POINT PROCESS LIMITS OF RANDOM
MATRICES

By

Diane Holcomb

A DISSERTATION SUBMITTED IN PARTIAL FULFILLMENT OF THE

REQUIREMENTS FOR THE DEGREE OF

DoCTOR OF PHILOSOPHY

(MATHEMATICS)

at the
UNIVERSITY OF WISCONSIN - MADISON

2015

Date of final oral examination: April 29, 2014

The dissertation is approved by the following members of the Final Oral Committee:
Professor Benedek Valkd, Associate Professor, Mathematics (advisor)
Professor David F. Anderson, Assistant Professor, Mathematics
Professor Timo Seppalédinen, Professor, Mathematics
Professor Philip Matchett Wood, Assistant Professor, Mathematics

Professor Saverio Spagnolie, Assistant Professor, Mathematics



Abstract

The Gaussian Unitary and Orthogonal ensembles are among the most studied models
in random matrix theory. These models can be included in a one parameter family of
point processes with n points indexed by £ called the S-Hermite (or Gaussian) ensemble.
These, and two related ensembles, the g-Laguerre and [3-Jacobi, can be rescaled so that
on average the number of points in a fixed interval stays the same as n grows. The
resulting limit is a point process, which we will call a local limit. The work included
here can be divided into two types of results. The first is proof of convergence to the local
limits at the edge of the §-Jacobi ensemble. The second type of result is on properties
of the limiting point processes themselves.

The S-Jacobi ensemble can exhibit two different types of behaviors at its edge. These
behaviors give rise to two different limiting point processes: The Bess, g process at the
hard edge, and the Airys at the soft edge. We prove convergence to the hard edge and
soft edge under appropriate conditions. This is joint work with Gregorio Moreno-Flores
and is published, see [32].

In the interior of the J-ensembles we get a different type of local limit, the Sineg
process. This process is shift invariant and the expected number of points in an inter-
val of length A is % We prove a large deviation result on the probability of seeing
approximately pA points as the size of the interval tends to infinity. This is joint work
with Benedek Valké and has been submitted for publication, see [33]. Lastly we show a
similar large deviation result and a central limit theorem result for the number of points

in the Bess, 3 process in the interval [0, \] as A tends to infinity. This work is as yet

unpublished.
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Chapter 1

Introduction and Background

The study of random matrices grew out of the work of Wishart (1920’s) in statistics,
and gained popularity with the work of Wigner (1950’s) in nuclear physics (see e.g. [58],
[57]). In the past 60 years random matrices remained objects of interest both from a
purely mathematical perspective and for their deep connections and applications to other
areas, both in and outside of mathematics. Mathematical connections include number
theory, knot theory, and algebraic geometry. Applications of random matrices are also
found in physics, statistics, finance, electrical engineering, and several other fields. The
applications can be found in such varying areas as microbiology where they are used to
model RNA folding, and condensed matter physics where they have been used to study
the conductance of new materials (see [2]).

The early models were mostly Hermitian and symmetric random matrices and re-
main a focus of the field. One of the classical models, introduced by Wigner, is obtained
by taking A to be a square matrix whose entries are independent standard normal ran-
dom variables (N(0,1)), and considering the matrix M = (A + AT)/2. The matrix
M is a sample from the Gaussian Orthogonal Ensemble (GOE). Related models can
be constructed with complex or quaternion entries and using the appropriate adjoint,
the resulting matrix models are called the Gaussian Unitary and Gaussian Symplectic

Ensembles (GUE, GSE). These models remain central to the study of random matrices
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because they are some of the most approachable models to work with and share charac-
teristics with a broad range of other random matrix models. Other commonly studied
random matrix models include covariance (also called Wishart) matrices, MANOVA
matrices, and unitary matrices chosen randomly according to a Haar measure.

In the remainder of the introduction we will use the Gaussian ensembles to introduce
some of the types of problems of interest in random matrices. We will then use them
to introduce a generalization of random matrices known as (-ensembles. Lastly we will

give a brief overview of the work covered in this thesis.

1.1 Limits of the Gaussian ensembles

The type of question of interest here is what happens to the spectrum of the matrices
as the size of the matrix tends to infinity. There are two different scales on which we
consider this problem. The first of these is to look at the behavior of the eigenvalues
collectively, where and how densely they accumulate. The second is to look at the local
interaction of the eigenvalues.

One way of describing the collective behavior of the eigenvalues is to look at the
empirical spectral measure of the matrix. This is the measure that places a weight of
1/n on each eigenvalue. Let A1, Ao, ..., A, be the eigenvalues of a random matrix, then

we define the empirical spectral measure to be

vn(z) = % S b (2.

Now specialize to the Gaussian ensembles, that is let the \; be the eigenvalues of an n by

n GOE, GUE, or GSE matrix. Then as n tends to infinity we can check that we expect
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the largest and smallest eigenvalues to be around +24/n. If we rescale the spectrum by

1/y/n then we get the following theorem:

Theorem 1.1 (Wigner). Let Aj, Ao, ..., A\, be the eigenvalue of a GOE, GUE, or GSE

matriz, and let
1 n
pn = > O val@)
k=1

then

Un = Psc  @.S. where

The meaning of this statement can be seen
from Figure 1.1, which shows a histogram of the
eigenvalues of a 1000 by 1000 GUE matrix scaled

by 1/4/n. From this picture we can clearly see

the emergence of the semicircle mentioned.

-1 0 1 2

Figure 1.1: Histogram of rescaled
Remark 1.2. The Wigner semicircle law holds
eigenvalues of a 1000 x 1000 GUE ma-

more generally then stated above. Take any n xn

trix
symmetric or Hermitian matriz with entries be-
low the diagonal 1.7.d. with mean 0 and variance

1, and diagonal entries i.i.d. mean 0 and variance 1. Then when rescaled by 1/\/n the

empirical spectral density converges to the semicircle distribution. (See e.g. [3])

This type of limit describes the global behavior of the eigenvalues, but tells you
nothing about the interactions between the eigenvalues. In order to look at what happens
on a local scale we need to rescale so the expected number of eigenvalues in an interval

remains constant. In the case of the Gaussian ensembles we have n eigenvalues on an
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interval of size 4./n, this suggests that we need to look at a subinterval on the order
of 1/y/n. Indeed, in the limit, after rescaling the eigenvalues up by \/n we arrive at
a point process. In the case of § = 2, if we take A, to be the set of eigenvalues,
then the precise statement is that %\/ﬁ/\n converges in distribution to the Sine process,

which may be described through its n-point correlation functions. These are given by

sinm(z;—x;)

() (see e.g. [28], and for more

determinantal formulas with entries p(z;,z;) =
on determinantal point processes see [34]).

Observe that by looking at %\/ﬁAn we are looking at the local behavior of the eigen-
values near 0, and notice that 0 is in the interior of the spectrum (that is, in the middle
of the semicircle formed by the eigenvalues). We refer to this as bulk of the spectrum,
and the Sine process as the bulk limiting process. If we rescale appropriately at another
point in the interior of the spectrum we find this same limiting process. In other words
the local behavior is the same everywhere in the interior. In the case of the GUE this
would be anywhere in (—24/n,24/n) as we can see from Figure 1.1.

We can find a similar result at the edge of the spectrum, though with a different
limiting process. Notice that at the very edge of the spectrum from Wigner’s semicircle
law we get that the number of points in the interval [—2/n, (=2 + €)/n| is approx-
imately n f:22+€ pse(z)dx ~ nCe®?. This suggests that in order to look at the local
behavior we need € on the order of n=2/3, which means we need to look at the interval
[—2¢/n, —2y/n + n~Y 6]. Indeed, appropriately centered and rescaled by n'/% the bottom
eigenvalues converge the Airy, process, which can again be described through its cor-

relation functions. This time the determinantal formulas are written in terms of Airy

functions. See [28] for further details.



1.2 [-ensembles

The Gaussian ensembles introduced above remain important to the study of random
matrices in part because we can write down an explicit joint density for the eigenvalues.

Let M, be an n x n GOE, GUE, or GSE matrix, then the eigenvalue have joint density

1 s
pH()‘la"'7)‘7’L): Vi H |)"L_>\J‘IBH€ 4/\12 (11)
=1

B <ici<n

where [ is equal to 1, 2 and 4 for the GOE, GUE, and GSE respectively. Note, that
the constant $/4 in the exponential can be easily changed via linear scaling, but not
the exponent in the first product. As a generalization of the Gaussian ensembles we
can consider the density in (1.1) for any § > 0, this is called the Gaussian (or Hermite)
B-ensemble. We will denote this by H(n, ).

The finite point process H(n, ) is no longer directly related to the original matrix
models, but there does exist a related tridiagonal matrix model whose eigenvalues have
the appropriate distribution. The model originally introduced by Dumitriu and Edelman

[17] is as follows: Let

N(O> 2) X(n-1)8

Xin-18 N(0,2) Xmn-2)

X2 N<07 2) X

xs  N(0,2)

then the joint density of the eigenvalues of Hy is given by (1.1). The tridiagonal matrix
model in integral to the study of the S-ensemble. There is another interpretation of this

model in terms of log gases. In particular the eigenvalue density given in (1.1) can be
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identified with the Boltzmann factor of a log-gas model, more work on this can be found
in the physics literature [28].

The ([-Hermite ensemble is one example of a family of distributions that may be

considered. More generally if we have a joint density function of the form

1 n
— . )\.|8 V(i)
p(A1, .. ) = z | | |Ai — A I_lle

B 1 <ici<n

for some function V', we call a set of points distributed according to such a function a
[-ensemble. There are several other classical matrix models that also generalize to -
ensembles. These include, but are not limited to Wishart matrices with Gaussian entries
which generalize to the §-Laguerre ensemble, and MANOVA matrices which generalize
to the S-Jacobi ensemble.

The model considered by Wishart [58] can be described as follows: Let M,,«,, de-
note the space of n x m matrices with complex (resp. real) valued entries. Take a
matrix X € M, with independent complex (resp. real) Gaussian entries; then
M = XXT € M,y, is said to have a (n,m)-Wishart distribution. It corresponds
to the sample covariance matrix for a sample drawn from a multivariate complex (resp.

real) normal distribution. The joint eigenvalue density given by

1 - Blm—n+1)—1 _B8y.
PO das e M) = TTA " e N T — Al (1.3)
MM =1 i<k

where § = 1,2 for real and complex initial entries respectively. Taking any § > 0 we
call the resulting object the S-Laguerre ensemble, which we will denote by L(n,m, f3).
As in the g-Hermite case, there is a tridiagonal matrix model whose eigenvalues are
distributed according to (1.3), see [17] for more details.

The MANOVA matrix model also comes from statistics. We take an n; by n matrix

M with each entry independently drawn from the standard normal distribution, and
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consider the matrix X = MTM. This is one of the n by n Hermitian matrix models
introduced by Wishart. If we assume n; > n we know the resulting matrix is almost
surely invertible and so A = XV2(X + Y)"1 X2 where Y is constructed in the same
manner with parameters ny, n is well defined. Consideration of this type of matrix first
arose in statistics (MANOVA, or multivariate analysis of variance, uses the base matrix
model to study the interdependence of several dependent and independent variables).

The resulting matrix A is again Hermitian and joint density function of its eigenvalues

is given by
1 TTia
Pr(ALy e M) = 7 H AF(L = X)) H A= el Lo, viy (1.4)
Binmamz G2y i<k
where a = g(nl —n+1)—-1,b= g(ng —n+1)—1, Z is a constant dependent on

the parameters, ny,no > n and g = 1. If instead of drawing from the standard normal
distribution we had chosen a complex normal distribution, we would have had the same
joint density function with 8 = 2. These cases were extensively studied by Johnstone in
[37].

Note that the eigenvalues lie inside the interval [0, 1], unlike the Gaussian or Wishart
cases where the spectrum is unbounded. Taking # > 0 the resulting object is called the
B-Jacobi ensemble, we will denote this ensemble by J(n,ni,ns, §). The corresponding

tridiagonal matrix model is introduced in Section 3.1.1.

1.3 Limits of S-ensembles

For the S-ensembles we can study the same type of questions as in the case of the GUE.

As with the GUE we will begin by looking at the limits of the empirical spectral density.
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We will then take a look the local limit that shows up in the bulk of the -ensembles.

Lastly we will look at the point process limits at the edge of the ensembles.

1.3.1 Limits of the empirical spectral measures

Recall that in the case of the Gaussian ensembles (the GOE/GUE/GSE models) we
had that appropriately rescaled the empirical spectral density converged in distribution
to the semicircle law (see Theorem 1.1). There are similar theorems that hold for the
Wishart and MANOVA matrices, but with different limiting distributions. The empirical
spectral densities of the -ensembles converge to the same distributions you get in the

original matrix models. More precisely we have the following results:

Theorem 1.3 (see e.g. [28]). 1. Let A\, Ao, ..., A\, ~ H(n, ), then
1 n
— 0y, = Do .S. — 00. 1.5
n; ,\Z/\/g(x) pse(x) a.s. asn — oo (1.5)
2. Let M\, Mgy ..., Ay ~ L(n,m, 8) and assume n/m — v € (0,1], then

1 n
— E Oxni/m = Pmp() a.s. as n — 00 (1.6)
n

i=1

where pp, s the Marchenko-Pastur distribution with

B VD= ale < e <), o= (1= VAR b= (VAR

(1.7)
3. Let M\, Ag,y oo, Ay ~ J(n,ny,ng, B) with ny,ne > n, ni/n — v € [1,00), and

na/n — v € [1,00), then £ 3", 6y, converges weakly to p(z) a.s. asn — oo, where

_ 27 .\/(A+—x)(a:—A_)
M+ 7 z(1—x) .

p(z)



Here Ay denotes the upper and lower edges of the spectrum which are given by

A, = (\/%(vﬁw—l)i V2 >2_ (1.8)

7+ 72 7+ 2
These limiting densities help us identify the interior (or bulk) and edges of the spec-
trum in the limit. They also help to find the scale of which the local interactions will

be visible. We use this in the discussion of the local limits the follows.

1.3.2 The local limits in the bulk

Recall that by local limit we are referring to a point process that captures the local
interactions of the eigenvalues. In the case of the GUE we had that rescaled by y/n in
the limit the eigenvalues converged in distribution to a determinantal point process we
called the Sine process. There is a similar statement for the S-Hermite ensemble. In this
case the limiting point process is dependent on /3 and is denoted by Sineg. This process
will be characterized through its counting function rather then its correlation functions.
Characterization of this process and proof of convergence in the case of the S-Hermite
ensemble was done by Valké and Virag [54].

The Sineg process as the bulk limit is not unique to the J-Hermite ensemble. Ap-
propriately rescaled this same limit if found in the bulk of the §-Laguerre and -Jacobi
ensembles ([35], [7]). Notice that the only dependence in the limit is on 3, meaning
that, in the limit, the extra parameters in these ensembles have no impact on the local

interactions in interior. The behavior at the edge of the spectrum is more diverse.
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1.3.3 Limits at the edge

Recall that at the edge of the GUE we had that centered and rescaled by n'/¢ the
eigenvalues converged in distribution to the Airys process. As with the bulk we have a
similar statement for the edges of the S-Hermite ensemble. In particular, if A, denotes
the collection of the ordered eigenvalues of H(n, ), then n'/%(2y/n — A,,) converges in
distribution to a point process Airyg, which depends only on . This limiting point
process can be characterized in two ways. The first is that it is the ordered eigenvalues
of a stochastic differential operator. The second is again through its counting function.
This type of behavior will be called a soft edge [49].

This limiting point process, unlike the limit in the bulk, is not the only process
found at the edge of the S-Laguerre and -Jacobi ensembles. It is also possible that these
ensembles display a different type of behavior at the edge of the spectrum. To see why
this might be expected consider the Marchenko-Pastur distribution which is found as a
limit of the empirical spectral density of the S-Laguerre ensemble (1.7). This limiting
distribution can exhibit two very different types of behavior at the lower edge of the

support. In the case where n/m — 1 we get a limiting density with

dpmp 1
= V2—-21(0< 2 <2).
dx 21y 0w <2)

This gives us an asymptote at x = 0. Returning to the distribution of the p-Laguerre
ensemble, this means that the lower edge is converging to 0, but the joint density by
construction requires that the eigenvalues be nonnegative, which imposes a hard con-
straint at the origin. Indeed in the case where m = n + a when appropriately rescaled
the smallest £ eigenvalues of the S-Laguerre ensemble converge in distribution to a point

process dependent on 5 and a. We will call this process the ‘Stochastic Bessel Process’
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and denote it by Bess, 3. This names comes from the fact that for 8 = 2 this process
can again be characterized by its n-point correlation functions, this time the necessary
determinant being composed of Bessel functions (see e.g. [28]). Characterization of the
limiting point process as well as the proof of convergence was done by Ramirez and
Rider in [48].

For m/n — 7 # 1 the lower edge of the Marchenko-Pastur distribution behaves like
the \/x function near 0. This is the same as the behavior at the top and bottom of the
semicircle in the -Hermite limit. In this case, that is m/n — v # 1, the appropriately
rescaled lower edge of the §-Laguerre ensemble converges to the Airys process [49].

The regime in between these two, that is m/n — 1, but m = n + a,, where a,, — o,
should fall into the case of the soft edge, but the actual result remains unproven. The
upper edge of the g-Laguerre ensemble falls into the soft edge regime regardless of the
limit of m/n.

The last thing that remains is to discuss the limiting behavior at the edge of the (-
Jacobi ensemble. As with the g-Laguerre ensemble, this ensemble can exhibit both soft
and hard edge behavior, but the behavior can change at both its upper and lower edges.
The n, parameter determines the behavior at the lower edge, while the ny parameter
determines the behavior at the upper edge. In particular, if n; = n + a then the
lower edge converges to Bess, g, and similarly for the upper edge if no = n +a. If
ni/n — v # 1, then the lower edge converges to Airyg, and similarly for the upper
edge if ny/n — 49 # 1. As in the -Laguerre ensemble, the transitional case remains
unproven. The proof of the limits in the $-Jacobi case is one part of the work in this

thesis.
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1.3.4 Universality of the point process limits

The universality conjecture is that these local limits are the correct limits for any reason-
able matrix model, and this does not depend on the on the limiting empirical spectral
density. For example if one takes M with M = M* with m,; any complex random
variables with mean 0 and variance 1 for ¢ < j, and m,;; real with mean 0 and variance
1, then for A, the eigenvalues of M we have 2y/nA, = Sine;. This has been proved
under certain conditions by Erdods, Yau, and several coauthors, and independently by
Tao and Vu, see [25, 24, 23, 52]|. Related work shows that the bulk limit also holds for
a wide family of S-ensembles [7]. It has also been proved that the edge limit holds for a
large family of S-ensembles [8, 42]. In this sense we can understand these point process
limits which describe the local interaction of the eigenvalues to be a type of universal

behavior.

