigenvalue of the β-Jacobi

spectrum converge to the stochastic Bessel process with parameter a. These results have

been published previously in [32].

The large deviation results are on the counting functions of the Sineβ and stochastic

Bessel processes. The results state that the normalized counting function N(λ)/λ of the

Sineβ process satisfies a large deviation principle with scale λ2 and a good rate function

βISine(ρ). That is P (N(λ)/λ ∼ ρ) ∼ e−λ
2βISine(ρ). This work has been submitted for

publication and can be found in [33].

The large deviation result for the Bessa,β process is similar. The counting function

of the stochastic Bessel process on the interval [0, λ] normalized by
√
λ satisfies a large

deviation principle with scale λ and good rate function βIBessa,β . The central limit type

result is for the number of points in the interval [0, λ] as λ → ∞. This work has not

been published yet.

These results will be stated precisely in the next chapter.
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Chapter 2

Results

2.1 Point Process Limits of the β-Jacobi Ensemble

2.1.1 Soft edge limit

We begin by defining the “stochastic Airy operator” (SAOβ) . Let

Hβ = − d2

dx2
+ x+

2√
β
b′(x) (2.1)

where we take b′ to be a white noise. A precise definition and many properties of this

operator can be found in [49]. We review the necessary ones below.

For our purposes it is sufficient to define an eigenfunction/eigenvalue pair in the

following way: Let

L∗ =

{
f ∈ L2[0,∞)|f(0) = 0, f ′ exists a.e. and

∫ ∞
0

(f ′)2 + (1 + x)f 2dx <∞
}
,

then (ϕ, λ) is an eigenvalue/eigenfunction pair for Hβ if ‖ϕ‖2 = 1, ϕ ∈ L∗ and

ϕ′′(x) =
2√
β
ϕ(x)b′(x) + (x− λ)ϕ(x) (2.2)

holds in the sense of distributions. This may be written as

ϕ′(x)− ϕ′(0) =
2√
β
ϕ(x)b(x)− 2√

β

∫ x

0

ϕ′(t)b(t)dt+

∫ x

0

(t− λ)ϕ(t)dt. (2.3)

In this sense, the set of eigenvalues is a deterministic function of the Brownian path b.

Moreover the eigenvalues are “nice” in the following sense:
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Theorem 2.1. [49] With probability one, the eigenvalues of Hβ are distinct (of multi-

plicity 1) with no accumulation point, and for each k ≥ 0 the set of eigenvalues of Hβ

has a well defined (k + 1)st lowest element Λk(β).

The Airyβ point process is given by the eigenvalues of Hβ. Our first result shows that

the spectrum of the Jacobi ensemble near to the soft edge converges to this point process

after appropriate scaling and centering.

Let us introduce some notation: Take

c2 =
n1

n1 + n2

, s2 =
n2

n1 + n2

(2.4)

c̃2 =
n

n1 + n2

, s̃2 =
n1 + n2 − n
n1 + n2

(2.5)

with c, s, c̃ and s̃ all nonnegative. Under this notation we have that the expected edge

of the spectrum is given by

Λ± = (cs̃± sc̃)2.

We define our scaling factor to be

αn =
m2
n

csc̃s̃
, where mn =

[
csc̃s̃
√
n1 + n2

c̃s̃(c2 − s2) + cs(c̃2 − s̃2)

]2/3

. (2.6)

We now state the scaling limit near the soft edge.

Theorem 2.2. Let λ1 ≥ λ2 ≥ · · · ≥ λn denote the ordered eigenvalues of J(n, n1, n2, β),

and assume lim inf n2/n > 1; then

(
αn(Λ+ − λ`)

)
`=1,...,k

⇒
(

Λ0(β), ...,Λk−1(β)
)

jointly in law for any fixed k <∞, as n→∞.
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Remark 2.3. This theorem describes the limiting behavior of the β-Jacobi ensemble in

the upper soft edge situation. This is sufficient to determine the behavior in the lower

soft edge because J(n, n1, n2, β) is symmetric in n1 and n2. That is, the reflection of

the density of J(n, n1, n2, β) with respect to x = 1/2 is the corresponding density for

J(n, n2, n1, β).

Remark 2.4. In the situation where n1 and n2 are constant multiples of n, then αn =

cn2/3 for some constant c. One can compare this with the scaling exponents in the Tracy-

Widom result. In fact in the case where lim inf n2/n ≥ 1 + ε, then with a little bit of

work one can show that there exist constants c1 and c2 depending only on ε so that

c1n
1/3 ≤ mn ≤ c2n

1/3.

Remark 2.5. While we expect a soft edge type result for β-Jacobi spectrum in the case

where n2 = n + an and an → ∞ we restrict to the case where lim inf n2/n > 1. We

make this restriction on n2 because, as the previous remark suggests, the order of mn

can change substantially which will render many computations invalid. A similar gap

exists in the β-Laguerre case for the lower soft edge.

2.1.2 Hard edge limit

We recall the definition of the stochastic Bessel operator, studied by Ramı́rez and Rider

in [48] to describe the limit of the Laguerre ensemble in the hard edge case. The operator

acts on functions on R+ and is given by:

Gβ,a = − exp

[
(a+ 1)x+

2√
β
b(x)

]
· d
dx

(
exp

[
−ax− 2√

β
b(x)

]
d

dx

)
,
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with Dirichlet boundary conditions at 0 and Neumann conditions at infinity, where b(x)

is a Brownian motion, a > −1 and β > 0. This can be formally rewritten as

−Gβ,a = ex
(
d2

dx2
− (a+

2√
β
b′(x))

d

dx

)
,

where b′(x) is white noise. The inverse operator as given by Ramı́rez and Rider [48] is:

(G−1
β,aψ)(x) ≡

∫ ∞
0

(∫ x∧y

0

e
az+ 2√

β
b(z)
dz

)
ψ(y)e

−(a+1)y− 2√
β
b(y)
dy. (2.7)

The operator G−1
β,a is non-negative symmetric in L2[R+,m] where

m(dx) = e
−(a+1)x− 2√

β
b(x)

dx.

We may study the eigenvalues of Gβ,a through the study of the eigenvalues of the integral

operator by using the fact that if λ is an eigenvalue of Gβ,a its reciprocal is an eigenvalue

of the inverse. Moreover, it can be shown that the spectrum defines a simple point

process as desired.

Theorem 2.6. [48] With probability one, when restricted to the positive half-line with

Dirichlet boundary condition (at the origin), Gβ,a has a discrete spectrum of simple

eigenvalues 0 < Λ0(β, a) < Λ1(β, a) < · · · ↑ ∞.

We will show that the Bessel operator will describe the limiting spectrum of the

(β, n, n1, n2)-Jacobi ensemble in the hard edge case. For convenience and in analogy to

the β-Laguerre ensemble, we will focus on the lower hard edge. We can see from Remark

2.3 that this is indeed sufficient to determine the upper edge as well.

Theorem 2.7. Let 0 < λ0 < λ1 < · · · < λn−1 be the ordered eigenvalues of J(n, n1, n2, β),

mn = nn2 and n2 > n. Assume that (n1 − n)→ a ∈ (−1,∞), then(
mnλ0,mnλ1, ...,mnλk

)
⇒
(

Λ0(β, a),Λ1(β, a), ...,Λk(β, a)
)
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jointly in law, for any fixed k <∞ as n→∞.

Remark 2.8. Previous work on both the hard and the soft edge of the β-Jacobi was

done through a coupling with the β-Laguerre ensemble by Jiang [36]. This work covers

the case where n/n1 → γ ∈ (0, 1] and n = o(
√
n2). Our work extends the results to all

cases for which lim inf n2/n > 1.

2.2 Properties of Point Process Limits

2.2.1 Large deviations for the Sineβ process

The Sineβ process can be described through its counting function using a system of

stochastic differential equations. Consider the system

dαλ = λ
β

4
e−

β
4
tdt+ Re

[
(e−iαλ − 1)(dB1 + idB2)

]
, αλ(0) = 0, t ∈ [0,∞) (2.8)

where B1, B2 are independent standard Brownian motions. Note, that this is a one-

parameter family of SDEs driven by the same complex Brownian motion. In [54] it

was shown that Nβ(λ) = lim
t→∞

1
2π
αλ(t) exists almost surely and it is an integer valued

monotone increasing function in λ. Moreover, the function λ → Nβ(λ) has the same

distribution as the counting function of the Sineβ process, i.e. the distribution of the

number of points in [0, λ] for λ > 0 is given by that of Nβ(λ).

Note, that for any fixed λ the process αλ satisfies the SDE

dαλ = λ
β

4
e−

β
4
tdt+ 2 sin(αλ/2)dBt, αλ(0) = 0, t ∈ [0,∞) (2.9)

where Bt = B
(λ)
t =

∫ t
0

Re
[
−ie−

1
2
iαλ(s)d(B1+idB2)

]
is a standard Brownian motion which

depends on λ. Thus, if we are interested in the number of points in a given interval [0, λ]

then it is enough to study the SDE (2.9) instead of the system (2.8).
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Using the SDE characterization of the Sineβ process one can show that it is transla-

tion invariant with density (2π)−1 (see [54]). In particular, in a large interval [0, λ] one

expects roughly (2π)−1λ points. In [43] the authors refined this by showing that Nβ(λ)

satisfies a central limit theorem, it is asymptotically normal with mean λ
2π

and variance

2
βπ2 log λ.

The goal here is to characterize the large deviation behavior of Nβ(λ). We find the

asymptotic probability of seeing an average density different from (2π)−1 on a large

interval. We show that λ−1Nβ(λ) satisfies a large deviation principle with a good rate

function.

Before stating the exact form of the theorem we need to introduce a couple of nota-

tions. We will use

K(a) =

∫ π/2

0

dx√
1− a sin2 x

, E(a) =

∫ π/2

0

√
1− a sin2 xdx, (2.10)

for the complete elliptic integrals of the first and second kind, respectively. Note that

there are several conventions denoting these functions, we use the one in [1]. We also

introduce the following function for a < 1:

H(a) = (1− a)K(a)− E(a). (2.11)

Now we are ready to state our main theorem.

Theorem 2.9. Fix β > 0. The sequence of random variables 1
λ
Nβ(λ) satisfies a large

deviation principle with scale λ2 and good rate function βISine(ρ) with

ISine(ρ) =
1

8

[ν
8

+ ρH(ν)
]
, ν = γ(−1)(ρ), (2.12)
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where γ(−1) denotes the inverse of the continuous, strictly decreasing function given by

γ(ν) =



H(ν)
8

ν∫
−∞
H−2(x)dx, if ν < 0,

1
2π
, if ν = 0,

H(ν)
8

ν∫
1

H−2(x)dx, if 0 < ν < 1,

0, if ν = 1.

(2.13)

Roughly speaking, this means that the probability of seeing close to ρλ points in

[0, λ] for a large λ is asymptotically e−λ
2βISine(ρ). The precise statement is that if G is an

open, and F is a closed subset of [0,∞) then

lim inf
λ→∞

1

λ2
P ( 1

λ
Nβ(λ) ∈ G) ≥ − inf

x∈G
βISine(x), lim sup

λ→∞

1

λ2
P ( 1

λ
Nβ(λ) ∈ F ) ≤ − inf

x∈F
βISine(x).

The function γ may also be defined as the solution to the equation 4x(1−x)γ′′(x) =

γ(x) on the intervals (−∞, 0] and [0, 1] with boundary conditions lim
x→0±

γ(x) = 1
2π

, γ(1) =

0 and lim
x→−∞

γ(x)√
|x|

= 1
4
. The rate function ISine(ρ) is strictly convex and non-negative with

ISine(
1

2π
) = 0 and ISine(0) = 1

64
. The function ISine(

1
2π

+ x) behaves like − π2x2

4 log(1/|x|) for

small |x|, and ISine(ρ) grows like 1
2
ρ2 log ρ as ρ → ∞. These statements will be proved

in Proposition B.5.

We note that the behavior of ISine(ρ) near ρ = 1
2π

is formally consistent with the

already mentioned central limit theorem of Nβ(λ). For ρ = 1
2π

+ x with a small, but

fixed |x| the probability of seeing close to 1
2π
λ + xλ points in [0, λ] is approximately

exp
(
− βπ2λ2x2

4 log(1/|x|)

)
. Now let us assume, that this is true even if x decays with λ, even

though this regime is not covered in our theorem. If we substitute λx =
√

2
βπ2 log λ · y
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(with a fixed y), then this probability would asymptotically equal to e−y
2/2. This is

in agreement with the fact that Nβ(λ) is asymptotically normal with mean 1
2π
λ and

variance 2
βπ2 log λ.

Before moving on, a couple of historical notes are in order. In [54] the authors also

show another large deviation statement for the Sineβ process regarding large intervals,

namely that the asymptotic probability of not seeing any points in [0, λ] is approximately

e−
β
64
λ2 . In [55] this result was sharpened by providing the more precise asymptotics of

P (Nβ(λ) = 0) = (κβ + o(1))λυβ exp
{
− β

64
λ2 +

(
β
8
− 1

4

)
λ
}
, as λ→∞ (2.14)

with υβ = 1
4

(
β
2
− 2

β
− 3
)

and a positive constant κβ whose value was not determined.

Similar results have been proven before for the classical cases β = 1, 2, 4, see e.g. [4], [53],

[56], [13]. Moreover, the value of κβ and higher order asymptotics were also established

for these specific cases by [41], [22], [12]. Further extension in the classical cases include

the exact asymptotics of P (Nβ(λ) = n) for fixed n and also for n = o(λ). (See [53] and

[28] for details.) In all of these results the main term of the asymptotic probability is

e−
β
64
λ2 . This is consistent with our result, as Theorem 2.9 and ISine(0) = 1

64
implies

lim
ε→0

lim
λ→∞

1
λ2

logP (Nβ(λ) ≤ ελ) = − β
64
.

The large deviation rate function (2.15) has been predicted using non-rigorous scaling

and log-gas arguments in [20] and [27]. (See Section 14.6 of [28] for an overview.) Using

the same techniques [29] treats the corresponding problem for the soft edge and hard

edge limit processes of β-ensembles.

One can also study the large deviation behavior of the empirical distribution of the β-

ensembles on a macroscopic level. It is known that after scaling with
√
n the empirical
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measure of the distribution (1.1) converges to the Wigner semicircle law. In [5] the

authors prove a large deviation principle for the scaled empirical measure, this describes

the asymptotic probability of seeing a different density profile than the semicircle. One

could consider our theorem a microscopic analogue of that result.

2.2.2 Large deviations and a CLT for the Bessa,β process

The results for the Bessa,β process will be stated in terms of the function Ma,β(λ) which

we define to be the number of points of the Bessa,β process in the interval [0, λ]. We show

both a central limit theorem and a large deviation result for this function as λ→∞.

Theorem 2.10. Fix β > 0, a > −1. As λ→∞ we have that

1√
log λ

(
Ma,β(λ)− 2

√
λ

π

)
⇒ N

(
0,

1

βπ2

)
.

Notice that if one considers the limit on the scale of (log
√
λ)−1/2 which in some

sense in the natural analogue of the CLT for the Sineβ process, then we actually get

convergence to a normal with the same variance as in the Sineβ case. The large deviation

result is similarly related to the result in the bulk.

Theorem 2.11. Fix β > 0, a > −1, a 6= −1/2. The sequence of random vari-

ables 1√
λ
Ma,β(λ) satisfies a large deviation principle with scale λ and good rate function

βIBessa,β(ρ) with

IBessa,β(ρ) =
ν

2
+ ρH(ν), ν = γ(−1)(ρ/4), (2.15)

where γ is the function given in (2.13).
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Remark 2.12. There is no reason at this point to believe that the restriction that a 6=

−1/2 is necessary. It seems to be a consequence of the proof technique used.

There is a close relationship between the rate function for the Bessa,β process and

the Sineβ process, namely that IBessa,β(ρ) = 32ISine(ρ/4). As before we can check that

the central limit theorem and the LDP are at least formally consistent. Using the

relationship between the rate functions we get that IBessa,β( 2
π

+x) behaves like − π2x2

2 log(1/|x|) .

The substitution
√
λx =

√
1
βπ2 log λ · y with a fixed, then the probability would be

asymptotically equal to e−y
2/2. Lastly, observe that the large deviation result is also

consistent with the large gaps result P (Ma,β(λ) = 0) ∼ e−
β
2
λ [47].
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Chapter 3

Point Process Limits of the β-Jacobi

Ensemble

In the β- Hermite and Laguerre ensembles discussed above the cases β = 1, 2 and 4

have the particularity to be solvable and can be studied by means of asymptotics of

orthogonal polynomials [44]. In the general β case, the solvability is lost, together with

a natural interpretation in terms of classical random matrix ensembles. The soft and

hard edge limits for these general ensembles were considered in [49] and [48] respectively,

leading to a generalized Tracy-Widom(β) distribution and the stochastic Bessel process,

respectively, in the soft edge and the hard edge case. This approach was anticipated in

[21], where tridiagonal matrix models associated to the β-Laguerre and Hermite ensemble

[17] were conjecture to converge to continuum random operators. It is worth noting that

the link between these random operators and the classical results involving the Tracy-

Widom distribution remains obscure. To the best of our knowledge, the only result in

this direction is [6] where a spiked-random matrix model is investigated.

The object of study in this chapter is the β-Jacobi ensemble (see (1.4)). Note that

written in terms of n, n1, n2 for large n we will approximate the edges of the J(n, n1, n2, β)

spectrum by

Λ± =

(√
n1(n1 + n2 − n)

n1 + n2

±
√
nn2

n1 + n2

)2

. (3.1)
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This chapter will focus on the behavior at the edge of the spectrum as n, n1 and

n2 grow to infinity. This approach relies on a tridiagonal representation of the β-Jacobi

ensembles [40] and the techniques developed in [49] and [48]. The higher number of

parameters makes the phase diagram richer. As there are both a lower and an upper

bound on the spectrum, appropriate tuning of the parameters can lead to any combi-

nation of soft/hard upper/lower edges. With our notations, the asymptotics of n1 with

respect to n will determine the nature of the lower edge, while respective asymptotics

for n2 will determine the upper edge.

Several works have been devoted to the edge behavior of the β-Jacobi ensembles with

varying degree of generality (see for example [16, 19, 15, 45, 46]). The works [11] and

[37] are restricted to the cases β = 1 and 2. Johnstone [37] also provides fluctuation

results for the top eigenvalue in the cases β = 1 and 2. All the aforementioned works

treat the case of a single extreme eigenvalue. We note that the work [37] uses the results

from [49] and [48] to study very degenerate asymptotics for n1 and n2 for which the

Jacobi ensemble approximates the Laguerre ensemble.

This work is organized as follows: in Section 3.1.1 we recall the tridiagonal represen-

tation for the β-Jacobi ensemble proved in [40] (an alternative approach will be described

in the appendix). Proofs in the soft edge cases are presented in Section 3.2 while the

hard edge case is treated in Section 3.3. Many details are similar to the corresponding

proofs in [49] and [48] and will be omitted.
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3.1 Results

3.1.1 Tridiagonal representation

The core of our approach, following [49] and [48], rests heavily on a tridiagonal repre-

sentation of Jn,n1,n2,β. The first tridiagonal representation for the β-Jacobi ensemble was

given by Killip and Nenciu [40]. We will work with a somewhat simplified model which

was introduced by Sutton ([51], Chapter 5).

Theorem 3.1. [40] The joint density of the eigenvalues of MMT is given by fβ,n,n1,n2(λ),

where

M = Mn,n1,n2,β =



C1S̃1

S2C̃1 C2S̃2

S3C̃2
. . .

. . .

SnC̃n−1 Cn


with C2

i + S2
i = 1, C̃2

i + S̃2
i = 1 and

Ck ∼

√
Beta

(
β

2
(n1 − n+ k),

β

2
(n2 − n+ k)

)

C̃k ∼

√
Beta

(
β

2
k,
β

2
(n1 + n2 − 2n+ k + 1)

)
.

Note that MMT is indeed tridiagonal. A proof of this theorem is included in the

appendix for the sake of completeness.
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3.2 Convergence of the spectrum at the soft edge

The proof of the soft edge limit is derived using a more general limiting result by Ramı́rez,

Rider and Virág [49]. This result embeds a sequence of tridiagonal matrices as opera-

tors on L2[0,∞) and gives conditions for a weak limit under which convergence of the

eigenvalues also holds. We use this result to show that the point process J(n, n1, n2, β)

converges to eigenvalues of a random operator.

We begin by stating a general result of Ramı́rez, Rider, and Virag [49] giving con-

ditions for a sequence of operators to converge to the stochastic Airy operator in an

appropriate sense. Our work will then consist of verifying the hypothesis of this theo-

rem in the β-Jacobi case.

