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1 Introduct ion  

T h e  B e r g m a n  s p a c e s  a n d  dual i ty .  Let fi be a domain (open connected 

subset) in the complex plane. For 0 < p < +cx~, the Bergman p-space, or Bergman 

space of exponent p, denoted AP(fi), consists of  all holomorphic functions f on f~ 

subject to the norm finiteness condition 

(s ,1,, 
ItfllA,(a) = lf(z)lPdA(z)) < +oo, 

where dA(z) = 7r-ldzdy (with z = x + iy) is normalized area measure in the plane. 

For 1 < p < +oo, this defines a norm, and hence Ap(II) is a Banach space in this 

range of  p; for 0 < p < 1, we have a quasi-norm, which makes Ap(ft) a quasi- 

Banach space. Of course, this space degenerates if the boundary of  12 is too thin; 

for instance, if fi = C, then Av(fi) consists only of the zero function. For p = 2, 

the space AZ(fi) is non-trivial if and only if the complement C \ [l has positive 

logarithmic capacity [15]; for 2 < p < +c~, only partial results are known [15] (the 

reason probably is that as p ~ +co, we get H~176 as limit space, and a capacity- 

type criterion for finite p should converge to one involving analytic capacity, a 

quantity that seems hard to describe in geometric-analytic terms). We mention 

in passing that we have the following dichotomy: either A2([l) is trivial, or it is 

infinite-dimensional [41]. The proof in [41] carries over to Ap(fi) for 2 < p < +co; 

however, for smaller p, this is false, as is seen from the example AP(C \ {0, 1}), 

which is one-dimensional, being spanned by the function 1 / ( z ( z -  1)), for 1 < p < 2. 

For p = 2, we have a Hilbert space which, as such, is self-dual: 

A2(fl) * = A2(f~). 

311 
JOURNAL D'ANALYSEMATH~MATIQUE, VoL 88 (2002) 



312 H. HEDENMALM 

We now restrict p to the interval 1 < p < +oo, and let p' be the dual exponent  to p 

defined by 

1/p  + 1/p'  = 1. 

The question arises as to whether we can represent the dual space o f  AP(I2) as 

A f (f~) with respect to the dual action induced by A2(f~): 

(f '  g) = fn  f ( z )  ~(z) dA(z), f e AP(12), g E A p' (fl). 

The example f~ = C \ {0, 1} shows that some kind of  geometric requirement on ft 

is needed to have the duality, unless p = 2. Clearly, any function g E Ap' (f~) gives 

rise to a continuous linear functional. However,  it is not immediately clear that 

g # 0 guarantees that the induced functional is nontrivial. In fact, for the exterior 

disk ft = {z e C : Izl > 1}, the function f (z )  = 1/z belongs to Ap(f~) for all p with 

2 < p < +oo, whereas it is easily checked that (f ,  g)n = 0 for all g e Ap' (f0 in 

that range ofp .  For the converse direction, we apply the Hahn-Banach  theorem to 

represent the dual elements as functions in Lp' (f~), and obtain the identification 

(1.1) AP(f~) * = np' (12)/AP(f~) • , 

where Ap(f~)~- denotes the annihilator of  Ap(f~) in LP'(12). We realize that the 

hypothetical identification 
AP(f~) * = A f (f~) 

requires two things: 

(1.2) A p' (f$) iq AP(ft) • = {0}, A p' (f~) + AP(~) • = L f (~q). 