1.4 Summary of Results

The results of this thesis can be divided into two types. The first of these is the proof of
convergence of the -Jacobi ensembles to the local limits at the edge of the spectrum.
The second of these are on properties of the limiting point processes. This includes
large deviation results for the Sineg and Bess, g process, as well as a CLT for the Bess, g
process. In particular we show the following:

For the [-Jacobi ensemble, with joint density given by (1.4) we show that when
appropriate centered and rescaled we get convergence to the limiting point processes for
both the hard and soft edge. For the soft edge this means that for liminfn;/n > 1 the

ordered eigenvalue when appropriated centered and rescaled converge in distribution to
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the stochastic Airy process. The result will be stated precisely for the upper edge of
the spectrum, that is for liminfny/n > 1, but symmetry gives the lower edge as well.
For the hard edge we have that for ny — n — a, the ordered eigenvalue of the g-Jacobi
spectrum converge to the stochastic Bessel process with parameter a. These results have
been published previously in [32].

The large deviation results are on the counting functions of the Sines and stochastic
Bessel processes. The results state that the normalized counting function N(X)/A of the
Sines process satisfies a large deviation principle with scale A\* and a good rate function
Blsine(p). That is P(N(A)/X ~ p) ~ e 2*Flsine() - This work has been submitted for
publication and can be found in [33].

The large deviation result for the Bess, s process is similar. The counting function
of the stochastic Bessel process on the interval [0, A] normalized by /X satisfies a large
deviation principle with scale A and good rate function S1pegs, ,- The central limit type
result is for the number of points in the interval [0, A\] as A — oo. This work has not
been published yet.

These results will be stated precisely in the next chapter.
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Chapter 2

Results

2.1 Point Process Limits of the 5-Jacobi Ensemble

2.1.1 Soft edge limit

We begin by defining the “stochastic Airy operator” (SAOg) . Let

d? 2,
Hp = —@%—x-l—ﬁb (x) (2.1)

where we take b’ to be a white noise. A precise definition and many properties of this
operator can be found in [49]. We review the necessary ones below.
For our purposes it is sufficient to define an eigenfunction/eigenvalue pair in the

following way: Let

L = {f € L*[0,00)|f(0) =0, f' exists a.e. and /Oo(f')2 + (1 + 2)f2dr < oo} :
0

then (¢, \) is an eigenvalue/eigenfunction pair for Hs if [|¢|l2 = 1, € L* and

" _i

holds in the sense of distributions. This may be written as

(@) (1) + (= — Ne(a) (2.2)
o) — (0) = %w)b(m) - % / " (b(t)dt + / - Ned. (23)

In this sense, the set of eigenvalues is a deterministic function of the Brownian path b.

Moreover the eigenvalues are “nice” in the following sense:
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Theorem 2.1. [{9] With probability one, the eigenvalues of Hg are distinct (of multi-

plicity 1) with no accumulation point, and for each k > 0 the set of eigenvalues of Hp

has a well defined (k + 1)st lowest element A(B).

The Airys point process is given by the eigenvalues of Hg. Our first result shows that
the spectrum of the Jacobi ensemble near to the soft edge converges to this point process
after appropriate scaling and centering.

Let us introduce some notation: Take

2 n 2 12

= : s = (2.4)
ny + N9 ni + nNo

~ - + ng —

po_" 2_Mmtm—n (2.5)
ni + neo n1 + N

with ¢, s,¢ and § all nonnegative. Under this notation we have that the expected edge

of the spectrum is given by

As = (¢35 % s56)%
We define our scaling factor to be

2 ~~ 2/3
ms, C8CS\/MN1 + Mo

= — here =
I = ses W Min c5(c? — s2) + es(c? — §2)

We now state the scaling limit near the soft edge.

Theorem 2.2. Let \y > Xy > --- > \,, denote the ordered eigenvalues of J(n,ny,ns, 3),

and assume liminfny/n > 1; then

(Qn(A+ - )\z)) = (Ao(ﬁ), cey Akﬂ(ﬂ))

0=1,..k

jointly in law for any fized k < oo, as n — 00.
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Remark 2.3. This theorem describes the limiting behavior of the B-Jacobi ensemble in
the upper soft edge situation. This is sufficient to determine the behavior in the lower
soft edge because J(n,nq,ng, ) is symmetric in ny and ny. That is, the reflection of

the density of J(n,ni,ne, 5) with respect to x = 1/2 is the corresponding density for

J(nan%nl?ﬁ)'

Remark 2.4. In the situation where ny and ny are constant multiples of n, then o, =
en®3 for some constant c. One can compare this with the scaling exponents in the Tracy-
Widom result. In fact in the case where liminfny/n > 1+ €, then with a little bit of
work one can show that there exist constants ¢, and co depending only on € so that

ent/? < my, < conl/3.

Remark 2.5. While we expect a soft edge type result for 5-Jacobi spectrum in the case
where ng = n + a, and a, — 0o we restrict to the case where iminfny/n > 1. We
make this restriction on ny because, as the previous remark suggests, the order of m,
can change substantially which will render many computations invalid. A similar gap

exists in the B-Laguerre case for the lower soft edge.

2.1.2 Hard edge limit

We recall the definition of the stochastic Bessel operator, studied by Ramirez and Rider
in [48] to describe the limit of the Laguerre ensemble in the hard edge case. The operator

acts on functions on R, and is given by:

o= —oxp | (a+ 1)z + %b(@] - % (eXp [—aw _ %b(m)} %) |
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with Dirichlet boundary conditions at 0 and Neumann conditions at infinity, where b(x)
is a Brownian motion, a > —1 and 8 > 0. This can be formally rewritten as

& 2 . d
~0pu = (g - ot ).

where ¥/(x) is white noise. The inverse operator as given by Ramirez and Rider [48] is:

o] TNy 5 )
(@5; )(x) E/ (/ eaz+\/§b(z)dz> w(y)ef(aJrl)yfﬁb(y)dy. (2.7>
0 0

The operator (’55}1 is non-negative symmetric in L?[R, m] where
2
m(dz) = e~ T3 gy

We may study the eigenvalues of &3, through the study of the eigenvalues of the integral
operator by using the fact that if A is an eigenvalue of &g, its reciprocal is an eigenvalue
of the inverse. Moreover, it can be shown that the spectrum defines a simple point

process as desired.

Theorem 2.6. [/8] With probability one, when restricted to the positive half-line with
Dirichlet boundary condition (at the origin), s, has a discrete spectrum of simple

eigenvalues 0 < No(5,a) < Ay(B,a) < --- 1 0.

We will show that the Bessel operator will describe the limiting spectrum of the
(B,m,n1,n9)-Jacobi ensemble in the hard edge case. For convenience and in analogy to
the -Laguerre ensemble, we will focus on the lower hard edge. We can see from Remark

2.3 that this is indeed sufficient to determine the upper edge as well.

Theorem 2.7. Let 0 < \g < A\ < -+ < A\,_1 be the ordered eigenvalues of J(n,nq,na, ),

my, = nng and ng > n. Assume that (ny —n) — a € (—1,00), then

(mn)\o, My, ..., mn)\k> = (Ao(ﬁ, a),\1(5,a), ..., Ap (B, a))
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jointly in law, for any fived k < oo as n — oo.

Remark 2.8. Previous work on both the hard and the soft edge of the B-Jacobi was
done through a coupling with the B-Laguerre ensemble by Jiang [36]. This work covers
the case where n/ny — v € (0,1] and n = o(\/nz). Our work extends the results to all

cases for which liminfny/n > 1.

2.2 Properties of Point Process Limits

2.2.1 Large deviations for the Sineg process

The Sineg process can be described through its counting function using a system of

stochastic differential equations. Consider the system
B A
doy = )\ge_ztdt + Re [(e7"™ = 1)(dB; +1idB,)], a)(0) =0, te[0,00) (2.8)

where B, B, are independent standard Brownian motions. Note, that this is a one-
parameter family of SDEs driven by the same complex Brownian motion. In [54] it
was shown that Ng(\) = tli>rg> 5=\ (t) exists almost surely and it is an integer valued
monotone increasing function in A\. Moreover, the function A — Nz(\) has the same
distribution as the counting function of the Sineg process, i.e. the distribution of the
number of points in [0, A] for A > 0 is given by that of Ng(\).

Note, that for any fixed A the process « satisfies the SDE
B
day = )\ge_ztdt + 2sin(ay/2)dBy, ax(0) =0, te]0,00) (2.9)

1.
where B, = Blf)‘) = fot Re [—iefim*(s)d(Bl —1—2'ng)] is a standard Brownian motion which
depends on A. Thus, if we are interested in the number of points in a given interval [0, A]

then it is enough to study the SDE (2.9) instead of the system (2.8).
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Using the SDE characterization of the Sineg process one can show that it is transla-
tion invariant with density (27)~! (see [54]). In particular, in a large interval [0, A] one

expects roughly (2m)~'\ points. In [43] the authors refined this by showing that Ng(\)

A

5 and variance
s

satisfies a central limit theorem, it is asymptotically normal with mean
# log A.

The goal here is to characterize the large deviation behavior of Nz(A). We find the
asymptotic probability of seeing an average density different from (27)~! on a large
interval. We show that A\™'Njs()) satisfies a large deviation principle with a good rate
function.

Before stating the exact form of the theorem we need to introduce a couple of nota-

tions. We will use

ko= [T b= [ Vi aa (2.10)
a) = _— a) = — asin® zdz, )
0 1—asin’x 0

for the complete elliptic integrals of the first and second kind, respectively. Note that

there are several conventions denoting these functions, we use the one in [1]. We also

introduce the following function for a < 1:
H(a) = (1—a)K(a) — E(a). (2.11)
Now we are ready to state our main theorem.

Theorem 2.9. Fiz § > 0. The sequence of random variables %Ng()\) satisfies a large

deviation principle with scale N> and good rate function Blsiy.(p) with

1rv

Lsine(p) = 3 [g + pH(V)] ;o v=7"), (2.12)
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where v~V denotes the inverse of the continuous, strictly decreasing function given by

(

v

i) | H2(z)d,

8

if v <0,

if v =0,

if0<v<l,

ifv=1.

(2.13)

Roughly speaking, this means that the probability of seeing close to pA points in

[0, \] for a large A is asymptotically ¢~ Blsine(p)  The precise statement is that if G is an

open, and F' is a closed subset of [0, 00) then

liminf — P(LN(\) € G) > — inf Bsine(v),

A—00 A2

A—00

lim sup

A2

1, .
= < — .
P(3N5(A) € F) < — inf Blgine(2).

The function v may also be defined as the solution to the equation 4z(1 — z)y"(x) =

v(z) on the intervals (—oo, 0] and [0, 1] with boundary conditions lim ~(z) =

0and lim Lﬂ”)':}l

r——00 /|

[Sine<%) = 0 and [Sine(o) = 614'

z—0%t

=, (1) =

. The rate function Igi,e(p) is strictly convex and non-negative with

The function Igie(

5 + x) behaves like

w2z

" 4log(1/z])

for

small |z|, and Igine(p) grows like $p?logp as p — co. These statements will be proved

in Proposition B.5.

We note that the behavior of Igp.(p) near p =

1
2w

is formally consistent with the

already mentioned central limit theorem of Nz(A). For p = % + 2 with a small, but

fixed |z| the probability of seeing close to

B2 \2g2

exp (— Ilog(1/7]

1
2

A + A points in [0, A] is approximately

)). Now let us assume, that this is true even if x decays with A, even

though this regime is not covered in our theorem. If we substitute Az = , /# log A\ -y
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(with a fixed y), then this probability would asymptotically equal to e v*/2. This is

in agreement with the fact that Ng(\) is asymptotically normal with mean %)\ and
variance /# log .

Before moving on, a couple of historical notes are in order. In [54] the authors also

show another large deviation statement for the Sineg process regarding large intervals,

namely that the asymptotic probability of not seeing any points in [0, A] is approximately

B
e~ 5" In [55] this result was sharpened by providing the more precise asymptotics of

P(Ng(A) =0) = (kg + o(1)) A\ exp {—6%)\2 + (% — 3 A}, as A — oo (2.14)

with vg = 1 (g - % — 3) and a positive constant kg whose value was not determined.

Similar results have been proven before for the classical cases 5 = 1, 2,4, see e.g. [4], [53],

[56], [13]. Moreover, the value of k5 and higher order asymptotics were also established

for these specific cases by [41], [22], [12]. Further extension in the classical cases include

the exact asymptotics of P(Ng(A) = n) for fixed n and also for n = o(\). (See [53] and

28] for details.) In all of these results the main term of the asymptotic probability is
2 1

¢~ 61", This is consistent with our result, as Theorem 2.9 and Isine(0) = 5; implies

lim lim %log P(Ng(\) <e)) = _8

e—0 As00 64°

The large deviation rate function (2.15) has been predicted using non-rigorous scaling
and log-gas arguments in [20] and [27]. (See Section 14.6 of [28] for an overview.) Using
the same techniques [29] treats the corresponding problem for the soft edge and hard
edge limit processes of S-ensembles.

One can also study the large deviation behavior of the empirical distribution of the /-

ensembles on a macroscopic level. It is known that after scaling with y/n the empirical
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measure of the distribution (1.1) converges to the Wigner semicircle law. In [5] the
authors prove a large deviation principle for the scaled empirical measure, this describes
the asymptotic probability of seeing a different density profile than the semicircle. One

could consider our theorem a microscopic analogue of that result.

2.2.2 Large deviations and a CLT for the Bess, 3 process

The results for the Bess, g process will be stated in terms of the function M, g(\) which
we define to be the number of points of the Bess, g process in the interval [0, A]. We show

both a central limit theorem and a large deviation result for this function as A\ — oo.

Theorem 2.10. Fiz > 0,a > —1. As A\ — oo we have that

1 2v/\ 1
m (Maﬁ()\) - T) = N(O, W)

Notice that if one considers the limit on the scale of (log+/A)~'/? which in some
sense in the natural analogue of the CLT for the Sineg process, then we actually get
convergence to a normal with the same variance as in the Sineg case. The large deviation

result is similarly related to the result in the bulk.

Theorem 2.11. Fiz f§ > 0, a > —1,a # —1/2. The sequence of random vari-
ables %Mm/j()\) satisfies a large deviation principle with scale A and good rate function

Bl pess, 5(p) with

1%
[Bessa,ﬁ (P) = 5 + pH(V>’ V= 7(_1)(10/4)7 (215)

where v is the function given in (2.13).
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Remark 2.12. There is no reason at this point to believe that the restriction that a #

—1/2 is necessary. It seems to be a consequence of the proof technique used.

There is a close relationship between the rate function for the Bess, 3 process and
the Sineg process, namely that Iges, ;(p) = 32/sine(p/4). As before we can check that

the central limit theorem and the LDP are at least formally consistent. Using the

m2z?
2log(1/]=[) "

The substitution vz = ,/B—}rQ log A - y with a fixed, then the probability would be

relationship between the rate functions we get that Ipeg, , (7—% +x) behaves like —

asymptotically equal to e V2, Lastly, observe that the large deviation result is also

B
consistent with the large gaps result P(M, 3(\) = 0) ~ e~ 2™ [47].
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Chapter 3

Point Process Limits of the $-Jacobi

Ensemble

In the g- Hermite and Laguerre ensembles discussed above the cases f = 1, 2 and 4
have the particularity to be solvable and can be studied by means of asymptotics of
orthogonal polynomials [44]. In the general § case, the solvability is lost, together with
a natural interpretation in terms of classical random matrix ensembles. The soft and
hard edge limits for these general ensembles were considered in [49] and [48] respectively,
leading to a generalized Tracy-Widom(5) distribution and the stochastic Bessel process,
respectively, in the soft edge and the hard edge case. This approach was anticipated in
[21], where tridiagonal matrix models associated to the g-Laguerre and Hermite ensemble
[17] were conjecture to converge to continuum random operators. It is worth noting that
the link between these random operators and the classical results involving the Tracy-
Widom distribution remains obscure. To the best of our knowledge, the only result in
this direction is [6] where a spiked-random matrix model is investigated.

The object of study in this chapter is the §-Jacobi ensemble (see (1.4)). Note that
written in terms of n, ny, ng for large n we will approximate the edges of the J(n, nq, na, )

spectrum by

n1+n2 ny + N9

A, = <\/n1(n1+n2—n) L Ve ) ‘ (3.1)
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This chapter will focus on the behavior at the edge of the spectrum as n, n; and
ng grow to infinity. This approach relies on a tridiagonal representation of the g-Jacobi
ensembles [40] and the techniques developed in [49] and [48]. The higher number of
parameters makes the phase diagram richer. As there are both a lower and an upper
bound on the spectrum, appropriate tuning of the parameters can lead to any combi-
nation of soft/hard upper/lower edges. With our notations, the asymptotics of n; with
respect to n will determine the nature of the lower edge, while respective asymptotics
for ny will determine the upper edge.

Several works have been devoted to the edge behavior of the 5-Jacobi ensembles with
varying degree of generality (see for example [16, 19, 15, 45, 46]). The works [11] and
[37] are restricted to the cases § = 1 and 2. Johnstone [37] also provides fluctuation
results for the top eigenvalue in the cases f = 1 and 2. All the aforementioned works
treat the case of a single extreme eigenvalue. We note that the work [37] uses the results
from [49] and [48] to study very degenerate asymptotics for ny and ny for which the
Jacobi ensemble approximates the Laguerre ensemble.

This work is organized as follows: in Section 3.1.1 we recall the tridiagonal represen-
tation for the S-Jacobi ensemble proved in [40] (an alternative approach will be described
in the appendix). Proofs in the soft edge cases are presented in Section 3.2 while the
hard edge case is treated in Section 3.3. Many details are similar to the corresponding

proofs in [49] and [48] and will be omitted.
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3.1 Results

3.1.1 Tridiagonal representation

The core of our approach, following [49] and [48], rests heavily on a tridiagonal repre-
sentation of J, », n, 3. The first tridiagonal representation for the $-Jacobi ensemble was
given by Killip and Nenciu [40]. We will work with a somewhat simplified model which

was introduced by Sutton ([51], Chapter 5).

Theorem 3.1. [40] The joint density of the eigenvalues of MM? is given by f5 n.nyns(A),
where

[ .4,

5,01 ChSs
M = My, np8 = 5302

SnCn—l Cn

with C? 452 =1,C? + S? = 1 and

Cy ~ \/Beta(g(nl—n+k),§(n2—n+k)>

Ch ~ \/Beta (gk’§<n1 +ng—2n+k+ 1)>

Note that M M7 is indeed tridiagonal. A proof of this theorem is included in the

appendix for the sake of completeness.
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3.2 Convergence of the spectrum at the soft edge

The proof of the soft edge limit is derived using a more general limiting result by Ramirez,
Rider and Virdg [49]. This result embeds a sequence of tridiagonal matrices as opera-
tors on L?[0,00) and gives conditions for a weak limit under which convergence of the
eigenvalues also holds. We use this result to show that the point process J(n,ny,ns, )
converges to eigenvalues of a random operator.

We begin by stating a general result of Ramirez, Rider, and Virag [49] giving con-
ditions for a sequence of operators to converge to the stochastic Airy operator in an
appropriate sense. Our work will then consist of verifying the hypothesis of this theo-
rem in the [-Jacobi case.

Let H, : R" — R" be the linear operator whose associated matrix with respect to
the standard bases is symmetric, tridiagonal with diagonal entries (2m2 + m,(yn1x —
Ynik-1),k > 1) and off-diagonal entries (—m2 + m,(Ynok — Ynok—1)/2,k > 1).