Let Hn : Rn → Rn be the linear operator whose associated matrix with respect to

the standard bases is symmetric, tridiagonal with diagonal entries (2m2
n + mn(yn,1,k −

yn,1,k−1), k ≥ 1) and off-diagonal entries (−m2
n +mn(yn,2,k − yn,2,k−1)/2, k ≥ 1).

We define define the step functions yn,i(x) = yn,i,bxmnc1xmn∈[0,n] and make the follow-

ing assumptions:

Assumption 1 (Tightness/Convergence) There exists a continuous process x 7→ y(x) such

that

(
yn,i(x);x ≥ 0

)
i = 1, 2 are tight in law(

yn,1(x) + yn,2(x);x ≥ 0
)
⇒

(
y(x);x ≥ 0

)
in law,

with respect to the Skorokhod topology.

Assumption 2 (Growth/Oscillation bound) There is a decomposition

yn,i,k = m−1
n

k∑
`=1

ηn,i,` + ωn,i,k (3.2)
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with ηn,i,k ≥ 0, such that there are deterministic unbounded nondecreasing continuous

functions η(x) > 0, ζ(x) ≥ 1, and random constants µn(ω) ≥ 1 defined on the same

probability space which satisfy the following: The µn are tight in distribution, and,

almost surely

η(x)/µn − µn ≤ ηn,1(x) + ηn,2(x) ≤ µn(1 + η(x)) (3.3)

ηn,2(x) ≤ 2m2
n (3.4)

|ωn,1(ξ)− ωn,1(x)|2 + |ωn,2(ξ)− ωn,2(x)|2 ≤ µn(1 + η(x)/ζ(x)) (3.5)

for all n and x, ξ ∈ [0,mn] with |x− ξ| ≤ 1.

Theorem 3.2. [49] Given Assumptions 1 and 2 above and any fixed k, the bottom k

eigenvalues of the matrix Hn converge in law to the bottom k eigenvalues of the operator

H, where

H = − d2

dx2
+ y′(x).

Here the eigenfunction/eigenvalue pairs of H should be understood in the same way

as those of Hβ as shown in Section 2.1.1. We will show that a tridiagonal matrix with

eigenvalues corresponding to the β-Jacobi ensemble satisfies the requirements of the

theorem with limiting operator Hβ.
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3.2.1 The β-Jacobi model

We use the following tridiagonal model for the β-Jacobi ensemble. Let

Zn,β =



Cn SnC̃n−1

Cn−1S̃n−1 Sn−1C̃n−2

. . . . . .

C2S̃2 S1C̃2

C1S̃1


with Ck, Sk, C̃k, and S̃k defined as in Theorem 3.1. Clearly σ(Zn,βZ

T
n,β) = σ(Mn,βM

T
n,β)

in distribution.

Recall the definitions of mn and αn from section 2.1.1 given in (2.6). We consider

the matrix

Hn = αn

(
(cs̃+ sc̃)2In − Zn,βZT

n,β

)
.

This matrix has diagonal and off-diagonal entries given respectively by

2m2
n +

m2
n

csc̃s̃
(c2s̃2 + s2c̃2 − S2

n−k+1C̃
2
n−k − C2

n−kS̃
2
n−k)

and

−m2
n +

m2
n

csc̃s̃
(csc̃s̃− Cn−kSn−kC̃n−kS̃n−k−1).

Note that the term (cs̃+sc̃)2 is the Λ+ defined in (3.1). We define ∆yn,i,k = yn,i,k−yn,i,k−1

with



30

∆yn,1,k =
mn

csc̃s̃
(c2s̃2 + s2c̃2 − S2

n−k+1C̃
2
n−k − C2

n−kS̃
2
n−k)

∆yn,2,k =
2mn

csc̃s̃
(csc̃s̃− Cn−kSn−kC̃n−kS̃n−k−1).

The proof now consists of verifying the hypotheses of Theorem 3.2.

3.2.2 Checking Assumption 1

To show that Hn satisfies Assumption 1 of Theorem 3.2 we use the following proposition

which is a simple modification of Theorem 7.4.1 and Corollary 7.4.2 in [26].

Proposition 3.3 ([26]). Let f ∈ C1(R+) and g ∈ C1(R+), and let yn be a sequence of

processes with yn,0 = 0 and independent increments. Assume that

1

εn
E(∆yn,k) = f ′(kεn)+o(1),

1

εn
Var (∆yn,k) = g2(kεn)+o(1),

1

εn
E(∆yn,k)

4 = o(1)

uniformly for kεn on compact sets as n → ∞. Then yn(t) = yn,bt/εnc converges in law,

with respect to the Skorokhod topology, to the process f(t) +
∫ t

0
g(s)dbs, where b is a

standard Brownian motion.

We take εn = 1/mn and apply this to a slightly altered version of yn,1 and yn,2. Take

∆ỹn,1,k =
mn

csc̃s̃
(c2s̃2 + s2c̃2 − S2

n−kC̃
2
n−k − C2

n−kS̃
2
n−k)

∆ỹn,2,k =
2mn

csc̃s̃
(csc̃s̃− Cn−kSn−kC̃n−kS̃n−k).

Computation gives

ES2
n−k =

n2 − k
n1 + n2 − 2k

= s2 +
s2 − c2

n1 + n2

+
2(n2 − n1)

(n1 + n2 − 2`)3
k2
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for some ` ∈ [0, k]. Similar expansions can be written for the other terms involved. We

now note that for convergence on compact subsets it is sufficient to consider k ≤ cmn ≤

c2n
1/3 by remark 2.4. Therefore, collecting terms we find that

mnE∆ỹn,1,k =
m2
n

csc̃s̃
· 2(c2 − s2)(c̃2 − s̃2)

n1 + n2

k + o(1). (3.6)

Lemma 3.4. Let X = Ci
n−kS

j
n−k with i and j positive integers, then

EX =
√
EX2 − 1

8(EX2)3/2
Var (X2) +O

(
1

(n1 + n2)2

)
.

Similar statements hold for C̃n−k and S̃n−k.

Here we take O(1/(n1 + n2)2) to mean that there exists a constant C depending only

on i and j so that the magnitude of the error is bounded about by C/(n1 + n2)2. This

lemma will always be used in the event that Cn−k or Sn−k is raised to an odd power.

Proof. For a < x ∈ [0, 1]

√
a+

1

2
√
a

(x− a)− 1

8a3/2
(x− a)2 ≤

√
x ≤
√
a+

1

2
√
a

(x− a)− 1

8a3/2
(x− a)2 +

(x− a)3

16a5/2
,

and for x ≤ a ∈ [0, 1]

√
a+

1

2
√
a

(x− a)− 1

8a3/2
(x− a)2 +

(x− a)3

16a5/2
≤
√
x ≤
√
a+

1

2
√
a

(x− a)− 1

8a3/2
(x− a)2.

To complete the proof what remains to be shown is that E(X2 − EX2)3 = O(1/(n1 +

n2)2). To accomplish this we make the following observation. If Y ∼ Beta(a, b), then

for i, j positive integers we have that

E(Y i(1− Y )j) =
(a+ i− 1) · · · (a+ 1)a (b+ j − 1) · · · (b+ 1)b

(a+ b+ i+ j − 1) · · · (a+ b+ 1)(a+ b)
. (3.7)

Direct computation then finishes the proof.
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An application of this lemma shows that

mnE∆ỹn,2,k =
m2
n

csc̃s̃
· c̃

2s̃2(c2 − s2)2 + c2s2(c̃2 − s̃2)2

n1 + n2

k +O

(
m2
n

n1 + n2

)
(3.8)

Here we mean that for 1 ≤ k ≤ amn there exists some constant C independent of

k, n, n1, n2 so that the error is bounded by Cm2
n/(n1 + n2). Together with (3.6) this

gives us that

mnE(∆ỹn,1,k + ∆ỹn,2,k) =
k

mn

+ o(1) (3.9)

which verifies the first condition in Proposition 3.3 with f(x) = x2/2.

The second and fourth moment computations can be done similarly. They give us that

mnE(∆ỹn,1,k + ∆ỹn,2,k)
2 =

4

β
+ o(1), and mnE(∆ỹn,1,k + ∆ỹn,2,k)

4 = o(1). (3.10)

Note that, for the fourth moment, it is sufficient to bound mnE(∆ỹn,2,k)
4 and (breaking

ỹn,1,k into pieces) to bound the corresponding moments of s2c̃2 − S2
n−kC̃

2
n−k and c2s̃2 −

C2
n−kS̃

2
n−k. Therefore, Proposition 3.3 can be applied and yields

ỹn,1,k + ỹn,2,k ⇒
x2

2
+

2√
β
b(x),

in law in the Skorohod topology.

Recall that in all the above computations, we considered ỹ instead of y. Consequently,

all that remains to check the second part of Assumption 1 is to show that yn,1,k +

yn,2,k − ỹn,1,k − ỹn,2,k converges to the 0 process in law in the Skorohod topology. Direct

computation shows that the expectation and variance of the increments are of order 1/n
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and so the expectation and variance of the process go to 0 on compact subsets. This

together with a fourth moment bound gives us convergence to the 0 process in law.

Finally, the individual tightness of each (yn,i(x);x ≥ 0), i = 1, 2 can be obtained

along the same lines.

3.2.3 Checking Assumption 2

To check this assumption we again work with the shifted processes ỹn,i,k and compare

this with the original process. To this end we take ηn,i,k = mnE∆yn,i,k, and similarly

η̃n,i,k = mnE∆ỹn,i,k. Further, we will neglect the extra −1 found in the C̃n−k and S̃n−k

terms and show the irrelevance later. We will show the inequality in (3.3) for η̄(x) = x.

Under these definitions we have

η̃n,1,k =
m2
n

csc̃s̃

(
c2s̃2 + s2c̃2 − (n1 − k)(n1 + n2 − n− k)

(n1 + n2 − 2k)2
− (n2 − k)(n− k)

(n1 + n2 − 2k)2

)
η̃n,2,k =

2m2
n

csc̃s̃

(
csc̃s̃−

f(β
2
(n1 − k))f(β

2
(n2 − k))f(β

2
(n− k))f(β

2
(n1 + n2 − n− k))

β2

4
(n1 + n2 − 2k)2

)

where f(x) = Γ(x+ 1/2)/Γ(x).

We begin with the upper bound on η̃n,1,k + η̃n,2,k. The general idea will be to treat

η̃n,1,k via a Taylor expansion with a uniform bound on the error term, and work with

η̃n,2,k in two regions. The first region will be 1 ≤ k ≤ αn for some α < 1 and the second

will be αn ≤ k ≤ n − 1. On the first region we will again work with primarily with

Taylor expansion and find a uniform bound on the error in terms of α, for the second

section we return to working with the original η̃n,2,k and show that for αn ≤ k ≤ n− 1

this can be bounded by Cαk/mn.
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Using the inequality

√
x

(
1− 2

x

)
≤ Γ(x+ 1/2)

Γ(x)
≤
√
x

we get that for n1, n2 > n > k

η̃n,2,k ≤
2m2

n

csc̃s̃

(
csc̃s̃−

√
(n1 − k)(n2 − k)(n− k)(n1 + n2 − n− k)

(n1 + n2 − 2k)2

)

+ 15
4m2

n

csc̃s̃

(√
(n1 − k)(n2 − k)(n− k)(n1 + n2 − n− k)

β
2
(n− k)(n1 + n2 − 2k)2

)
.

For convenience we will label the first line of the right hand side by Ak and the second

line by Bk. We will treat the second term Bk first.

mnBk

k
≤ 120

β

n1n2n(n1 + n2 − n)(n1 + n2)3

n(n1 + n2 − 2n)2(
√
n(n1 + n2 − n)(n1 − n2) +

√
n1n2(2n− n1 − n2))2

This upper bound has a finite limsup. We now turn to η̃n,1,k + Ak for 1 ≤ k ≤ αn for

some 0 < α < 1.

η̃n,1,k + Ak =
k

mn

+
f(`)

2
k2

for some ` ∈ [1, αn]. Here f(`) is the second derivative of η̃n,1,k + Ak with respect to k.

On this range of k we can find explicit upper bounds for

mnk
f(`)

2

in terms of n, n1, n2, and α which have finite limsup as n goes to ∞. This together with

our bound on Bkmn/k is enough to give us a sequence of constants cn so that

η̃n,1,k + η̃n,2,k ≤ cn
k

mn

for 1 ≤ k ≤ αn. For the remaining piece we work with η̃n,1,k and η̃n,2,k separately.

mnη̃n,1,k
k

=
m3
n

csc̃s̃

(
2(n1 − n2)(2n− n1 − n2)

(n1 + n2)3
+

6(n1 − n2)(2n− n1 − n2)k

(n1 + n2 − 2`)4

)
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for some 1 ≤ ` ≤ k ≤ n. Taking the obvious upper bound with ` = k = n we have an

upper bound on η̃n,1,k for 1 ≤ k ≤ n which has a finite limsup. Returning to Ak we note

that for αn ≤ k ≤ n we have that

mnη̃n,2,k
k

≤ m3
n

αn

From Remark 2.4 we have that this is an appropriate upper bound. Choosing the larger

upper bound on the two sections gives us a sequence µn such that

η̃n,1,k + η̃n,2,k ≤ µn
k

mn

for 1 ≤ k ≤ n− 1.

Turning to the lower bound we have the inequality

η̃n,1,k + η̃n,2,k ≥
m2
n

csc̃s̃

(
c2s̃2 + s2c̃2 − (n1 − k)(n1 + n2 − n− k)

(n1 + n2 − 2k)2
− (n2 − k)(n− k)

(n1 + n2 − 2k)2

)
+

2m2
n

csc̃s̃

(
csc̃s̃−

√
(n1 − k)(n2 − k)(n− k)(n1 + n2 − n− k)

(n1 + n2 − 2k)2

)
.

(3.11)

One can then make arguments for 1 ≤ k ≤ αn similar to those employed in the upper

bound simply by choosing α small enough so that mnkf(`)/2 is bounded below by −1.

For the remaining k we note that the derivative of the right hand side with respect to k

is

m2
n

csc̃s̃

[√
(n− k)(n1 + n2 − n− k)(n1 − n2) +

√
(n1 − k)(n2 − k)(2n− n1 − n2)√

(n1 − k)(n2 − k)(n− k)(n1 + n2 − n− k)(n1 + n2)

]2
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which is strictly greater than 0 for 1 ≤ k ≤ n− 1. Therefore

η̃n,1,k+η̃n,2,k ≥
m2
n

csc̃s̃

(
c2s̃2 + s2c̃2 − (n1 − αn)(n1 + n2 − n− αn)

(n1 + n2 − 2αn)2
− (n2 − αn)(n− αn)

(n1 + n2 − 2αn)2

)
+

2m2
n

csc̃s̃

(
csc̃s̃−

√
(n1 − αn)(n2 − αn)(n− αn)(n1 + n2 − n− αn)

(n1 + n2 − 2αn)2

)
.

This lower bound can be used to get the desired constants for αn ≤ k ≤ n− 1 finishing

the lower bound. To finish we make the following observation: By direct computation

we can find an upper bound δn of order (n1 + n2)−1/3 such that

|η̃n,1,k + η̃n,2,k − ηn,1,k − ηn,2,k| ≤ δn.

Therefore any error that comes from neglecting the −1 in the C̃n−k and S̃n−k terms, or

working with the shifted process, may be absorbed into the constant terms. This finishes

the proof of (3.3).

We now verify (3.5):

∆yn,2,k =
2mn

csc̃s̃
(csc̃s̃− Cn−kSn−kC̃n−kS̃n−k−1) = 2mn −

2mnCn−kSn−kC̃n−kS̃n−k−1

csc̃s̃
.

Therefore since all of the relevant pieces are positive we have that

mnE∆yn,2,k = 2m2
n − E

2m2
nCn−kSn−kC̃n−kS̃n−k−1

csc̃s̃
≤ 2m2

n.

For the proof of the oscillation bound (3.5) we observe that
√
mnωn,1,k is the sum of 2

martingales. For ωn,2,k we note that the increments are

2m
3/2
n

csc̃s̃

(
ECn−kSn−kC̃n−kS̃n−k−1 − Cn−kSn−kC̃n−kS̃n−k−1

)
=

2m
3/2
n

csc̃s̃

(
(ES̃n−k−1 − S̃n−k−1)ECn−kSn−kC̃n−k

+ (ECn−kSn−kC̃n−k − Cn−kSn−kC̃n−k)S̃n−k−1

)
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and so ωn,2,k may also be written as the sum of two martingales. Following the corre-

sponding proof in [49] with these martingales gives us the necessary bound. This ends

the proof of the convergence at the soft edge.

3.3 Convergence of the spectrum at the hard edge

The proof of the hard edge limit will follow largely from the proof of Ramı́rez and Rider

in [48]. We will formulate a more general theorem which gives conditions for convergence

of the eigenvalues, and apply this in the specific setting of the β-Jacobi ensemble. The

main idea is again to embed the tridiagonal matrices as operators and show that operator

convergence implies convergence of the eigenvalues. However the operator convergence

is not shown directly, instead we work with inverse operators to draw our conclusions.

To show the convergence of the spectrum at the hard edge we will first state a more

general theorem on convergence of eigenvalues. We will then show that this gives us

Theorem 2.7. Though this is stated more generally than the result given by Ramı́rez

and Rider in [48] the majority of the proof follows directly from their work.

3.3.1 A more general setting

Let Xn be a lower bidiagonal matrix

Xn =



a1

−b1 a2

−b2 a3

. . . . . .

−bn−1 an
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We make the following assumptions on the entries:

Assumption 1 There is a Brownian motion B(·), and deterministic functions r(x), s(x)

and ϕ(x) continuous on (0, 1) such that for y < x in (0, 1]

n

abnxc
⇒ r(x) (3.12)

bnxc∑
k=bnyc

log

(
bk
ak

)
⇒ s(x)− s(y) +

∫ x

y

ϕ(t)dBt. (3.13)

.

Assumption 2 There exist tight random constants κn and κ′n and α < 1 such that

sup
1≤k≤n

Eak
ak
≤ κn (3.14)

i−1∑
k=j

log

(
bk
ak

)
− s(i/n) + s(j/n) ≤ κ′n(1 + Tα(i/n) + Tα(j/n)) (3.15)

Where T (x) =
∫ x

1/2
ϕ2(t)dt.

Assumption 3 Let KC to be the integral operator with kernel

kC(x, y) = Cr(x)es(x)−s(y) exp [CTα(x) + CTα(y)] 1(y < x),

then KC is Hilbert-Schmidt.

Assumption 4 Let K be the integral operator with kernel given by

k(x, y) = r(x)es(x)−s(y) exp

[∫ x

y

ϕ(t)dBt

]
1(y < x).

The operator (KKT )−1 has discrete spectrum with simple eigenvalues 0 < Λ0 < Λ1 <

... ↑ ∞.

Theorem 3.5. Let Xn be a lower bidiagonal matrix with entries that satisfy Assumptions

1, 2, 3 and 4. Denote the ordered eigenvalues of XnX
T
n by λ0 < λ < 1 < ..., then

(λ0, λ1, ..., λk−1)⇒ (Λ0,Λ1, ...,Λk−1)
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jointly in law in the Skorokhod topology for any fixed k as n→∞.

Remark 3.6. Assumption 4 can be replaced by further conditions on r(x), s(x) and ϕ(x)

in Assumption 1. We omit this here because in our case Assumption 4 can be checked

directly.

Proof. We begin by computing X−1
n and embedding the resulting matrix as an operator

on L2(0, 1]. By Lemma 4 in [48] we can compute

[X−1
n ]i,j =

1

ai

i−1∏
k=j

bk
ak

for j ≤ i.

The action of our operator on L2 will then read

(
X−1
n f

)
(x) =

n

abnxc

bnxc∑
j=1

bnxc−1∏
k=j

bk
ak

∫ xj

xj−1

f(x)dx

where xk = k/n. We denote this operator by Kn, and note that this is a discrete integral

operator with kernel

kn(x, y) =
1

ai
exp

[
i−1∑
k=1

log

(
bk
ak

)]
1L(x, y),

where 1L(x, y) = 1(x ∈ [xi−1, xi))1(y ∈ [xj−1, xj)) and i > j.