In view of  basic functional analysis, we ask for a reverse triangle inequality: 

(1.3) ~(llfllL,,,(n) + tlgllL,,,(n)) < llf + gllv,,(n), f e AP' (f~), g E AP(f~) • 

for some positive constant e. But  we also need to know that A p' (f~) + AP(n) • is 

dense in L p' fit). By duality, it is sufficient to consider  the case p > 2. I f  ft has 

finite area, we have the inclusions 

which lead to 

A2(f~) c A f  (f~), A2(i2) • c AP(f~) • 

L2(II) = A2(f~) + A2(fl) • C AP'(f~) + AP(fl)• 

also, clearly, L2(f~) is dense in L p' (fl), which does it. 
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The boundedness  of  the Bergman projection. Taking (1.3) into 

account, we realize that (1.2) requires the existence of  a continuous projection 

Up, : LV' (f~) --, AV' (f~) that is onto and has Av(f~)• as kernel. For p = 2, this 

projection is effected by the orthogonal projection li2 : L2(O) --r A2(f~), usually 

referred to as the Bergman projection. The Bergman projection can be represented 

in terms of  an integral kernel Kn, known as the Bergman kernel: 

H2f(z)  = f Kn(z,~)f(~)dA(~),  z E f~, 

for f E L~(f~). If  we think of  lip, as a linear mapping LV'(f~) ~ LV'(f~), it has 

an adjoint II~, : LV(ft) ~ LV(f~), which then is a projection onto AP(fl) with 

kernel A p' (12) • This means that if we have found IIv,, we automatically also have 

H v = II~,. We need to identify the projection lip,. If  p > 2 (that is, p' < 2), it 

follows from the above comparison between L v' (f~) and L2(f~) that at least if ~'1 

has finite area, the sought-after lip, (and hence also lip) must coincide with the 

Bergman projection on L 2 (ft). This means that our question takes the following 

form: 

�9 For which ~ and p does the Bergman projection II = 172 extend continuously to 

an operator LV(f~) ~ AV(f~)? 

In Sections 2 and 3, we consider the problem of to what extent this reformulation 

is equivalent to the duality problem also in case the underlying domain has infinite 

area. 

The kernel Kn can be expressed as 

+ ~  

= ( z , r  C • 

n = l  

where el, e2, e3 , . . ,  is some orthonormal basis in A'~(12). As the kernel is uniquely 

determined by the reproducing property 

f (z)  = IIf(z) = (f, Kn( . ,z)) ,  = L Kn(z,r f(r162 z ~ f~, 

for f E A2(~), the choice of  orthogonal basis is unimportant in the above series 

representation. 

The reformulated problem above (in terms of  the boundedness of  the Bergman 

projection) has been studied by Burbea [13] and Solovyov [37, 38], and later, by 

B6koi16 [6]. Solovyov shows that, for a class of  domains, the boundedness  of  the 

Bergman projection on L v can be described in terms of  geometric properties of  

the boundary, which are automatically fulfilled for ) < p < 4. Burbea, on the 
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other hand, uses the universal covering map to lift the general  problem to the unit 

disk in a weighted setting, and obtains a characterization o f  whether the Bergman 

projection is bounded in terms o f  Muckenhoupt  (Ap) conditions along zig-zag 

loops. 

None of  the above results can be reasonably used to decide whether the Bergman 

projection is bounded on Lp for all simply connected domains and all p in some 

nonempty open interval around 2. This, then, is our main result: 

T h e o r e m  1.1. Let f2 be a simply connected domain in C, other than the plane 

itself There exists a universal constant 19o, 3 < 19o < 2, independent o f  f~, such 

that the Bergman projection II : L2(f~) ~ A2(f~) extends to a bounded projection 

Lp(f~) --+ Ap(f~) fo r  all p in the interval 19o < p < P~o, where P'o is the dual exponent: 

1/19o + 1/p'o = 1. Moreover, the boundedness o f  the Bergman projection fails  in 

general outside the closed interval [19o, P'o]. 

We should point out that a remark made by B6kol16 [6, p. 136] goes in the same 

general direction. 

It is a consequence of  the above theorem that Ap(I2)* = Ap' (f2) holds for all p 

with 190 < p < p~ and all simply connected domains. Moreover ,  this identification 

of  the dual space fails generally outside the interval [P0,p~]. The reason why the 

range of  p for  which the assertion of  the theorem holds is an interval of  the type 

]p0,p~[ is two-fold: 

�9 if II defines a bounded projection LP(f2) ~ Ap(f~), then - -  by duality - -  it also 

acts boundedly L p' (f2) --r A p' (f~), 

�9 if II defines a bounded projection LP(f~) ~ AP(f~) for  some p = pl,  1 < pl < 2, 

then it does so for the intermediate parameter values p, pl < p < 2, by the R ie sz -  

Thorin interpolation theorem (see any book on interpolation theory). 