We define define the step functions 4, (%) = Yn.,|zm.| Lem.cjo,n] and make the follow-
ing assumptions:

Assumption 1 (Tightness/Convergence) There exists a continuous process x — y(z) such

that

(yn,i(iﬂ); x> 0) 1=1,2 are tight in law

(ynl(x) + Yno(z);2 > 0) = (y(:c), x> O) in law,

with respect to the Skorokhod topology.

Assumption 2 (Growth/Oscillation bound) There is a decomposition

k
Ynid = My Z Mnie + Wik (3.2)
=1
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with 7,; % > 0, such that there are deterministic unbounded nondecreasing continuous
functions 7(z) > 0,¢(x) > 1, and random constants p,(w) > 1 defined on the same
probability space which satisfy the following: The pu, are tight in distribution, and,

almost surely

(@)t — pn < a1 (2) + Mna(z) < pa(1+7()) (3.3)
me(z) < 2m] (3.4)
w1 (&) = wn1 (2)? + |wn2(€) —waa(@)]? < pa(1+7(x) /¢ (2)) (3.5)

for all n and z,& € [0, m,] with | — &] < 1.

Theorem 3.2. [/9] Given Assumptions 1 and 2 above and any fized k, the bottom k
eigenvalues of the matriz H,, converge in law to the bottom k eigenvalues of the operator

H, where
d2

Here the eigenfunction/eigenvalue pairs of H should be understood in the same way
as those of Hg as shown in Section 2.1.1. We will show that a tridiagonal matrix with
eigenvalues corresponding to the S-Jacobi ensemble satisfies the requirements of the

theorem with limiting operator Hg.
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3.2.1 The (-Jacobi model

We use the following tridiagonal model for the -Jacobi ensemble. Let

Sy S0,
.S,

with Cy, Si, Cy, and Sy defined as in Theorem 3.1. Clearly O'<Zn75Z3;’B) = U(Mn,BMg,ﬁ)
in distribution.
Recall the definitions of m,, and «,, from section 2.1.1 given in (2.6). We consider

the matrix
Hy = a (65 + 501 = ZupZ15).

This matrix has diagonal and off-diagonal entries given respectively by

2
m ~ -
2 n o252, 22 2 2 2 &
2m; + _0365(0 54 5°¢ = S5 11 Cn i — Cr_wSii)

and
m2
2 n ~~ ~ Q
—m, + %(0808 - Cn,kSn,kCn,kSn,k,l).

Note that the term (c5+s¢)? is the A, defined in (3.1). We define Ay, i x = Yn.ik—Ynik_1

with
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Mp 9.9 22 2 =2 2 &2
Ayn,l,k = csC5 (C %+ s7c" — Sn—k—i—lcn—k - Cn—kSn—k)
2my, ~ ~
Ayn,&k = 53 (CSCS - Cn—ksn—kcn—ksn—k—l)'

The proof now consists of verifying the hypotheses of Theorem 3.2.

3.2.2 Checking Assumption 1

To show that H,, satisfies Assumption 1 of Theorem 3.2 we use the following proposition

which is a simple modification of Theorem 7.4.1 and Corollary 7.4.2 in [26].

Proposition 3.3 ([26]). Let f € C*(R") and g € CY(R"), and let y,, be a sequence of

processes with y, o = 0 and independent increments. Assume that

L B(Ags) = Flken)to(l),  —Var (Agas) = (ke +o(l),  —E(Agup)! = o(1)

€n €n €n
uniformly for ke, on compact sets as n — 0o. Then yn(t) = Y |1/, cOnverges in law,
with respect to the Skorokhod topology, to the process f(t) + f(fg(s)dbs, where b is a

standard Brownian motion.

We take €, = 1/m,, and apply this to a slightly altered version of y,,; and y,,». Take

~ Mn 99 | 222 2 A2 2 &2
Ayn,l,k = %(C 57+ s7C" — Sn—kcn—k - On—kSn—k)
~ 2mn ~~ ~ R
Ayn,Q,k = c5C3 (CSCS - Cn—kSn—kCn—kSn—k)-

Computation gives

ne — k 52— 2 2(ng — ny)
ESQ — — o2 k2
n-k ny + ng — 2k s ny + No (n1 + Ng — 26)3
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for some ¢ € [0, k]. Similar expansions can be written for the other terms involved. We
now note that for convergence on compact subsets it is sufficient to consider £ < c¢m,, <
con'/3 by remark 2.4. Therefore, collecting terms we find that
m2  2(c* — s*)(¢* — 5%)

cSCS n1 4+ ng

M EAG 15 = k +o(1). (3.6)

Lemma 3.4. Let X = C%_,S? , with i and j positive integers, then

1 1
EX=VEX?— —— Var (X)+0[—— .
8(EX2)3/2 ar (X°) + ((n1+n2)2)

Similar statements hold for Cor and S, _g.

Here we take O(1/(n; + n2)?) to mean that there exists a constant C' depending only
on 7 and j so that the magnitude of the error is bounded about by C'/(n; + ny)?. This

lemma will always be used in the event that C,_j or S, _ is raised to an odd power.

Proof. For a < x € [0, 1]

1 1 1

\/_—1-2 (x a)—m(x—a)QS\/Eg\/5+2—(x—a)—m(x—a)2+T

Va

and for z < a € [0, 1]

Va+

1 1 o (z—a)’ a)? 1 9
m(l’—@)— 8a3/2($—a) BTN <Vr<ya+ \/—( a)—m(ﬂi—a) -
To complete the proof what remains to be shown is that E(X? — FX?)? = O(1/(n; +
ns)?). To accomplish this we make the following observation. If Y ~ Beta(a,b), then

for 7, 7 positive integers we have that

at+i—1)---(a+1)ab+j—1)---(b+1)b
(a+b+i+j—1)---(a+b+1)(a+d)

E(Y{(1-Y)) = ( (3.7)

Direct computation then finishes the proof. O
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An application of this lemma shows that

2 22202 2\2 | 2.2(x2  22\2 2
mnEAQn,z,k:mn'CS(c s%)% + ?s*(¢ S)k—i—O( m2 ) (3.8)

cSCS n1 4+ ng ny + no

Here we mean that for 1 < k& < am,, there exists some constant C' independent of
k,n,ni,ny so that the error is bounded by C'm?2/(n; + ng). Together with (3.6) this

gives us that

. N k
M E(AGn 1k + Alpog) = P + o(1) (3.9)

n

which verifies the first condition in Proposition 3.3 with f(z) = 2%/2.

The second and fourth moment computations can be done similarly. They give us that

4
M E(AGp1k + Alnog)’ = 3 +o(1), and M, E(Afn1k + Afnox)* = o(1). (3.10)

Note that, for the fourth moment, it is sufficient to bound m,, E(Ag, 2x)* and (breaking
.1k into pieces) to bound the corresponding moments of s¢2 — S2_,C?_, and ¢*3* —

C?_,52_,. Therefore, Proposition 3.3 can be applied and yields

. _ x? 2
yn,l,k + yn,Q,k = —+ —b(l’),

2 VB

in law in the Skorohod topology.

Recall that in all the above computations, we considered y instead of y. Consequently,
all that remains to check the second part of Assumption 1 is to show that y, ;. +
Yn.2.k — Un,1.k — Un2k converges to the 0 process in law in the Skorohod topology. Direct

computation shows that the expectation and variance of the increments are of order 1/n
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and so the expectation and variance of the process go to 0 on compact subsets. This
together with a fourth moment bound gives us convergence to the 0 process in law.

Finally, the individual tightness of each (y, (x);x > 0), i = 1, 2 can be obtained

along the same lines.

3.2.3 Checking Assumption 2

To check this assumption we again work with the shifted processes @, and compare
this with the original process. To this end we take 1, ;, = m, LAy, ;;, and similarly
Nnyik = My EAG, ; . Further, we will neglect the extra —1 found in the C’n,k and Sn,k
terms and show the irrelevance later. We will show the inequality in (3.3) for 7(x) = x.

Under these definitions we have

~ _ M [ 222 222 (n1 —k)(n1 +ns —n — k) _ (n2 — k)(n — k)
Lk = cS (C s (n1 + ng — 2]’1’})2 (n1 + ng — 2]{?)2

2m?, (csé§ _ FE = k) F(E(ne— k) F(E(n— k) f(E(n +ny—n — k:)))

ik = s 2 (n1 + g — 2k)?
where f(z) =T(x+1/2)/I'(z).

We begin with the upper bound on 7,1 + 7n 2% The general idea will be to treat
Mk via a Taylor expansion with a uniform bound on the error term, and work with
Tn,2,k i two regions. The first region will be 1 < & < an for some o < 1 and the second
will be an < k < n — 1. On the first region we will again work with primarily with
Taylor expansion and find a uniform bound on the error in terms of «, for the second

section we return to working with the original 7, 2, and show that for an <k <n —1

this can be bounded by C,k/m,.
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Using the inequality

we get that for ny,no >n >k

T2k < Zmi (csé[é — \/(n1 —k)(ny —k)(n—k)(ny +ny —n — k))

cscs (ny 4+ ng — 2k)?

+15

Am? <\/(n1 — 1) (s — k) (n— k) (n1 + na — 1 — k)) |

csCs S(n —k)(n1 + ny — 2k)2
For convenience we will label the first line of the right hand side by A; and the second
line by Bj. We will treat the second term B, first.

my, By, < 120 ninan(ny +ny — n)(ng + ny)?
ko7 B n(ng+na—2n)2(y/n(ng +na — n)(ny — n2) + /nmina(2n — ny — ny))?

This upper bound has a finite limsup. We now turn to 7, 1% + Ay for 1 < k < an for

some 0 < a < 1.

k 14
ok + Ay = — + &73
My, 2

for some ¢ € [1,an]. Here f(¢) is the second derivative of 7,1 + Ax with respect to k.

On this range of & we can find explicit upper bounds for

mnkw
2

in terms of n, ny, no, and a which have finite limsup as n goes to co. This together with

our bound on Bym,/k is enough to give us a sequence of constants ¢, so that

. - k
Tn,1k + n,2,k S Cn
m

n

for 1 <k < an. For the remaining piece we work with 7, 1, and 1), 2 separately.

M1 k _ m3 (2(ny —ny)(2n — ny — ny) N 6(n1 —n2)(2n — ny — no)k
k cses (ng + ng)? (ny + ng — 20)*
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for some 1 < ¢ < k < n. Taking the obvious upper bound with ¢ = k£ = n we have an
upper bound on 7, ; ; for 1 < k < n which has a finite limsup. Returning to A; we note

that for an < k < n we have that

From Remark 2.4 we have that this is an appropriate upper bound. Choosing the larger

upper bound on the two sections gives us a sequence p,, such that

. N k
Nn1,k + Tn,2.k S Hn—

for 1 <k<n-—1.

Turning to the lower bound we have the inequality

(ny + ng — 2k)? (ny + ng — 2k)?

zm%< N \/(nl—k)(ng—k)(n—k)(nl—kng—n—k))‘

(ny + ng — 2k)?

Mk + M2k >m_i <02§2+3252_ (n1 — k)(n1 +ny —n —k) (%—k)(n—k))
o T T escs

(3.11)

One can then make arguments for 1 < k < an similar to those employed in the upper
bound simply by choosing « small enough so that m,kf(¢)/2 is bounded below by —1.
For the remaining k& we note that the derivative of the right hand side with respect to k
is

2

m2 | \/(n—k)(n1 +n2 —n—k)(ny —na) + v/(n1 — k)(na — k)(2n — ny — ny)
csc§ V(g —k)(na — k)(n — k)(n1 +n2 —n — k) (ng +na)
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which is strictly greater than 0 for 1 < k < mn — 1. Therefore

ﬁn,l,k"—ﬁn,Q,k 2

m?2 <02§2 L2 (m—an)(mi+n,—n—an) (ng—an)(n— om))

cscs (n1 4+ ny — 2an)? (n1 + ng — 2an)?
2m? ( /(i —an)(ny —an)(n —an)(n; +ny —n — om))
cscs — .

cscs (n1 4+ na — 2an)?

This lower bound can be used to get the desired constants for an < k < n — 1 finishing
the lower bound. To finish we make the following observation: By direct computation

we can find an upper bound 6, of order (n; + ny)~'/3 such that

<4

— ¥Yn-

|77n,1,k + Mn2k — Tnlk — Tn2k

Therefore any error that comes from neglecting the —1 in the é’n_k and gn_k terms, or
working with the shifted process, may be absorbed into the constant terms. This finishes
the proof of (3.3).

We now verify (3.5):

2y, 5 & 2, Cry— Sk Con S
Ayn,Z,k = &(CSCS - Cnkankankanfkfl) = 2mn - m i Ij~ i i 1-
CSCS CSCS

Therefore since all of the relevant pieces are positive we have that

9 ~ ~
anon—ksn—lj?n—ksn—k‘—l < 2m2
CSCS

n*

My EAY, 2 = 2m2 — B

For the proof of the oscillation bound (3.5) we observe that /m,w, 1 is the sum of 2

martingales. For w, s we note that the increments are

o o o
0S5 (ECnkankankanfkfl - Cnfksnfkcnfksnfkfl>
2m:;’/2

= ((Egn—k—l - Sn—k—l)ECn—kSn—kén—k

+ (EOn—kSn—kén—k - On—kSn—kén—k)gn—k—1>



37
and so wy 2, may also be written as the sum of two martingales. Following the corre-
sponding proof in [49] with these martingales gives us the necessary bound. This ends

the proof of the convergence at the soft edge.

3.3 Convergence of the spectrum at the hard edge

The proof of the hard edge limit will follow largely from the proof of Ramirez and Rider
in [48]. We will formulate a more general theorem which gives conditions for convergence
of the eigenvalues, and apply this in the specific setting of the S-Jacobi ensemble. The
main idea is again to embed the tridiagonal matrices as operators and show that operator
convergence implies convergence of the eigenvalues. However the operator convergence
is not shown directly, instead we work with inverse operators to draw our conclusions.
To show the convergence of the spectrum at the hard edge we will first state a more
general theorem on convergence of eigenvalues. We will then show that this gives us
Theorem 2.7. Though this is stated more generally than the result given by Ramirez

and Rider in [48] the majority of the proof follows directly from their work.

3.3.1 A more general setting

Let X, be a lower bidiagonal matrix

ai
—b;  a

Xy = —by as

_bnfl Ap,
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We make the following assumptions on the entries:
Assumption 1 There is a Brownian motion B(-), and deterministic functions r(x), s(z)

and o(z) continuous on (0, 1) such that for y < z in (0, 1]

n

= r(x) (3.12)
e
[nx] T
Z log (2—2) = s(z) — s(y) +/ o(t)dB,. (3.13)

k=|ny]

Assumption 2 There exist tight random constants x,, and ], and o < 1 such that

E
sup —% < (3.14)
1<k<n 0k

ilog (s_z) s(ifn) + s(j/n) < K.(14+ T(i/n) + TG /n))  (3.15)

k=
Where T'(x) = flx/Q % (t)dt.
Assumption 3 Let K¢ to be the integral operator with kernel

ko(w,y) = Cr(x)e?™ =W exp [OT(x) + CT*(y)] 1y < 2),
then K is Hilbert-Schmidt.
Assumption 4 Let K be the integral operator with kernel given by
k(z,y) = r(z)e’@*W exp l/m go(t)dBt} 1(y < x).
Yy

The operator (KK7T)~! has discrete spectrum with simple eigenvalues 0 < Ag < A} <

Theorem 3.5. Let X, be a lower bidiagonal matriz with entries that satisfy Assumptions

1, 2, 8 and 4. Denote the ordered eigenvalues of X, XL by \g < A < 1 < ..., then

(Ao, A1y ey A1) = (Ao, Agy oo, Agq)
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jointly in law in the Skorokhod topology for any fized k as n — oo.

Remark 3.6. Assumption 4 can be replaced by further conditions on r(z), s(x) and o(z)
in Assumption 1. We omit this here because in our case Assumption 4 can be checked

directly.

Proof. We begin by computing X! and embedding the resulting matrix as an operator

on L?(0,1]. By Lemma 4 in [48] we can compute

b
[X;l}l’] k for j S 1.
CLZ iy ag

The action of our operator on L? will then read

na:J nxJ 1
n bk
X e

where 2, = k/n. We denote this operator by K", and note that this is a discrete integral

(X, ') (2) =

operator with kernel

k" (x, =—eXplzlog( )]h(wy)

where 17 (z,y) = 1(z € [x;-1,2;))1(y € [z;-1,2;)) and ¢ > j.

To complete the proof we need the following lemmas:

Lemma 3.7. There exists a probability space on which all K™ and K are defined, and
such that any sequence of the operators K™ contains a subsequence which converges to
K in Hilbert-Schmidt norm with probability one. In particular for any ny T oo we can

find a subsequence ny 1 oo along which

lim / / K (2, y)(w) — ki, ) (@) Pdady = 0

Ny —>00 0

almost surely.
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The remainder of the proof of Theorem 3.5 now follows from the proof of Theorem
1 in [48] with « in place of 3/4.

]

Proof of Lemma 3.7. We make the following observation: The noise term in the limiting

process may be rewritten as

Here the equality is in distribution with a different Brownian motion b living on the same
probability space. This can be used to show that limiting operator K is almost surely
Hilbert-Schmidt. The remainder of the proof then follows from the proof of Lemma 6 in
[48]. The main idea of the proof is to use Skorohod’s representation theorem to find a
space on which we have almost sure convergence kernels. The tightness conditions then

furnish a dominating function which gives L? convergence of the kernels as desired.

3.3.2 Proof of theorem 2.7

We now apply Theorem 3.5 to our setting. Recall the tridiagonal ensemble of random
matrices which spectrum corresponds to the [-Jacobi ensemble. We look at a similar
matrix with unchanged spectrum, which can be decomposed into a product of two

bidiagonal matrices. Specifically we take
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C1.5;
—5,Cy 055,
Wn,ﬁ - —5302 I )

I ~8,Ch1 C |
where the random variables C}, and ék are again distributed as in Section 3.1.1. Note that
Wi is M, g conjugated by diag(1,—1,1,—1,...) and so a(W, sW, 5) = o(M, gM] ;).
Recall that we are looking for the hard edge limit at the lower edge, therefore we will
take n; = n + a,,a, — a € (—1,00) with no restriction on ny beyond ny > n.

We will apply Theorem 3.5 to the bidiagonal matrix /m,, W, g3 where m,, = nnsy, and
then show that the eigenvalue equation ¢ = A(KK7T) 1y is equivalent to ¢ = A@géw
completing the proof of Theorem 2.7.

In order to apply Theorem 3.5 we need to show that \/m, W, s satisfies the assump-
tions. All these assumptions will need to be verified in two cases. The first case will be
when ny/n — v € [1,00), and the second will be ny > n. Note that these two cases are
sufficient because in the general case for any subsequence we can find a further subse-
quence along which either ny/n — 7 or ny > n and so convergence of to the eigenvalues
of &g, in those situations is sufficient. For clarity we note that the discrete kernel of

K™ is

i—1 =

n Sk1C%

kX (z,y) = ————=c¢ log | —/—=
i) = g o [Z g( Ci5h )

Wlth 1L(m7y) = 1:(:6[:ci,1,xi)1y€[xj,1,xj)‘

VERIFYING ASSUMPTION 1
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Lemma 3.8. Assume that ny/n — v € [1,00), then for x € (0,1]

n 20 +v—1
VM C e ) S na) \/_\/ vz +vy—1)

Assume that ngy > n then for x € (0,1]

1

n
= = .