To complete the proof we need the following lemmas:

Lemma 3.7. There exists a probability space on which all Kn and K are defined, and

such that any sequence of the operators Kn contains a subsequence which converges to

K in Hilbert-Schmidt norm with probability one. In particular for any nk ↑ ∞ we can

find a subsequence nk′ ↑ ∞ along which

lim
nk′→∞

∫ 1

0

∫ 1

0

|knk′ (x, y)(ω)− k(x, y)(ω)|2dxdy = 0

almost surely.
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The remainder of the proof of Theorem 3.5 now follows from the proof of Theorem

1 in [48] with α in place of 3/4.

Proof of Lemma 3.7. We make the following observation: The noise term in the limiting

process may be rewritten as∫ y

x

ϕ(z)dbz = b̃ (T (x))− b̃ (T (y)) .

Here the equality is in distribution with a different Brownian motion b̃ living on the same

probability space. This can be used to show that limiting operator K is almost surely

Hilbert-Schmidt. The remainder of the proof then follows from the proof of Lemma 6 in

[48]. The main idea of the proof is to use Skorohod’s representation theorem to find a

space on which we have almost sure convergence kernels. The tightness conditions then

furnish a dominating function which gives L2 convergence of the kernels as desired.

3.3.2 Proof of theorem 2.7

We now apply Theorem 3.5 to our setting. Recall the tridiagonal ensemble of random

matrices which spectrum corresponds to the β-Jacobi ensemble. We look at a similar

matrix with unchanged spectrum, which can be decomposed into a product of two

bidiagonal matrices. Specifically we take
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Wn,β =



C1S̃1

−S2C̃1 C2S̃2

−S3C̃2
. . .

. . .

−SnC̃n−1 Cn


,

where the random variables Ck and C̃k are again distributed as in Section 3.1.1. Note that

Wn,β is Mn,β conjugated by diag(1,−1, 1,−1, ...) and so σ(Wn,βW
T
n,β) = σ(Mn,βM

T
n,β).

Recall that we are looking for the hard edge limit at the lower edge, therefore we will

take n1 = n+ an, an → a ∈ (−1,∞) with no restriction on n2 beyond n2 ≥ n.

We will apply Theorem 3.5 to the bidiagonal matrix
√
mnWn,β where mn = nn2, and

then show that the eigenvalue equation ϕ = λ(KKT )−1ϕ is equivalent to ψ = λG−1
β,aψ

completing the proof of Theorem 2.7.

In order to apply Theorem 3.5 we need to show that
√
mnWn,β satisfies the assump-

tions. All these assumptions will need to be verified in two cases. The first case will be

when n2/n→ γ ∈ [1,∞), and the second will be n2 � n. Note that these two cases are

sufficient because in the general case for any subsequence we can find a further subse-

quence along which either n2/n→ γ or n2 � n and so convergence of to the eigenvalues

of Gβ,a in those situations is sufficient. For clarity we note that the discrete kernel of

Kn is

knβ(x, y) =
n

√
mnCiS̃i

exp

[
i−1∑
k=j

log

(
Sk+1C̃k

CkS̃k

)]
1L(x, y),

with 1L(x, y) = 1x∈[xi−1,xi)1y∈[xj−1,xj).

Verifying Assumption 1
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Lemma 3.8. Assume that n2/n→ γ ∈ [1,∞), then for x ∈ (0, 1]

n
√
mnCbnxcS̃bnxc

⇒ 2x+ γ − 1
√
γ
√
x(x+ γ − 1)

.

Assume that n2 � n then for x ∈ (0, 1]

n
√
mnCbnxcS̃bnxc

⇒ 1√
x
.

Both convergence statements hold in the Skorokhod topology.

Proof. We begin by observing that

Var C2
nx = O(1/n)→ 0, as n→∞.

And similarly Var S̃2
nx = O(1/n), therefore the random variables converge to their ex-

pected values in L2. Now to ensure convergence on the process level fix δ > 0, then for

k > nx, x ≥ δ we can find a constant c such that

E

(
1

Ck+1

·
√
a+ k + 1√

a+ n2 − n+ 2k + 2
− 1

Ck
·

√
a+ k√

a+ n2 − n+ 2k

)2

≤ c

n

and

E

(
1

S̃k+1

·
√
a+ n2 − n+ k + 1√
a+ n2 − n+ 2k + 2

− 1

S̃k
·
√
a+ n2 − n+ k√
a+ n2 − n+ 2k

)2

≤ c

n
.

Kolmogorov’s tightness criterion ensures that we have process convergence on the set

[δ, 1]. Let δ → 0 to finish the proof.

Lemma 3.9. Assume that n2/n → γ ∈ [1,∞). There is a Brownian motion b(·) such

that for every y, x ∈ (0, 1] with y < x we have

bnxc−1∑
k=bnyc

log

(
Sk+1C̃k

CkS̃k

)
⇒ log

(√
x(γ − 1 + 2y)√
y(γ − 1 + 2x)

)
+

1 + a

2
log
(y
x

)
(3.16)

+
a

2
log

(
y + γ − 1

x+ γ − 1

)
+

∫ x

y

√
2s+ γ − 1√

β(s2 + γs− s)
dbs
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Assume that n2 � n. There is a Brownian motion b(·) such that for every y, x ∈ (0, 1]

with y < x we have

bnxc−1∑
k=bnyc

log

(
Sk+1C̃k

CkS̃k

)
⇒ a

2
log
(y
x

)
+

1√
β

∫ x

y

dbs√
s

(3.17)

again with both convergence statements holding in the Skorohod topology.

Before beginning the proof we note the following:

Proposition 3.10. Let X ∼ Beta(p, q), then

E

(
log

√
X

1−X

)
=

1

2
(Ψ0(p)−Ψ0(q)), Var

(
log

√
X

1−X

)
=

1

4
(Ψ1(p) + Ψ1(q)),

where Ψ0 and Ψ1 are respectively the digamma and trigamma function. Moreover as

x→∞

Ψ0(x) =
Γ′(x)

Γ(x)
= log(x)− 1

2x
− 1

12x2
+O(x−4),

Ψ′(x) = Ψ′0(x) =
1

x
+

1

2x2
+O(x−3). (3.18)

Proof of Lemma 3.9. We rearrange the process to have independent increments and then

apply Proposition 3.3 with εn = 1/n.

bnxc−1∑
k=bnyc

log

(
Sk+1C̃k

CkS̃k

)
= logCbnxc − logCbnyc +

bnxc−1∑
k=bnyc

log

(
Sk+1C̃k

Ck+1S̃k

)
.

Similar computation to the proof of Lemma 3.8 give us that if n2/n→ γ

log

(
Cbnxc
Cbnyc

)
⇒ log

(√
x(γ − 1 + 2y)√
y(γ − 1 + 2x)

)
.

And similarly if n2 � n

log

(
Cbnxc
Cbnyc

)
⇒ log

(√
x
√
y

)
.
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We now consider the process yn with increments

∆yn,k = log(Sk+1/Ck+1)− log(S̃k/C̃k).

In the case where n2/n→ γ we find that

nE(∆yn,nx) = −1 + a

2x
− a

2(x+ γ − 1)
+ o(1),

and

nVar (∆yn,nx) =
1

βx
+

1

β(x+ γ − 1)
+ o(1).

We can also check that nE(∆yn,k)
4 = o(1). By Proposition 3.3 we get the convergence

statement in (3.16).

Similar calculations in the case where n2 � n give you that

nE(∆yn,nx) = −1 + a

2x
+ o(1), nVar (∆yn,nx) =

1

βx
+ o(1), nE(∆yn,k)

4 = o(1).

This gives us the convergence in (3.17).

Verifying Assumption 2

We now turn to the tightness conditions. For (3.14) we begin by using the sum

bound:

P

(
sup

1≤k≤n

1

Ck
·

√
an + k√

an + n2 − n+ 2k
> M

)
≤

n∑
k=1

P

(
C2
k <

an + k

M2(an + n2 − n+ 2k)

)
Now recall that for X ∼ Γ(p, θ), Y ∼ Γ(q, θ) we have that X/(X + Y ) ∼ Beta(p, q).

We then start by finding bound on X and Y before turning to the Beta distribution. In

particular we compute P (X > NE(X)) and P (X < E(X)/N) for large N : First notice
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that E(X) = pθ and so an application of an exponential Chebyshev’s inequality with

θ = 1 gives us

P (X > pN) ≤
(

2

eN/2

)p
, and P (X < p/N) ≤

(
e

1 +N

)p
Using these bounds we can find an upper bound on

P

(
X

X + Y
· p+ q

p
<

1

N

)
with exponent (p ∧ q).

When applied to our original setting, this bound is summable in k (as n→∞), and

moreover the resulting sum may be made as small as desired by increasing M . Therefore,

for any ε > 0 we can choose M such that

P

(
sup

1≤k≤n

1

Ck
·

√
an + k√

an + n2 − n+ 2k
> M

)
< ε,

and so the κn are tight.

For the tightness of the κ′n we use the proof of Lemma 5 in [48]. That proof is a

reworking of the upper bound in the law of the iterated logarithm and the proof in this

situation proceeds with few changes. We note first that this section will again need to

be done in two cases. We make the following definitions which are analogous to the Anx

defined in [49].

Anx =
n−1∑
k=j

[
log (Sk+1/Ck+1)− log

(
S̃k/C̃k

)]
− 1 + a

2
log

(
j

i

)
− a

2
log

(
j + nγ − n
i+ nγ − n

)
(3.19)

and

Bn
x =

i−1∑
k=j

[
log (Sk+1/Ck+1)− log

(
S̃k/C̃k

)]
− a+ 1

2
log

(
j

i

)
. (3.20)
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for x ∈ [xj, xj+1). Here Anx will be used in the case where n2/n → γ < ∞ and the

associated T (x) = 1
β

(
log 1

x
+ log 1

γ−1+x

)
. In the case where n2 � n the object of

interest will be Bn
x with T (x) = 1

β
log 1

x
.

The changes noted above together with the following claim are sufficient to show the κ′n

are tight.

Remark 3.11. The T (x) as defined in the general theorem differs from the T (x) defined

here by a constant. This omission is permissible because we always consider

C(1 + T 3/4(x) + T 3/4(y))

and so the difference may be absorbed by the constant term.

Claim 3.12. For all λ > 0 sufficiently small (λ < (β/2)[(a+ 1)∧ 1] will do), if n2/n→

γ <∞ then

E[e
λAnxj ] = exp

{
λ2

2β

[
log

(
1

xj

)
+ log

(
γ

γ − 1 + xj

)]
+ Θn(j)

}
(3.21)

With |Θn(j)| ≤ C for constant C = C(a, β, γ). And if n2/n→∞

E[e
λBnxj ] = exp

{
λ2

2β
log

(
1

xj

)
+ Θn(j)

}
(3.22)

With |Θn(j)| ≤ C for constant C = C(a, β).

Proof of claim. We have the following products to consider: In the case where n2/n→ γ

we have

E[e
λAnxj ] = E

n−1∏
k=j

(
Sk+1

Ck+1

)λ(
C̃k

S̃k

)λ(
k + 1

k

)λ(a+1)/2(
n2 − n+ k + 1

n2 − n+ k

)λa/2
, (3.23)

and in the case where n2 � n

E[e
λBnxj ] = E

n−1∏
k=j

(
Sk+1

Ck+1

)λ(
C̃k

S̃k

)λ(
k + 1

k

)2(a+1)/2

(3.24)
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Let’s start by considering the portion of (3.23) and (3.24) of the form

P = E
n−1∏
k=j

(
Sk+1

Ck+1

)λ(
C̃k

S̃k

)λ

.

We use independence write this as a product of expectations, then by taking logarithms

we can consider each term of the resulting sum separately. For the k-th term this gives

us (logP )k = Ik + Jk where,

Ik = log Γ

(
β

2
(n2 − n+ k + 1) +

λ

2

)
− log Γ

(
β

2
(n2 − n+ k + 1)

)
+ log Γ

(
β

2
(an + n2 − n+ k + 1)− λ

2

)
− log Γ

(
β

2
(an + n2 − n+ k + 1)

)
and

Jk = log Γ

(
β

2
(an + k + 1)− λ

2

)
− log Γ

(
β

2
(an + k + 1)

)
+ log Γ

(
β

2
k +

λ

2

)
− log Γ

(
β

2
k

)
From the proof of Claim 10 in [48], we can conclude that

Ik =
λ2

2β(n2 − n+ k)
− λa

2
log

(
1 +

1

n2 − n+ k

)
+O(1/k2)

and

Jk =
λ2

2βk
− λ(a+ 1)

2
log

(
1 +

1

k

)
+O(1/k2).

The remaining part of (3.23) gives a contribution of

λa

2
log

(
1 +

1

n2 − n+ k

)
+
λ(a+ 1)

2
log

(
1 +

1

k

)
.

We then use that that
n∑
k=1

1/k = log n+ c+O(1/2n)
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to establish the claim in the case where n2/n→ γ. In the case where n2 � n, we have

that Ik = O(1/n2) and so may be folded into the constant term. Then the remaining

term in (3.24) gives a contribution of

λ(a+ 1)

2
log

(
1 +

1

k

)
which establishes the claim in this case.

Verifying Assumption 3

To show that the KC are Hilbert-Schmidt we have the following proposition:

Proposition 3.13. For any constant C and a > −1, the integral operators on L2[0, 1]

with kernels

kC,γ(x, y) = C exp
[
CT 3/4(x) + CT 3/4(y)

] √
2y + γ − 1

(2x+ γ − 1)−1/2

(y2 + γy − y)a/2

(x2 + γx− x)(a+1)/2
1{y<x}

where T (x) = 1
β

(
log 1

x
+ log 1

γ−1+x

)
and

kC(x, y) = C exp
[
C(log(1/x))3/4 + C(log(1/y))3/4

]
ya/2x−(a+1)/21{y<x}

are Hilbert-Schmidt.

Proof. For the operator with kernel kC,γ the change of variable x2 + γx − x = e−s and

y2 + γy − y = e−t gives the square of the Hilbert-Schmidt norm∫ 1

0

∫ 1

0

|kC,γ(x, y)|2dxdy = C2

∫ ∞
0

e2Cs3/4+as

∫ ∞
s

e2Ct3/4−(a+1)tdtds.

Similarly for the operator with kernel kC(x, y) we can make the change of variables

x = e−s and y = e−t to find the same double integral. This operator is finite if and only

if a > −1, so both operators are Hilbert-Schmidt.
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Verifying Assumption 4

To show that the eigenvalues of (KKT )−1 are simple with 0 < Λ0 < Λ1 < · · · ↑ ∞

we make the following observations:

Observation 1: In the case where n2/n→ γ the spectral problem reads

f(x) = λKTKf(x) = λ

∫ 1

0

k(y, x)

∫ 1

0

k(y, z)f(z)dzdy (3.25)

f(x) =
λ

γ

∫ 1

x

√
2x+ γ − 1

(x2 + γx− x)−a/2
2y + γ − 1

(y2 + γy − y)a+1
exp

(∫ y

x

√
2s+ γ − 1

βs(s+ γ − 1)
dbs

)

×
∫ y

0

√
2z + γ − 1

(z2 + γz − 1)−a/2
exp

(∫ y

z

√
2s+ γ − 1

βs(s+ γ − 1)
dbs

)
f(z)dzdy.

With a bit of rearranging we find that for

g(x) =
(x2 + γx− x)−a/2√

2x+ γ − 1
exp

(
−
∫ 1

x

√
2s+ γ − 1

βs(s+ γ − 1)
dbs

)
f(x),

under the change of variables (x(x + γ − 1), y(y + γ − 1), z(z + γ − 1)) 7→ (γp, γq, γr)

with h(p) = g(x) the previous equation reads

h(p) = λ

∫ 1

0

rae
2√
β
b̂(log 1/r)

h(r)

∫ 1

p∨r
q−(a+1)e

− 2√
β
b̂(log 1/q)

dqdr. (3.26)

Observation 2: In the case where n2 � n the spectral problem instead reads as

f(x) = λ

∫ 1

x

xa/2y−a−1 exp

(
1√
β

∫ y

x

dbs√
s

)∫ y

0

za/2 exp

(
1√
β

∫ y

z

dbs√
s

)
f(z)dzdy.

We then take

g(x) = x−a/2 exp

(
−1√
β

∫ 1

x

dbs√
s

)
f(x)

which again yields the equation

g(x) = λ

∫ 1

0

zae
2√
β
b̂(log 1/z)

∫ 1

x∨z
y−(a+1)e

− 2√
β
b̂(log 1/y)

g(z)dydz. (3.27)
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Equations (3.26) and (3.27) are equivalent to the eigenvalue equation ψ = λGβ,aψ ([48],

Proof of Theorem1). The simplicity of the eigenvalues of Gβ,a and their ordering with

0 < Λ0(β, a) < Λ1(β, a) < · · · ↑ ∞ are discussed by Ramı́rez and Rider in [48].

We have showed that Theorem 3.5 applies to Wn,β and the spectrum of the limiting

operator is the same as that of Gβ,a. This completes the proof of Theorem 2.7.
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Chapter 4

Large Deviations for the Sineβ

Process

Before the proof of the large deviation of the Sineβ process we will first prove a similar

result for a simpler related process. This process arises as a limit of a related symmetric

random matrix ensemble. Let Hn,σ be a random symmetric tridiagonal matrix with

entries equal to 1 above and below the diagonal and i.i.d. normals with mean zero and

variance σ2

n
on the diagonal.

Hn,σ =



ω1 1

1 ω2 1

1
. . .

. . . 1

1 ωn


, ωi ∼ N(0, σ2n−1). (4.1)

The matrix Hn,σ can be viewed as a one-dimensional discrete random Schrödinger op-

erator. In [43] it was shown that the bulk scaling limit of the spectrum of Hn,σ (along

appropriate subsequences) is a point process with density (2π)−1 denoted by Schτ . (The

parameter τ > 0 depends on σ and the point in the spectrum where we zoom in to take

the limit.) The process Schτ can be characterized via its counting function in a similar
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way to the Sineβ process. Consider the following one-parameter family of SDEs:

dφλ = λdt+ dB0 + Re
[
e−iφλ(dB1 + idB2)

]
, φλ(0) = 0, t ∈ [0,∞) (4.2)

where B0, B1, B2 are independent standard Brownian motions. Then the random set

Λτ := {λ : φλ/τ (τ) ∈ 2πZ}

has the same distribution as Schτ . Denote the counting function of the process by Ñτ ,

i.e. for λ > 0 let Ñτ (λ) = #(Schτ ∩ [0, λ]). In [43] it was shown that Ñτ (λ) is close to a

normal with mean λ
2π

and a constant variance τ
4π2 . In our next result we derive the large

deviation behavior of Ñτ (λ), this is the analogue of Theorem 2.9 for the Schτ processes.

Theorem 4.1. Fix τ > 0. The sequence of random variables 1
λ
Ñτ (λ) satisfies a large

deviation principle with scale λ2 and rate function 1
τ
ISch(·) where ISch(ρ) = I(2πρ) and

for q > 0

I(q) =
2− a

8
− E(a)

4K(a)
, with a = a(q) = K−1(π/(2q)) (4.3)

and I(0) = 1/8.

The rate function ISch(ρ) is strictly convex and locally quadratic at the absolute

minimum point ρ = 1
2π

. (See Proposition B.1.) The local behavior of ISch(ρ) at ρ = 1
2π

is formally consistent with the fact that Nτ (λ)− λ
2π

is close to a normal random variable

with a constant variance τ
4π2 .

The proofs of Theorems 2.9 and 4.1 will rely on path level large deviation principles

on the corresponding stochastic differential equations. These in turn will follow by

analyzing the hitting time of 2π for the diffusion

dα̃λ = λdt+ 2 sin(α̃λ/2)dB, α̃λ(0) = 0, t ∈ [0,∞). (4.4)
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Note, that for a fixed λ the process α̃λ(t) is equal in distribution to φλ(t) − φ0(t) from

(4.2).

In the next section we summarize some of the important properties of the SDEs

we work with, and state the needed path level large deviation results. In Section 4.2

we study diffusion α̃λ of (4.4) using the Cameron-Martin-Girsanov change of measure

technique. In Sections 4.3 and 4.4 we derive path level large deviations for the diffusions

αλ and α̃λ from (2.9) and (4.4). In Section 4.5 we analyze the rate functions for the

path level large deviations and in Section 4.6 we complete the proofs of Theorems 2.9

and 4.1. In the Appendix we will discuss various properties and asymptotics of the used

special functions.

4.1 Properties of the diffusions corresponding to Sineβ

and Schτ

Our starting point is the observation that if λ > 0 is fixed, then if the diffusion α̃λ

(defined in (4.4)) hits 2nπ for n ∈ Z, it will stay above it. This can be seen from the

fact that when α̃λ hits 2nπ the noise term vanishes, but the drift term is always positive.