It should be pointed out that the exact value of  the constant 190 is not known; 

however, the estimate p0 < pl ~ 1.413 is obtained in Section 3. We shall see that 

the statement p0 = 3 is equivalent to a famous conjecture due to James Brennan 

[14]. It is easy to see that p0 cannot be smaller than 3; the configuration of  f~ that 

does this has a "needle" in the boundary pointing into the domain. I f  we restrict 

our attention to Lipschitz domains, the value o f  the corresponding constant P0 is 

indeed known to be 3" This can be deduced from [19, 29]; also, some related 

results are obtained for NTA domains in [34]. 

The assumption that fl be simply connected cannot  be omitted in the theorem, 

because - -  as we shall see later toward the end o f  the paper  - -  the assertion of  the 

theorem corresponds to certain behavior of  the Green function which can be made 

to fail for  general (non-simply connected)  domains. 
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The Dirichlet  prob lem on s imply  connected  domains .  The above main 

result can be formulated in terms of  the solvability of the Dirichlet problem. To 

simplify the exposition, we consider bounded domains f~ only. Let  p be in the 

interval 1 < p < + ~ .  The Sobolev space Wx,P(C) consists of  all functions in 

LP(C) whose first order partial derivatives (in the sense of  distribution theory) are 

also in LP(C); it is a Banach space when equipped with the norm 

Ilfllwl.p(c) --([Ifl[~(c) + I[0Jll~,(c) + [[0zfll~<c)) l/p, 

where Oz, c~ are the standard Wirtinger derivatives (see below). We define the 

Sobolev space WI,p(fl) as the space of  restrictions to f2 of  functions in WI,P(C). 

It, too, is a Banach space, the norm being defined as the infimum of  the norms of  

the various extensions to WI,p(C) of  the given function. We also need the space 

W~'P(f~), which is defined as the closure of  C~(f~) - -  the C~- smoo th  functions 

on C whose supports are contained in f~ - -  in the space WI,p(C). The functions in 

WI'p(f~) then turn out to be determined uniquely by their values on f2 (in fact, they 

vanish off  f~; see Section 4), enabling us to view W~'P(fl) as a closed subspace of  

WI,P(f~). We should think of  W~'P(f~) as consisting of those functions in WI,p(f~) 

that vanish along the boundary cOf~. Finally, HWI,p(f~) consists of  those functions 

in WI,P(f~) that are harmonic in fL The issue at hand is the following: 

�9 When is the Dirichlet problem uniquely solvable on f~ for the class WI,P? 

In other words, given a function f E Wl'P(fl), we want to find a (uniquely 

determined) harmonic function h in the same Sobolev space having the same 

boundary values on 0f~ as does f .  That is, g = f - h should belong to W01'P(Vt); h 

should be in HWI,P(f~); and in the decomposition f = g + h, both g and h are to 

be uniquely determined as elements of the respective subspaces of  W l'p(f2). Thus 

our question becomes the issue of  whether the following direct decomposition of  

the space WI,p(f~) is valid: 

(1.4) WI'P(f~) = W~'P([2) + HWI'p(f~), W~'P(I2) n HWI'/'(f~) = {0}. 

A comparison with (1.2) reveals a close resemblance. The device that effects the 

translation between (1.2) - -  with p and p' interchanged - -  and (1.4) is known 

as Havin's Lemma (see Section 2 below). The main result, as stated above, then 

implies that 

�9 (1.4) holds for all simply connected bounded f~, provided that p0 < p < p~). 