Both convergence statements hold in the Skorokhod topology.

Proof. We begin by observing that
Var C2 = O(1/n) =0, as n — oo.

And similarly Var S2, = O(1/n), therefore the random variables converge to their ex-
pected values in L2. Now to ensure convergence on the process level fix § > 0, then for

k > nx, r > 0 we can find a constant ¢ such that

5 1 va+k+1 1 va-+k 2<c
Cikv1 Va+ny—n+2k+2 Crp Va+ny—n+2k) — n

and

IN

c
n.

E< 1 Va+n,—n+k+1 1 \/CL+H2-7’L+I€)2
Ses1 Vatng—n+2k+2 S, Va+tn,—n+2k

Kolmogorov’s tightness criterion ensures that we have process convergence on the set
[0,1]. Let 06 — 0 to finish the proof.

O

Lemma 3.9. Assume that ny/n — v € [1,00). There is a Brownian motion b(-) such

that for every y,x € (0,1] with y < x we have
|nz]—1
S, —142 1
Z log k+1~ LN log (Y + 2y) . +a log (g) (3.16)
S y(y — 1+ 2z) 2 z

k=[ny) CrSi
N (y—|—7—1) V2s+y -1 "
2 8 r+y—1 \/ﬁ + s —s) ’
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Assume that ny > n. There is a Brownian motion b(-) such that for every y,x € (0,1]

with y < x we have

|nz]—1 ~
Si+1Ck a Y 1 * db,
log| ——— | = =1o 3.17
k:zm:yj g<ck5k> : g( ) NGEANG (3.17)

again with both convergence statements holding in the Skorohod topology.
Before beginning the proof we note the following:
Proposition 3.10. Let X ~ Beta(p, q), then
X 1 X 1
E <log ﬁ) = 5(Wo(p) = Po(q)), Var <log m) = 7(W1(p) + ¥i(q)),

where Wy and Yy are respectively the digamma and trigamma function. Moreover as

Tr — OO
Volo) = o =logle) 5~ 1o+ 0,
V() = U(2) = é + % L 0@ ). (3.18)

Proof of Lemma 3.9. We rearrange the process to have independent increments and then

apply Proposition 3.3 with €, = 1/n.

[nz]—1 |nz]—1
S, Spi1C.
> log 10l =10g Clngy —log Clyy + Y log | =21
Ci15k

k=|ny] k=[ny]

Similar computation to the proof of Lemma 3.8 give us that if ny/n — ~

Clnz —1+2
log (%) = log Gl ~2) )
[ny) y(y — 1+ 2x)

And similarly if no > n
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We now consider the process y,, with increments

Ay, = 10g(Sk11/Chy1) — 10g(§k/C~’k).

In the case where ny/n — v we find that

1+a a
E(A nnx) — - 1 5
nE(Aynne) 2x 2(x+7—1)+0()
and
1 1
nVar (Aynne) = + o(1).

_ + -
Bz Blx+v-1)
We can also check that nF(Ay,)* = o(1). By Proposition 3.3 we get the convergence

statement in (3.16).

Similar calculations in the case where ny > n give you that

1+a
2z

nE(AYn ) = — +o(1), nVar (Aypn) = — + o(1), nE(Ayn,k)4 =o(1).

This gives us the convergence in (3.17).

VERIFYING ASSUMPTION 2

We now turn to the tightness conditions. For (3.14) we begin by using the sum

bound:

1 an + Kk - an +k
P — - = >M) < P(Ci< .
<1il]ign Cr Va, +ny,—n+2k ) - ; ( F M2(an+n2—n+2k))
Now recall that for X ~ I'(p,0), Y ~ I'(q,0) we have that X/(X +Y) ~ Beta(p, q).

We then start by finding bound on X and Y before turning to the Beta distribution. In

particular we compute P(X > NE(X)) and P(X < E(X)/N) for large N: First notice
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that E£(X) = pf and so an application of an exponential Chebyshev’s inequality with
0 =1 gives us

2\’ e P
P(X >pN) < (W) , and P(X <p/N)< (1—|—N)

Using these bounds we can find an upper bound on

X
P M<l
X+Y p N

with exponent (p A q).
When applied to our original setting, this bound is summable in &k (as n — oc0), and
moreover the resulting sum may be made as small as desired by increasing M. Therefore,

for any € > 0 we can choose M such that

1 n+ Kk
P(sup—- in >M)<€,
1<k<n Ck  Van +no —n + 2k

and so the k,, are tight.

For the tightness of the x!, we use the proof of Lemma 5 in [48]. That proof is a
reworking of the upper bound in the law of the iterated logarithm and the proof in this
situation proceeds with few changes. We note first that this section will again need to
be done in two cases. We make the following definitions which are analogous to the A7

defined in [49].

n—1

n 5 A 1+a J a j+ny—n
k=j
(3.19)

and
i1

Bl = Z [log (Sk+1/Cry1) — log <Sk/ék)] ¢ ;— ! log (‘Z) . (3.20)

]

k=j
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for ¢ € [rj,x;41). Here A? will be used in the case where ny/n — 7 < oo and the
associated T'(z) = % (log% + log ﬁ) In the case where ny > n the object of
interest will be B! with T'(z) = %log 2.

The changes noted above together with the following claim are sufficient to show the &/,

are tight.

Remark 3.11. The T'(x) as defined in the general theorem differs from the T'(x) defined

here by a constant. This omission 1s permissible because we always consider
C(1 4 T3 (x) + T**(y))
and so the difference may be absorbed by the constant term.

Claim 3.12. For all A > 0 sufficiently small (A < (5/2)[(a+ 1) A1] will do), if ne/n —

v < oo then

E[eM%] = exp {% [log (%) + log (ﬁ)} + @n(j)} (3.21)

With |©,(5)| < C for constant C' = C(a, 8,7). And if ng/n — o0

E[e*P5] = exp {% log (%) + @n(j)} (3.22)

With |©,(5)| < C for constant C' = C(a, ).

Proof of claim. We have the following products to consider: In the case where ny/n — v

we have

n— ~ A a a
E[eMe] = EH1 (Sk“)A (@) (—k+ 1>A( o (n2 ke 1)A - (3.23)
- Ok—i—l ~k k ng—n+k ’ ’

n—1 A/ AN\ 2(a+1)/2
n S, C kE+1
ElP = E ( ’“*1) —k <—) 3.24
] H Crs1 Sk k (3:24)

k=j
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Let’s start by considering the portion of (3.23) and (3.24) of the form

We use independence write this as a product of expectations, then by taking logarithms
we can consider each term of the resulting sum separately. For the k-th term this gives
us (log P)y = I + Ji where,
_ B A B
I, = logT E(nQ—n+k+1)+§ —logT §(n2—n+k+1)

+log1"(§(an+n2—n+k+1)—%> —logf(g(an+n2—n+k+1))

and

Jp = logD (g(an—i-k—l— 1) — %) —logT (g(an+k+1))

B, A g
+log’ (§k+ 5) —logT’ (519)

From the proof of Claim 10 in [48], we can conclude that

A2 Aa 1
Iy = ——1 1+ — 1/k?
T 2By —n+ k) 2 og( +n2—n+k>+o< /F)
and
A AMa+1) 1 )
Jk_Qﬁk}_ B 10g(1+E)+O(1/k} )

The remaining part of (3.23) gives a contribution of

Aa 1 AMa+1) 1
—1 1 1 1+—|.
2 og( +n2—n+k>+ 2 og( +k)

We then use that that

il//{; =logn +c+ O(1/2n)
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to establish the claim in the case where ny/n — . In the case where ny > n, we have
that I, = O(1/ng) and so may be folded into the constant term. Then the remaining

term in (3.24) gives a contribution of

AMa+1) 1
AT e (14 2

which establishes the claim in this case. O

VERIFYING ASSUMPTION 3

To show that the K¢ are Hilbert-Schmidt we have the following proposition:

Proposition 3.13. For any constant C' and a > —1, the integral operators on L?[0,1]

with kernels

VZyFy -1 (P — )

1iy<e
(2 +~v —1)71/2 (22 + yx — x)lat1)/2 {y<a}

ke (z,y) = Cexp [CT**(z) + CT¥*(y)]

where T'(x) = [‘13 <10g% + log —2 ) and

y—1+4x

kc(z,y) = Cexp [C(log(1/z))** + C(log(1/y))**] y*/2x~ @t V21,

are Hilbert-Schmidt.

S

Proof. For the operator with kernel k¢, the change of variable 2? + y& — 2 = ¢™* and

y? + vy —y = e~ gives the square of the Hilbert-Schmidt norm

1 1 o) o)
/ / ke (2, y)[Pdedy = CQ/ 62053/4“5/ 20t (0Dt gr .
0 0 0 s

Similarly for the operator with kernel ko (z,y) we can make the change of variables
xz=e¢ % and y = e ! to find the same double integral. This operator is finite if and only

if a > —1, so both operators are Hilbert-Schmidt. O
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VERIFYING ASSUMPTION 4
To show that the eigenvalues of (K K7)™! are simple with 0 < Ag < A} < --- 1 0
we make the following observations:

Observation 1: In the case where ny/n — v the spectral problem reads
1 1
F@) = MKTK (@) =3 [ bl [ k(w2 p ey (3.25)
0 0
Fa) )\/1 V2 +y—1 2y +v—1 / 2549 -1 "
xr)=—
v ( ’

7)o @Ay —a) PRy -y Bs(s+v—1)

N P | 25+ — 1
————db, dzdy.
< <z2+vz—1>—a/2“p<z Bs(s 7 1) )sz

With a bit of rearranging we find that for

(@ 4y —) a/Qex 2s+~v—1 .
g(x) = p( / )dbs> f(x),

V2 +v—1 Bs(s+~v—1

under the change of variables (z(z +~v —1),y(y +v—1),2(z +~v — 1)) — (vp,vq,7)

with h(p) = g(z) the previous equation reads
1 1 -
h(p) —)\/ re Vs (logl/T)h(r)/ g @tV va s D go gy (3.26)
0 pVvr

Observation 2: In the case where ny > n the spectral problem instead reads as

o= [ o [ 25) [ e (3 [ 25

We then take

o) = e (% [ 1 0 it

which again yields the equation

1 1 )
g(x) = )\/ 2% fb(logl/z)/ y_(““)e_%b(logUy)g(z)dydz. (3.27)
0 xVz
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Equations (3.26) and (3.27) are equivalent to the eigenvalue equation ¢ = A&z, ([48],
Proof of Theoreml). The simplicity of the eigenvalues of &z, and their ordering with

0 < Ao(f,a) < Ai(B,a) < --- 1 oo are discussed by Ramirez and Rider in [48].

We have showed that Theorem 3.5 applies to W, s and the spectrum of the limiting

operator is the same as that of &z ,. This completes the proof of Theorem 2.7.
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Chapter 4

Large Deviations for the Sineg

Process

Before the proof of the large deviation of the Sineg process we will first prove a similar
result for a simpler related process. This process arises as a limit of a related symmetric
random matrix ensemble. Let H, , be a random symmetric tridiagonal matrix with
entries equal to 1 above and below the diagonal and i.i.d. normals with mean zero and

. 2 .
variance 2- on the diagonal.

w; 1
1 wy 1
H,, = 1 - : w; ~ N(0,0°n™h). (4.1)
1
1 w,

The matrix H, , can be viewed as a one-dimensional discrete random Schrodinger op-
erator. In [43] it was shown that the bulk scaling limit of the spectrum of H, , (along
appropriate subsequences) is a point process with density (27)~! denoted by Sch,. (The
parameter 7 > 0 depends on ¢ and the point in the spectrum where we zoom in to take

the limit.) The process Sch, can be characterized via its counting function in a similar
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way to the Sineg process. Consider the following one-parameter family of SDEs:
dpy = Adt + dBy + Re [e ") (dBy +idB,)|,  ¢x(0) =0, t€[0,00) (4.2)
where By, By, By are independent standard Brownian motions. Then the random set
Ar o= {X: ¢rr (1) € 207}

has the same distribution as Sch.. Denote the counting function of the process by NT,
i.e. for A > 0 let N,(\) = #(Sch, N[0, A]). In [43] it was shown that N,()) is close to a
normal with mean % and a constant variance ;. In our next result we derive the large
deviation behavior of NT(/\), this is the analogue of Theorem 2.9 for the Sch, processes.
Theorem 4.1. Fix 7 > 0. The sequence of random variables %NT(A) satisfies a large
deviation principle with scale \* and rate function %ISch(') where Isen(p) = Z(2mp) and
forq >0

T() = 25" - fphs with = alg) = K~ (x/(20) (43)

and Z(0) =1/8.

The rate function Is.,(p) is strictly convex and locally quadratic at the absolute
minimum point p = 5-. (See Proposition B.1.) The local behavior of Is(p) at p = 5=
is formally consistent with the fact that N.(\) — % is close to a normal random variable
with a constant variance ;5.

The proofs of Theorems 2.9 and 4.1 will rely on path level large deviation principles
on the corresponding stochastic differential equations. These in turn will follow by

analyzing the hitting time of 27 for the diffusion

iy = Mdt + 2sin(@y/2)dB,  ax(0) =0, te[0,00). (4.4)
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Note, that for a fixed A the process a,(t) is equal in distribution to ¢,(t) — ¢o(t) from
(4.2).

In the next section we summarize some of the important properties of the SDEs
we work with, and state the needed path level large deviation results. In Section 4.2
we study diffusion a of (4.4) using the Cameron-Martin-Girsanov change of measure
technique. In Sections 4.3 and 4.4 we derive path level large deviations for the diffusions
ay and ay from (2.9) and (4.4). In Section 4.5 we analyze the rate functions for the
path level large deviations and in Section 4.6 we complete the proofs of Theorems 2.9
and 4.1. In the Appendix we will discuss various properties and asymptotics of the used

special functions.

4.1 Properties of the diffusions corresponding to Sineg

and Sch,

Our starting point is the observation that if A > 0 is fixed, then if the diffusion a
(defined in (4.4)) hits 2nm for n € Z, it will stay above it. This can be seen from the
fact that when a hits 2n7 the noise term vanishes, but the drift term is always positive.

Introduce the notations
|y ]or = max{27k : 210k < y}, [y]or = min{27k : 2wk > y}.

From the strong Markov property we immediately get the following proposition.

Proposition 4.2. Fiz X\ > 0. Then the process |ax(t)|ar is non-decreasing in t. More-

over, the waiting times between the jump times of this process are i.1.d. with the same
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distribution as the hitting time
T = inf{t : a,(t) > 27}. (4.5)

Consider the diffusions 62(;) and 62&2) which are strong solutions of the SDE (4.4), but
with initial conditions &g\l)(O) =c < &5\2) = co. Then a simple coupling argument shows
that &E\I)(t) < &5\2) (t) for all £ > 0. Our next proposition will build on this statement

using the strong Markov property.

Proposition 4.3. Let 0 = tg < t; <ty < --- < t, =T and fixr a A > 0. Consider

the solution ax(t) of (4.4) on [0,T). Then there exists independent random variables

1,8, ..., & so that
[&iJor < Lan(ti))or — [an(tic1)]or < [&i)or +2m, 1 <4 <, (4.6)
and &; is distributed as a\(t; — t;_1).

Proof. Let &;(s) be defined as the strong solution of (4.4) on [t;_1,t;] with initial con-
dition &;(t;—1) = 0 and let & = &;(t;). Clearly, &,1 < i < n are independent random
variables and & = ax(t; — t;_1), we just have to show that (4.6) holds. Fix an integer

1 <4 < n and define

a(s) = Gi(s) + aa(ticy) |ors  G2(8) = uls) + |@a(ticy) |ar + 27, 5 € [ti1, b,

Then a;, ag”, 62&2) are all strong solutions of (4.4) on [t;_1,t;] with initial conditions
alV(tisy) < antic) < aP(tisy) = alV(tiy) + 2.

The ordering is preserved by the coupling so we have

alV(t) < axty) < ad(t) = al(t) + 2m.
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2n(k+2) -

(k1) W

2k

In-1 Iy

Figure 4.2: The coupling of Proposition 4.3. The process a, is the diffusion in the middle, it is

sandwiched between 62&1) and &5\2) = &&1) + 27 which start at integer multiples of 27 at the beginning

of the coupling interval.

(See Figure 4.2 for an illustration.) From this we get

[@x(t) Jor — [@x(ti1)Jon = [En(t) 2r — [V (tim1) J2n

> (@ () o — 163 (tim1) Jon = (& 2ms

and

[@x(t) Jor — [@(ti1) Jon = [n(t)2r — [V (tim1) J2n

< (@2 (1) |2m — [ (ti1) |2m = [&i]2n + 27, O

We will also need another type of coupling for a slightly more general family of

diffusions. Consider the SDE

dép. = fdt + Re((e ®re —1)(dBy +idBy)), £&5.(0)=¢, t€[0,00) (4.7)
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where f is an integrable non-negative function. Note, that for fixed f, ¢ this process has

the same distribution as
d€s. = fdt +2sin(E;0/2)dB, Er.(0)=¢, te[0,00) (4.8)

The following properties of £; . follow from the basic theory of diffusions and standard

coupling arguments.

Proposition 4.4. (i) Let 1o, be the hitting time of 2mn, where 2wn > ¢ and n is an
integer. Then for any t > Tor, we have ¢ > 2mn. In particular, if ¢ > 0 then

Erc(t) stays non-negative for all t > 0.

(1) If f > g and &5, and &,y are driven by the same Brownian motions then {5, — &g
has the same distribution as {s—_gqa—p. If a > b then §rq—Eyp stays a.s. non-negative

for all t.

(11i) For any finite T we have the following exponential tail bound

T k
t)dt
P(&ro(T) = ka) <2 (M> , kel (4.9)
2ma
If [° f(t)dt < oo then & o(o0) = tlim Erc(t) exists a.s. and the previous bound
—o0

holds for T'= oo as well.

Sketch of the proof. The first statement follows from the strong Markov property and
the fact that in (4.8) the noise term vanishes if gf’C € 27nZ, but the drift is always
non-negative. The first part of (ii) follows by considering the difference of the SDEs
for £;.4, &, and noting that (e« — e~*st)(dB; + idBy) has the same distribution as
(e7"¢ra=%0) — 1)(dB; + idBsy). The second part of (ii) follows from the first statement.

Finally, (4.9) follows from the Markov inequality and the strong Markov property. The
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existence of the limit is proved in Proposition 9 of [54]. (See that proposition for more

details on the proof.) m
Our main theorems will follow from the following path level large deviations.

Theorem 4.5. Fiz > 0 and let a\(t) be the process defined in (2.8) or (2.9). Then
the sequence of rescaled processes (O‘*T(t),t € [0,00)) satisfies a large deviation principle
on C[0,00) with the uniform topology with scale \* and good rate function Jsines- The

rate function Jsine, 15 defined as

B
Zt

T

o

Jsmeg(g)Z/Ooof2(t)f(g'(t)/f(t))dt, with  §(t) = fs(t) =

in the case where g(0) = 0 and g is absolutely continuous with non-negative derivative

g'. In all other cases Jsines(g) is defined as oo.