Introduce the notations

byc2π = max{2πk : 2πk ≤ y}, dye2π = min{2πk : 2πk ≥ y}.

From the strong Markov property we immediately get the following proposition.

Proposition 4.2. Fix λ > 0. Then the process bα̃λ(t)c2π is non-decreasing in t. More-

over, the waiting times between the jump times of this process are i.i.d. with the same
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distribution as the hitting time

τλ = inf{t : α̃λ(t) ≥ 2π}. (4.5)

Consider the diffusions α̃
(1)
λ and α̃

(2)
λ which are strong solutions of the SDE (4.4), but

with initial conditions α̃
(1)
λ (0) = c1 ≤ α̃

(2)
λ = c2. Then a simple coupling argument shows

that α̃
(1)
λ (t) ≤ α̃

(2)
λ (t) for all t ≥ 0. Our next proposition will build on this statement

using the strong Markov property.

Proposition 4.3. Let 0 = t0 < t1 < t2 < · · · < tn = T and fix a λ > 0. Consider

the solution α̃λ(t) of (4.4) on [0, T ]. Then there exists independent random variables

ξ1, ξ2, . . . , ξn so that

bξic2π ≤ bα̃λ(ti)c2π − bα̃λ(ti−1)c2π ≤ bξic2π + 2π, 1 ≤ i ≤ n, (4.6)

and ξi is distributed as α̃λ(ti − ti−1).

Proof. Let α̂i(s) be defined as the strong solution of (4.4) on [ti−1, ti] with initial con-

dition α̂i(ti−1) = 0 and let ξi = α̂i(ti). Clearly, ξi, 1 ≤ i ≤ n are independent random

variables and ξi
d
= α̃λ(ti − ti−1), we just have to show that (4.6) holds. Fix an integer

1 ≤ i ≤ n and define

α̃
(1)
λ (s) = α̂i(s) + bα̃λ(ti−1)c2π, α̃

(2)
λ (s) = α̂i(s) + bα̃λ(ti−1)c2π + 2π, s ∈ [ti−1, ti].

Then α̃λ, α̃
(1)
λ , α̃

(2)
λ are all strong solutions of (4.4) on [ti−1, ti] with initial conditions

α̃
(1)
λ (ti−1) ≤ α̃λ(ti−1) ≤ α̃

(2)
λ (ti−1) = α̃

(1)
λ (ti−1) + 2π.

The ordering is preserved by the coupling so we have

α̃
(1)
λ (ti) ≤ α̃λ(ti) ≤ α̃

(2)
λ (ti) = α̃

(1)
λ (ti) + 2π.
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Figure 4.2: The coupling of Proposition 4.3. The process α̃λ is the diffusion in the middle, it is

sandwiched between α̃
(1)
λ and α̃

(2)
λ = α̃

(1)
λ + 2π which start at integer multiples of 2π at the beginning

of the coupling interval.

(See Figure 4.2 for an illustration.) From this we get

bα̃λ(ti)c2π − bα̃λ(ti−1)c2π = bα̃λ(ti)c2π − bα̃(1)
λ (ti−1)c2π

≥ bα̃(1)
λ (ti)c2π − bα̃(1)

λ (ti−1)c2π = bξic2π,

and

bα̃λ(ti)c2π − bα̃λ(ti−1)c2π = bα̃λ(ti)c2π − bα̃(1)
λ (ti−1)c2π

≤ bα̃(2)
λ (ti)c2π − bα̃(1)

λ (ti−1)c2π = bξic2π + 2π.

We will also need another type of coupling for a slightly more general family of

diffusions. Consider the SDE

dξf,c = fdt+ Re((e−iξf,c − 1)(dB1 + idB2)), ξf,c(0) = c, t ∈ [0,∞) (4.7)
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where f is an integrable non-negative function. Note, that for fixed f, c this process has

the same distribution as

dξ̃f,c = fdt+ 2 sin(ξ̃f,c/2)dB, ξ̃f,c(0) = c, t ∈ [0,∞) (4.8)

The following properties of ξf,c follow from the basic theory of diffusions and standard

coupling arguments.

Proposition 4.4. (i) Let τ2πn be the hitting time of 2πn, where 2πn > c and n is an

integer. Then for any t > τ2πn we have ξf,c ≥ 2πn. In particular, if c ≥ 0 then

ξf,c(t) stays non-negative for all t > 0.

(ii) If f ≥ g and ξf,a and ξg,b are driven by the same Brownian motions then ξf,a− ξg,b

has the same distribution as ξf−g,a−b. If a ≥ b then ξf,a−ξg,b stays a.s. non-negative

for all t.

(iii) For any finite T we have the following exponential tail bound

P (ξf,0(T ) ≥ ka) ≤ 2

(∫ T
0
f(t)dt

2πa

)k

, k ∈ N. (4.9)

If
∫∞

0
f(t)dt < ∞ then ξf,c(∞) = lim

t→∞
ξf,c(t) exists a.s. and the previous bound

holds for T =∞ as well.

Sketch of the proof. The first statement follows from the strong Markov property and

the fact that in (4.8) the noise term vanishes if ξ̃f,c ∈ 2πZ, but the drift is always

non-negative. The first part of (ii) follows by considering the difference of the SDEs

for ξf,a, ξg,b and noting that (e−iξf,a − e−iξg,b)(dB1 + idB2) has the same distribution as

(e−i(ξf,a−ξg,b) − 1)(dB1 + idB2). The second part of (ii) follows from the first statement.

Finally, (4.9) follows from the Markov inequality and the strong Markov property. The
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existence of the limit is proved in Proposition 9 of [54]. (See that proposition for more

details on the proof.)

Our main theorems will follow from the following path level large deviations.

Theorem 4.5. Fix β > 0 and let αλ(t) be the process defined in (2.8) or (2.9). Then

the sequence of rescaled processes (αλ(t)
λ
, t ∈ [0,∞)) satisfies a large deviation principle

on C[0,∞) with the uniform topology with scale λ2 and good rate function JSineβ . The

rate function JSineβ is defined as

JSineβ(g) =

∫ ∞
0

f2(t)I (g′(t)/f(t)) dt, with f(t) = fβ(t) = β
4
e−

β
4
t

in the case where g(0) = 0 and g is absolutely continuous with non-negative derivative

g′. In all other cases JSineβ(g) is defined as ∞.

Theorem 4.6. Fix T > 0 and let α̃λ(t) be the process defined in (4.4). Then the sequence

of rescaled processes ( α̃λ(t)
λ
, t ∈ [0, T ]) satisfies a large deviation principle on C[0, T ] with

scale λ2 and good rate function JSch,T . The rate function is defined as

JSch,T (g) =

∫ T

0

I (g′(t)) dt

in the case where g(0) = 0 and g is absolutely continuous with non-negative derivative

g′, and JSch,T (g) =∞ in all other cases.

In order to prove Theorem 4.6 we observe that α̃λ(t)
λ

is close to bα̃λ(t)c2π
λ

for large λ

and by Proposition 4.2 we only need to analyze the hitting time τλ to understand the

evolution of bα̃λ(t)c2π. The proof of Theorem 4.5 will follow along similar lines after

approximating the drift in (2.8) with a piecewise constant function.
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4.2 Analysis of the hitting time τλ

The following proposition summarizes our bounds on the relevant hitting times.

Proposition 4.7. Let τλ = inf{t : α̃λ(t) ≥ 2π} where α̃λ is the solution of (4.4) and fix

a < 1. Then we have

Ee
λ2a
8
τλ−

λ(|a|∧
√
|a|)

4
τλ ≤ e−λH(a). (4.10)

Let ta = 4K(a) and fix 0 < ε < |ta − 2π|. Then we have

P (λτλ ∈ [ta − ε, ta + ε]) ≥ A(ε, λ, a)e−λ(H(a)+
ata
8

)−λ |a|ε
8
−λ |a|

2
(ta+ε) (4.11)

where lim
λ→∞

A(ε, λ, a) = 1 for fixed a, ε.

Our first step is a change of variables in (4.4). We introduceXλ(t) = log(tan(α̃λ(t)/4)),

by Itô’s formula this satisfies the SDE

dXλ =
λ

2
coshXλ dt+

1

2
tanhXλ dt+ dBt, Xλ(0) = −∞. (4.12)

The distribution of the hitting time of 2π for α̃λ(t) is the same as that of the hitting

time of ∞ for Xλ. With a small abuse of notation from now on we will use the notation

τλ for the blow-up time of Xλ(t), i.e. τλ = sup{t : Xλ(t) <∞}. In order to study τλ we

will introduce a similar diffusion with a modified drift. Let a < 1 and consider

dYλ,a =
λ

2

√
cosh2 Yλ,a − a dt+

1

2
tanhYλ,adt+ dBt, Yλ,a(0) = −∞. (4.13)

To prove Proposition 4.7 we will choose an appropriate a and compare Xλ with the diffu-

sion Yλ,a using the Cameron-Martin-Girsanov formula. Introduce the following notations

for the drifts:

fλ(x) =
λ

2
coshx+

1

2
tanhx, hλ,a(y) =

λ

2

√
cosh2 y − a +

1

2
tanh y.
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Note, that we have the uniform bound

|fλ(x)− hλ,a(x)| ≤ 1
2
λ|a|. (4.14)

The following proposition will be our main tool for our estimates.

Proposition 4.8. Fix a < 1 and consider X = Xλ and Y = Yλ,a. Denote by τλ and

τY,λ the blowup times of X and Y . Then for any s > 0 we have

P (λτλ > s) = E
[
1(λτY,λ > s)e−Gs/λ(Y )

]
, (4.15)

and where τ denotes the explosion of the appropriate diffusion to infinity

1 = Ee−Gτ∧(s/λ)(Y ) = EeGτ∧(s/λ)(X), (4.16)

where

Gs(X) =

∫ s

0

hλ,a(X(t))− fλ(X(t))dX − 1

2

∫ s

0

(h2
λ,a(X)− f 2

λ(X))dt.

Proof. This is just the Cameron-Martin-Girsanov formula for diffusions with explosion.

Note, that because of (4.14) the process eGτ∧s(X) satisfies the Novikov criterion and it is

a positive martingale. From this the usual steps of the proof can be completed (see e.g.

[39], [38]).

Proof of Proposition 4.7. We first estimate the Girsanov exponent

Gs(X) =
λ

2

∫ s

0

(
√

cosh2X − a− coshX)dX

− 1

2

∫ s

0

(
−λ

2

4
a+

λ

2
(
√

cosh2X − a− coshX) tanhX

)
dt.
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Applying Itô’s formula for θ(X) = hλ,a(X)−fλ(X) we have that
∫ t

0
θ(X)dX =

∫ Xt
X0
θ(x)dx−

1
2

∫ s
0
θ′(X)dt. This gives us

Gs(X) =
λ2a

8
s+

λ

2

∫ Xs

−∞
(
√

cosh2 x− a− coshx)dx

+
λ

4

∫ s

0

a tanh√
cosh2X − a

·
√

cosh2X − a− coshX√
cosh2X − a+ coshX

ds.

Note, that

1

2

∫
R
(
√

cosh2 x− a− coshx)dx = −
∫ π/2

0

a

1 +
√

1− a sin2 y
dy

= (1− a)K(a)− E(a) = H(a),

where this last equality can be seen by differentiating both sides with respect to a and

checking equality at a = 0. It is not hard to check that∣∣∣∣ a tanh√
cosh2X−a

√
cosh2X−a−coshX√
cosh2X−a+coshX

∣∣∣∣ ≤ ∣∣∣∣ a tanhx√
cosh2 x−a

∣∣∣∣ ≤ |a| ∧√|a|, for a < 1

uniformly in x. The upper bound |a| follows from
√

cosh2 x− a ≥ | sinhx|, while the

bound
√
|a| requires the optimization of the function |a|

√
y−1√

y
√
y−a for y ≥ 1. This gives the

bound ∣∣∣∣Gτλ(X)− λ2aτ

8
− λH(a)

∣∣∣∣ ≤ λτ(|a| ∧
√
|a|)

4
. (4.17)

To get the exponential moment bound (4.10) we use 1 = EeGτ∧s/λ(X) from (4.16). We

let s→∞, use Fatou’s lemma and (4.17) to get

1 ≥ EeGτ (X) ≥ Ee
λ2a
8
τ+λH(a)−λ(|a|∧

√
|a|)τ

4 . (4.18)

Rearranging the terms we get (4.10).
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To prove the lower bound (4.11) we write

P (λτλ ∈ (ta − ε, ta + ε)) = P (λτY,λ > ta − ε)− P (λτY,λ > ta + ε)

= E
[
1(λτY,λ > ta − ε)e−Gτ∧(ta−ε)/λ(Y )

]
− E

[
1(λτY,λ > ta + ε)e−Gτ∧(ta+ε)/λ(Y )

]
= E

[
1(λτY,λ ∈ (ta − ε, ta + ε))e−Gτ∧(ta+ε)/λ(Y )

]
= E

[
1(λτY,λ ∈ (ta − ε, ta + ε))e−Gτ (Y )

]
, (4.19)

where we used the fact that e−Gτ∧t(Y ) is martingale in the third line. Because of (4.17)

we have

Gτ (Y ) ≤ λ2aτ

8
+ λH(a) +

λ|a|τ
4

, (4.20)

and we can bound the last expectation as

E
[
1(λτY,λ ∈ (ta − ε, ta + ε))e−Gτ (Y )

]
≥ E

[
1(λτY,λ ∈ (ta − ε, ta + ε))e−

λ2aτ
8
−λH(a)−λ|a|τ

4

]
≥ P (λτY,λ ∈ (ta − ε, ta + ε))e−

λa(ta±ε)
8

−λH(a)−λ|a|(ta+ε)
4 ,

where we choose the sign of ε in ta ± ε the same way as the sign of a.

If we can show that lim
λ→∞

P (λτY,λ ∈ (ta − ε, ta + ε)) = 1 for fixed a and ε then this

will complete the proof of (4.11). Note, that Ỹ (t) := Yλ,a(t/λ) satisfies the SDE

dỸ =
1

2

√
cosh2 Y − adt+

1

2λ
tanh Ỹ dt+

1√
λ
dBt, Ỹ (0) = −∞.

As λ→∞, the strong solution of this SDE converges a.s. to the solution of the ODE

y′ =
1

2

√
cosh2 y − a, y(0) = −∞.

This ODE is can be solved and the solutions satisfies
∫ y(t)

−∞
2√

cosh2 x−a
dx = t. This shows

that y explodes exactly at∫ ∞
−∞

2√
cosh2 x− a

dx = 4K(a) = ta.
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This shows that lim
λ→∞

P (λτY,λ ∈ (ta− ε, ta + ε)) = 1 for fixed a and ε and this completes

the proof of the proposition.

We can use the tail estimates of τλ to estimate the tail probabilities of α̃λ(t) for a

fixed t. Recall the definition of I(·) from (4.3).

Lemma 4.9. There exist a constant c so that for λ > 2 we have

e−λ
2tI(q)+λc(t+1)(I(q)+1) ≥


P (dα̃λ(t)e2π ≥ qtλ) if q > 1,

P (bα̃λ(t)c2π ≤ qtλ) if 0 < q < 1.

(4.21)

Moreover, there are absolute constants c0, c1 so that if qtλ, q and λq log q are all bigger

than c0 then

P (dα̃λ(t)e2π ≥ qtλ) ≤ e−c1λ
2t q2 log q. (4.22)

Proof. Introduce the hitting times

τ
(n)
λ = inf{t > 0 : α̃λ(t) > 2nπ}. (4.23)

Then by Proposition 4.2 the random variables τ̃ (n) = τ (n) − τ (n−1) are i.i.d. with the

same distribution as τλ. Applying the exponential Markov inequality we get

P (bα̃λ(t)c2π ≤ qtλ) = P

( dqtλ/(2π)e∑
i=1

τ̃ (i) ≥ t

)
≤
(
EeAτλ

)dqtλ/(2π)e
e−At (4.24)

with any A > 0. Suppose first that q < 1 which also implies a = a(q) = K−1(π/(2q)) ∈

(0, 1). By choosing

A =
λ2a

8
− λ|a|

4
(4.25)
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we have A > 0 if λ > 2 and from (4.10) we have EeAτλ ≤ e−λH(a). Together with (4.24)

this gives

P (α̃λ(t) ≤ qtλ) ≤ e−λH(a)dqtλ/(2π)e−(λ
2a
8

+
λ|a|
4

)t

≤ e−
qtλ2

2π
H(a)−(λ

2a
8

+
λ|a|
4

)t+λ|H(a)| = e
−λ2tI(q)+λ

(
|a|t
4

+|H(a)|
)

(4.26)

where we used the definitions (4.3) and (2.11).

For the q > 1 case we use the same steps. Here a = K−1(π/(2q)) < 0 and A defined

in (4.25) is negative which is exactly what we need for the exponential Markov inequality.

Eventually we get

P (dα̃λ(t)e2π ≥ qλt) ≤ e−λH(a)bqtλ/(2π)c−(λ
2a
8
−λ|a|

4
)t

≤ e−
qtλ2

2π
H(a)−(λ

2a
8
−λ|a|

4
)t+λ|H(a)| = e

−λ2tI(q)+λ

(
|a|t
4

+|H(a)|
)
. (4.27)

By Lemma B.3 in the Appendix there is a constant c so that

H(a(q)) + 1
4
|a(q)|t ≤ c(t+ 1)( I(q) + 1), (4.28)

for all t, q > 0 which means that we can replace the upper bounds in (4.26) and (4.27)

with e−λ
2tI(q)+λc(t+1)(I(q)+1). This proves the first part of Lemma 4.9.

For the second part we repeat the same steps as in the q > 1 case, but now use

A =
λ2a

8
−
λ
√
|a|

4
.

This gives

P (dα̃λ(t)e2π ≥ qλt) ≤ e−λH(a)bqtλ/(2π)c−λ
2a
8
t+

λ
√
|a|

4
t.

By Proposition B.2 of the Appendix if q is large enough then a = K−1(π/(2q)) >

cq2 log2 q with some positive constant c. If −aλ and qtλ are big enough (which can be
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achieved by choosing c0 big enough), we will have

bqtλ/(2π)c > 9

10
qtλ/(2π), −λ

2a

8
+
λ
√
|a|

4
< −11

10
· λ

2a

8
.

Then

−λH(a)bqtλ/(2π)c − 1
8
λ2at+ 1

4
λ
√
|a|t < −λ2t

(
9
10
H(a) q

2π
+ 11

10
a
8

)
= −λ2t

(
−7a

80
− 9E(a)

40K(a)
+

9

40

)
< −c2λ

2tq2 log2 q.

with a positive constant c2, where in the last step we again used the asymptotics given

in Proposition B.2 together with (B.5). This completes the proof of (4.22).

4.3 The path deviation for the α̃λ process

In this section we will prove Theorem 4.6. In order to show the large deviation principle

we need that

lim inf
λ→∞

1

λ2
P

(
α̃λ(·)
λ
∈ G

)
≥ inf

g∈G
JSch,T (g), for any open set G ⊂ C[0, T ],

lim sup
λ→∞

1

λ2
P

(
α̃λ(·)
λ
∈ K

)
≤ inf

g∈K
JSch,T (g), for any closed set K ⊂ C[0, T ].

The fact that JSch,T (g) is a good rate function will be proved in Proposition 4.13 of

Section 4.5.

We will use the fact that I(x) is strictly convex on (0,∞) with a global minimum at

I(1) = 0, and also that there is a constant c > 0 so that

c−1 ≤ I(x)

x2 log2 x
≤ c, for all x > 2. (4.29)

These statements will be proved in Propositions B.1 and B.2 of the Appendix.
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Proof of the large deviations upper bound in Theorem 4.6. We will follow the standard

strategy for proving path level large deviations. Consider a closed subset K of C[0, T ].

We need to bound P ( 1
λ
α̃λ(·) ∈ K). Define the δ-‘fattening’ of K as

Kδ := {f ∈ C[0, T ] : ‖f − g‖ ≤ δ for some g ∈ K}. (4.30)

From now on ‖ · ‖ denotes the sup-norm on the appropriate interval.

Let πN be the following projection of C[0, T ] to piecewise linear paths:

(πNf)(iT/N) = bf(iT/N)c2π, 0 ≤ i ≤ N (4.31)

and πNf is defined linearly between these points. Then

P (α̃λ/λ ∈ K) ≤ P (‖α̃λ − πN α̃λ‖ ≥ δλ) + P
(
πN( 1

λ
α̃λ) ∈ Kδ

)
. (4.32)

We will bound the two probabilities in (4.32) separately.