In other words, the Dirichlet problem is uniquely solvable on bounded simply 

connected domains for the Sobolev class W 1,p in the range po < p < p~). 
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The various versions of the main result formulated above are condensed in 

Theorem 4.2. 

We note that Hedberg has studied the boundary values of  Sobolev spaces on 

general domains and characterized W~'P(f~) in terms of  zero boundary values, 

originally for ~ < p < +oo and, later with Wolff, generally for 1 < p < + ~  

[24, 25]. A good source of  background information on Sobolev spaces is [1]. 

2 Havin's lemma, Bergman spaces, and projections 

H a v i n ' s  l e m m a .  As a matter of  notation, we introduce the standard Wirtinger 

partial derivatives: 

0 1 ( 0 - i ~ y )  
O.=o-S=~ ~ , 

where z = x + iy. 

~  o ~ -  2 Ux + i  ' 

We need the following identification of the annihilator of  AP'(f~), which 

constitutes a version of Havin's lemma. 

L e m m a  2.1. Let 1 < p < + ~ .  Then the annihilator AV' ([2) • o f  AP' (f~) in 
LP(f~) is the norm closure o f  OzCc~([2) in LP(f~). 

Proof .  First let f E OzCc~(f~), so that f = OzF, where F E C~(ft) .  For 

# E A p' (f~), we have 

-- f .  : f .  ozF(z) (z) dA(z) = - f .   A(z) = 0, 

using integration by parts and the fact that 0 is anti-analytic on 12. It follows that 

OzCc~(f~) is contained in the annihilator A p' (f~)z, and hence so is its norm closure 

in LP(Ft). It remains to check that AV' (f~)• is no bigger than the norm closure of  

OzC~(f~). Since 1 < p < +c~, by duality it suffices to verify that i f9  E LV'(fl) is 

in the annihilator of 0zC~(~) ,  that is, if 

(OzF, 9)n = fo OzF(z) O(z) dA(z) = 0 

for all F E C~(f~), then g 6 Ap' (f~). To this end, we again use integration by parts, 

and note that the above simply states that 

(F, Ozg)f~ = O, F E C~(f~), 

in the sense of  distribution theory. In other words, Ozg = 0 holds on i2, again 

as distributions. But it is well-known that this implies that 9 is analytic, that is, 

9 E A p' (f~). The proof is complete. 17 
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P ro j ec t i ons  on  B e r g n m n  spaces .  We now turn to the problem of identifying 
a surjective projection II~, : Ll~ ~ AP(f~), having as kernel A p' (f~)• with the 
orthogonal projection II2 : L2(f~) --+ A2(f~). It is clear that the operator Hp is 
uniquely determined by these properties. When we think of II~, as an operator 
LP(~2) ---r LP(f~), it has an adjoint II~ : LP'(f~) ~ LP'(f~). The projection property 
II~ = IIp leads to the similar property (H~) z = II~ for the adjoint. We quickly 
realize that H i has range Ap'(f~), and that its kernel equals AP(f~) • For this 
reason, we sometimes write II~, = IIp,. We restrict our attention to 1 < p < 2 only, 

for in case 2 < p < +oo, we consider II~ in place of II~,. Let f~ �9 Ap(f~) N A2(f~) 
and fz �9 0~C~(~2). Then, in view of Lemma 2.1, f2 �9 Ap'(f~)x N A2(f~) • so that 

(2.1) IIv(fl + f2) = IIv(fl) = fl = II2(fl) = II2(fl + f2), 

fl �9 AP(f~) ~ AU(f~), fu �9 OzC~(f~). 

Suppose now that Av(~) N Au(o) is dense in A2(f~). Then, by Lemma 2.1, 

X = AP(f~) A A2(fl) + OzC~(f~) 

is dense in L~(f~). This means that there exists only one possible extension 
of IIptx, the restriction of IIp to X, which extends continuously to an operator 
L2(f~) ~ L2(f~): the orthogonal projection II2 : L2(f~) ~ A2(f~). 