Theorem 4.6. Fiz T > 0 and let a(t) be the process defined in (4.4). Then the sequence
of rescaled processes (&*T(t),t € [0,T) satisfies a large deviation principle on C[0,T] with

scale \* and good rate function Jsenr. The rate function is defined as

Tsenrlg) = / T(g(t)) dt

in the case where g(0) = 0 and g is absolutely continuous with non-negative derivative

g, and Jsenr(g) = oo in all other cases.

is close to % for large A

ax(®)
A

In order to prove Theorem 4.6 we observe that
and by Proposition 4.2 we only need to analyze the hitting time 7, to understand the
evolution of [@)(t)]2r. The proof of Theorem 4.5 will follow along similar lines after

approximating the drift in (2.8) with a piecewise constant function.
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4.2 Analysis of the hitting time 7,

The following proposition summarizes our bounds on the relevant hitting times.

Proposition 4.7. Let 7\ = inf{t : a,(t) > 2w} where ay is the solution of (4.4) and fix
a < 1. Then we have

A%a ajN\y/|a
- 21 "X

Ee's ™ < e M@, (4.10)

Let t, = 4K(a) and fixr 0 < e < |t, — 2m|. Then we have

atq

PO € [t — &, 10 + €]) > A(e, A, @)e MH@O+FH-MEE A (tate) (4.11)

where lim A(e, \,a) =1 for fized a,¢.

A—00

Our first step is a change of variables in (4.4). We introduce X, (t) = log(tan(a,(t)/4)),

by It6’s formula this satisfies the SDE
A 1
dX)\ = §COShX)\ dt—l—étanhX)\ dt+dBt, X)\(O) = —OQ. (412)

The distribution of the hitting time of 27 for a,(¢) is the same as that of the hitting
time of oo for X,. With a small abuse of notation from now on we will use the notation
7 for the blow-up time of X, (), i.e. 7\ = sup{t : X)\(t) < oo}. In order to study 7, we

will introduce a similar diffusion with a modified drift. Let ¢ < 1 and consider

A 1
Yya =5 [cosh® Yy, — a dt + 5 tanh Yy odt +dB,, Yi.0(0) = —00. (4.13)

To prove Proposition 4.7 we will choose an appropriate a and compare X, with the diffu-
sion Y), , using the Cameron-Martin-Girsanov formula. Introduce the following notations

for the drifts:

1 1
rZ) = = coshx + = tanh z, raly) = =r/cosh®y —a + = tanhy.
f ; h 5 h ha, ; h? 5 h
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Note, that we have the uniform bound
[/a(@) = haa(2)] < 3A[al. (4.14)
The following proposition will be our main tool for our estimates.

Proposition 4.8. Fiz a < 1 and consider X = Xy and Y = Y,,. Denote by 7\ and

Ty,x the blowup times of X and Y. Then for any s > 0 we have
P(Amy > s) = E [1(Ary, > s)e @] (4.15)
and where T denotes the explosion of the appropriate diffusion to infinity
1= Ee™%nem) = Belraem ), (4.16)

where

G.(X) = [ maa(X(0) = AXO)X = 5 [ (1,06 - FO)ar

Proof. This is just the Cameron-Martin-Girsanov formula for diffusions with explosion.
Note, that because of (4.14) the process e“™+(X) satisfies the Novikov criterion and it is

a positive martingale. From this the usual steps of the proof can be completed (see e.g.

[39], [38]). O

Proof of Proposition 4.7. We first estimate the Girsanov exponent

A S
Gy(X)=2 [ (Vcosh? X —a — cosh X)dX
2 Jo
NI LI .
— = ——a+ —(Vcosh®” X —a — cosh X) tanh X | dt.
0

2 4 2
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Applying It6’s formula for 8(X) = hy o(X)— fA(X) we have that f(f 0(X)dX = f;(ot O(x)dx—
3 [ 0'(X)dt. This gives us

)\2 )\ Xs
G4(X) = ?as + 5/ (v cosh® z — a — cosh z)dx

A [P a tanh Vcosh? X — a — cosh X

4 Jo \/coshZX—a \/coshQX—a—i-coshX

+ ds.

Note, that

1 w/2
—/(\/cosh2m—a—coshx)dx:—/ - ——dy
2 Jr o 14++/1—asin’y

= (1 - a)K(a) = E(a) = H(a),

where this last equality can be seen by differentiating both sides with respect to a and

checking equality at a = 0. It is not hard to check that

a tanh \Y% cosh? X —a—cosh X < atanh z < / f 1
\/cosh2 X—a \/coshQX—a+coshX - \/cosh2 z—a| ’CL| A |a|’ or a<
uniformly in #. The upper bound |a| follows from /cosh®’z — a > |sinh |, while the
bound +/|a| requires the optimization of the function \Iale/Ti ”Z:Z for y > 1. This gives the
bound
Nar AT (la] A +/|al)
G (X) — 3 — M(a)| < 1 : (4.17)

To get the exponential moment bound (4.10) we use 1 = Ee%s/A&X) from (4.16). We

let s — o0, use Fatou’s lemma and (4.17) to get

>‘2“T+)\’H(a)— A(‘“Mﬁ)"’

1> Ee% X > Be’s (4.18)

Rearranging the terms we get (4.10).
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To prove the lower bound (4.11) we write

P()\T)\ € (ta—E,ta+€)) :P()\TY,/\ >ta—€)—P<)\Ty7)\ >ta+€)

[1(A Ty >t — £)e Grnta-anM] — B [1(A1yp > to + €)e” Crrtatan®)]

E
E[1(Mya € (to — &ty + £))e” Frrttatan(¥)]
E

= E[1(A\ty € (ta — e, ta +¢))e "M, (4.19)
where we used the fact that e=¢¢(Y) is martingale in the third line. Because of (4.17)
we have
A2 A
G (V) < 28 L MH(a) + |Z|T, (4.20)

and we can bound the last expectation as

20,7 ajT
B [1(Arva € (ta = & ta +€)e™ 0] 2 B [1(Ary € (ta — &, + 2))e 70

_ Aa(tgke) 7)\H(a)7 )\\a\(fla+a)

> Py € (ta —e,ta+¢€))e” 8 I

where we choose the sign of ¢ in ¢, £ ¢ the same way as the sign of a.

If we can show that lim P(A1y, € (to —&,ts +¢)) = 1 for fixed a and ¢ then this

A—00

will complete the proof of (4.11). Note, that Y (£) := Y3 .(t/)) satisfies the SDE

~ 1 1 ~ 1 ~
dy = 5\/cosh2 Y —adt + o tanh Yt + ﬁdBt, Y (0) = —oo.

As \ — o0, the strong solution of this SDE converges a.s. to the solution of the ODE

1
y = 5\/cosh2y —a, y(0)=—o0.

This ODE is can be solved and the solutions satisfies f;yg ——2___dx =t. This shows

vV cosh? z—a

that y explodes exactly at

| oK@ =t

~ v/ cosh’z — a
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This shows that Alim P(A1y ) € (t, —¢e,t, +¢)) = 1 for fixed a and ¢ and this completes
—00

the proof of the proposition. m

We can use the tail estimates of 7, to estimate the tail probabilities of a,(t) for a

fixed t. Recall the definition of Z(-) from (4.3).
Lemma 4.9. There exist a constant ¢ so that for A > 2 we have

P([ax(t)]ar > qtA) if g > 1,
o NHI(@)FAHD)(Z(@)+1) > (4.21)

P(lax(t)]2r < qtA) if 0<q<1.

Moreover, there are absolute constants cy,c1 so that if gt\,q and Aqlogq are all bigger

than ¢y then
P([@x(1)]ar > qtA) < em X0 080, (4.22)
Proof. Introduce the hitting times
7 = inf{t > 0: a\(t) > 2n7}. (4.23)

Then by Proposition 4.2 the random variables 7 = 7 — 7(»=1) are ii.d. with the

same distribution as 7. Applying the exponential Markov inequality we get

Fath/ ()]
P(l@(t)2r < qt)) = P( Yo > t) < (BeAm)lmVEIT —ar (4.24)
=1

with any A > 0. Suppose first that ¢ < 1 which also implies a = a(q) = K '(7/(2q)) €

(0,1). By choosing

A=2"_2"7 (4.25)
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we have A > 0 if A > 2 and from (4.10) we have EeA™ < e*(®) Together with (4.24)

this gives

P(ax(1) < gtX) < e H@Tay/@n]-(5e+ 2

t
< 67%7{((1)7(%+%)t+xm(a)| _ ‘*2‘51(‘1)“(%“”(“)')

e (4.26)

where we used the definitions (4.3) and (2.11).

For the ¢ > 1 case we use the same steps. Here a = K~(7/(2¢)) < 0 and A defined
in (4.25) is negative which is exactly what we need for the exponential Markov inequality.
Eventually we get

P([@r(£)]an > gAE) < e XH@LaA/(Gm)]= (52

la]

—>\2tI(q)+>\(Tt+|H(a)|>.

_gt\? H(a),(ﬁf%)ﬂrMH(aﬂ —

<e o 8 e (4.27)
By Lemma B.3 in the Appendix there is a constant ¢ so that
H(a(q)) + flal@)lt < c(t +1)(Z(q) +1), (4.28)

for all ¢,¢ > 0 which means that we can replace the upper bounds in (4.26) and (4.27)
with e MZ@+Ae(t+D)(Z(@+) - Thig proves the first part of Lemma 4.9.

For the second part we repeat the same steps as in the ¢ > 1 case, but now use

Ao Na  M/]a
=5 -

8
This gives

A lal

P([ar(t)]ar > gMt) < e—AH(a)thA/(zw)J—%H Jlely

By Proposition B.2 of the Appendix if ¢ is large enough then a = K~'(7/(2q)) >

cq?log? ¢ with some positive constant ¢. If —aX and gtA are big enough (which can be
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achieved by choosing ¢y big enough), we will have

2 A 11 N2
_Na_ Aviel 1L Xa

lgtA/(2m)] > %qt)\/(%r), . . Ly

Then

—AH(a)[gtA/(2m)] — I %at + IA/Jalt < =2\t (SH(a )2i

+

18)
9E(a)
30 40K(a) 40)

< —co\tg? log? q.

with a positive constant ¢y, where in the last step we again used the asymptotics given

in Proposition B.2 together with (B.5). This completes the proof of (4.22). O

4.3 The path deviation for the o), process

In this section we will prove Theorem 4.6. In order to show the large deviation principle

we need that

ax(+)

lim inf iP (

A—00 )\2

S G) > 11612 Jsenr(9), for any open set G C C[0, 71,
g

hin_}Solip; P (&\)\(') c K) < glél}f{ Tsenr(9), for any closed set K C C[0,T].
The fact that Jser(g) is a good rate function will be proved in Proposition 4.13 of
Section 4.5.

We will use the fact that Z(z) is strictly convex on (0, 00) with a global minimum at

Z(1) =0, and also that there is a constant ¢ > 0 so that

T
< Lﬂ <e¢,  forallz > 2. (4.29)
x?log” x

These statements will be proved in Propositions B.1 and B.2 of the Appendix.
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Proof of the large deviations upper bound in Theorem 4.6. We will follow the standard

strategy for proving path level large deviations. Consider a closed subset K of C|0,T].

We need to bound P(5a,(+) € K). Define the 6-‘fattening’ of K as
K :={fe€C0,T):|f—g| <6 for some g € K}. (4.30)

From now on || - || denotes the sup-norm on the appropriate interval.

Let 7x be the following projection of C[0, 7] to piecewise linear paths:
(rnf)(WT/N) = | f(GT/N) |2, 0<i<N (4.31)
and 7y f is defined linearly between these points. Then
P(ax/X € K) < P(||ay — mndn|| > 6A) + P(rn(3ay) € K°). (4.32)

We will bound the two probabilities in (4.32) separately.

The first term can be rewritten as

Plllay — iy > 0N = P(max sup  |mnvan(t) —an(t)| > 5/\). (4.33)

te[ T A

By Proposition 4.2 the process |a@,(t) ]2, is non-decreasing. Thus for any fixed k& we have

sup  |mnan(t) — an(t)| < [ax((k + )T /N)Jar — [an(KT/N) | 2r.

te[E DT AT
By Proposition 4.3 the term on the right is stochastically dominated by a)(T'/N) + 4x

therefore
1
P(||ay — mnan]| = 0A) < NP(a)(T/N) +4m > 6)\) < NP (X&A(T/N) > g) (4.34)
where the last bound holds if A > 87/d. Using Lemma 4.9 we get

NP (l&w/zv) > é) < Ne 2P/ AT #rer (T/N-1)
A —2)
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and this leads to

hm sup

A

IN
5 log P(||ay — myan]] = 0N) < _NI (2T) (4.35)

Note, that for fixed 6 and 7" as N — oo the right hand side converges to —oo by (4.29).

The second term on the right side of (4.32) can be bounded as
P(rn(@/N) e K°) <P (jsch,T(WN(a,\/)\)) > gg& chh,T(g)) :
g9
We introduce
~ N . .
Aa; = T (la(iT/N)|or — a((i — 1)T/N)|2r), for1<i< N
and Cs = inf jc g5 Jsen,r(g). Then we have to bound

P(jschj(ﬂ']v(&,\/)\)) > 05 (Z I A()él) > C(;) (436)

1=1

We can apply Proposition 4.3 with t; = %, 1 <17 < N to get independent random
variables & with & = a@,(T/N) and

%L&J% < AG; < % ([il2r +2m).

Because of the convexity of Z(-) we then have

T (A&;) < max (I (NL&-J%) 7z (NLQJQ,r N QWN))

AT AT AT
2N NszJ 21t 2N
< -/
< (1+ )\T)I( T )+C/\T

where we used Lemma B.4 of the Appendix for the last bound. Fix 1/2 > ¢ > 0. Using

the exponential Markov inequality, the independence of & and & = @, (T /N) we get the
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bound

=1

N - N
P (Z %I (A&Z) Z C5> S <E€(1—26))\2]7\;((1+%V)I<W>+C%V)) e—(1—2a)/\205

IN

_ N
L&) (T/N)Jax
(1—e)2Zz(X 1-26)e2m AN —(1—2€)A2C,
(Ee N ( AT ) 6( Je2m ( ) 57

(4.37)

where the second inequality holds for fixed e, N,T if A is big enough. Our next step

(178))\2%Z<NLa)\(T/N)J27T

is to estimate the exponential moment FEe AT ) for a fixed ¢ > 0. By

Lemma 4.10 below if N, T, ¢ are fixed then

1 _oN2 L Nax(@/N) o
limsupﬁlogEe(1 s)AzNI( St 2)

A—00

Using this with (4.37) we get

N
1 T ~
lim sup ﬁlogP ( E NI(AO@) > C§> < —(1 —2¢)Cs. (4.38)
i=1

A—00

Now we let ¢ — 0 and then N — oo. The bounds (4.35), (4.38) with (4.32) give

1 ~
lim sup plog PO'ay() € K) < — inf Tsenr(9)- (4.39)

A—00 geK

Using the fact that Jsen7 is a good rate function (which is proved in Proposition 4.13
of Section 4.5) we get that the right hand side converges to —infyex Jsen,r(g) as 6 — 0.

(See e.g. Lemma 4.1.6 from [14].) This finishes the proof of the lower bound. O
Now we will prove the missing estimate for the lower bound.

Lemma 4.10. Fizt >0 and 1> ¢ > 0. Then

1 - Lax®lon
limsupﬁlogEe(1 6)’\2tI( e ) <

A—00
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Proof. Introduce the temporary notation G(z) = A\?tZ (z). This is a convex function

with G(1) = 0 as its minimum. Then we have

Fel- V() e o / (1= ) ()19 PGy (1) s < M)
0
+ /00(1 — )G (2)e @ P(|ax(t) |or > Mz)d.
1
Using Lemma 4.9 we get
P(lax(t)]2r < Atz) < exp{ — (1= AN M1 +t))G(x) + Aey(t + 1)}

for < 1 and a similar bound for P(|ay(t)]2x > Mz) < P([ax(t)]ex > Atx) for x > 1.

This gives us

a 1
Ee(l_gwﬂ( Axi”) <2 _/ (1-— g)G/(I>€((1+t_1)(01/)\)75)G(33)+)\Cl(t+1)d$
0
+ /00(1 _ g)Gl(x)e((Ht*l)(cl/A)—e)G(m)+/\c1(t+1)dx
1

§2 + 48—16)\61(t+1)

where the last inequality holds if (1 +¢71)e; /A < /2, i.e. for large enough . From this

the lemma follows. O

Now we turn to the lower bound proof in the large deviation result of Theorem 4.6.
As we will see, we will be able to reduce the problem to studying the probability of

1+, (t) being close to a straight line.

Proposition 4.11. Fix ¢ > 0 and T, > 0. Then

1
lim lim inf - log P(@(t) € [\(gt — €), \(gt +€)], # € [0,T]) > ~TZ(q).
E— —00
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Proof. As ¢ > 0 we may assume ¢ < ¢7'/2 by choosing € small enough. Let N =

[(gT+e) M 2x

5 which satisfies £; < =& for A > 2. Recall the

, and choose ¢; = 5N

2q(t;TTE+€)’
definition of 7\ and 7" from (4.23). We will prove that
P(a(t) € [A(gt — ), AMgt + )], t € [0,T])

ZP()\?A(R)E(27”—81,2?”+51),1§k§]\f>.

Roughly speaking, this will follow from the simple fact that if we are within /¢ of the
line y = gt in the horizontal direction, then we are within ¢ in the vertical direction. If

AP > 2 o for 1< k< N then Ar{Y > B(2 — <)) and

2 k
~ k (27 _ 2
A (X (7 B 61)) S 2km = )\27T/q —e A (7 B 61)

for 1 < k < N. Together with the fact that |a, |2, is non-decreasing we get that

2T

ay(t) <K \—m—mmm
ax(t) 2 /q — &1

(t+5@2m/q —e1)), fortS%(%”—el).

This inequality implies a)(t) < (gt +¢), for t < T, Ae > 4.