The first term can be rewritten as

P [‖α̃λ − πN α̃λ‖ ≥ δλ] = P

(
max
k

sup
t∈[

(k−1)T
N

, kT
N

]

|πN α̃λ(t)− α̃λ(t)| ≥ δλ

)
. (4.33)

By Proposition 4.2 the process bα̃λ(t)c2π is non-decreasing.Thus for any fixed k we have

sup
t∈[

(k−1)T
N

, kT
N

]

|πN α̃λ(t)− α̃λ(t)| ≤ dα̃λ((k + 1)T/N)e2π − bα̃λ(kT/N)c2π.

By Proposition 4.3 the term on the right is stochastically dominated by α̃λ(T/N) + 4π

therefore

P (‖α̃λ − πN α̃λ‖ ≥ δλ) ≤ NP (α̃λ(T/N) + 4π ≥ δλ) ≤ NP

(
1

λ
α̃λ(T/N) ≥ δ

2

)
(4.34)

where the last bound holds if λ > 8π/δ. Using Lemma 4.9 we get

NP

(
1

λ
α̃λ(T/N) ≥ δ

2

)
≤ Ne−(λ2 T

N
+λc1(T/N+1))I( δN2T )+λc1(T/N−1)



66

and this leads to

lim sup
λ→∞

1

λ2
logP (‖α̃λ − πN α̃λ‖ ≥ δλ) ≤ − T

N
I
(
δN

2T

)
. (4.35)

Note, that for fixed δ and T as N →∞ the right hand side converges to −∞ by (4.29).

The second term on the right side of (4.32) can be bounded as

P
(
πN(α̃λ/λ) ∈ Kδ

)
≤ P

(
JSch,T (πN(α̃λ/λ)) ≥ inf

g∈Kδ
JSch,T (g)

)
.

We introduce

∆α̃i =
N

λT
(bα̃(iT/N)c2π − bα̃((i− 1)T/N)c2π) , for 1 ≤ i ≤ N

and Cδ = infg∈Kδ JSch,T (g). Then we have to bound

P (JSch,T (πN(α̃λ/λ)) ≥ Cδ) = P

(
N∑
i=1

T

N
I (∆α̃i) ≥ Cδ

)
. (4.36)

We can apply Proposition 4.3 with ti = iT
N
, 1 ≤ i ≤ N to get independent random

variables ξi with ξi
d
= α̃λ(T/N) and

N

λT
bξic2π ≤ ∆α̃i ≤

N

λT
(bξic2π + 2π) .

Because of the convexity of I(·) we then have

I (∆α̃i) ≤ max

(
I
(
Nbξic2π
λT

)
, I
(
Nbξic2π
λT

+
2πN

λT

))
≤ (1 +

2πN

λT
)I
(
Nbξic2π
λT

)
+ c

2πN

λT

where we used Lemma B.4 of the Appendix for the last bound. Fix 1/2 > ε > 0. Using

the exponential Markov inequality, the independence of ξi and ξi
d
= α̃λ(T/N) we get the
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bound

P

(
N∑
i=1

T

N
I (∆α̃i) ≥ Cδ

)
≤
(
Ee

(1−2ε)λ2 T
N

(
(1+ 2πN

λT
)I
(
Nbα̃λ(T/N)c2π

λT

)
+c 2πN

λT

))N
e−(1−2ε)λ2Cδ

≤
(
Ee

(1−ε)λ2 T
N
I
(
Nbα̃λ(T/N)c2π

λT

))N
e(1−2ε)c2πλN−(1−2ε)λ2Cδ ,

(4.37)

where the second inequality holds for fixed ε,N, T if λ is big enough. Our next step

is to estimate the exponential moment Ee
(1−ε)λ2 T

N
I
(
Nbα̃λ(T/N)c2π

λT

)
for a fixed ε > 0. By

Lemma 4.10 below if N, T, ε are fixed then

lim sup
λ→∞

1

λ2
logEe

(1−ε)λ2 T
N
I
(
Nbα̃λ(T/N)c2π

λT

)
≤ 0.

Using this with (4.37) we get

lim sup
λ→∞

1

λ2
logP

(
N∑
i=1

T

N
I (∆α̃i) ≥ Cδ

)
≤ −(1− 2ε)Cδ. (4.38)

Now we let ε→ 0 and then N →∞. The bounds (4.35), (4.38) with (4.32) give

lim sup
λ→∞

1

λ2
logP (λ−1α̃λ(·) ∈ K) ≤ − inf

g∈Kδ
JSch,T (g). (4.39)

Using the fact that JSch,T is a good rate function (which is proved in Proposition 4.13

of Section 4.5) we get that the right hand side converges to − infg∈K JSch,T (g) as δ → 0.

(See e.g. Lemma 4.1.6 from [14].) This finishes the proof of the lower bound.

Now we will prove the missing estimate for the lower bound.

Lemma 4.10. Fix t > 0 and 1 > ε > 0. Then

lim sup
λ→∞

1

λ2
logEe

(1−ε)λ2tI
(
bα̃λ(t)c2π

λt

)
≤ 0.
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Proof. Introduce the temporary notation G(x) = λ2tI (x). This is a convex function

with G(1) = 0 as its minimum. Then we have

Ee
(1−ε)λ2tI

(
bα̃λ(t)
λt

)
c2π ≤ 2−

∫ 1

0

(1− ε)G′(x)e(1−ε)G(x)P (bα̃λ(t)c2π < λtx)dx

+

∫ ∞
1

(1− ε)G′(x)e(1−ε)G(x)P (bα̃λ(t)c2π > λtx)dx.

Using Lemma 4.9 we get

P (bα̃λ(t)c2π < λtx) ≤ exp
{
− (1− c1λ

−1(1 + t−1))G(x) + λc1(t+ 1)
}

for x < 1 and a similar bound for P (bα̃λ(t)c2π > λtx) ≤ P (dα̃λ(t)e2π > λtx) for x > 1.

This gives us

Ee
(1−ε)λ2tI

(
α̃λ(t)

λt

)
≤ 2−

∫ 1

0

(1− ε)G′(x)e((1+t−1)(c1/λ)−ε)G(x)+λc1(t+1)dx

+

∫ ∞
1

(1− ε)G′(x)e((1+t−1)(c1/λ)−ε)G(x)+λc1(t+1)dx

≤2 + 4ε−1eλ c1(t+1)

where the last inequality holds if (1 + t−1)c1/λ < ε/2, i.e. for large enough λ. From this

the lemma follows.

Now we turn to the lower bound proof in the large deviation result of Theorem 4.6.

As we will see, we will be able to reduce the problem to studying the probability of

1
λ
α̃λ(t) being close to a straight line.

Proposition 4.11. Fix q > 0 and T, ε > 0. Then

lim
ε→0

lim inf
λ→∞

1

λ2
logP (α̃(t) ∈ [λ(qt− ε), λ(qt+ ε)], t ∈ [0, T ]) ≥ −TI(q).
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Proof. As q > 0 we may assume ε ≤ qT/2 by choosing ε small enough. Let N =

d(qT+ε)λe2π
2π

, and choose ε1 = πε
2q(qT+ε)

, which satisfies ε1 <
ελ

2qN
for λ > 2. Recall the

definition of τ
(n)
λ and τ̃

(n)
λ from (4.23). We will prove that

P (α̃(t) ∈ [λ(qt− ε),λ(qt+ ε)], t ∈ [0, T ])

≥ P
(
λτ̃

(k)
λ ∈ (2π

q
− ε1,

2π
q

+ ε1), 1 ≤ k ≤ N
)
.

Roughly speaking, this will follow from the simple fact that if we are within ε/q of the

line y = qt in the horizontal direction, then we are within ε in the vertical direction. If

λτ̃
(k)
λ ≥ 2π

q
− ε1 for 1 ≤ k ≤ N then λτ

(k)
λ ≥ k(2π

q
− ε1) and

α̃λ

(
k
λ

(
2π
q
− ε1

))
≤ 2kπ = λ

2π

2π/q − ε1

· k
λ

(
2π
q
− ε1

)
for 1 ≤ k ≤ N . Together with the fact that bα̃λc2π is non-decreasing we get that

α̃λ(t) ≤ λ
2π

2π/q − ε1

·
(
t+ 1

λ
(2π/q − ε1)

)
, for t ≤ N

λ

(
2π
q
− ε1

)
.

This inequality implies α̃λ(t) ≤ λ(qt+ ε), for t ≤ T , λε > 4π.

The other direction is similar, if we have λτ̃
(k)
λ ≤ 2π

q
+ ε1 for 1 ≤ k ≤ N then

α̃λ

(
k
λ

(
2π
q

+ ε1

))
≥ 2kπ = λ

2π

2π/q + ε1

· k
λ

(
2π
q

+ ε1

)
which implies

α̃λ(t) ≥ λ
2π

2π/q + ε1

·
(
t− 1

λ
(2π/q + ε1)

)
, for t ≤ N

λ

(
2π
q

+ ε1

)
.

and α̃λ(t) ≥ λ(qt− ε) for t ≤ T . Using the independence of τ̃
(k)
λ we get the bound

P (α̃(t) ∈ [λ(qt− ε), λ(qt+ ε)], t ∈ [0, T ]) ≥ P
(
λτ̃

(k)
λ ∈ (2π

q
− ε1,

2π
q

+ ε1)
)N

. (4.40)
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By the lower bound (4.11) we have

logP (α̃(t) ∈ [λ(qt− ε), λ(qt+ ε)], t ∈ [0, T ])

≥ λ(qT + 2ε)

2π

(
−2πλ

q
I(q)− λ|a|

8
(ε1 + 4(2π/q + ε1)) + logA(ε1, λ, a)

)
.

Recalling ε1 = πε
2q(qT+ε)

we get

lim
ε→0

lim inf
λ→∞

1

λ2
logP (α̃(t) ∈ [λ(qt− ε), λ(qt+ ε)], t ∈ [0, T ]) ≥ −TI(q).

Proof of the lower bound in Theorem 4.6. Let G be an open subset of C[0, T ]. We would

like to show that

lim inf
λ→∞

1

λ2
logP (

1

λ
α̃λ(·) ∈ G) ≥ − inf

g∈G

∫ T

0

I (g′(t)) dt. (4.41)

For this it is enough to prove that for any g ∈ G with
∫ T

0
I (g′(t)) dt <∞ and δ > 0 we

have

lim inf
λ→∞

1

λ2
logP (

1

λ
α̃λ(·) ∈ G) ≥ −

∫ T

0

I (g′(t)) dt− δ. (4.42)

We can approximate g with a piecewise linear function g̃ in the sup-norm so that we

have |
∫ T

0
I (g′n(t)) dt −

∫ T
0
I (g′(t)) dt| < δ. Because of this we may assume that g is

piecewise linear, moreover, we may assume that there are no horizontal segments in g.

Suppose that g is linear with slope qi on the interval [Ti, Ti+1] with 0 ≤ i ≤ k − 1 and

0 = T0 < T1 < · · · < Tk = T . We claim that if λ > λ0(ε, k) then

P (‖1

λ
α̃λ(·)− g(·)‖ ≤ ε) ≥ P

(
|1
λ

(α̃λ(t)− α̃λ(Ti))− qi(t− Ti)| ≤ ε/k, if t ∈ [Ti, Ti+1]

)
≥

k−1∏
i=0

P

(
|1
λ
α̃λ(t)− qit| ≤ ε/(2k), for t ∈ [0, Ti+1 − Ti]

)
(4.43)
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The first inequality is straightforward, to prove the second we use the coupling in

the proof of Proposition 4.3. Recall the definition of the processes α̂i(s) defined on

[ti−1, ti]. These were independent for different values of i and the process α̂i(s+ti−1), s ∈

[0, ti − ti−1] had the same distribution as α̃λ(s), s ∈ [0, ti − ti−1]. We also had

α̂i(s) + bα̃λ(ti−1)c2π ≤ α̃λ(s) ≤ α̂i(s) + bα̃λ(ti−1)c2π + 2π.

for s ∈ [ti−1, ti]. By choosing λ > λ0 = 4πk/ε the inequality (4.43) follows by the

independent increment property of the Brownian motion.

By Proposition 4.11 we have the bound

lim
ε→0

lim inf
λ→∞

1
λ2

logP (‖1

λ
α̃λ(·)− g(·)‖ ≤ ε) ≥ −

k−1∑
i=0

(Ti+1 − Ti)I(qi) = −
∫ T

0

I (g′(t)) dt

from which (4.42) and thus the proof of the lower bound follows.

4.4 The path deviation for the Sineβ process

This section contains the proof of Theorem 4.5. The strategy for the proof is to approx-

imate the SDE (2.9) with a version where the drift is piecewise constant and then use

elements of the proof of Theorem 4.6. Just as in the proof of Theorem 4.6, we need to

show an upper and a lower bound to prove the large deviation principle. The fact that

JSineβ is a good rate function will be proved in Proposition 4.13 of Section 4.5.

Proof of the upper bound in Theorem 4.5. For the proof of the upper bound we go through

a series of approximations: we essentially cut of the tail of the process, then replace the

drift in the SDE with a piecewise constant version and then approximate the process

with a piecewise linear version. Recall that αλ(t) solves the SDE (2.8) and that we
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introduced the notation f(t) = β
4
e
β
4
t. Fix T > 0, the value of which will go to infinity

later. The first approximating process is defined as

α
(1)
λ (t) = αλ(t)1(t ≤ T ) + (αλ(T ) + λ(e−

β
4
T − e−

β
4
t))1(t > T ),

this solves the SDE (2.8) with the noise ‘turned off’ at t = T . For the second process

we define

fN(t) = f(Ti/N), t ∈ [Ti/N, T (i+ 1)/N) (4.44)

and consider the solution ξλfN of (4.7) with drift λfN and initial condition 0. Let

α
(2)
λ (t) = ξλfN (t)1(t ≤ T ) + (ξλfN (T ) + λ(e−

β
4
T − e−

β
4
t))1(t > T ).

Finally, let πMN is the projection defined in (4.31) with intervals of size T/MN , that is

πMNf is the piecewise linear path that satisfies

(πMNf)(Ti/(MN)) = bf(Ti/(MN))c2π,

and is linear between these values. Define

α
(3)
λ (t) = πMNξλfN (t)1(t ≤ T ) + (πMNξλfN (T ) + λ(e−

β
4
T − e−

β
4
t))1(t > T ).

Then for any closed set K ⊂ C[0,∞) we have that

P
(αλ
λ
∈ K

)
≤ P

(α(3)
λ

λ
∈ K3δ

)
+ P (‖α(1)

λ − αλ‖∞ ≥ δλ)

+ P (‖α(2)
λ − α

(1)
λ ‖∞ ≥ δλ) + P (‖α(3)

λ − α
(2)
λ ‖∞ ≥ δλ),

(4.45)

where K3δ is defined similarly to (4.30), as the 3δ-fattening of K. We will begin with

the main term. Let

JN(g) =

∫ ∞
0

f2N(t)I
(
g′(t)

fN(t)

)
dt,
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and define (similarly to the α̃λ case in the proof of Theorem 4.6)

∆αi =
MN

λfN( T i
MN

)T

(
bα(3)(Ti/(MN))c2π − bα(3)(T (i− 1)/(MN))c2π

)
, for 1 ≤ i ≤MN.

Then,

P
(α(3)

λ

λ
∈ K3δ

)
≤ P

(
JN
(
α

(3)
λ

λ

)
≥ inf

g∈K3δ
JN(g)

)

= P

(
MN∑
i=1

T (fN(Ti/(MN)))2

MN
I(∆αi) ≥ inf

g∈K3δ
JN(g)

)
.

Take α̂i to solve (4.4) but with the Brownian motion B(t+ Ti/(MN))−B(Ti/(MN))

and λi = λfN(Ti/(MN)). Then using the same arguments as in the bound (4.37) we

get

P
(α(3)

λ

λ
∈ K3δ

)
≤ e−(1−ε)λ2Cδ,N

MN∏
i=1

(
Ee

(1−ε)λ2i
T
MN

(
(1+ 2πMN

λT
)I
(
bα̂i(T/(MN))c2π

λi(T/MN)

)
+c2

2πMN
λiT

))
where Cδ,N = infg∈K3δ JN(g). Using the bound proved in Lemma 4.10 we get that

lim sup
λ→∞

1

λ2
logP

(α(3)
λ

λ
∈ K3δ

)
≤ −(1− ε)Cδ,N (4.46)

We now turn to the first error term. Using the fact that bαλc2π is non-decreasing (which

follows from (i) of Proposition 4.4) we get that

‖α(1)
λ − αλ‖ ≤ αλ(∞)− αλ(T ) + λe−

β
4
T ,

where αλ(∞) is the limit of αλ(t) as t→∞. Choose T large enough so that e−
β
4
T ≤ δ/2.

Then

P (‖α(1)
λ − αλ‖ ≥ δλ) ≤ P (αλ(∞)− αλ(T ) ≥ δλ/2)
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We will deal with this tail probability in Proposition 4.12 below. In particular, we will

show that there is a constant c1 > 0 so that

lim sup
λ→∞

1

λ2
logP (‖α(1)

λ − αλ‖ ≥ δλ) ≤ −c1Tδ
2. (4.47)

For the second error term we first note that ‖α(2)
λ − α

(1)
λ ‖ = supt∈[0,T ] |α

(2)
λ (t) − α(1)

λ (t)|.

Using the coupling of Proposition 4.4 we can show that on [0, T ] the process α
(2)
λ − α

(1)
λ

will have the same distribution as the solution of the SDE (4.7) with initial condition 0

and drift λ(fN − f) ≥ 0. Moreover, this process will be non-negative (because the drift

is non-negative), and since λ(fN(t) − f(t)) ≤ λ βT
4N

for t ∈ [0, T ], it will be bounded by

the solution of the SDE (4.7) with a constant drift λ βT
4N

. Because of this ‖α(2)
λ − α

(1)
λ ‖ is

stochastically bounded by supt∈[0,T ] α̃λ βT
4N

(t) ≤ α̃
λ
βT
4N

(T ) + 2π with α̃λ from (4.4, using

the fact that bα̃λ(t)c2π is non-decreasing. Thus for δλ > 4π we have

P (‖α(2)
λ − α

(1)
λ ‖ ≥ δλ) ≤ P (α̃

λ
βT
4N

(T ) ≥ 1
2
δλ).

If N and T are fixed then if λ is big enough then we can apply Lemma 4.9 for the right

hand side with λ̃ = λ βT
4N

, t = T and q =
1
2
δλ

Tλ
βT
4N

= 2δN
βT 2 . This leads to

lim sup
λ→∞

1

λ2
logP (‖α(2)

λ − α
(1)
λ ‖ ≥ 1

2
δλ) ≤ −β

2T 3

42N2
I
(

2δN

βT 2

)
. (4.48)

For the third error term we first note that

‖α(3)
λ − α

(2)
λ ‖ ≤ sup

t∈[0,T ]

|α(3)
λ (t)− α(2)

λ (t)| ≤ max
i

sup
t∈[T i/N,T (i+1)/N ]

|α(3)
λ (t)− α(2)

λ (t)|,

and thus

P (‖α(3)
λ − α

(2)
λ ‖ ≥ δλ) ≤

N−1∑
i=0

P

(
sup

t∈[T i/N,T (i+1)/N ]

|α(3)
λ (t)− α(2)

λ (t)| ≥ δλ

)
.
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In the interval [Ti/N, T (i + 1)/N ] the process α
(2)
λ solves the SDE (4.4) with constant

drift λfN(Ti/N). Here we can use the same steps that we used in the proof of Theorem

4.6 between (4.33) and (4.34) to get

P (‖α(3)
λ − α

(2)
λ ‖ ≥ δλ) ≤

N−1∑
i=1

MP
(
α̃λfN (T i/N)(T/(MN)) ≥ δλ/2

)
≤MNP

(
α̃β

4
λ
(T/(MN)) ≥ δλ/2

)
for λ big enough compared to δ−1. For large enough λ we can apply Lemma 4.9 for the

right hand side with λ̃ = β
4
λ, t = T/(MN) and q = 2δMN

βT
to get

lim sup
λ→∞

1

λ2
logP (‖α(3)

λ − α
(2)
λ ‖ ≥ δλ) ≤ −β

2

42

T

MN
I
(

2δMN

βT

)
. (4.49)

Now taking (4.45) with the bounds (4.46), (4.47), (4.48) and (4.49) we get

lim sup
λ→∞

1

λ2
logP

(αλ
λ
∈ K

)
(4.50)

≤ max

{
−(1− ε)Cδ,N ,−c1Tδ

2,−β
2T 3

42N2
I
(

2δN

βT 2

)
,−β

2

42

T

MN
I
(

2δMN

βT

)}
.