Let us try to develop a better statement, while changing the assumptions slightly. 
For each point )~ 6 I), there exists an element Kn,p(., A) of A~" (Il) such that 

(2.2) IIpf(A) = (f, g~,~,(., A))~ = 3f ~ f (z )  [f~,p(z, A) dA(z) 

for all functions f �9 Lp(fl). Suppose that Kfl,~,(., )~) belongs to AZ(fl) as well, for  
each ~ �9 fl. (In support of this assumption, we mention that the only thing that 
might prevent this from being true is the possibility that K~,~,(., ,~) drops too slowly 
near infinity in ~.) We deduce easily that, for A �9 fl, 

np/(~) = nH(,x), f �9 L2(n) n LP(n), 

that is, 
gt~,p(z,~) = g . ( z , ~ ) ,  (z,),) �9 f~ x f~, 

where the right hand side denotes the Bergman kernel. In other words, II~ is in 

fact a continuous extension o f  IIp to an operator L2(II) --, L2(fl). 
An alternative, perhaps more reasonable assumption, is to suppose that the 

Bergman kernel Kfl(., A) belongs to Ap(fl) as well as to A2(fl), for  each A �9 fl. We 
easily deduce that, for A E fl, 

rip, l(),) = n2/(~),  / e L~(f~) n LP'(f~), 
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that is, 

Kn,v,(Z,X) = Ka(z,X), (z,A) E f~ x f~, 

where the right hand side denotes the Bergman kernel, provided that A p' (f~) NA 2 (f~) 
is dense in A p' (f~). In other words, II2 is the only possible continuous extension of  

IIp, to an operator L2(f~) --r L2(f~). As it is clear that 

K~,p(z, ~) = Kf~,p, (A, z), (z, A) E 12 • f~, 

the same goes for IIp as well. 
We now establish that the assumption made above, that Ap (f~)NA 2 (f~) is dense in 

A 2 (f~), holds quite generally, except that we may fail to capture a single dimension. 

P r o p o s i t i o n  2.2. Let 1 < p < 2. Then AP(f~) fq A2(12) is either dense in A2(f~) 
or its closure has codimension 1. l f  C \ f~ contains an unbounded continuum, it is 
dense. 

Proof .  Consider the linear subspace 

/: = { f  e AZ(f~) : z f  e A2(f~)} 

of  A2(fl). Since 1 < p < 2, s is contained in AP(ft) A A2(12). We intend to show 

that either s is dense in AU(f~) or its closure has codimension one. 

Consider A2(f~) O s the orthogonal complement of  Z: in A2(~2). If  it is 0- 

dimensional, then s is dense, and we are done. So, in what follows, we assume 

A 2 (f~)@s contains at least one nonzero vector, which we call F;  by renormalization, 

we may suppose F has norm 1. This implies that the point at infinity, denoted 

c~, cannot be a peak point for H~176 in other (more geometrical) terms, the 

connected component of  C t3 {~}  \ ft containing c~ is the singleton {~}.  (Recall 

that oo~is a peak point for H~ if there exists q e H~( f t )  of  sup-norm 1 with 

q(z) ---r 1 as f~ 9 z --e, oo, and sup ]q(z) I < 1, 
zE~\U 

for each punctured neighborhood U of  ~ . )  The simple argument is (essentially) 

supplied in Lemma 2.1 of [3]; technical support for the argument is offered by 

Gamelin's and Garnett's paper [22]. 

We now sketch the remaining part of  the proof, which is based on an idea 

of  Browder, developed further by Gamelin and Garnett [22], and worked out in 

detail by Aleman in [3] in the case of  a bounded domain and with c~ replaced 

by a finite point. For positive parameters e and R, and a function f E A2(I2), let 

E = E(e, R, F, f ,  f~) be the set of points z e f~ with Izl > R, F(z) ~ O, and 

(2.3) I f(z)-~ - {f,F)~ I < e. 
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We claim that 

/ d A ( z )  l (_~_~) 
(2.4) iz14 = ~-~ + o as R --+ +oo, 

so that in this sense, E fills almost all of  the region Izt > R. Let us see why this 

implies that the closure of  s has codimension 1. If not, then we can find another 

function G E AZ([2) O s which has norm 1 and is orthogonal to F.  Taking a look 

at (2.3) with f = G, and then reversing the roles of  F and G, we find that 

G(z) I F(z) 
F(z) < ~' G(z) < ~ 

must hold simultaneously for many points in [2 of  large modulus, which is clearly 

impossible for 0 < e < 1. 