The other direction is similar, if we have )\?)(\k) < 27” + ey for 1 <k < N then

2 k
~ k (2w _ 2
a (3 (5 +a)) 26 =agmm S ()

which implies

2

o1 or < ¥ (2 42).
21 /q+ &1 (t—1@2n/q+e1)), ort <5 (T +e

ax(t) >\
and a,(t) > A(qt — ¢) for t <T. Using the independence of ?)(\k) we get the bound

P(a(t) € [Mgt —€), Nqt +¢)],t € [0,T]) > P (A?@ € (e, T+ 51)>N. (4.40)
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By the lower bound (4.11) we have

log P(a(t) € [A(gt —e), AM(qt +¢)],t € [0,T])

AT + 2 2w\ A
> M2 (207 A, aenjg ) +los Al v )
27 q 8
Recalling ¢ = WTE%) we get
1
lim lim inf — log P(a(t) € [A(gt —€), Mgt +¢€)],t € [0,T]) > =TZ(q). O
e=0 A—oo A2

Proof of the lower bound in Theorem 4.6. Let G be an open subset of C[0,T]. We would

like to show that

1 T
. > !

11)I\r_1>£f 3z log P()\ A €G) > ;gg/o Z(g'(t)) dt. (4.41)
For this it is enough to prove that for any g € G with fo '(t)) dt < 0o and 6 > 0 we
have

| 1_ T

liminf = log P(~an(-) € G) > — [ Z(¢'(t))dt —o. (4.42)

Ao A2 A 0

We can approximate g with a piecewise linear function ¢ in the sup-norm so that we
have | fOTI (g..(t) fo ))dt| < §. Because of this we may assume that g is
piecewise linear, moreover, we may assume that there are no horizontal segments in g.
Suppose that g is linear with slope ¢; on the interval [T}, T;,1] with 0 < i < k — 1 and

0=Ty<Ty <---<Tp=T. We claim that if A > A\o(e, k) then
1. 1 - .
PUSEE) = 901 <22 P (I5@(0 - G(T) - alt — T < e/k. it € [1.Tr])
k—1 1
> [T7 (1580 -l < e/(28), for 1€ 0701 - 7]

(4.43)
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The first inequality is straightforward, to prove the second we use the coupling in
the proof of Proposition 4.3. Recall the definition of the processes &;(s) defined on
[ti_1,t;]. These were independent for different values of i and the process &;(s+1t;_1),s €

[0,¢; — t;—1] had the same distribution as a,(s), s € [0,¢; — t;_1]. We also had

Gi(s) + [ar(ti-1)]or < an(s) < Gils) + [Qr(tiz1)]or + 27

for s € [t;i_1,t;]. By choosing A > Ao = 4rwk/e the inequality (4.43) follows by the
independent increment property of the Brownian motion.

By Proposition 4.11 we have the bound

k-1 T
L 1.
lim lim inf 55 log P(|[<0a(1) = g()l <€) > = ) (Tis1 — T)Z(a:) = —/ Z(g'(t))dt
e—=0 A—oo A 0 0

from which (4.42) and thus the proof of the lower bound follows. O

4.4 The path deviation for the Sines process

This section contains the proof of Theorem 4.5. The strategy for the proof is to approx-
imate the SDE (2.9) with a version where the drift is piecewise constant and then use
elements of the proof of Theorem 4.6. Just as in the proof of Theorem 4.6, we need to
show an upper and a lower bound to prove the large deviation principle. The fact that

Jsines 18 a good rate function will be proved in Proposition 4.13 of Section 4.5.

Proof of the upper bound in Theorem 4.5. For the proof of the upper bound we go through
a series of approximations: we essentially cut of the tail of the process, then replace the
drift in the SDE with a piecewise constant version and then approximate the process

with a piecewise linear version. Recall that «,(t) solves the SDE (2.8) and that we
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B

introduced the notation f(t) = §e4t. Fix T > 0, the value of which will go to infinity

later. The first approximating process is defined as
(1) = an()1(t < T) + (an(T) + (e 3T — e 5)1(t > T),

this solves the SDE (2.8) with the noise ‘turned off” at ¢ = 7. For the second process

we define
fn(t) =f(Ti/N), te[Ti/N,T(i+1)/N) (4.44)
and consider the solution &y, of (4.7) with drift A\fy and initial condition 0. Let
a0 (1) = Exy (D1 < T) + &y (T) + Me 1T — e )1t > T).

Finally, let 7,y is the projection defined in (4.31) with intervals of size T/M N, that is

mun [ is the piecewise linear path that satisfies

(T f)(Ti/ (MN)) = [f(Ti/(MN)) ],

and is linear between these values. Define
B _B
ol (1) = Ty (D1(E < T) + (maanapy (T) + Me™ 1T — e $))1(t > 7).

Then for any closed set K C C[0, 00) we have that

(3)
P (% e K) < P(O% e K35) + P([lal) — aylle = 6A)

2 1 3 2
+ P(lJal — ol = 60) + P([ 0l — a|lw > 6N),
(4.45)

where K is defined similarly to (4.30), as the 36-fattening of K. We will begin with

the main term. Let

In(g) = /0 TROT ( ng%) dt,
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and define (similarly to the @, case in the proof of Theorem 4.6)

Ao, = % (|0 (Ti/(MN))Jax — [T —1)/(MN))|os) , for 1 <i < M.
Then,

(3)
P 36 P :
P( ek >§P<.7N( 3 ) Egéfll(f?,&jN(g)>

b ( Z TGN(TZ%WN)))?I(A%) > gg{i;é jN(g)) .

Take @; to solve (4.4) but with the Brownian motion B(t+ 1%/(MN)) — B(Ti/(MN))
and \; = My (T%i/(MN)). Then using the same arguments as in the bound (4.37) we
get

(3) MN a; y
P(% c Kga) < o—(1=eN3Csn H Ee(l—s))\?%((l—k%ﬂ{]\r)z(t a2 )+ 2240 )
3 <
=1

where Csn = inf e gss Jn(g). Using the bound proved in Lemma 4.10 we get that

)
1
lim sup 1 log P(O% e K35> < —(1—)Csn (4.46)
A—00

We now turn to the first error term. Using the fact that |, ]2, is non-decreasing (which

follows from (i) of Proposition 4.4) we get that
(1) By
lox” = axll < ax(o0) = ax(T) + Ae 47,

where a(00) is the limit of ) (t) as t — co. Choose T' large enough so that e T < 4/2.

Then

P([laf = axl| = 8)) < P(ax(o0) — an(T) > 6)/2)
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We will deal with this tail probability in Proposition 4.12 below. In particular, we will

show that there is a constant ¢; > 0 so that

1
5 log P(HOzA — || >0\ < =, T2 (4.47)

hrn sup 3

For the second error term we first note that Hagz) - af\l)H = SUDyse(o.7 |Oé§\2) (t) — ag\l) ()]

Using the coupling of Proposition 4.4 we can show that on [0, T the process ozg?) — ag\l)
will have the same distribution as the solution of the SDE (4.7) with initial condition 0
and drift A(fy — f) > 0. Moreover, this process will be non-negative (because the drift
is non-negative), and since A(fy(t) — f(t)) < )\% for t € [0,T], it will be bounded by
the solution of the SDE (4.7) with a constant drift A\2L. Because of this ||a§2) - Ozf\l)H is
stochastically bounded by sup;cpo 1 aA%(t> < akg_T(T) + 27 with @, from (4.4, using

aN
the fact that [@,(t)]2- is non-decreasing. Thus for 6\ > 47 we have

P([laf?” = af|| = 6X) < P(@ g1 (T) = §6N).

N[ =

A

=3

If N and T are fixed then if A is big enough then we can apply Lemma 4.9 for the right
1

hand side with A = )\fﬁ, t="T and q = 6; = %‘E_F]\Qf This leads to
T)\m
li Ly P(llal? — o] > o)) < BT (2N (4.48)
imsup — lo oy — o ) )
A Tl R e N2\ BT
For the third error term we first note that
laf? — ol < sup [o(t) — ol (1) <max  sup |l (t) — oD (1),
te[0,7] U t€[Ti/N,T(i+1)/N]

and thus

N—

P(||ozg\3) )|| >0\ < P sup |ag\3)(t) — ag\Q)(t)| >0\ ).
— te[Ti/N,T(i+1)/N]

,_\
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In the interval [Ti/N,T(i + 1)/N] the process aE\Q) solves the SDE (4.4) with constant
drift M (7Ti/N). Here we can use the same steps that we used in the proof of Theorem

4.6 between (4.33) and (4.34) to get

N—-1
P(lla? = Il = 00) < 3~ MP (Gsy(rogw) (T/(MN)) = 67/2)

i=1

< MNP (dgA(T/(MN)) > 5>\/2>

for A big enough compared to 6. For large enough A we can apply Lemma 4.9 for the

right hand side with A = g)\, t=T/(MN) and q = 25MN to get

: 1 ®_ @ g T 200N
| L p B > < _2 T ) 4.4
msup 35 loe P(lof” — o 2 83) < 5 o7 (257 Y
Now taking (4.45) with the bounds (4.46), (4.47), (4.48) and (4.49) we get
“iﬂi‘jpv log P (T . K) (4.50)
< max{ (1 —¢e)Csn, —crT6, 42N27\ BT? ) 42 MN T

Taking N to oo the last two terms go to —oo (using the bounds (4.29)) while the first

term converges to (1 —)C! with

~ inf / PO (g/(8)/5(1)) dt

geK?3d

Letting now 7" — oo and then ¢ — 0 we get

hmsup)\ logP(— € K) < — inf jSlneﬁ( )-

A—00 A geK?3d
Finally taking 6 — 0 and using the fact that Jsine, is a good rate function gives the
result

lim sup —

m s e lOgP(— € K) < - 1nf jSlneB( )

A
This completes the proof of the lower bound. O
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We now prove the tail bound for the proof of the lower bound.

Proposition 4.12. Fix T, > 0, then there is a constant ¢ > 0 so that

hmsup e log P(ax(00) — ax(T) > 6)) < —cT'6>. (4.51)

A—00

Proof of Proposition 4.12. Take v = 1/8, and set Ty, = WQT where the value of 6 > 0

will be specified later. Then we can break up the probability in question as

[2VA]
P(ax(00) = ax(T) 2 6X) < > Plaa(Tig) — an(Ti) = Sawk™ )

k=1

+ Plax(00) = an(Tay5)40) 2 0A/2). (4.52)

Note, that for any fixed s > 0 the process a;(t) = a,(s+1t) satisfies the SDE (2.9) with
“ B

A = Ae 47 with initial condition a,(s). Using the coupling techniques of Propositions
4.3 and 4.4 one can show that @\ (t) — @s.(0) = ax(s +t) — aa(s) is stochastically

dominated by a5 + 2. This (together with Ty — T, = 6(k 4 1)T) gives

P(Oé)\<Tk+1) — Oé)\(Tk) 6)\l/k (1+v) ) < P(Oé)\]t (T) (Q(k -+ 1)T) 5)\1/]€7(1+V) — 27T)

< PGy (0(k + 1)T) > Sk~ )

where the last bound follows for big enough A from k& < 2v/X. We can use bound (4.22)

of Lemma 4.9 for the probability on the right with A = M(T}), t = 6(k + 1)T and

Svk—(+v)

4 = ST since with these choices th\, q and S\q log q are all big, if we choose

0 > 0 small enough and then A big enough. This leads to
P(axicr, (T) 25wk~ )

<e e &2 224 g Yk + 1) og? Gk~
X —Clg2
P\ 7aw & \ 80k + )T(Ty)

2
S exp (—6252)\2k—3—2VT_1 (03 + gT@) ) S exp (_64)\2627‘1]{;1—21/) ’
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with a positive constant ¢s, which in turn implies (for large enough \)

12V
Z P(ax(Txs1) — ax(Ty) > g)\uk_(p“”)) < 2exp (—caA?0°T) . (4.53)
k=1

Lastly we bound the remaining term using Proposition 4.4:
b\ LMV
P(a(oo) = a(TA) 2 6A/2) = P(&xyry(00) = [6A/2]) <2 <€ 4 ) ;
which together with (4.52) and (4.53) gives us the necessary upper bound for (4.51). O

Proof of the lower bound in Theorem 4.5. We will show that if g € C[0, c0) with Jsine, (9) <

oo then

lim lim inf 55 log P(|A""ax(-) — g()I| <€) = —Tsine, (9)- (4.54)

e—=0 A—o0
From this the lower bound will follow.
In Proposition 4.13 of the Appendix we will prove that if Jsine, (9) < 00 then g(oo) =

lim g(t) < oo exists. Let ¢ > 0 and choose T" > 0 so that

t—o00

g(oo) —g(T) <¢e/2, and e_gT <e/d. (4.55)

From the first assumption in (4.55) and the Markov property we have

P(IA" an(t) — g(t)] < e,t > 0)
> P(IA " an(t) — g(t)] < e/2,t € [0,T], an(00) — an(T)] < Ae/4) (4.56)
> P(|A" aa(t) — g(8)] < e/2,t € [0,T]) sup Pax(00) — ax(T) < Ae/4|an(T) = x).

Using the same line of reasoning as in the proof of Proposition 4.12 (see after (4.52)) we

8
get that with Ay = Ae” 47 we have

P(ay(00) — ax(T) < Xe/4|ay(T) = x)

> P(an,.(00) < Aef4d —2m) > Py, (00) < Ae/8),
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where the second inequality follows if A is big enough compared to €. Now we can use

part (iii) of Proposition 4.4 with f(t) = Arf(t), k = 1 and a = \e/8 to get

8\ 2
P(ay, (00) < Ae/8) =1 — P(ay, (00) > Ae/8) > 1 — 227T)\T€ >1-7,

where the last step follows from the second assumption of (4.55).

Using this with (4.56) we get that

1
liminf — log P(|IA\ "t (t) — g(t)] < &, > 0)
A—oo A2

1
> liminf — log P(|\ () — g(t)] < e/2,t € [0,T)),
A—oo A2

and it is enough to estimate the right hand side. We do this by introducing the process
En(t) on [0,7] which is a solution of the SDE (4.7) with initial condition 0 and the
piecewise constant drift function A\fy where fy is defined as in (4.44). From Proposition
4.4 we have that oy (£) < En(t) and Ex(t) = En(t) — o (t) satisfies SDE (4.8) with initial

condition 0 and drift A(fx(t) — §(¢)). We have

PN tan(t) — g(t)] < /2, € [0,T]) >P(N"‘ex(t) — g(t)] < /4.t € [0,T])  (4.57)

= p( sup lew() = an(0] 2 e/ ).

tel0,7
The second term on the right may be bounded in the same manner as (4.48). this gives

us

] B2T3 [ eN
I; —log P t) —ax(t)| > Ne/4) < — I\ 5 -
imsup v log (tg[%% [En(t) — an(t)] = Ae/ ) S TN (BTZ)

Note, that as N — oo the right hand side converges to —oo.

The only thing left is to estimate the first term on the right of (4.57). Introduce the
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notation t; = Tﬁk We start with the bound

log P(IA™"€x(t) — g(t)] < /4,1 € [0, T1)
> PN (En(s +tk) = En(te)) — (9(s + te) — g(te))| < e/(4N), s € [0, T/N]).
For any fixed k the process {n(s + tx),s € [0,7/N] satisfies the SDE (4.8) with ini-

tial condition £y (tx) and a constant drift Afy(¢x). Using the coupling in the proof of

Proposition 4.3 we can construct independent processes ay(t),t € [0,7'/N] so that
&k(s) — 27 < fN(S + tk) - &V(tk) < &k(t) + 271', s € [O,T/N]

and ay(t),t € [0,7/N] has the same distribution as aus, ,)(t),t € [0,7/N]. From this
it immediately follows that
liminf ; log P(I\€n(1) — g(0)] < /4.t € 0.7)
—00
N-1

> 3 liminf 5 1og P(A Gy 0(5) — (95 + ) — g(t))] < ¢/(8N), s € [0,T/N]).
k=0

From our path level large deviation lower bound on o we get
lim inf 55 log P(IA™ @y, (5) = (9(s + 1) — g(te))| < /(4N), s € [0, T/N])

T/N

2 = inf t2/ Z(fn(te) '3 (tx + 5))ds.

B |§(5)—9(S)\<e/(8N)fN(k) 0 (F (k)™ g (t )
s€[tthy1]

This yields the estimate
lim inf L log P(IA " an(t) — g(t)| < e/4,t €[0,T))
—00

T
> - inf 27515 (5))ds.
B 5)—Q(S)<6/(8N)7/0 fn(s)"Z(fy 9'(s))

3(
s€[0,7

Letting N — oo the lower bound converges to — fOT f(s)*Z(§7(s)g'(s))ds which (together

with our previous estimates) shows that

liminf 5 log P ax(f) — g(1)| < <, > 0) > ~ / H(s)Z(5"(s)g'(s))ds.
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Letting ¢ — 0 we also have T" = T. — oo which yields the bound (4.54) and concludes

the proof of the lower bound in the large deviation principle. m

4.5 Jschr and jSineﬁ are good rate functions

In this section we will show that Jscn7 and Jsine, are good rate functions. Our main

tools are the bound (4.29) and the estimate
I(z) > cr(w —1)%, ifx>0 (4.58)
both of which will be proved in Proposition (B.2) of the Appendix.

Proposition 4.13. The functions Jsine, () and Jsen,r(+) are both good rate functions on
the spaces C[0,00) and C[0, T respectively. Moreover, if g € C[0,00) and Jsine;(g) < 00

then lim g(t) is finite.
t—»00

Proof. Fix T > 0 and r > 0. In order to prove that K, = {g : Jsenr(-) < r} is compact
we first show the equicontinuity of this set. Suppose that g € K,. Then ¢(0) = 0 and
g'(x) > 0 exists a.e. in [0,7]. We have for 0 <z <y <T

y
)—1)d

l9(z) —g(y) — (z —y)| =

< —xl/z\// s) —1)%ds
)Y

2 [ T < ety - o

T

<cly -

where we used (4.58) in the second step. This shows that K, is equicontinuous. Using
Tonelli’s semicontinuity theorem (e.g. Theorem 3.5, [9]) the compactness of K, now

follows.
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The proof for Jsine, (+) is bit more involved. Fix # > 0. It is convenient to transform
the interval [0, 00) into [0, 1) using the function y = 1 — e #/%. Then for a g € C[0, c0)

with Jsines(g) < 00 we have
oo 1
Fanels) = [ FOTGOF Ot =5 [ 1= )2 )
where §(y) = g(—%log(l —y)), § € C[0,1). Consider the functional Jsme(-) on C[0,1)

defined as

Fomelg) = 2 / (1 — OZ(g (1))t (4.59)

if ¢/(t) exists and non-negative for a.e. 0 <t < 1, and as oo otherwise. Clearly, if we
show that jSine(') is a good rate function on C[0, 1) then the same will hold for Jsine;.

We first show that if g € C[0,1) and Jgime(g) < oo then lim g(y) is finite, i.e. we can

y—1—

consider Jsine(-) on C[0, 1]. We have

im o) = [ a2+ [ S0 =2

We will prove that

if h(y) >0, and /0 (1 —y)h(y)?log?(h(y) + e)dy < oo, then /0 h(y)dy < oo.
(4.60)

Using this with A(y) = ¢'(y)1(¢'(y) > 2) together with the bound in (4.29) we get the

boundedness of fol ¢'(y)dy and the existence on lim g¢(y).

y—1-
Let ®(x) = x?log?(|x| 4 €), this is a strictly convex, even function with liné @ =0,
T—r
lim % = oo (i.e. ¢ is a ‘nice Young function’). Introduce the complementary function

T—r00

||
¥(z) = '(a) = suplylel — 0w} = [ (@) )y
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where (®')(=1 is the inverse of the strictly increasing function ® on [0,00). Assume

that

A= (1= )0 (h(y)dy < o0 (461)

and let p the measure on [0, 1] with du = < (1 — x)dz. Consider the Orlicz spaces

1
A

P o . . .
L, = {f : there is an a > 0 with /[01] O(af)du < oo},

L, = {f : there is an a > 0 with /[Ol]\ll(af)du < o0}

with the Luxemburg-norms defined as

I1flle = inf{b>0: /

S f)dp <1}, [[fllw = inf{b> 0 / Yo f)dp < 1.
[0,1]

[0,1]

(4.62)

(See e.g. [50] for more on Orlicz spaces.) Note, that by our assumption (4.61) we have
|h]le < 1. By the generalized Hélder inequality for Orlicz spaces (c.f. Theorem 3 in

Chapter III of [50]), for any f € L) one has

IfRll < 2(fllelhlle < 2] fllw (4.63)

where || - || is the L' norm on [0, 1] with reference measure p. Choose f(z) = . If

we show that || f]le < oo then this would imply

1 1 1
0> 2 fllu = sl = 4 [ TEh@)1 —a)de = % [ hia)de

and the statement (4.60) would follow. It is not hard to check, that there is a ¢ > 0 so

that

for x > 0. (4.64)
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(1—2x)

Since the integral fol(l — x)W

dz is finite, this implies that |||y is finite

and thus fo y)dy < co. This completes the proof that if Jsme(g) < oo then lim g(y)
y—1-

is finite, and also shows the last statement of the proposition.