Taking N to ∞ the last two terms go to −∞ (using the bounds (4.29)) while the first

term converges to (1− ε)CT
δ with

CT
δ = inf

g∈K3δ

∫ T

0

f2(t)I (g′(t)/f(t)) dt

Letting now T →∞ and then ε→ 0 we get

lim sup
λ→∞

1

λ2
logP

(αλ
λ
∈ K

)
≤ − inf

g∈K3δ
JSineβ(g).

Finally taking δ → 0 and using the fact that JSineβ is a good rate function gives the

result

lim sup
λ→∞

1

λ2
logP

(αλ
λ
∈ K

)
≤ − inf

g∈K
JSineβ(g).

This completes the proof of the lower bound.
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We now prove the tail bound for the proof of the lower bound.

Proposition 4.12. Fix T, δ > 0, then there is a constant c > 0 so that

lim sup
λ→∞

1

λ2
logP (αλ(∞)− αλ(T ) ≥ δλ) ≤ −cTδ2. (4.51)

Proof of Proposition 4.12. Take ν = 1/8, and set Tk = k(k+1)
2

θT where the value of θ > 0

will be specified later. Then we can break up the probability in question as

P (αλ(∞)− αλ(T ) ≥ δλ) ≤
b2
√
λc∑

k=1

P (αλ(Tk+1)− αλ(Tk) ≥ δ
4
λνk−(1+ν))

+ P (αλ(∞)− αλ(Tb2√λc+1) ≥ δλ/2). (4.52)

Note, that for any fixed s > 0 the process α̂s,λ(t) = αλ(s+ t) satisfies the SDE (2.9) with

λ̂ = λe−
β
4
s with initial condition αλ(s). Using the coupling techniques of Propositions

4.3 and 4.4 one can show that α̂s,λ(t) − α̂s,λ(0) = αλ(s + t) − αλ(s) is stochastically

dominated by α̃λf(s) + 2π. This (together with Tk+1 − Tk = θ(k + 1)T ) gives

P (αλ(Tk+1)− αλ(Tk) ≥ δ
4
λνk−(1+ν)) ≤ P (α̃λf(Tk)(θ(k + 1)T ) ≥ δ

4
λνk−(1+ν) − 2π)

≤ P (α̃λf(Tk)(θ(k + 1)T ) ≥ δ
8
λνk−(1+ν))

where the last bound follows for big enough λ from k ≤ 2
√
λ. We can use bound (4.22)

of Lemma 4.9 for the probability on the right with λ̃ = λf(Tk), t = θ(k + 1)T and

q = δνk−(1+ν)

8θT (k+1)f(Tk)
, since with these choices qtλ̃, q and λ̃q log q are all big, if we choose

θ > 0 small enough and then λ big enough. This leads to

P (α̃λf(Tk)(T ) ≥ δ
4
λνk−(1+ν))

≤ exp

(
−c1

δ2

82
λ2ν2k−2(1+ν)θ−1(k + 1)−1T−1 log2

(
δνk−(1+ν)

8θ(k + 1)T f(Tk)

))
≤ exp

(
−c2δ

2λ2k−3−2νT−1
(
c3 + β

4
T k(k+1)

2

)2
)
≤ exp

(
−c4λ

2δ2Tk1−2ν
)
,



77

with a positive constant c4, which in turn implies (for large enough λ)

b2
√
λc∑

k=1

P (αλ(Tk+1)− αλ(Tk) ≥ δ
4
λνk−(1+ν)) ≤ 2 exp

(
−c4λ

2δ2T
)
. (4.53)

Lastly we bound the remaining term using Proposition 4.4:

P (α(∞)− α(Tλ) ≥ δλ/2) = P (ξλf(λT )(∞) ≥ bδλ/2c) ≤ 2
(
e−

β
4
λT
)bδλ/2c

,

which together with (4.52) and (4.53) gives us the necessary upper bound for (4.51).

Proof of the lower bound in Theorem 4.5. We will show that if g ∈ C[0,∞) with JSineβ(g) <

∞ then

lim
ε→0

lim inf
λ→∞

1
λ2

logP (‖λ−1αλ(·)− g(·)‖ ≤ ε) ≥ −JSineβ(g). (4.54)

From this the lower bound will follow.

In Proposition 4.13 of the Appendix we will prove that if JSineβ(g) <∞ then g(∞) =

lim
t→∞

g(t) <∞ exists. Let ε > 0 and choose T > 0 so that

g(∞)− g(T ) ≤ ε/2, and e−
β
4
T ≤ ε/4. (4.55)

From the first assumption in (4.55) and the Markov property we have

P (|λ−1αλ(t)− g(t)| ≤ ε, t ≥ 0)

≥ P (|λ−1αλ(t)− g(t)| ≤ ε/2, t ∈ [0, T ], |αλ(∞)− αλ(T )| ≤ λε/4) (4.56)

≥ P (|λ−1αλ(t)− g(t)| ≤ ε/2, t ∈ [0, T ]) sup
x
P (αλ(∞)− αλ(T ) ≤ λε/4

∣∣αλ(T ) = x).

Using the same line of reasoning as in the proof of Proposition 4.12 (see after (4.52)) we

get that with λT = λe−
β
4
T we have

P (αλ(∞)− αλ(T ) ≤ λε/4|αλ(T ) = x)

≥ P (αλT (∞) ≤ λε/4− 2π) ≥ P (αλT (∞) ≤ λε/8),
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where the second inequality follows if λ is big enough compared to ε. Now we can use

part (iii) of Proposition 4.4 with f(t) = λT f(t), k = 1 and a = λε/8 to get

P (αλT (∞) ≤ λε/8) = 1− P (αλT (∞) > λε/8) ≥ 1− 2
8λT
2πλε

≥ 1− 2

π
,

where the last step follows from the second assumption of (4.55).

Using this with (4.56) we get that

lim inf
λ→∞

1

λ2
logP (|λ−1αλ(t)− g(t)| ≤ ε, t ≥ 0)

≥ lim inf
λ→∞

1

λ2
logP (|λ−1αλ(t)− g(t)| ≤ ε/2, t ∈ [0, T ]),

and it is enough to estimate the right hand side. We do this by introducing the process

ξN(t) on [0, T ] which is a solution of the SDE (4.7) with initial condition 0 and the

piecewise constant drift function λfN where fN is defined as in (4.44). From Proposition

4.4 we have that αλ(t) ≤ ξN(t) and ξ̂N(t) = ξN(t)−αλ(t) satisfies SDE (4.8) with initial

condition 0 and drift λ(fN(t)− f(t)). We have

P (|λ−1αλ(t)− g(t)| ≤ ε/2, t ∈ [0, T ]) ≥P (|λ−1ξN(t)− g(t)| ≤ ε/4, t ∈ [0, T ]) (4.57)

− P
(

sup
t∈[0,T ]

|ξN(t)− αλ(t)| ≥ λε/4

)
.

The second term on the right may be bounded in the same manner as (4.48). this gives

us

lim sup
λ→∞

1

λ2
logP

(
sup
t∈[0,T ]

|ξN(t)− αλ(t)| ≥ λε/4

)
≤ −β

2T 3

42N2
I
(
εN

βT 2

)
.

Note, that as N →∞ the right hand side converges to −∞.

The only thing left is to estimate the first term on the right of (4.57). Introduce the
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notation tk = Tk
N

. We start with the bound

logP (|λ−1ξN(t)− g(t)| ≤ ε/4, t ∈ [0, T ])

≥ P (|λ−1(ξN(s+ tk)− ξN(tk))− (g(s+ tk)− g(tk))| ≤ ε/(4N), s ∈ [0, T/N ]).

For any fixed k the process ξN(s + tk), s ∈ [0, T/N ] satisfies the SDE (4.8) with ini-

tial condition ξN(tk) and a constant drift λfN(tk). Using the coupling in the proof of

Proposition 4.3 we can construct independent processes α̂k(t), t ∈ [0, T/N ] so that

α̂k(s)− 2π ≤ ξN(s+ tk)− ξN(tk) ≤ α̂k(t) + 2π, s ∈ [0, T/N ]

and α̂k(t), t ∈ [0, T/N ] has the same distribution as α̃λfN (tk)(t), t ∈ [0, T/N ]. From this

it immediately follows that

lim inf
λ→∞

1
λ2

logP (|λ−1ξN(t)− g(t)| ≤ ε/4, t ∈ [0, T ])

≥
N−1∑
k=0

lim inf
λ→∞

1
λ2

logP (|λ−1α̃λfN (tk)(s)− (g(s+ tk)− g(tk))| < ε/(8N), s ∈ [0, T/N ]).

From our path level large deviation lower bound on α̃ we get

lim inf
λ→∞

1
λ2

logP (|λ−1α̃λfN (tk)(s)− (g(s+ tk)− g(tk))| ≤ ε/(4N), s ∈ [0, T/N ])

≥ − inf
|g̃(s)−g(s)|<ε/(8N)

s∈[tk,tk+1]

fN(tk)
2

∫ T/N

0

I(fN(tk)
−1g̃′(tk + s))ds.

This yields the estimate

lim inf
λ→∞

1
λ2

logP (|λ−1αλ(t)− g(t)| ≤ ε/4, t ∈ [0, T ])

≥ − inf
|g̃(s)−g(s)|<ε/(8N),

s∈[0,T ]

∫ T

0

fN(s)2I(f−1
N g̃′(s))ds.

Letting N →∞ the lower bound converges to−
∫ T

0
f(s)2I(f−1(s)g′(s))ds which (together

with our previous estimates) shows that

lim inf
λ→∞

1

λ2
logP (|λ−1αλ(t)− g(t)| ≤ ε, t ≥ 0) ≥ −

∫ T

0

f(s)2I(f−1(s)g′(s))ds.
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Letting ε → 0 we also have T = Tε → ∞ which yields the bound (4.54) and concludes

the proof of the lower bound in the large deviation principle.

4.5 JSch,T and JSineβ are good rate functions

In this section we will show that JSch,T and JSineβ are good rate functions. Our main

tools are the bound (4.29) and the estimate

I(x) ≥ c1(x− 1)2, if x > 0 (4.58)

both of which will be proved in Proposition (B.2) of the Appendix.

Proposition 4.13. The functions JSineβ(·) and JSch,T (·) are both good rate functions on

the spaces C[0,∞) and C[0, T ] respectively. Moreover, if g ∈ C[0,∞) and JSineβ(g) <∞

then lim
t→∞

g(t) is finite.

Proof. Fix T > 0 and r ≥ 0. In order to prove that Kr = {g : JSch,T (·) ≤ r} is compact

we first show the equicontinuity of this set. Suppose that g ∈ Kr. Then g(0) = 0 and

g′(x) ≥ 0 exists a.e. in [0, T ]. We have for 0 ≤ x ≤ y ≤ T

|g(x)− g(y)− (x− y)| =
∣∣∣∣∫ y

x

(g′(s)− 1)ds

∣∣∣∣
≤ (y − x)1/2

√∫ y

x

(g′(s)− 1)2ds

≤ c(y − x)1/2

√∫ y

x

I(g′(s))ds ≤ c(y − x)1/2r1/2

where we used (4.58) in the second step. This shows that Kr is equicontinuous. Using

Tonelli’s semicontinuity theorem (e.g. Theorem 3.5, [9]) the compactness of Kr now

follows.
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The proof for JSineβ(·) is bit more involved. Fix β > 0. It is convenient to transform

the interval [0,∞) into [0, 1) using the function y = 1− e−βt/4. Then for a g ∈ C[0,∞)

with JSineβ(g) <∞ we have

JSineβ(g) =

∫ ∞
0

f2(t)I(g′(t)f−1(t))dt =
β

4

∫ 1

0

(1− y)I(g̃′(y))dy

where g̃(y) = g(− 4
β

log(1 − y)), g̃ ∈ C[0, 1). Consider the functional J̃Sine(·) on C[0, 1)

defined as

J̃Sine(g) = β
4

∫ 1

0

(1− t)I(g′(t))dt (4.59)

if g′(t) exists and non-negative for a.e. 0 ≤ t < 1, and as ∞ otherwise. Clearly, if we

show that J̃Sine(·) is a good rate function on C[0, 1) then the same will hold for JSineβ .

We first show that if g ∈ C[0, 1) and J̃Sine(g) < ∞ then lim
y→1−

g(y) is finite, i.e. we can

consider J̃Sine(·) on C[0, 1]. We have

lim
y→1−

g(y) =

∫ 1

0

g′(y)dy ≤ 2 +

∫ 1

0

g′(y)1(g′(y) ≥ 2)dy.

We will prove that

if h(y) ≥ 0, and

∫ 1

0

(1− y)h(y)2 log2(h(y) + e)dy <∞, then

∫ 1

0

h(y)dy <∞.

(4.60)

Using this with h(y) = g′(y)1(g′(y) ≥ 2) together with the bound in (4.29) we get the

boundedness of
∫ 1

0
g′(y)dy and the existence on lim

y→1−
g(y).

Let Φ(x) = x2 log2(|x|+ e), this is a strictly convex, even function with lim
x→0

Φ(x)
x

= 0,

lim
x→∞

Φ(x)
x

=∞ (i.e. Φ is a ‘nice Young function’). Introduce the complementary function

Ψ(x) = Φ∗(x) = sup
y≥0
{y|x| − Φ(y)} =

∫ |x|
0

(Φ′)(−1)(y)dy
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where (Φ′)(−1) is the inverse of the strictly increasing function Φ′ on [0,∞). Assume

that

A =

∫ 1

0

(1− y)Φ(h(y))dy <∞ (4.61)

and let µ the measure on [0, 1] with dµ = 1
A

(1− x)dx. Consider the Orlicz spaces

LΦ
µ = {f : there is an a > 0 with

∫
[0,1]

Φ(af)dµ <∞},

LΨ
µ = {f : there is an a > 0 with

∫
[0,1]

Ψ(af)dµ <∞}

with the Luxemburg-norms defined as

‖f‖Φ = inf{b > 0 :

∫
[0,1]

Φ(b−1f)dµ ≤ 1}, ‖f‖Ψ = inf{b > 0 :

∫
[0,1]

Ψ(b−1f)dµ ≤ 1}.

(4.62)

(See e.g. [50] for more on Orlicz spaces.) Note, that by our assumption (4.61) we have

‖h‖Φ ≤ 1. By the generalized Hölder inequality for Orlicz spaces (c.f. Theorem 3 in

Chapter III of [50]), for any f ∈ LΨ
µ one has

‖fh‖1 ≤ 2‖f‖Ψ‖h‖Φ ≤ 2‖f‖Ψ (4.63)

where ‖ · ‖1 is the L1 norm on [0, 1] with reference measure µ. Choose f(x) = 1
1−x . If

we show that ‖f‖Ψ <∞ then this would imply

∞ > 2‖f‖Ψ ≥ ‖fh‖1 = 1
A

∫ 1

0

1

1− x
h(x)(1− x)dx = 1

A

∫ 1

0

h(x)dx,

and the statement (4.60) would follow. It is not hard to check, that there is a c > 0 so

that

Ψ(x) ≤ c
x2

log2(x+ e)
, for x ≥ 0. (4.64)
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Since the integral
∫ 1

0
(1 − x) (1−x)−2

log2((1−x)−1+e)
dx is finite, this implies that ‖ 1

1−x‖Ψ is finite

and thus
∫ 1

0
h(y)dy <∞. This completes the proof that if J̃Sine(g) <∞ then lim

y→1−
g(y)

is finite, and also shows the last statement of the proposition.

Next we will prove the equicontinuity of the set Kr = {f : J̃Sine(f) ≤ r}, we will

show that if g ∈ Kr then for ε < ε0 we have

|g(a+ ε)− g(a)| ≤ C(log ε−1)−1/3 for any a ∈ [0, 1− ε]. (4.65)

Here ε0, C only depend on r.

We first assume a ≤ 1−
√
ε. Then

|g(a+ ε)− g(a)− ε| = |
∫ a+ε

a

(g′(y)− 1)dy|

≤
(∫ a+ε

a

1

1− y
dy

)1/2(∫ a+ε

a

(1− y)(g′(y)− 1)2dy

)1/2

≤ Cr1/2

(
log

(
1 +

ε

1− a− ε

))1/2

≤ Cr1/2ε1/4

Where we used 1 − a >
√
ε, the bound (4.58) and the fact that ε can be chosen to be

small enough.

Next we assume that a > 1 −
√
ε. Because of the monotonicity of g it is enough to

bound |g(1)− g(1−
√
ε)|. Setting f(x) = 1

1−x and h(x) = g′(x)1(g′(x) ≥ 2) we have

g(1)− g(1−
√
ε) ≤ 2

√
ε+

∫ 1

1−
√
ε

h(x)dx. (4.66)

Since J̃Sine(g) ≤ r, we can assume that (4.61) holds with some finite A > 0. We will

now follow the previous argument using Orlicz spaces. We use the same definitions for

Ψ,Φ, µ but for the norms ‖ · ‖Ψ, ‖ · ‖Φ defined in (4.62) we use the interval [1 −
√
ε, 1]

instead of [0, 1].
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Using inequality (4.66) and (4.63) we get the bound

g(1)− g(1−
√
ε) ≤ 2

√
ε+ A

∫ 1

1−
√
ε

f(x)h(x)dµ(x) ≤ 2
√
ε+ A‖f‖Ψ.

To estimate ‖f‖Ψ we will prove that with b = (log ε−1)−1/3 there is a constant ε0 de-

pending on A so that∫ 1

1−
√
ε

Ψ(b−1f(x))dµ(x) = A−1

∫ 1

1−
√
ε

(1− x)Ψ(b−1(1− x)−1)dx < 1, for ε < ε0.

This will imply that for such ε we have ‖f‖Ψ ≤ b. Using (4.64) we get

A−1

∫ 1

1−
√
ε

(1− x)Ψ(b−1(1− x)−1)dx ≤ cb−2A−1

∫ √ε
0

x−1 1

log2(2x−1b−1)
dx

≤ c(log ε−1)2/3

A log (2(log ε−1)−1/3ε−1/2)
.

Since the right hand side converges to 0 as ε → 0 we get that ‖f‖Ψ ≤ b for small

enough ε which in turn leads to the upper bound (4.65). This completes the proof of the

equicontinuity of the set Kr and the compactness follows again by Tonelli’s theorem.

4.6 From the path to the endpoint

In this section we will complete the proofs of Theorems 2.9 and 4.1.

Proof of Theorem 4.1. Consider the continuous map F : C[0, T ] → R given by F (g) =

g(T )/(2π). By the contraction principle (see e.g. [14]) the random variables 1
λ
αλ(T )

2π

satisfy a large deviation principle with scale function λ2 and good rate function J defined

as

J(ρ) = min

{∫ T

0

I(g′(t))dt : g′(t) ≥ 0, g(T ) = 2πρ

}
. (4.67)



85

We will now solve this variational problem. If g provides the minimum then we can

assume that g′ is monotone decreasing. To see this define g̃ with g̃(0) = 0 and g̃′(t) =

sup{x : m(g′(s) ≥ x) ≥ t} where m indicates Lesbegue measure. Then g̃(T ) = g(T ),

JSch,T (g̃) = JSch,T (g), and g̃′(t) is decreasing. If g′ > 0 on [0, a] and g′ = 0 on (a, 1]

then by the classical variational method we get that I ′(g′(x)) is constant on [0, a]. This

means that g′(x) = 2πρ
a

on [0, a] and g′(x) = 0 on (a, T ] and our variational problem is

reduced to finding the minimum of

f(a) = aI
(

2πρ
a

)
+ (T − a)I(0), on 0 ≤ a ≤ T.

But we have

f ′(a) = I
(

2πρ
a

)
− I(0)− I ′

(
2πρ
a

)
2πρ
a
< 0,

since I is strictly convex, which means that the minimum is at a = T . Thus

J(ρ) = min

{∫ T

0

I(g′(t))dt, g′(t) ≥ 0, g(T ) = 2πρ

}
= TI(2πρ/T ) (4.68)

is the large deviation rate function for 1
λ
αλ(T )

2π
.

Now recall that the counting function of Schτ is given by

Ñτ (λ) = #{ν : 0 ≤ ν ≤ λ, φλ/τ (τ) ∈ 2πZ}

where φλ is the solution of (4.2). Note, that φλ(t) − φ0(t) has the same distribution as

ξf,0(t) with constant f = λ, which in turn has the same distribution as α̃λ(t). Using the

coupling methods of Proposition 4.4 we can show that φλ(t) is increasing in λ for any

fixed t (see [43] for a detailed proof of this fact). From this it follows that

∣∣∣Ñτ (λ)− 1
2π

(
φλ/τ (τ)− φ0(τ)

)∣∣∣ ≤ 1.
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This means that in order to get a large deviation principle for 1
λ
Ñτ (λ) it is enough to

prove one for 1
λ

φλ/τ (τ)−φ0(τ)

2π
. But this has the same distribution as 1

λ

α̃λ/τ (τ)

2π
, and a simple

rescaling of (4.68) completes the proof of the theorem.