The verification of  (2.4) is carried out as in [3], with necessary modifications 

which arise because the point is oo and the complement C \ [2 may have zero 

area. [ ]  

It seems likely that an analogous statement is valid regarding the closure of  

A p' ([2) fq A 2 ([2) in A p' ([2), for 1 < p < 2. 

Let us see where Proposition 2.2 leaves us as for the duality problem. Let 

F E A2(f~) be the function appearing in the proof of  Proposition 2.2 and let 

1 < p < 2. If  F is in Ap([2), then A 2 ([2) N Ap([2) is dense in A 2 fit), and we are done. 

There is reason to believe that A2([2) fq AP(ft) is always dense in A2([2). After all, 

if oo is an interior point in the complement C \ f~, then A2([2) fq Ap([2) = A2([2); 

and the same holds if  oo is a boundary point of  [2 in the extended plane, provided 

the boundary 0[2 is sufficiently "massive" near oo (for instance, if  it contains a 

continuum with one end point oo). On the other hand, if 0ft is " thin" near oo, we 

consider the extreme case that oo is an interior point, and note that then we must 

have 

F ( z ) = O ( [ ~ ) ,  ,z[ ~ +oo, 

in order for F to belong to A2(ft). So, we get F E AP(f~) automatically. 

We collect our observations in the following. 

Proposition 2.3. Let 1 < p < 2 and let [2 be a domain in C such that 
AP([2) fq A2([2) is dense in A2(f~). Suppose there exists a projection IIp : Lp(f~) -~ 
Ap([2) which is the identity on Ap([2) and whose kernel is Ap' (fl) • Suppose, 
moreover, that for each ~ E f~, the function Ka,p(., ~) defined by (2.2) belongs to 
A2([2). Then lip is the Bergman projection 1-I2 : LZ(f~) -~ A2(ft), in the sense that 
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IIpf = l i2f  for  all f E L2([~) t') LP(f~). Furthermore, in terms of  the Bergman 
kernel Kn (z, (), 

IIpf(~) = L f(z) Kn (z, ~) dA(z), ( E fl, 

for all f E LP(f~). Finally, for each fixed ( Ef l ,  the function Kn(., ~) belongs to 
AP(n) n A ; (f~). 

For 2 < p < +oo, an analogous set of  assertions holds. 

The statement that Kn,p(., () = Kn(., () belongs to AP(f~) is deduced from the 
self-adjointness of 112 and the known properties of  the operator li~ = lip,. 

We should also consider the converse situation, when we know the Bergman 
projection extends continuously to Lp(fl), and would like to know that it is a 
projection LP(fl) ~ AP(fl) whose kernel equals Ap' (f~)• 

Proposit ion 2.4. Let 1 < p < +oo and let f~ be a domain in C such that 
AP(f~) N A2(f~) is dense in AP(f~), and AP' (f~) tq A2(f~) is dense in AP'(f~). Let 
II2 : L2(fl) --* A2(f~) be the orthogonal projection, given by the integral formula 

II2f(~) = (f ,  Kt~(., r = L f(z) Kt~(z, ~) dA(z), 

Suppose that for  each ~ E fL Kn(.,~) belongs to AP([~) tq AP' (n), so that liaf(~) 
makes sense for  f E LP([) and for  f G L p' (D). Suppose, moreover, that li2 extends 
continuously to an operator IIp : LP([~) ~ AP(f~). Then lip is the identity on AP(I~), 
and its kernel is A p' (f~)• 