Next we will prove the equicontinuity of the set K, = {f : Jsme(f) < 7}, we will

show that if g € K, then for ¢ < gy we have
lg(a+¢) — g(a)| < C(loge™t)~1/3 for any a € [0,1 — ¢]. (4.65)

Here g, C only depend on 7.
We first assume a < 1 — /2. Then

ate

1/2

Where we used 1 — a > /¢, the bound (4.58) and the fact that € can be chosen to be
small enough.

Next we assume that a > 1 — y/e. Because of the monotonicity of ¢ it is enough to

bound [g(1) — g(1 — v/&)|. Setting f(z) = = and h(z) = ¢'(z)1(¢'(z) > 2) we have

o) =91 - Ve <2vE+ [ R (4.66)

Since Jsime(g) < 7, we can assume that (4.61) holds with some finite A > 0. We will
now follow the previous argument using Orlicz spaces. We use the same definitions for
U, ®, u but for the norms || - ||y, || - [|o defined in (4.62) we use the interval [1 — /e, 1]

instead of [0, 1].
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Using inequality (4.66) and (4.63) we get the bound

1

o) =90~ VR S2VE+ A [ fhladute) < 2VE+ ALl

To estimate || f|lg we will prove that with b = (loge™!)~/? there is a constant gy de-
pending on A so that

1

/ B f (@) dpu(z) = A—l/ (1= (1—2)V)de <1, fore <z
1—F 1-F

This will imply that for such e we have || f||y < b. Using (4.64) we get

1 NG 1
A_l/ 1—2)U(b (1 —2)Vde < b_2A_1/ 1 4
17\5( )W (1 —2) )de <c o7 o)™
c(loge=1)%/3

< .
~ Alog (2(loge=1)-1/3¢-1/2)

Since the right hand side converges to 0 as ¢ — 0 we get that ||f]lg < b for small
enough ¢ which in turn leads to the upper bound (4.65). This completes the proof of the

equicontinuity of the set K, and the compactness follows again by Tonelli’s theorem. [

4.6 From the path to the endpoint

In this section we will complete the proofs of Theorems 2.9 and 4.1.

Proof of Theorem 4.1. Consider the continuous map F : C[0,T7] — R given by F(g) =

1ax(T)
A 27

g(T)/(2m). By the contraction principle (see e.g. [14]) the random variables
satisfy a large deviation principle with scale function A\? and good rate function J defined

as

J(p) = min {/0 Z(g'(t))dt: ¢'(t) >0, g(T) = 27rp} : (4.67)
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We will now solve this variational problem. If g provides the minimum then we can

assume that ¢’ is monotone decreasing. To see this define g with §(0) = 0 and §'(t) =

sup{z : m(¢'(s) > ) > t} where m indicates Lesbegue measure. Then §(T') = ¢(7T),

Tsen1(§) = Tsenr(g), and §'(t) is decreasing. If ¢ > 0 on [0,a] and ¢’ = 0 on (a,1]

then by the classical variational method we get that Z'(¢'(x)) is constant on [0, a|. This

means that ¢'(z) = 222 on [0,a] and ¢'(z) = 0 on (a, 7] and our variational problem is

reduced to finding the minimum of

But we have

f'a) =T (%2) —Z(0) - T' (%2) %2 <0,
since Z is strictly convex, which means that the minimum is at a = T". Thus

3p) = min{ [ T/ (1) 2 0. o) = 239 b = TT(270/T)

is the large deviation rate function for %‘“QSTT).

Now recall that the counting function of Sch, is given by

Ny(A) = #{v: 0 < v <\ by (7) € 207}

(4.68)

where ¢, is the solution of (4.2). Note, that ¢,(t) — ¢o(t) has the same distribution as

&ro(t) with constant f = A, which in turn has the same distribution as a,(t). Using the

coupling methods of Proposition 4.4 we can show that ¢,(¢) is increasing in A for any

fixed ¢ (see [43] for a detailed proof of this fact). From this it follows that

[N (3) = 2 (@n/e(r) = dol(r)| < 1.
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This means that in order to get a large deviation principle for %NT(/\) it is enough to

prove one for %%ﬂ—d’o(ﬂ But this has the same distribution as %&A;;(T)’ and a simple
rescaling of (4.68) completes the proof of the theorem. O

Proof of Theorem 2.9. Theorem 4.5 shows that %a,\(.) satisfies a path level large devia-

tion principle. By applying the time change y = 1— e*%, we get that ¢ — Jax(1— 67%)

satisfies a path level LDP on C[0, 1) with the modified rate function Jgie given in (4.59).

In Proposition 4.13 we showed that if Jsine(g) < 0o then the limit as t — 1~ exists and

so the LDP actually holds on C[0,1]. Using the contraction principle with the func-
1

tional F'(g) = 5-g(1), we get that %% satisfies a large deviation principle with speed

function A\? and a good rate function

J?(p) = min{jsme(g) (1) = 27rp}

= min {%/O (1—=6)Z(g'(t))dt : g(0) =0,4'(t) > 0,9(1) = 27rp} :

The counting function Ng(\) of Sinegs is given by %, so Theorem 2.9 will follow if we

can show that the solution of this variational problem is given by Blsin.(p) as defined in
the theorem.

The function Jsie is a good rate function, so for any p > 0 the minimum is achieved
at some g, € C[0,1]. Clearly, when p = % then the minimum is zero, as the g(t) =t
function shows. (We will not denote the dependence of p in g = g, from this point.)

We may assume that for the minimizer the derivative ¢’ will not take values from
both (1,00) and [0, 1) because otherwise we could construct a function § with the same
boundary condition §(1) = 2mp, but with Jsime(g) > Jsme(§). The construction is as
follows. Assume p < 1/(27) and that A = {t : ¢’(t) > 1} has positive measure. Since

fol (¢'(t)—1)dt =2mp—1 < 0and [,(¢'(t)—1)dt > 0, by the intermediate value theorem
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we can find B C [0,1]\ A so that [, ,(¢'(t) —1)dt = 0. Define g with §(0) =0, §'(t) =
g(t)ift ¢ AUB and §'(t) = 1 otherwise. Then g(1) = [ ¢'(t)dt = [, §'(t)dt = (1),
but clearly Jsime(g) > Jsine(§). A similar construction works for p > 1/(2r). Thus we
may assume that ¢'(t) <1 for all t if p < 1/(27), and ¢'(t) > 1 for all ¢ if p > 1/(27).

First assume that p > % Then ¢'(t) > 1 for all ¢ and we can use the classical

variational method (see e.g. [9]) to conclude that (1 — ¢)Z'(¢'(t)) is constant in ¢. Thus

the optimizer is given by a function g, which satisfies

B0 =0,  T(/W) == / (@)D (&) dt = 2mp,  (469)

for some constant ¢, and the solution of the variational problem is

JP(p) = §/01(1 —1)Z (7)Y () dt. (4.70)

In Proposition 4.14 below we will show that this is equal to S5lgie(p) as defined in
Theorem 2.9.

Now assume that p < %, here we can assume that the minimizer satisfies ¢'(¢) < 1.
As in the case of Sch, we may assume ¢’ is decreasing, this can be shown using the same
construction as found in the paragraph directly following equation (4.67). Suppose that
g is zero for t € [a,1] and ¢'(t) > 0 in [0,a]. Then on [0, a] the classical variational
method shows that (1 —1¢)Z'(¢'(t)) must be constant. Thus the optimizer must be of the

following form:

(7)1 (22), 0<t<a

g(t) = (4.71)
0, a<t<l1,

~

for some constant ¢, which satisfies

21p = /O (Z) Y (S22) at. (4.72)
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By Propositions B.1 and B.2 of the Appendix the function Z'(z) is strictly increasing on
(0,00) with a limit of —5- at = 0. Thus ¢,, in (4.71) cannot be smaller than —1-2.
Our next claim is that the optimizer has a continuous derivative at ¢ = a, which will
identify c,, as ¢ = —12_—:. Assume the opposite, i.e. that c,, > —12_—: and ¢'(a) > 0.
Let 15(2) = L(aats) — L(a—sa)- If §,€ are small enough then ¢’ —ens > 0 in [0,1] and
fo — ens(s))ds satisfies the same boundary conditions as g. Since ¢ is a

minimizer, the derivative of h(g) = Jsine(g + €75) at € = 0 cannot be negative. We can

compute the derivative as

a a+o
B B/)L¢T (t))ns(t)dt = iﬁffﬂﬂﬁ+/ (1—1) (—3;) dt.

1

This is equal to 6(—c,q — 5=) + % which is negative if § is small enough (by our

assumption that c,, > —12’—7:1) The contradiction shows that we must have ¢ = —12’—7;’.
Thus the optimizer is given by
@)V (45).  0<t<a
J(t) = ey (4.73)
0, a<t<l1.

for some 0 < ¢ < 1 with

— ¢ 7\ (—1) a—1
21 /O(I) <27r(1_t)>dt. (4.74)

and the solution of the variational problem in the 27p < 1 case is given by

2o =5 [a-0z (@ () )a da-ar. @)

In Proposition 4.14 below we will show that this is equal to Slsie(p). ]

Proposition 4.14. The rate function for the Sineg process is given by

2 [2 0]

/BISine(p) - S
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where v = vY(p), and v is the strictly increasing function given in (2.13).

Proof. We have to show that J?(p) defined by (4.69) and (4.70) for p > 1/(27) and by
(4.74) and (4.75) for p < 1/(27) is equal to Slgie given above.
We begin with the case where p > % In this case the minimizer g = g, is given by

(4.69). One easily checks that

T

% (8 (—(L=1’Z(g' (1) + cp(1 = )g'(t) + co9(t))) = 5(1 = 1)Z(g'(1)). (4.76)

From this we get

P =5 [a-oro)a-

o™

[Z(4'(0)) — ¢,9'(0) + 27pc,]

where we used ¢g(0) =0, g(1) = 2mp, and the limits

lim (1 —6)°Z(g'(t)) = lim £——2 = lim (1 — t)g'(t) = 1i L
Jim (1 —1)°Z(g'(t)) = lim T 0,  lim(1-¢)g'(t) = lim o) 0

which follow from the asymptotics (B.6) and (B.7) to be proven in Proposition B.2.
Now for the case where p < % we have that g, is given by (4.73). Using the notation

¢ =c, = 1, the identity (4.76) gives

7o) =2 [ 0 0T @) di+ 2eme, PL0) = ' 0) 65/ (0)+ 200,

where we used ¢(0) = 0, g(a) = 2mp, and ¢'(a) = 0. Note, that ¢, > 0 if p > 1/(2m)

and —5= < ¢, < 0if p < 1/(27). Introducing v = K= ( we get for both

2(1')(:)(0,0)) ’
p <1/(2m) and p > 1/(27) that

Jﬁ(p)zé(

S -t pH(V))

8

which agrees with (2.15), we just have to show that v = v(=1(p). Note, that v = v(p) < 0

if2rp>1land 0 <v < 1if2mp < 1.
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Recall from (4.69) and (4.74) that

1 2we+1
1) /e : 1 /e . 1
p=g | @)V ()dt, ifp> 5. and o= 5 (T (1) dt, it p< 7
0 0

Applying the change of variables to both integrals with a new variable x satisfying
R = (Z')"Y(1%), we get that p depends on v = KV (2(1,)+1)(w> exactly via
(2.13) which finishes the proof. Note, that the finiteness of the integrals in (2.13) follow

from the asymptotics of K(z) and E(z) near 1 and —oo (see the proof of Proposition

B.2). 0
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Chapter 5

Large Deviations and a Central
Limit Theorem for the Bess, 3

Process

The proof of the large deviation and the CLT for Bess, g rests on the fact that the
distribution of the number of points in a large interval can be described with a stochastic
differential equation similar to that that defines the counting function Ng(\) of the Sineg
process. In both cases, this new characterization allows us to use the ideas used for the
Sineg process.

To begin we need to characterize the Bess, g process using diffusions rather then an
operator. We consider the ‘Riccati diffusion’ for & ,, given by the stochastic differential
equation

dp(t) = %p(t)dB(t) +((a+2)plt) — () — 2 (5.1)

with initial condition p(0) = +o0, which it leaves instantaneously. Note that there is a

positive probability of explosion to —oo.

Theorem 5.1 ([48]). Let Ao(B,a) < A1(B,a) < ... be the ordered eigenvalues of Gg,,

and let Py ; denote the law induced by p(- : B, a, \) started at +o00o at time t, and restarted
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at +00 and time m upon any m < oo, p(m) = —oo. Then,
P(Ao(B,a) > X) = Pxo(p never hits 0), (5.2)
P(Ag(B,a) < X\ = Py o(p hits 0 at least k + 1 times). (5.3)

The remainder of this chapter will be organized as follows: Section 5.1 will give
another SDE characterization of the Bess, 3 process similar to that in the Sineg case.
Section 5.2 will give a proof of the central limit theorem using the characterization in
terms of the new diffusion. Section 5.3 will give and prove an LDP for the SDE from
the preceding section. The final section will use this path level large deviation to derive

a large deviation principle for the number of points in a large interval of Bess, s.

5.1 Another characterization

In order to use the work we did on the Sineg process we will rewrite the SDE charac-
terization of the Bess, g process with different diffusion and give the distribution of the

number of points in an interval.

Theorem 5.2. Let M, 3(\) be the number of points of Bessq g in the interval [0, A], and

let @q \ be the diffusion that satisfies the SDE

dpa = g(a +1/2)sin (Z22)dt + GV ARt + A dt — 2sin (%2)dB, (5.4)

with initial condition ¢, x(0) = 2w. Then

t—o00

M, 5(2) =% lim {igpa)\(t)J |
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proof of Theorem 5.2. The characterization of the Bess, g process given in Theorem 5.1
can be rewritten in the following way: We can apply the change of variables — X (t) :=
log(p(Bt/4)) + pt/8 —log A\/2 for p > 0. Then X satisfies the SDE

dX,(t) = (g(—a -3+ gﬁe—ﬂt/s cosh X(t)) dt + dB(t) (5.5)

The initial condition p(0) = 400 give X (0) = —oo, moreover when p(5t/4) reaches 0 we
get that X (¢) = +oc.

Notice that this change of variables is for p > 0, we can do a similar change of
variables with p < 0, where we take X5(t) = log(—p(St/4)) + St/8 —log A /2. This gives
us

dX,(t) = (g( +3)+ gﬁeﬂt/g coshX(t)) dt + dB(t). (5.6)
When p(5t/4) = 0 this gives Xy(t) = —oo, and when p(5t/4) = —oo this gives Xy(t) =
+00.

To find the ¢, \ diffusion given in Theorem 5.2 we work back from X; and X,. Let

—logtan(—p/4) = Xi, then ¢ = —4 arctane™*! and we get

dp = —2 sech X1dX; 4+ sech X;tanh X,dt

- g( +L)sin (g)dt 1 BV e Pt 4 SmT“)dt — 2sin (g)dBt.

The conditions X; = —oo and X; = +o0o correspond to ¢ = —27 and ¢ = 0 respectively.

Now lets move on to X,. Then take ¢ = 4 arctan eX2. This gives us

dp = —2 sech Xod X5 + sech X, tanh Xodt

= g( +1/2)sin (£)dt + BV Mot + = Lt + 25in (£)dB.

The conditions Xy = —o0 and Xy = +00 correspond to ¢ = 0 and 27 respectively. Then

since By is equal in distribution to —B; these describe the same diffusion.
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Now notice that this diffusion is invariant under 47 spacial shifts, so for a fixed A

with initial condition ¢, (0) = 27 then

P(sup pa(t) > 4mk) = P(Ap < N).
t

5.2 The central limit theorem

The proof of the central limit theorem is similar to the proof for the Sineg process which

was done by Kritchevski, Valkd, and Virag in [43].

Proof of Theorem 2.10. First notice that the process ¢ a(t) = @ar(t + 1) with T =

%log(\/X) satisfies the same SDE with A = 1. This gives us that

(,Oa7>\(OO) — Pa,\ (T)
Viog A

—0

in probability. From this we have that it is sufficient to consider the weak limit of

Soa)\(T) — 8\/X
4m/log\

Written in its integrated form, the SDE for ¢, » gives us that
T T o T
o(T) — 8VA+8 — 27 = g(a + 1/2)/ sin (£)dt +/ &Q@dt + 2/ sin (£)dB,.
0 0 0

(5.7)

We will show that when scaled down by log A the first two terms vanish in the limit,

then show that the noise term gives the appropriate contribution. Using It6’s equation
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we get that

d (et +0t/s) L et 8 iprpss 2 ierpes o

— % % 7 . %)
ivilog A mey e G R v, vers G v v oy L sin® (£) dt

—__B i 2 ; ip+06t/8

o @6 @dt—i_ \/)\log)\snl (%)6@ / dBt

B . sing B .. ;
+ ﬁ 5( +3)sin (%) + 5 gt i2sin® (2) | et 8at

(5.8)

Integrated, the left hand side gives us ﬁ[ew@) — 1] which is order O((logA\)~/2).
The integral of line (5.8) is of order ﬁ fOT e B84t = O((log \)~'/?). Lastly the
integral of the noise term is has an L? norm bounded by C(log A\)~'/2. This gives us that
(log \)~1/2 fOT edt — 0 in probability as A — oo which shows that the second integral
term in (5.7) will not contribute when scaled by . This shows that we can do a similar
calculation using e™/2t84/8 to get that the first integral term on the right hand side of

(5.7) also makes no contribution.

We now turn our attention to the last remaining term in (5.7). We can rewrite this

T R T
2/ sin (£)dB, = B (4/ sin® (g)dt>
0 0

for some standard Brownian motion Et. Then we have that

1 /Tsin2 (f)dt:E%— 2 /Tcos(f)dt (5.9)
log A J, 2 B log) J, 2 '

This final integral term goes to 0 in probability from the work done earlier that showed

as

(log \)~1/2 fOT e dt — 0 in probability as A — co. This completes the proof.
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5.3 An LDP for ¢,

As in the case of the Sineg process we begin by proving an LDP for the diffusion that
characterizes the counting function of the process.

Theorem 5.3. Fiz 5 > 0 and let @, 5(t) be the process defined in (5.4) with a > —1/2.

Then the sequence of rescaled processes ((p“’\}/\(t),t € [0,00)) satisfies a large deviation

principle on C|0,00) with scale A and good rate function TBess, 5. The rate function

TBessa s 15 defined as
= 2 / . —ét
TBessa 5(9) :/ h(t)Z (¢'(t)/h(t)) dt, with b(t) =bhs(t) = e 8
0

in the case where g(0) = 2w and g is absolutely continuous with non-negative derivative

g'. In all other cases Jpess, 5(9) is defined as oo.