Proof of Theorem 2.9. Theorem 4.5 shows that 1
λ
αλ(·) satisfies a path level large devia-

tion principle. By applying the time change y = 1−e−
β
4
t, we get that t→ 1

λ
αλ(1−e−

β
4
t)

satisfies a path level LDP on C[0, 1) with the modified rate function J̃Sine given in (4.59).

In Proposition 4.13 we showed that if J̃Sine(g) <∞ then the limit as t→ 1− exists and

so the LDP actually holds on C[0, 1]. Using the contraction principle with the func-

tional F (g) = 1
2π
g(1), we get that 1

λ
αλ(∞)

2π
satisfies a large deviation principle with speed

function λ2 and a good rate function

Jβ(ρ) = min
{
J̃Sine(g) : g(1) = 2πρ

}
= min

{
β
4

∫ 1

0

(1− t)I(g′(t))dt : g(0) = 0, g′(t) ≥ 0, g(1) = 2πρ

}
.

The counting function Nβ(λ) of Sineβ is given by αλ(∞)
2π

, so Theorem 2.9 will follow if we

can show that the solution of this variational problem is given by βISine(ρ) as defined in

the theorem.

The function J̃Sine is a good rate function, so for any ρ ≥ 0 the minimum is achieved

at some gρ ∈ C[0, 1]. Clearly, when ρ = 1
2π

then the minimum is zero, as the g(t) = t

function shows. (We will not denote the dependence of ρ in g = gρ from this point.)

We may assume that for the minimizer the derivative g′ will not take values from

both (1,∞) and [0, 1) because otherwise we could construct a function ĝ with the same

boundary condition ĝ(1) = 2πρ, but with J̃Sine(g) > J̃Sine(ĝ). The construction is as

follows. Assume ρ < 1/(2π) and that A = {t : g′(t) > 1} has positive measure. Since∫ 1

0
(g′(t)−1)dt = 2πρ−1 < 0 and

∫
A

(g′(t)−1)dt > 0, by the intermediate value theorem
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we can find B ⊂ [0, 1] \A so that
∫
A∪B(g′(t)− 1)dt = 0. Define ĝ with ĝ(0) = 0, ĝ′(t) =

g′(t) if t /∈ A ∪ B and ĝ′(t) = 1 otherwise. Then g(1) =
∫ 1

0
g′(t)dt =

∫ 1

0
ĝ′(t)dt = ĝ(1),

but clearly J̃Sine(g) > J̃Sine(ĝ). A similar construction works for ρ > 1/(2π). Thus we

may assume that g′(t) ≤ 1 for all t if ρ < 1/(2π), and g′(t) ≥ 1 for all t if ρ > 1/(2π).

First assume that ρ > 1
2π

. Then g′(t) ≥ 1 for all t and we can use the classical

variational method (see e.g. [9]) to conclude that (1− t)I ′(g′(t)) is constant in t. Thus

the optimizer is given by a function gρ which satisfies

gρ(0) = 0, I ′(g′(t)) = cρ
1−t ,

∫ 1

0

(I ′)(−1)
( cρ

1−t

)
dt = 2πρ, (4.69)

for some constant cρ and the solution of the variational problem is

Jβ(ρ) = β
4

∫ 1

0

(1− t)I
(
(I ′)(−1)

( cρ
1−t

))
dt. (4.70)

In Proposition 4.14 below we will show that this is equal to βISine(ρ) as defined in

Theorem 2.9.

Now assume that ρ < 1
2π

, here we can assume that the minimizer satisfies g′(t) ≤ 1.

As in the case of Schτ we may assume g′ is decreasing, this can be shown using the same

construction as found in the paragraph directly following equation (4.67). Suppose that

g′ is zero for t ∈ [a, 1] and g′(t) > 0 in [0, a]. Then on [0, a] the classical variational

method shows that (1− t)I ′(g′(t)) must be constant. Thus the optimizer must be of the

following form:

g′(t) =


(I ′)(−1)

( cρ,a
1−t

)
, 0 ≤ t ≤ a

0, a < t ≤ 1,

(4.71)

for some constant cρ which satisfies

2πρ =

∫ a

0

(I ′)(−1)
( cρ,a

1−t

)
dt. (4.72)
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By Propositions B.1 and B.2 of the Appendix the function I ′(x) is strictly increasing on

(0,∞) with a limit of − 1
2π

at x = 0. Thus cρ,a in (4.71) cannot be smaller than −1−a
2π

.

Our next claim is that the optimizer has a continuous derivative at t = a, which will

identify cρ,a as c = −1−a
2π

. Assume the opposite, i.e. that cρ,a > −1−a
2π

and g′(a) > 0.

Let ηδ(x) = 1(a,a+δ) − 1(a−δ,a). If δ, ε are small enough then g′ − εηδ ≥ 0 in [0, 1] and

g̃(t) =
∫ t

0
(g′(s) − εηδ(s))ds satisfies the same boundary conditions as g. Since g is a

minimizer, the derivative of h(ε) = J̃Sine(g + εηδ) at ε = 0 cannot be negative. We can

compute the derivative as

h′(0) =
β

4

∫ 1

0

(1− t)I ′(g(t))ηδ(t)dt = −
∫ a

a−δ
(1− t) cρ,a

1−tdt+

∫ a+δ

a

(1− t)
(
− 1

2π

)
dt.

This is equal to δ(−cρ,a − 1−a
2π

) + δ2

4π
which is negative if δ is small enough (by our

assumption that cρ,a > −1−a
2π

). The contradiction shows that we must have c = −1−a
2π

.

Thus the optimizer is given by

g′(t) =


(I ′)(−1)

(
a−1

2π(1−t)

)
, 0 ≤ t ≤ a

0, a < t ≤ 1.

(4.73)

for some 0 ≤ a ≤ 1 with

2πρ =

∫ a

0

(I ′)(−1)
(

a−1
2π(1−t)

)
dt. (4.74)

and the solution of the variational problem in the 2πρ < 1 case is given by

Jβ(ρ) =
β

4

∫ a

0

(1− t)I
(

(I ′)(−1)
(

a−1
2π(1−t)

))
dt+ β

64
(1− a)2. (4.75)

In Proposition 4.14 below we will show that this is equal to βISine(ρ).

Proposition 4.14. The rate function for the Sineβ process is given by

βISine(ρ) =
β

8

[ν
8

+ ρH(ν)
]
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where ν = γ−1(ρ), and γ is the strictly increasing function given in (2.13).

Proof. We have to show that Jβ(ρ) defined by (4.69) and (4.70) for ρ > 1/(2π) and by

(4.74) and (4.75) for ρ < 1/(2π) is equal to βISine given above.

We begin with the case where ρ > 1
2π

. In this case the minimizer g = gρ is given by

(4.69). One easily checks that

d

dt

(
β
8

(
−(1− t)2I(g′(t)) + cρ(1− t)g′(t) + cρg(t)

))
= β

4
(1− t)I(g′(t)). (4.76)

From this we get

Jβ(ρ) =
β

4

∫ 1

0

(1− t)I (g′(t))) dt = β
8

[I(g′(0))− cρg′(0) + 2πρcρ]

where we used g(0) = 0, g(1) = 2πρ, and the limits

lim
t→1−

(1− t)2I(g′(t)) = lim
x→∞

c2
ρI(x)

I ′(x)2
= 0, lim

t→1−
(1− t)g′(t) = lim

x→∞

x

cρI ′(x)
= 0

which follow from the asymptotics (B.6) and (B.7) to be proven in Proposition B.2.

Now for the case where ρ < 1
2π

we have that gρ is given by (4.73). Using the notation

c = cρ = a−1
2π

, the identity (4.76) gives

Jβ(ρ) =
β

4

∫ 2πcρ+1

0

(1− t)I (g′(t))) dt+ β
8
(2πcρ)

2I(0) = β
8

[I(g′(0))− cρg′(0) + 2πρcρ] ,

where we used g(0) = 0, g(a) = 2πρ, and g′(a) = 0. Note, that cρ > 0 if ρ > 1/(2π)

and − 1
2π
≤ cρ < 0 if ρ < 1/(2π). Introducing ν = K(−1)

(
π

2(I′)(−1)(cρ)

)
, we get for both

ρ < 1/(2π) and ρ > 1/(2π) that

Jβ(ρ) =
β

8

(ν
8

+ ρH(ν)
)

which agrees with (2.15), we just have to show that ν = γ(−1)(ρ). Note, that ν = ν(ρ) < 0

if 2πρ > 1 and 0 < ν < 1 if 2πρ < 1.
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Recall from (4.69) and (4.74) that

ρ = 1
2π

∫ 1

0

(I ′)(−1)
( cρ

1−t

)
dt, if ρ >

1

2π
, and ρ = 1

2π

∫ 2πc+1

0

(I ′)(−1)
( cρ

1−t

)
dt, if ρ <

1

2π
.

Applying the change of variables to both integrals with a new variable x satisfying

π
2K(x)

= (I ′)(−1)( cρ
1−t), we get that ρ depends on ν = K(−1)

(
π

2(I′)(−1)(cρ)

)
exactly via

(2.13) which finishes the proof. Note, that the finiteness of the integrals in (2.13) follow

from the asymptotics of K(x) and E(x) near 1 and −∞ (see the proof of Proposition

B.2).
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Chapter 5

Large Deviations and a Central

Limit Theorem for the Bessa,β

Process

The proof of the large deviation and the CLT for Bessa,β rests on the fact that the

distribution of the number of points in a large interval can be described with a stochastic

differential equation similar to that that defines the counting function Nβ(λ) of the Sineβ

process. In both cases, this new characterization allows us to use the ideas used for the

Sineβ process.

To begin we need to characterize the Bessa,β process using diffusions rather then an

operator. We consider the ‘Riccati diffusion’ for Gβ,a, given by the stochastic differential

equation

dp(t) =
2√
β
p(t)dB(t) +

((
a+ 2

β

)
p(t)− p2(t)− λe−t

)
dt, (5.1)

with initial condition p(0) = +∞, which it leaves instantaneously. Note that there is a

positive probability of explosion to −∞.

Theorem 5.1 ([48]). Let Λ0(β, a) < Λ1(β, a) < ... be the ordered eigenvalues of Gβ,a,

and let P∞,t denote the law induced by p(· : β, a, λ) started at +∞ at time t, and restarted
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at +∞ and time m upon any m <∞, p(m) = −∞. Then,

P (Λ0(β, a) > λ) = P∞,0(p never hits 0), (5.2)

P (Λk(β, a) < λ = P∞,0(p hits 0 at least k + 1 times). (5.3)

The remainder of this chapter will be organized as follows: Section 5.1 will give

another SDE characterization of the Bessa,β process similar to that in the Sineβ case.

Section 5.2 will give a proof of the central limit theorem using the characterization in

terms of the new diffusion. Section 5.3 will give and prove an LDP for the SDE from

the preceding section. The final section will use this path level large deviation to derive

a large deviation principle for the number of points in a large interval of Bessa,β.

5.1 Another characterization

In order to use the work we did on the Sineβ process we will rewrite the SDE charac-

terization of the Bessa,β process with different diffusion and give the distribution of the

number of points in an interval.

Theorem 5.2. Let Ma,β(λ) be the number of points of Bessa,β in the interval [0, λ], and

let ϕa,λ be the diffusion that satisfies the SDE

dϕa,λ =
β

2
(a+ 1/2) sin

(ϕa,λ
2

)
dt+ β

√
λe−βt/8dt+

sinϕa,λ
2

dt− 2 sin
(ϕa,λ

2

)
dBt (5.4)

with initial condition ϕa,λ(0) = 2π. Then

Ma,β(λ) =d lim
t→∞

⌊
1

4π
ϕa,λ(t)

⌋
.
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proof of Theorem 5.2. The characterization of the Bessa,β process given in Theorem 5.1

can be rewritten in the following way: We can apply the change of variables −X1(t) :=

log(p(βt/4)) + βt/8− log λ/2 for p > 0. Then X1 satisfies the SDE

dX1(t) =

(
β

4
(−a− 1

2
) +

β

2

√
λe−βt/8 coshX(t)

)
dt+ dB(t) (5.5)

The initial condition p(0) = +∞ give X(0) = −∞, moreover when p(βt/4) reaches 0 we

get that X(t) = +∞.

Notice that this change of variables is for p > 0, we can do a similar change of

variables with p < 0, where we take X2(t) = log(−p(βt/4)) + βt/8− log λ/2. This gives

us

dX2(t) =

(
β

4
(a+ 1

2
) +

β

2

√
λe−βt/8 coshX(t)

)
dt+ dB(t). (5.6)

When p(βt/4) = 0 this gives X2(t) = −∞, and when p(βt/4) = −∞ this gives X2(t) =

+∞.

To find the ϕa,λ diffusion given in Theorem 5.2 we work back from X1 and X2. Let

− log tan(−ϕ/4) = X1, then ϕ = −4 arctan e−X1 and we get

dϕ = −2 sech X1dX1 + sech X1 tanhX1dt

=
β

2
(a+ 1

2
) sin

(ϕ
2

)
dt+ β

√
λe−βt/8dt+

sinϕ

2
dt− 2 sin

(ϕ
2

)
dBt.

The conditions X1 = −∞ and X1 = +∞ correspond to ϕ = −2π and ϕ = 0 respectively.

Now lets move on to X2. Then take ϕ = 4 arctan eX2 . This gives us

dϕ = −2 sech X2dX2 + sech X2 tanhX2dt

=
β

2
(a+ 1/2) sin

(
ϕ
2

)
dt+ β

√
λe−βt/8dt+

sinϕ

2
dt+ 2 sin

(
ϕ
2

)
dBt.

The conditions X2 = −∞ and X2 = +∞ correspond to ϕ = 0 and 2π respectively. Then

since Bt is equal in distribution to −Bt these describe the same diffusion.
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Now notice that this diffusion is invariant under 4π spacial shifts, so for a fixed λ

with initial condition ϕa,λ(0) = 2π then

P (sup
t
ϕa,λ(t) ≥ 4πk) = P (Λk < λ).

5.2 The central limit theorem

The proof of the central limit theorem is similar to the proof for the Sineβ process which

was done by Kritchevski, Valkó, and Virág in [43].

Proof of Theorem 2.10. First notice that the process ϕ̂a,λ(t) = ϕa,λ(t + T ) with T =

8
β

log(
√
λ) satisfies the same SDE with λ = 1. This gives us that

ϕa,λ(∞)− ϕa,λ(T )√
log λ

→ 0

in probability. From this we have that it is sufficient to consider the weak limit of

ϕa,λ(T )− 8
√
λ

4π
√

log λ
.

Written in its integrated form, the SDE for ϕa,λ gives us that

ϕ(T )− 8
√
λ+ 8− 2π =

β

2
(a+ 1/2)

∫ T

0

sin
(ϕ

2

)
dt+

∫ T

0

sin(ϕ)

2
dt+ 2

∫ T

0

sin
(
ϕ
2

)
dBt.

(5.7)

We will show that when scaled down by log λ the first two terms vanish in the limit,

then show that the noise term gives the appropriate contribution. Using Itô’s equation
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we get that

d
(
eiϕ+βt/8

)
i
√
λ log λ

= 1√
λ log λ

eiϕ+βt/8dϕ+ β
8i
√
λ log λ

eiϕ+βt/8dt− 2
i
√
λ log λ

eiϕ+βt/8 sin2
(
ϕ
2

)
dt

= β√
log λ

eiϕdt+ 2√
λ log λ

sin
(
ϕ
2

)
eiϕ+βt/8dBt

+ 1√
λ log λ

[
β

2
(a+ 1

2
) sin

(
ϕ
2

)
+

sinϕ

2
− iβ

8
+ i2 sin2

(
ϕ
2

)]
eiϕ+βt/8dt

(5.8)

Integrated, the left hand side gives us 1
i
√

log λ
[eiϕ(T ) − 1] which is order O((log λ)−1/2).

The integral of line (5.8) is of order 1√
λ log λ

∫ T
0
eiϕ+βt/8dt = O((log λ)−1/2). Lastly the

integral of the noise term is has an L2 norm bounded by C(log λ)−1/2. This gives us that

(log λ)−1/2
∫ T

0
eiϕdt → 0 in probability as λ → ∞ which shows that the second integral

term in (5.7) will not contribute when scaled by . This shows that we can do a similar

calculation using eiϕ/2+βt/8 to get that the first integral term on the right hand side of

(5.7) also makes no contribution.

We now turn our attention to the last remaining term in (5.7). We can rewrite this

as

2

∫ T

0

sin
(
ϕ
2

)
dBt = B̂

(
4

∫ T

0

sin2
(
ϕ
2

)
dt

)
for some standard Brownian motion B̂t. Then we have that

4

log λ

∫ T

0

sin2
(
ϕ
2

)
dt =

16

β
+

2

log λ

∫ T

0

cos
(
ϕ
2

)
dt. (5.9)

This final integral term goes to 0 in probability from the work done earlier that showed

(log λ)−1/2
∫ T

0
eiϕdt→ 0 in probability as λ→∞. This completes the proof.
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5.3 An LDP for ϕa,λ

As in the case of the Sineβ process we begin by proving an LDP for the diffusion that

characterizes the counting function of the process.

Theorem 5.3. Fix β > 0 and let ϕa,λ(t) be the process defined in (5.4) with a > −1/2.

Then the sequence of rescaled processes (
ϕa,λ(t)√

λ
, t ∈ [0,∞)) satisfies a large deviation

principle on C[0,∞) with scale λ and good rate function JBessa,β . The rate function

JBessa,β is defined as

JBessa,β(g) =

∫ ∞
0

h2(t)I (g′(t)/h(t)) dt, with h(t) = hβ(t) = βe−
β
8
t

in the case where g(0) = 2π and g is absolutely continuous with non-negative derivative

g′. In all other cases JBessa,β(g) is defined as ∞.

Proof. The proof of this theorem will follow exactly the proof of Theorem 4.5 once we

have the following two pieces:

Let ϕ̃a,λ be the diffusion that satisfies

dϕ̃a,λ =
β

2
(a+ 1/2) sin

( ϕ̃a,λ
2

)
dt+ β

√
λdt+

sin ϕ̃a,λ
2

dt+ 2 sin
( ϕ̃a,λ

2

)
dBt, (5.10)

with initial condition ϕ̃a,λ(0) = 2π. We will also use the corresponding constant λ

versions of X1 and X2. Take

dX̃1 =

(
β

4
(−a− 1

2
) +
√
λ cosh X̃1(t)

)
dt+ dBt (5.11)

dX̃2 =

(
β

4
(a+ 1

2
) +
√
λ cosh X̃2(t)

)
dt+ dBt (5.12)

Proposition 5.4. Let τ1 = inf{t : ϕ̃a,λ(t) = 4π, and τ2 = inf{t : ϕ̃a,λ = 6π}− τ1 and fix

A < 1, then for τ = τ1 or τ2 we have

Ee
λA
8
τ−
√
λτ
4

(|A|∧
√
|A|)(1+

β
2

(a+
1
2

)) ≤ e−
√
λH(A). (5.13)
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Let tA = 4K(A) and fix 0 < ε < |tA − 2π|. Then we have

P (
√
λτ ∈ [tA − ε, tA + ε]) ≥ C(ε, λ, A)e−

√
λ(H(A)+

AtA
8

)−
√
λ
|A|ε
8
−
√
λ
|A|
2

(tA+ε)(1+
β
2

(a+
1
2

))

(5.14)

where lim
λ→∞

C(ε, λ, A) = 1 for fixed a, ε.

The proof of this proposition follows the same steps as the proof of Proposition 4.7,

and will not be shown.

The other piece that we need to complete the proof of the path LDP for ϕa,λ is a tail

bound.

Proposition 5.5. Let ϕa,λ be the diffusion defined in (5.4), T > 0 and λ > 5π/ε, then

for a > −1

lim
λ→∞

1

λ
logP (ϕa,λ(∞)− ϕa,λ(T

√
λ) ≥ ε

√
λ) ≤ − εβ

2

28π
T max{a+ 1

2
,−a− 1

2
}. (5.15)

Notice that this gives us the necessary upper bound on the tail in the case where

a 6= −1/2.

These two pieces are sufficient to complete the proof of the path deviation for the

ϕa,λ in the same way as the proof of Theorem 4.5.