P r o o L  We are to check that IIpf = f for f E Ap(f~), and that IIpg = 0 if and 
only if g E Ap' (fl)• By duality, the latter statement follows once we know that 
li~h = h holds for all h E A p' (f~), where II~ is the adjoint to lip, thought of  as 
acting lip : LP(fl) - ,  /.P(fl). We realize that li~ supplies a (unique) continuous 
extension of  112 to an operator Lp' (fl) ~ Ap' (fl), which we can call lip,. In view 
of the density assumptions made, these assertions are immediate consequences of  
the continuity of  lip and l i / .  Q 

3 R e d u c t i o n  to w e i g h t e d  s p a c e s  o n  t h e  d i s k  

The Bergman kernel and conformal  mapping.  Let f~ be a simply 
connected subdomain of C which is not the whole plane. By the Riemann mapping 
theorem, there exists a conformal mapping ~ : fl ~ D of  fl onto the open unit 
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disk D. It is well-known [7] that the Bergman kernel for F/ can be expressed 

conveniently in terms of  r 

Kn(z, () = r (~ - r  ( z , ~ )  e a • f~. 

In this representation, it is not important which Riemann map r we use. We see 

immediately the connection between the Bergman kernel tbr fl and that of  the unit 

disk ID: 
1 

KD(z, ~) - (1 - z~) 2' (z, ~:) ~ D • n). 

The issue at hand is whether 

IIf2f(z)= ~'2l(~(z,~)f(()dA(~ ), zE '~ ,  

defines a continuous projection LP(~2) ---} AP(t~). Let us use ~, = r : D --+ f~ to 

transform the problem into one for the unit disk. We introduce the operator 

I I . f ( z )  = ~'(z) Hf~(r f o r o ~(z), z E 1~, 

for functions f on the unit disk. A calculation involving a Moebius shift of  

coordinates then reveals that 

I I . f ( z )  = ~,'(z)IIf~(r f o r o ~(z) = ~'(z) . / , i  h'f~(~(z),~)f o r162  

= (1 - zr 2 f o r162 dA(C) = (1 --z~) "2 f(~) dA(~), z E D, 

so that H. = IIm the Bergman projection on the unit disk. Scrutinizing these 

formulas, we realize that IIf~ defines a continuous projection LP(Ft) --+ AP(f~) if 

and only if IID defines a continuous projection LP(II), w p) --> AP(D, wP), where we 

are dealing with weighted spaces; the weight is w = wp = I~'12/p-1, the space 

LP(~), w p) consists of  (equivalence classes of) Lebesgue measurable functions f 

with (J; )" IIflIL,(D,~,I = f(z)]P w'~z)P dA(z) < +oo, 

and AP(D,w p) is the closed subspace of  LP(D,w p) consisting of  those functions 

that are holomorphic on D. In case w E LP(D), the Bdkol l6-Bonami theorem [5] 

describes the weights w for which this happens in terms of  a Muckenhoupt  (Ap) 

condition. From the text and the references of  [38], it appears that Solovyov had 

the same result at approximately the same time as Bdkolld and Bonami.  By  the 

Koebe-Bieberbach  distortion theorem [ 11, 20, 36], 

1 - ] z  I 1 + Izl 
ko'(O)l (i- ~ i-~3 _< I~'(z)l _< I~'(0)1 ( 1 _  izl) 3 , z e l ~ ,  



322 H. HEDENMALM 

we are guaranteed that w = wp E LP(II~) in the interval ~ < p < 3, However, more 

sophisticated results yield a larger interval. Indeed, the estimate 

J;. ( ' ) I~'(reW)lqdO = O (1 - r) 3q-l+~ as r -~ 1, 

which is due to Feng and MacGregor  [21, 36] and valid for  positive (small) e and 

2 < q < +c~, leads to the conclusion that w E LP(I~) f o r p  in the interval 4 < p < 2. 