Proof. The proof of this theorem will follow exactly the proof of Theorem 4.5 once we
have the following two pieces:

Let ¢, » be the diffusion that satisfies

P = g(a +1/2)sin (%2)dt + BVt + —T22dt + 2sin (%2)dB,, (5.10)

with initial condition @, (0) = 27. We will also use the corresponding constant A

versions of X; and Xs. Take

dX, = (g(—a -3+ \/Xcoshffl(t)) dt + dB; (5.11)
dX, = (g(a +3)+ \/XCOShX2<t)) dt + dB, (5.12)

Proposition 5.4. Let 7y = inf{t : ¢, (t) = 47, and 7o = inf{t : p,» =67} — 71 and fix

A < 1, then for T = 1 or 15 we have

Ee%‘ri \/4XT(|A|/\, /|A|)(1+§(a+%)) < e*ﬁH(A)_ (513)
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Let ty = 4K(A) and fir 0 < e < |ty — 27|. Then we have

At c B 1
P(VAT € [ta—e,ta+e]) > Cle, N, A)eVAHA+TEH-VARE VA tate) 145 (a+3))

(5.14)

where lim C(e,\, A) =1 for fized a,c.

A—00

The proof of this proposition follows the same steps as the proof of Proposition 4.7,
and will not be shown.
The other piece that we need to complete the proof of the path LDP for ¢, » is a tail

bound.

Proposition 5.5. Let ¢, be the diffusion defined in (5.4), T > 0 and X\ > 57 /e, then

fora > —1
1 2
lim —10g P(@ar(00) — par(TVA) > eV \) < —G—Tmax{a + 31 —a—1}.  (5.15)
A—o0 A ' ’ 281 2 2

Notice that this gives us the necessary upper bound on the tail in the case where
a#—1/2.
These two pieces are sufficient to complete the proof of the path deviation for the

. In the same way as the proof of Theorem 4.5.

[]

Proof of Proposition 5.5. The idea of the proof will be to consider the process on the
intervals of the type [4km — 2m,4kn| when a > —1/2, and on intervals of the type
[4km, 4km + 27] for —1 < a < —1/2. The diffusion ¢, will need to cross at least

lev/\/(47) | many of these, therefore

P(gar(00) = @ar(TVA) > eVX) < P(G, 3 g20rym)(00) > 2m) LA/ ()] (5.16)
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where ¢(0) = 0 when a € (—1,—1/2), and ¢(0) = 27 when a > —1/2. Now to get an
upper bound on this probability we need to look at the X, diffusion defined in (5.12)
for a > —1/2, and the X, diffusion for a € (—1,—1/2). We will compare the diffusions
to a reflecting Brownian Motion with drift. We begin with the X, diffusion, let Zax be
a Brownian motion with drift £(—a— 1)+ g\/Xe_BT‘A/ 16 reflected at the origin, and let

Tz be the hitting time of x for Z. Then

P(@grg2(rym)(00) 2 21) < P(74 57516 < )
< exp Ké(_a — %) + g\/xe—ﬁ:rﬁ/w) %T\/X}

where the last bound is a standard result on reflected Brownian Motion (see e.g. [30]
and [39]). A similar bound can be used on the X, diffusion using a reflecting Brownian
Motion with drift 2(a + 1) + 2v/Xe #TVA/16_ These bounds together with (5.16) are

sufficient to complete the proof.

5.4 From the path to the endpoint

This part of the proof also follows nearly immediately from the work done in the Sineg
case. Consider the Jpess, , Tate function given in Theorem 5.3, we apply the change of

variables z = (1 — e_%t) to get the modified rate function

1
Foss @) =35 [ (1= )25 () /5)dy
0
where g(z) = g(—% log(1 — z)). In other words

Tpessa s (9) = 32Tsime((g — 27)/8).
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Notice that we have a shift of 2 because we assume ¢, x(0) = 27 whereas @, (0) = 0
Lastly recall that we want to optimize over g with endpoint 47p where in the Sines case

we had an endpoint of 27p. This gives us that Iges, ,(0) = 321sine(p/4)-
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Appendix A

Proof of Theorem 3.1

We will be working primarily with a lower bidiagonal matrix M, and the symmetric
tridiagonal matrix M M. For convenience we will adopt the following notations. Denote
the diagonal entries of our symmetric tridiagonal matrix M M7 by a = {a4,...,a,} and
its off-diagonal entries by b = {by,...,b,—1}. For the entries of the bi-diagonal matrix
M use z = {w1,...,z,} to denote the diagonal entries and y = {y1,...,yn—1} for its
sub-diagonal entries. We will also use another tridiagonal matrix which arises in the

following lemma (see e.g. [18]):

Lemma A.1. Let M be an n X n bidiagonal matriz with ay,as,...,a, in the diagonal
and by, by, ..., by_1 in the off-diagonal. Consider the 2n x 2n symmetric tridiagonal
matrix L which has zeros in the main diagonal and ay, by, as,bs, ... a, above and below

the diagonal. If the singular values of M are A1, Aa, ..., A\, then the eigenvalues of L are

Recall the definitions of Mg, C) and ék from the statement of Theorem 3.1. It
will be convenient write {C;, S;}7, and {C;, S;}"=! in terms of a set of random angles

a={ay,..,a,} and 8 = {6, ...,0,_1} where C}, = cos(ay) and C} = cos(f). Then,
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Sy = sin(ay,) and Sy = sin(fx), and the densities of the random angles oy and 6y, are:

o 2 2a+B(k—1)+1 - 2bB(k—1)+1
= cos Q) sin «
Ji B(g(nl—nqu:),g(ng—n—l—k;)) () ()
2
0 Bk . 2a4+2b+B(k—1)+3
= cos”"(6;) sin 0
Ji B(gk,g(n1+n2—2n+k+1)) (6) (6)

with a,b defined as in Theorem 3.1 and B(z,y) the beta function. By independence,
the joint density of («,#) is given by the product of the densities. For convenience we

will denote
22n71

Zﬁ,n = poy n—
[T B(E(mi —n+k),2(ne—n+k)) "B (5K, S(ni +ns —2n +k + 1))

2

This will be the necessary normalizing constant.

We will now map (a, ¢) to the entries of M and from there to (), ¢) where the ); are
the eigenvalues of M M7 and the ¢; are the positive leading entries of the corresponding
normalized eigenvectors. This second map will actually by the composition of several

maps.

From the angles we map to the entries of the bidiagonal matrix:

Lemma A.2. The Jacobian of the transform T : («,0) — (x,y), where

xp = cos(ag)sin(@y), k=1,---,n

yp = sin(agyr)cos(fy), k=1,--- ,n—1

(for notational convenience we take 6, = w/2) is given by

<92 n—1
Jr = sin (@) H sin?(ay) sin®(6y).
k=1

sin(ay )
Proof. The matrix of the partial derivatives with ordering (aq,...,apn, 61, ....,0,_1) —

(21, .oy Ty Y1, -, Yn—1) has diagonal entries

—sinaq sinfy, ...., —sinq,,_1 sinf,,_1, — sin a,,, — sin g sin by, ..., — sin o, sin 0,,_1.
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Row and column reduction gives us that the determinant is given by the product of the
diagonal, therefore
sin? s

Jr = _sin(an) H sin?(ay ) sin®(6y,) O
k=1

sin(ay)
We finish by mapping from the bidiagonal to the tridiagonal matrix, which in turn is
mapped to by the eigenvalues. Denote by ¢y, ..., g, the leading entries of the eigenvectors
associated with the ordered eigenvalues \; < Ay < --- < A, of the tridiagonal matrix

normalized so that ¢; > 0 and > ¢? = 1.

Lemma A.3 ([17], Lemmas 2.7, 2.9 and 2.11). For z,y,a,b,A and q defined as above

we have the following:

1. The Jacobian of the map 1 : (x,y) — (a,b) can be written as
Jyp =2"x1 fo
=2

2. The Vandermonde determinant for the ordered eigvenvalues of a symmetric dridi-

agonal matriz with positive sub-diagonal b = (b,_1,...,b1) is given by

i<j i=1 i
3. The Jacobian of the map ¢ : (a,b) — (A, q) can be written as

1= b

g, = = %0
i [Tim @

Written in terms of our z,y, a, and b with Q,, = [T, @ we get

n—2
Jy = Qi sin(a,) cos(ay,) cos(0,—1) H sin(ay41) cos(agy1) sin(fg11) cos(6y)
n k=1
n—1

Jy = 2" cos(ay) sin(6;) cos® (v, ) H cos?(ay,) sin® ().
k=2
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The remainder of the proof of Theorem 3.1, is to show that the Jacobian of the trans-

formation gives the desired result.

J,
d(A,q) = J¢T¢JT

B
~ 2 n
=Zgn——s (Q Hcos e sin® H cos® 0, sin®~! Hk)

n—1

X Hcos ay sin? oy, x H sinet? g, .

d(a, )

We substitute in the following pieces: first, notice that

n n n—1
(det M, 5)* = H A = H cos? ay, - H sin? 6.
i=1 k=1 k=1
Then, applying Lemma A.1, the singular values of M, 5 are the squares of the eigenvalues

of the symmetric tridiagonal matrix L with zeroes in the main diagonal and
Cn; Snén—lu Cn—lgn—la cry 52@17 Clgla

in the off-diagonal. We can check that L + I can be written as AAT where A is the

bidiagonal matrix with

17‘Snagn—175n—17"'7317 and Cnaén—lacn—l7cn—27---acl

in the diagonal and below the diagonal respectively. Using the characterization from

Lemma A.1, we find that

n n—1
det(L+1)= H 1+€\/_ H (1 —X) = (det A)? HsinQakHsinzﬁk.
k=1 k=1

e+—

Remark A.4. At this point one could again apply Lemma A.1 to A to find a 4n X 4n

matrix with zeros in the diagonal and

1a Cn7 STm én—la gn—h Cn—17 ceey Cla Sl
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above and below the diagonal. This matriz will have eigenvalue ++/1 £ \/ Ax.

Lastly recall ([17], Lemma 2.7) that we have

n—1 n n—1 n—1
1 1
= — H bl,: = — H sin® 1y cosF T oy, - H cosk 6y, - H sin®~1 6.
Qn k=1 Qn k=1 k=1 k=1
Making all the appropriate substitutions this gives us that

J¢> a - b
Tox g ) = Zsn 1/3HM—M HA Hl—%)’

” i<j k=1

From this we can see that the joint density function of ¢ and A separate. As in the
Hermite and Laguerre cases we have that ¢ ~ (xg, ..., xg) normalized to unit length [17].

This give us that for the unordered eigenvalues

ﬁ n n
Fommna(A) = Qn,’f. I % H PYSSRVICE | BYRY | (EEp W
2 1<j k=1 k=1
This completes the proof of Theorem 3.1. 0

Remark A.5. The normalizing constant on the final density can be written as

Zon = {F (g)} n ﬁ T (2(m —I;(jg; ;(W(;gnjnki)k)) L (k)

k=1 2

This gives an alternate derivation for the Selberg integral.
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Appendix B

Properties of the LDP Rate

Functions

B.1 All about Z

In this section we prove the needed estimates about the function Z.

Proposition B.1. The function Z(x) is strictly conver and continuous on (0,00). It

has an absolute minimum at x = 1 where it 1s equal to 0.

Proof. K is strictly increasing on (—oo, 1) which shows that Z(x) is well-defined (and

differentiable) on (0, 00). By differentiating (4.3) and using the identities

(o) - B G0 Bl K
we can compute that
T'(z) = él(m) - %K—l (%) , (B.1)
and
T'(z) = — ! . (B.2)

© 1623 K/(K-Y(Z))

%
Observe that K'(y) > 0 for y < 1 which gives Z”(x) > 0 for z > 0 and the strict

convexity of Z.
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Using K(0) = E(0) = § we get Z(1) = Z’(1) = 0 which (by the strict convexity)

proves the second half of the proposition. m

Proposition B.2. We have lim Z(z) = and lim I'(x) = —5=. There is a constant

z—0t z—0t

c1 > 0 so that

I(z) > c1(z — 1), for all z, and (B.3)

H-n) T()  —K(12)

, are bounded away from 0 and oo for x > 2.
Vzlogz z2log?z z2log” x Y

(B.4)

Proof. The following asymptotics can be readily derived from the definitions of elliptic
integrals (or by the existing more sophisticated expansions c.f. [10],[31]). There is a

constant ¢ > 0 so that

c
K(—a)— 2\/_10g(16a) < —n log(a), |E(—a)—+a| < log a), fora>2.
(B.5)
From this it is easy to check that
— 1 K1 z 1
lim o) = lim M =1, and lim () = . (B.6)
Z—00 \/_lOg]j 2 T—o0 2 log T x—00 2 IOg T 272
This gives (B.4). Note, that together with (B.1) this also gives
7 1
lim (“;) S (B.7)

z—oo plog®xw W

Using the functional identities

E(z) = \/EE<Z_1) K(z):\/ll__zK(Zil), 2€(0,1)
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the asymptotics of (B.5) can be transformed into
K(a) ~ —3log(1 —a), E(a) ~ 1, asa — 171

with explicit error bounds for 2/3 < a < 1. From this we can obtain lim I(x) = ¢ and
z—0

lim 7'(z) = —5=. Using (B.4) with the continuity of Z and the fact that Z(1) = 0 is an

z—0t

absolute minimum with Z"(1) > 0 gives (B.3). O

The following two lemmas help to consolidate error terms that appear in the proofs

Theorems 2.9 and 4.1.
Lemma B.3. There exists an absolute constant ¢ such that for any t,q > 0 we have
[H(a)| + |alt/2 < c(t +1)(Z(q) + 1) (B.8)
where a = a(q) = K 1(7/(2q)).
Proof. Using (B.5) with the definition (4.3) we get that there is a constant ¢y so that
¢y'alg) <I(q) < c2a(q),  if g >2, (B.9)
and the same bounds also give
#(a(g))| < cs/]alg)| log |a(g)] (B.10)
for some constant c3 in the same region. This shows the existence of a constant A with
[H(a)| < AZ(q), and a(q) < AZ(q),  for ¢ >2.

Since for 0 < g < 2 both a(q) and H(a(q)) are bounded the lemma follows. O

Lemma B.4. For any 0 < e < 1/2 there exists an absolute constant ¢, so that

I(x+e) < (1+e)l(x)+ce (B.11)
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Proof. Since T is convex, we have
I(x+e) <ZI(zx)+el'(z+e).

Since Z(x) is decreasing on [0,7/2], the bound (B.11) follows immediately for x €

[0,7/2 — €] with any ¢ > 0. Using (B.1) we get

:Eig (I($+€)—%K_1 (2(:1:7;5)))' (B.12)

From (B.6) it follows that there exists an zy > 0 such that

(I(x+s)—1K—1( T >)§5I(x), if 7 > xg

8 2(z +¢)

Z(x+¢e) <ZI(z)+

T+ €

uniformly in e € [0, 1/2]. Therefore, for x > zy we have that Z(z +¢) < (1+¢)Z(x). We

can assume xy > 7/2. By choosing
c= sup T'(x)=T'(xo+1/2)
x€[m/2,20+1/2]

we get Z(x +¢) < Z(x) + c£ on [1/2 — e,x0) with any 0 < ¢ < 1/2 and the lemma

follows. L

B.2 Properties of Isjne

In the final section of the appendix we describe the behavior of the function Ig;,.(p) near

1

p=5-and p — oo.

Proposition B.5. The functions v(v) and Isy.(p) satisfy the following.

1. The function v(v) defined in (2.13) is continuous and strictly decreasing. It satis-

fies the differential equation 4x(1 — x)y"(x) = v(x) on (—00,0) and on (0,1) with

1

boundary behavior a}i)%’li Y(z) = 5, (1) =0 and lim % = ;. These limits and

T—r—00

the differential equation identify v(z) uniquely on (—oo0,0) U (0, 1].
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2. We have Ig;(0) = 6%1, Isme(%) =0, and I}

Gine(z) > 0 for @ # =, Moreover, we

have the following limits:

I ine = +x 2 I ine 1
liH(l) “Sinelom T2 (2’; ) = %, and lim ‘Zl (p) = 3
T z —00

Tog(L/12]) P pRI0B P

Proof. Recall the function (v) given in (2.13). Using the asymptotics (B.6) proved in

Proposition B.2 it is easy to see that (v) is well-defined and positive in (—oo,0)U (0, 1)

with lim y(v) =0 =~(1) and lim 2

v—1- x——00 1/ |z|

= 1. We also get that v(z)H(z) blows up as
v — 0 or 0F.

Differentiating (2.13) and using the definition (2.11) lead to

V(@) H(x) 1

H)y(@) = 5+ Hlon), T2 =2 = o

8

(B.13)

for z € (—o00,0) U (0,1). We have H'(z) = —@ < 0 for z < 1 and H(0) = 0. Thus

from the second identity we get that 7/(v) is strictly decreasing in (—o0,0) and strictly
increasing in (0, 1). From the asymptotics (B.6) of Proposition B.2 it is not hard to check
that Vli}r_noo v (v) = 0 and VILI?— v (v) = —5. This, together with the previous statement,
proves that v(v) is decreasing on (—o0,0) and also on (0, 1].

Since (y(z)H(x)™1) = 1H(x)~2, L'Hospital’s rule gives

. T YW HW)! —_ 1) — _
lim 5(v) = }}E%W = —sH'(0) = 5— =~(0).

Then from (B.13) it follows that

1
lim~" (v)v = —, lim = —,
v—0 81 v—0 log |I/| 8

and also that

=1. (B.14)
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This shows that () is continuous and strictly decreasing on (—oo, 1]. We have (=1 (1) =

0 and Igine(0) = 4.

64
Note, the fact that vy(z) solves 4z(1—z)y"(z) = v(x) on (—o0,0)U (0, 1) and has the
proven asymptotics at —oo, 0 and 1 uniquely identifies it. The equation 4z(1—x)y"(z) =

y(x) has two linearly independent solutions on both (—o0,0) and (0,1). The function

H(x) also solves the equation (on both intervals), but with #(0) = 0, lim H(z) = —1

Tz—1~

and lim —%— — L This shows that any solution on (—oo,0) or (0,1) can be

r——o00 1/ |z|log |x| 2
expressed as c¢1y + coH with some constants ¢y, ¢, and the values of the constants are
determined by the behavior of the solution at the end of the interval.

Using (B.13) together with (2.15) we can also compute that

Line(p) = % 87’1(y) + H(v) + % = i?—[(u), and
Boolp) = 3 22 = - 10

TAYe) T YY)
where v is short for 77 (p). From this Igine(5-) = 0 follows, together with Igye(z) > 0
for x # % The asymptotics of ISine(% +2z) as x — 0 can be obtained from the definition
(2.15), the asymptotics (B.14), and the fact that H(0) = 0,H'(0) = —7.

Lastly we can look at the asymptotics of Isine(p) as p — oo. Recalling again (B.6)

we get

: y T (2) ~ 1622 as T — 00,

Mi—a) ~ bloga,  A(—r)~ L

from which Ige(p) ~ 3p*log p follows for p — co. O
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