Proof of Proposition 5.5. The idea of the proof will be to consider the process on the

intervals of the type [4kπ − 2π, 4kπ] when a > −1/2, and on intervals of the type

[4kπ, 4kπ + 2π] for −1 < a < −1/2. The diffusion ϕa,λ will need to cross at least

bε
√
λ/(4π)c many of these, therefore

P (ϕa,λ(∞)− ϕa,λ(T
√
λ) ≥ ε

√
λ) ≤ P (ϕ̃a,λg2(T

√
λ)(∞) ≥ 2π)bε

√
λ/(4π)c (5.16)
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where ϕ̃(0) = 0 when a ∈ (−1,−1/2), and ϕ̃(0) = 2π when a > −1/2. Now to get an

upper bound on this probability we need to look at the X̃2 diffusion defined in (5.12)

for a > −1/2, and the X̃1 diffusion for a ∈ (−1,−1/2). We will compare the diffusions

to a reflecting Brownian Motion with drift. We begin with the X̃2 diffusion, let Za,λ be

a Brownian motion with drift β
4
(−a− 1

2
) + β

2

√
λe−βT

√
λ/16 reflected at the origin, and let

τZ,x be the hitting time of x for Z. Then

P (ϕ̃a,λg2(T
√
λ)(∞) ≥ 2π) ≤ P (τZ,βT

√
λ/16 <∞)

≤ exp

[(
β

4
(−a− 1

2
) +

β

2

√
λe−βT

√
λ/16

)
β

16
T
√
λ

]
where the last bound is a standard result on reflected Brownian Motion (see e.g. [30]

and [39]). A similar bound can be used on the X̃1 diffusion using a reflecting Brownian

Motion with drift β
4
(a + 1

2
) + β

2

√
λe−βT

√
λ/16. These bounds together with (5.16) are

sufficient to complete the proof.

5.4 From the path to the endpoint

This part of the proof also follows nearly immediately from the work done in the Sineβ

case. Consider the JBessa,β rate function given in Theorem 5.3, we apply the change of

variables x = (1− e−
8
β
t) to get the modified rate function

J̃Bessa,β(g̃) = 8β

∫ 1

0

(1− x)I(g̃′(x)/8)dy

where g̃(x) = g(− 8
β

log(1− x)). In other words

J̃Bessa,β(g) = 32J̃Sine((g − 2π)/8).
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Notice that we have a shift of 2π because we assume ϕa,λ(0) = 2π whereas αλ(0) = 0

Lastly recall that we want to optimize over g with endpoint 4πρ where in the Sineβ case

we had an endpoint of 2πρ. This gives us that IBessa,β(ρ) = 32ISine(ρ/4).
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Appendix A

Proof of Theorem 3.1

We will be working primarily with a lower bidiagonal matrix M , and the symmetric

tridiagonal matrix MMT . For convenience we will adopt the following notations. Denote

the diagonal entries of our symmetric tridiagonal matrix MMT by a = {a1, ..., an} and

its off-diagonal entries by b = {b1, ..., bn−1}. For the entries of the bi-diagonal matrix

M use x = {x1, ..., xn} to denote the diagonal entries and y = {y1, ..., yn−1} for its

sub-diagonal entries. We will also use another tridiagonal matrix which arises in the

following lemma (see e.g. [18]):

Lemma A.1. Let M be an n × n bidiagonal matrix with a1, a2, . . . , an in the diagonal

and b1, b2, . . . , bn−1 in the off-diagonal. Consider the 2n × 2n symmetric tridiagonal

matrix L which has zeros in the main diagonal and a1, b1, a2, b2, . . . , an above and below

the diagonal. If the singular values of M are λ1, λ2, . . . , λn then the eigenvalues of L are

±λi, i = 1 . . . n.

Recall the definitions of Mβ,n, Ck and C̃k from the statement of Theorem 3.1. It

will be convenient write {Ci, Si}ni=1 and {C̃i, S̃i}n−1
i=1 in terms of a set of random angles

α = {α1, ..., αn} and θ = {θ1, ..., θn−1} where Ck = cos(αk) and C̃k = cos(θk). Then,
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Sk = sin(αk) and S̃k = sin(θk), and the densities of the random angles αk and θk are:

fαk =
2

B
(
β
2
(n1 − n+ k), β

2
(n2 − n+ k)

) cos2a+β(k−1)+1(αk) sin2b+β(k−1)+1(αk)

f θk =
2

B
(
β
2
k, β

2
(n1 + n2 − 2n+ k + 1)

) cosβk(θk) sin2a+2b+β(k−1)+3(θk)

with a, b defined as in Theorem 3.1 and B(x, y) the beta function. By independence,

the joint density of (α, θ) is given by the product of the densities. For convenience we

will denote

Z̃β,n =
22n−1∏n

k=1B
(
β
2
(n1 − n+ k), β

2
(n2 − n+ k)

)∏n−1
k=1 B

(
β
2
k, β

2
(n1 + n2 − 2n+ k + 1)

)
This will be the necessary normalizing constant.

We will now map (α, θ) to the entries of M and from there to (λ, q) where the λi are

the eigenvalues of MMT and the qi are the positive leading entries of the corresponding

normalized eigenvectors. This second map will actually by the composition of several

maps.

From the angles we map to the entries of the bidiagonal matrix:

Lemma A.2. The Jacobian of the transform T : (α, θ)→ (x, y), where

xk = cos(αk) sin(θk), k = 1, · · · , n

yk = sin(αk+1) cos(θk), k = 1, · · · , n− 1.

(for notational convenience we take θn = π/2) is given by

JT =
sin2(αn)

sin(α1)

n−1∏
k=1

sin2(αk) sin2(θk).

Proof. The matrix of the partial derivatives with ordering (α1, ..., αn, θ1, ..., θn−1) →

(x1, ..., xn, y1, ..., yn−1) has diagonal entries

− sinα1 sin θ1, ....,− sinαn−1 sin θn−1,− sinαn,− sinα2 sin θ1, ...,− sinαn sin θn−1.
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Row and column reduction gives us that the determinant is given by the product of the

diagonal, therefore

JT = −sin2(αn)

sin(α1)

n−1∏
k=1

sin2(αk) sin2(θk)

We finish by mapping from the bidiagonal to the tridiagonal matrix, which in turn is

mapped to by the eigenvalues. Denote by q1, ..., qn the leading entries of the eigenvectors

associated with the ordered eigenvalues λ1 < λ2 < · · · < λn of the tridiagonal matrix

normalized so that qi > 0 and
∑
q2
i = 1.

Lemma A.3 ([17], Lemmas 2.7, 2.9 and 2.11). For x, y, a, b, λ and q defined as above

we have the following:

1. The Jacobian of the map ψ : (x, y)→ (a, b) can be written as

Jψ = 2nx1

n∏
i=2

x2
i .

2. The Vandermonde determinant for the ordered eigvenvalues of a symmetric dridi-

agonal matrix with positive sub-diagonal b = (bn−1, ..., b1) is given by

∆(λ) =
∏
i<j

(λi − λj) =

∏n−1
i=1 b

i
i∏n

i=1 qi
.

3. The Jacobian of the map φ : (a, b)→ (λ, q) can be written as

Jφ =

∏n−1
i=1 bi∏n
i=1 qi

.

Written in terms of our x, y, a, and b with Qn =
∏n

i=1 qi we get

Jφ =
1

Qn

sin(αn) cos(αn) cos(θn−1)
n−2∏
k=1

sin(αk+1) cos(αk+1) sin(θk+1) cos(θk)

Jψ = 2n cos(α1) sin(θ1) cos2(αn)
n−1∏
k=2

cos2(αk) sin2(θk).
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The remainder of the proof of Theorem 3.1, is to show that the Jacobian of the trans-

formation gives the desired result.

d(λ, q) =
Jφ

Jψ × JT
d(α, θ)

= Z̃β,n
2−n

Q1−β
n

(
1

Qn

n∏
k=1

cosk−1 αk sink−1 αk

n−1∏
k−1

cosk θk sink−1 θk

)β

×
n∏
k=1

cos2a αk sin2b αk ×
n−1∏
k=1

sin2a+2b θk.

We substitute in the following pieces: first, notice that

(detMn,β)2 =
n∏
i=1

λi =
n∏
k=1

cos2 αk ·
n−1∏
k=1

sin2 θk.

Then, applying Lemma A.1, the singular values of Mn,β are the squares of the eigenvalues

of the symmetric tridiagonal matrix L with zeroes in the main diagonal and

Cn, SnC̃n−1, Cn−1S̃n−1, . . . , S2C̃1, C1S̃1,

in the off-diagonal. We can check that L + I can be written as AAT where A is the

bidiagonal matrix with

1, Sn, S̃n−1, Sn−1, . . . , S1, and Cn, C̃n−1, Cn−1, C̃n−2, . . . , C1

in the diagonal and below the diagonal respectively. Using the characterization from

Lemma A.1, we find that

det(L+ I) =
∏

k=1,··· ,n
ε=+,−

1 + ε
√
λk =

n∏
k=1

(1− λk) = (detA)2 =
n∏
k=1

sin2 αk

n−1∏
k=1

sin2 θk.

Remark A.4. At this point one could again apply Lemma A.1 to A to find a 4n × 4n

matrix with zeros in the diagonal and

1, Cn, Sn, C̃n−1, S̃n−1, Cn−1, ..., C1, S1
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above and below the diagonal. This matrix will have eigenvalue ±
√

1±
√
λk.

Lastly recall ([17], Lemma 2.7) that we have

∆(λ) =
1

Qn

n−1∏
k=1

bkk =
1

Qn

n∏
k=1

sink−1 αk cosk−1 αk ·
n−1∏
k=1

cosk θk ·
n−1∏
k=1

sink−1 θk.

Making all the appropriate substitutions this gives us that

Jφ
Jψ × JT

d(α, θ) = Z̃β,n
2−n

Q1−β
n

∏
i<j

|λi − λj|β ·
n∏
k=1

λak ·
n∏
k=1

(1− λk)b,

From this we can see that the joint density function of q and λ separate. As in the

Hermite and Laguerre cases we have that q ∼ (χβ, ..., χβ) normalized to unit length [17].

This give us that for the unordered eigenvalues

fβ,n,n1,n2(λ) =
Z̃β,n
2nn!

[
Γ(β

2
)
]n

Γ
(
βn
2

) ∏
i<j

|λi − λj|β ·
n∏
k=1

λak ·
n∏
k=1

(1− λk)b.

This completes the proof of Theorem 3.1. �

Remark A.5. The normalizing constant on the final density can be written as

Zβ,n =

[
Γ

(
β

2

)]n n∏
k=1

Γ
(
β
2
(n1 + n2 − n+ k)

)
Γ
(
β
2
(n1 − n+ k)

)
Γ
(
β
2
(n2 − n+ k)

)
Γ
(
β
2
k
) .

This gives an alternate derivation for the Selberg integral.
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Appendix B

Properties of the LDP Rate

Functions

B.1 All about I

In this section we prove the needed estimates about the function I.

Proposition B.1. The function I(x) is strictly convex and continuous on (0,∞). It

has an absolute minimum at x = 1 where it is equal to 0.

Proof. K is strictly increasing on (−∞, 1) which shows that I(x) is well-defined (and

differentiable) on (0,∞). By differentiating (4.3) and using the identities

K ′(x) =
E(x)− (1− x)K(x)

2(1− x)x
, E ′(x) =

E(x)−K(x)

2x

we can compute that

I ′(x) =
1

x
I(x)− 1

8x
K−1

( π
2x

)
, (B.1)

and

I ′′(x) =
π

16x3

1

K ′(K−1( π
2x

))
. (B.2)

Observe that K ′(y) > 0 for y < 1 which gives I ′′(x) > 0 for x > 0 and the strict

convexity of I.
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Using K(0) = E(0) = π
2

we get I(1) = I ′(1) = 0 which (by the strict convexity)

proves the second half of the proposition.

Proposition B.2. We have lim
x→0+

I(x) = 1
8

and lim
x→0+

I ′(x) = − 1
2π

. There is a constant

c1 > 0 so that

I(x) ≥ c1(x− 1)2, for all x, and (B.3)

H(−x)√
x log x

,
I(x)

x2 log2 x
and

−K−1(1/x)

x2 log2 x
are bounded away from 0 and ∞ for x > 2.

(B.4)

Proof. The following asymptotics can be readily derived from the definitions of elliptic

integrals (or by the existing more sophisticated expansions c.f. [10],[31]). There is a

constant c > 0 so that∣∣∣∣K(−a)− 1

2
√
a

log(16a)

∣∣∣∣ ≤ c

a3/2
log(a),

∣∣E(−a)−
√
a
∣∣ ≤ c

a1/2
log(a), for a > 2.

(B.5)

From this it is easy to check that

lim
x→∞

H(−x)√
x log x

=
1

2
, lim

x→∞

−K−1(1/x)

x2 log2 x
= 1, and lim

x→∞

I(x)

x2 log2 x
=

1

2π2
. (B.6)

This gives (B.4). Note, that together with (B.1) this also gives

lim
x→∞

I ′(x)

x log2 x
=

1

π2
. (B.7)

Using the functional identities

E(z) =
√

1− zE
(

z

z − 1

)
, K(z) =

1√
1− z

K

(
z

z − 1

)
, z ∈ (0, 1)



107

the asymptotics of (B.5) can be transformed into

K(a) ∼ −1
2

log(1− a), E(a) ∼ 1, as a→ 1−1

with explicit error bounds for 2/3 < a < 1. From this we can obtain lim
x→0+

I(x) = 1
8

and

lim
x→0+

I ′(x) = − 1
2π

. Using (B.4) with the continuity of I and the fact that I(1) = 0 is an

absolute minimum with I ′′(1) > 0 gives (B.3).

The following two lemmas help to consolidate error terms that appear in the proofs

Theorems 2.9 and 4.1.

Lemma B.3. There exists an absolute constant c such that for any t, q > 0 we have

|H(a)|+ |a|t/2 ≤ c(t+ 1)(I(q) + 1) (B.8)

where a = a(q) = K−1(π/(2q)).

Proof. Using (B.5) with the definition (4.3) we get that there is a constant c2 so that

c−1
2 a(q) ≤ I(q) ≤ c2a(q), if q > 2, (B.9)

and the same bounds also give

|H(a(q))| ≤ c3

√
|a(q)| log |a(q)| (B.10)

for some constant c3 in the same region. This shows the existence of a constant A with

|H(a)| ≤ A I(q), and a(q) ≤ AI(q), for q > 2.

Since for 0 < q < 2 both a(q) and H(a(q)) are bounded the lemma follows.

Lemma B.4. For any 0 ≤ ε < 1/2 there exists an absolute constant c, so that

I(x+ ε) ≤ (1 + ε)I(x) + cε (B.11)
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Proof. Since I is convex, we have

I(x+ ε) ≤ I(x) + εI ′(x+ ε).

Since I(x) is decreasing on [0, π/2], the bound (B.11) follows immediately for x ∈

[0, π/2− ε] with any c ≥ 0. Using (B.1) we get

I(x+ ε) ≤ I(x) +
ε

x+ ε

(
I(x+ ε)− 1

8
K−1

(
π

2(x+ ε)

))
. (B.12)

From (B.6) it follows that there exists an x0 > 0 such that

ε

x+ ε

(
I(x+ ε)− 1

8
K−1

(
π

2(x+ ε)

))
≤ εI(x), if x ≥ x0

uniformly in ε ∈ [0, 1/2]. Therefore, for x > x0 we have that I(x+ ε) ≤ (1 + ε)I(x). We

can assume x0 > π/2. By choosing

c = sup
x∈[π/2,x0+1/2]

I ′(x) = I ′(x0 + 1/2)

we get I(x + ε) ≤ I(x) + cε on [π/2 − ε, x0] with any 0 ≤ ε < 1/2 and the lemma

follows.

B.2 Properties of ISine

In the final section of the appendix we describe the behavior of the function ISine(ρ) near

ρ = 1
2π

and ρ→∞.

Proposition B.5. The functions γ(ν) and ISine(ρ) satisfy the following.

1. The function γ(ν) defined in (2.13) is continuous and strictly decreasing. It satis-

fies the differential equation 4x(1− x)γ′′(x) = γ(x) on (−∞, 0) and on (0, 1) with

boundary behavior lim
x→0±

γ(x) = 1
2π

, γ(1) = 0 and lim
x→−∞

γ(x)√
|x|

= 1
4
. These limits and

the differential equation identify γ(x) uniquely on (−∞, 0) ∪ (0, 1].
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2. We have ISine(0) = 1
64

, ISine(
1

2π
) = 0, and I ′′Sine(x) > 0 for x 6= 1

2π
. Moreover, we

have the following limits:

lim
x→0

ISine(
1

2π
+ x)

x2

log(1/|x|)

=
π2

4
, and lim

ρ→∞

ISine(ρ)

ρ2 log ρ
=

1

2
.

Proof. Recall the function γ(ν) given in (2.13). Using the asymptotics (B.6) proved in

Proposition B.2 it is easy to see that γ(ν) is well-defined and positive in (−∞, 0)∪ (0, 1)

with lim
ν→1−

γ(ν) = 0 = γ(1) and lim
x→−∞

γ(x)√
|x|

= 1
4
. We also get that γ(x)H(x) blows up as

ν → 0− or 0+.

Differentiating (2.13) and using the definition (2.11) lead to

H(x)γ′(x) =
1

8
+H′(x)γ(x),

γ′′(x)

γ(x)
=
H′′(x)

H(x)
=

1

4x(1− x)
, (B.13)

for x ∈ (−∞, 0) ∪ (0, 1). We have H′(x) = −K(x)
2

< 0 for x < 1 and H(0) = 0. Thus

from the second identity we get that γ′(ν) is strictly decreasing in (−∞, 0) and strictly

increasing in (0, 1). From the asymptotics (B.6) of Proposition B.2 it is not hard to check

that lim
ν→−∞

γ′(ν) = 0 and lim
ν→1−

γ′(ν) = −1
8
. This, together with the previous statement,

proves that γ(ν) is decreasing on (−∞, 0) and also on (0, 1].

Since (γ(x)H(x)−1)′ = 1
8
H(x)−2, L’Hospital’s rule gives

lim
ν→0

γ(ν) = lim
ν→0

γ(ν)H(ν)−1

H(ν)−1
= −1

8
H ′(0) =

1

2π
= γ(0).

Then from (B.13) it follows that

lim
ν→0

γ′′(ν)ν =
1

8π
, lim

ν→0

γ′(ν)

log |ν|
=

1

8π
,

and also that

lim
x→0

γ(−1)( 1
2π

+ x)

8π x
log |x|

= 1. (B.14)
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This shows that γ(ν) is continuous and strictly decreasing on (−∞, 1]. We have γ(−1)(1) =

0 and ISine(0) = 1
64

.

Note, the fact that γ(x) solves 4x(1−x)γ′′(x) = γ(x) on (−∞, 0)∪ (0, 1) and has the

proven asymptotics at −∞, 0 and 1 uniquely identifies it. The equation 4x(1−x)y′′(x) =

y(x) has two linearly independent solutions on both (−∞, 0) and (0, 1). The function

H(x) also solves the equation (on both intervals), but with H(0) = 0, lim
x→1−

H(x) = −1

and lim
x→−∞

H(x)√
|x| log |x|

= 1
2
. This shows that any solution on (−∞, 0) or (0, 1) can be

expressed as c1γ + c2H with some constants c1, c2, and the values of the constants are

determined by the behavior of the solution at the end of the interval.

Using (B.13) together with (2.15) we can also compute that

I ′Sine(ρ) =
1

8

[
1

8γ′(ν)
+H(ν) +

γ(ν)H′(ν)

γ′(ν)

]
=

1

4
H(ν), and

I ′′Sine(ρ) =
1

4

H′(ν)

γ′(ν)
= −1

8

K(ν)

γ′(ν)
,

where ν is short for γ−1(ρ). From this ISine(
1

2π
) = 0 follows, together with ISine(x) > 0

for x 6= 1
2π

. The asymptotics of ISine(
1

2π
+x) as x→ 0 can be obtained from the definition

(2.15), the asymptotics (B.14), and the fact that H(0) = 0,H′(0) = −π
4
.

Lastly we can look at the asymptotics of ISine(ρ) as ρ → ∞. Recalling again (B.6)

we get

H(−x) ∼ 1
2

√
x log x, γ(−x) ∼

√
x

4
, γ(−1)(x) ∼ 16x2 as x→∞,

from which ISine(ρ) ∼ 1
2
ρ2 log ρ follows for ρ→∞.
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