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Abstract

In this paper we give an astonishing-simple proof of C'!—regularity in elliptic
theory. Our technique yields both new simple proofs of old results as well as new
optimal results.

The setting we'll consider is the following. Let u be a solution to

Au = f(z,u), in B,

where B is the unit ball in R"™, f(z,t) is a bounded Lipschitz function in z and f; is
bounded from below. Then we prove that u € CI’I(BI/Q). Our method is a simple
corollary to a recent monotonicity argument due to Caffarelli-Jerison-Kenig.

1 The problem

Let B; be the unit ball in R™ (n > 2), and f(z,t) a bounded Lipschitz
function in z with f/ > —M. Let moreover u be a solution to the station-
ary reaction-diffusion equation

Au = f(z,u) in Bj.

Then we are interested in the optimal regularity for the solution function
u. In a recent work (see [CKS]) the author, L. Caffarelli, and L. Karp
proved this result for the specific case f(z,u) = xq, where  is a domain
characterized by B; \ 2 = {u = |Vu| = 0}. This, in an informal way,
can be rewritten as f(z,u) = H(u) + H(—u), where H is the Heaviside
function H (t) = x(t>0); see Example 1 below. Using a recent monotonicity
argument due to Caffarelli-Jerison-Kenig, we present a simple proof of
Cll-regularity of the solution u. We remark that solutions to the above
equation are already in W2P N CH*(By) for p < oo and a < 1 (since f is
bounded), and that results concerning o = 1 are rare.

To formulate our main result we need to introduce some definitions
and conditions.

Conditions on f(x,t): The function f(z,t) is assumed to satisfy
|f($7t)‘ < Ma |f(x,t)—f(y,t)| < M|£E—’y|, ft,(l'at) > _Ma (Wea‘kly)

for all z € B;.
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DEFINITION 1.1  (The class P(M,n)) We say a function v € WP (By)
(p > n) belongs to the class P := P(M,n) if u satisfies:

o Au= f(z,u) in By, (f as above)
o [lullw2r) < M.

THEOREM 1.2 (Main) There ezists a universal constant C = C(M,n)
such that for uw € P(M,n) we have

|Vu(z) — Vu(y)| < Clz —y| Vz,y € Bys.

The main tool in this paper will be the monotonicity lemma of Caffarelli-
Jerison-Kenig, defined as follows. For given functions hi,hy € WP
(p > m) one sets

1
o(r) = @(r, hl,hg,xo) = 7_—4](7", hl,xO)I(r, hg,xo),

where

I(r, h,z°) :/ |Vh(z)?dz

B(z0) |z — 202
Then one has the following result.
LEMMA 1.3 (CJK; Theorem 1.3) Let hy, hy be two non-negative contin-

uous sub-solutions of Au = —Cy in B(z°,R) (R > 0). Assume further
that hihe = 0, h1(z°) = ho(2%) = 0. Then

p(r) < Co (14 I(R, hr,2°) + I(R, hy,2") ),
where r < R, Cy = Ca(n, CY).

We refer to Lemma 1.3 as “monotonicity lemma”.

2 Proof of the main result

To start with, we note that since u € W2P(B;) with 1 < p < oo we'll
have that u is twice differentiable a.e. in the unit ball. Now fix any point
Y € Byjp where u is twice differentiable. Define v(z) := D.u(x) where e
is any vector orthogonal to Vu(y). Our aim is to estimate Dj.u(y) for
all e orthogonal to Vu(y) and j = 1,---,n. Now if Vu(y) = 0, then
Djeu(y) = 0 for all j = 1,---,n. Therefore it is more interesting to
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consider the nontrivial case Vu(y) # 0. Set now v := Vu(y). Then one
trivially sees (see [CK; page 435]) that

v(z) =v-(z—y)+ (z —ylo(1),

as x — y. Hence on a fixed appropriate (truncated) cone K in the half
space v- (x —y) > 0 we have v- (z —y) > |v||z — y|/2, and in the opposite
cone —K we have v - (z —y) < —|v||z — y|/2. From here, we may infer
Fatou’s lemma, to deduce that

IVo(y)|* < Cs lim o(r,v*,v7, 1), Cs = C3(n).

Finally to apply the monotonicity lemma to the functions v* we ob-

serve that these function satisfy the hypothesis in the monotonicity lemma.
Indeed,

AvE = A(Deu)® > —|Def (x,u)| + fi(z,u)(Deu)™ > —Cy = —Cy(M,n),

and the rest of the hypotheses follow readily. Hence applying the mono-
tonicity lemma we arrive at

|Vv(y)|4 S 03 }1_13(1) (p(?",U+,U_,y) S C302(1+I(1/2’U+ay)+I(1/2av_;y)) S C5a

where C5 = C5(M,n). Observe that if Vu(y) = 0 then we may take e
arbitrary and arrive at |D;u(y)| < Cs = Cs(M,n). So suppose Vu(y) #
0. Then we rotate the system of coordinates around the point y and
assume Vu(y) is parallel to e;-direction and e is any of the remaining
coordinates eo,- -, e,. The above estimate will then be reduced to

|Diju(y)| < Cs, i=2.n, j=1---.n.

But then using the equation Au = f we’ll have
n
|D11u(y)| <> |Dgu(y)| + M < C.
1=2

Now to complete the proof we note that the second derivatives of u exist
a.e. in By o and they are uniformly bounded. Hence a standard argument
will close up the proof.



4 HENRIK SHAHGHOLIAN

3 Examples

Next we give some examples of situations where the non-linearity f has
shown to be nontrivial to handle. These examples are related to free
boundary problems. However, even for standard elliptic problems with
the right hand side f as described above, our result is new.

Example 1. As already mentioned in the beginning of the paper the case
f(z,u) = xq (where By \ Q = {u = |Vu| = 0}) was treated in [CKS] with
a slightly complicated technique in combination with the monotonicity
formula. To see how our technique applies we compute

Auf > (5(u) — 6(—u)) uF,

which is zero in Q = {Au = 1}. Also on the boundary 02 we have u, = 0.

Example 2. The second example concerns the two phase obstacle prob-
lem

Flmu) = A H@w) = A_(1—H(w), As+A_>0  (see [U], [SUW)).

For A_ = 0 the above is reduced to the usual obstacle problem with zero
obstacle.

Example 3. Our last example is related to problems in super-conductivity
(see [CS], [CSS))

[z, u) = g(z)H(|Vul),
with g Lipschitz. Observe that even though the right hand side depends

on Vu, the equation satisfies the requirements in the proof. Indeed, one
can see easily that

Av* = A(Dew)® > ~[Deg(a)|H(|Vu]) + g(z) H'(|Vul)(Dew)* > ~C.

We would like to remark that the result can be improved to yield in
any compact sub-domain €' of a given domain  C R". Obviously the
constant in the estimate will then also depend on the distance between
' and R™ \ Q. It seems also plausible that with some efforts one can
extend the estimate up to the boundary of the given domain Q with some
regularity assumptions on the boundary 0f).

Finally we mention that the parabolic case (see [CPS]), which can be
solved for specific type of problems such as that in Example 1, seems to
introduce certain difficulties. We leave as an open question whether one
can improve the above proof to adapt to the parabolic case.
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