Using the estimate of  Theorem 8.5 [36], we may also extend the interval to the 

right, to incorporate all p with 2 < p < (7 + v ~ ) / 3  ~ 3.21. Thus ~ 6 LP(D) for 

4 < p < (7 + x/7)/3. The celebrated Brennan conjecture asserts that this holds 
3 

4 on the interval ~ < p < 4. The best right hand side bound currently known is 

3.422, which was obtained by Bertilsson [8, 9]. For our purposes, however, 

it suffices to deal with the interval ~ < p < 2, as the boundedness of  [I~ as an 

operator LP(ft) ~ AV(f2) implies the boundedness o f  the adjoint, which is the same 

operator, only this time mapping boundedly L p' (f~) ~ Av' (f~). Note that 4 is the 

exponent dual to I" 

B6koll6-Bonami's theorem o f  M u c k e n h o u p t  type for the disk. Now 

let 4 < p <_ 2. By the above, w = w 7, E LP(I~). Set 

t i )E  - iz t~ f(z) dA(z) 

for measurable subsets E of positive area and area-summable functions f on E,  

where IEIA stands for the normalized area of  E. The (area) Muckenhoupt  (Ap) 
condition for the weight w p reads 

Q % /(~)  

with the supremum ranging over all Carleson "squares" Q in D. The B6koli6- 
Bonami theorem then says that Fin defines a continuous projection L'(12) ~ AP(12) 
if and only if 

[~o,[(v-~)/(p-1)') l~-I (3.i) sup (I~'I2-P)Q ( ,Q < +oo. 
Q 

By the Feng-MacGregor theorem [21, 36], 

fDlcn'(z)12-PdA(z) < C(p) I~'(0)l 2-p, 4 (3.2) _ ~ < p < 2 ,  

for some positive constant C(p) that only depends on p. Suppose,  moreover,  that 

(3.3) f I~'(z)l-qclA(z) < C'(q)Id(o)l-~, 0 < q < ql, 
JD 
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holds for some positive number ql, where the constant C' (q) is positive and depends 

only on q. All efforts at proving Brennan's  conjecture so tar have resulted in 

estimates of the type (3.3), which may look (superficially) stronger. So, for 

instance, by Bertilsson [9], we have (3.3) for ql ~ 1.422. Combining the estimates 

(3.2) and (3.3), we arrive at 

(3.4) f~l~'(z)12-PdA(z)(fDI~P'(z)I(P-2)/(P-1)dA(z)) p-x 

<_ c ( p ) c '  p-1 \ p - l }  ' Pl<P<<-2' 

where (2 - pl) / (Pl  - 1) = qa; numerically, pl ~ 1.413. 

We now use the Moebius invariance of  the class of  conformal mappings 

considered. For a Moebius automorphism ~ of  the unit disk D, p o ,(~ is just another 

conformal mapping to which the above estimate (3.4) applies. This implies that 

we also have 

s (/i 
<_ C(p) C' ( 2 - P ~  p-1 

\ p - l }  ' Pt < p < 2 .  

Assuming the automorphism to be involutive, that is, '~ o r = z, we have after a 

shift of  coordinates 

(3.:6) J2 '~'(z)'2-;'r (J; [~'(z)'tP-2)I(P-~' I r  p-~ 

< C(p) C' f - P p-1 - \ ~ - l J  ' P l < P < 2 "  

Involutive automorphisms ~b have the form 

A - z  
r  1 - A z '  z E D ,  

with A E D, so that 

and 

1 - IAI  ~ 
r  - (1 - Az) 2' 

z E D  

(1 - l : q 2 )  ~ 
tr - ]-1 : - X ~  ' z e D. 

According to [26, pp. 7-8],  we have the asymptotic behavior 

s 1 
[r • (1 -[AI2) "-2 
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as ]AI --+ 1, provided that 1 < r < +oo. In view of  this, we can write (3.6) in the 

form 

(3.7) {l~'12-P}l~"l" \ '  "1~,',"'"-" < C"(p), pl < p < 2, 

for some positive constant C"(p) which depends only on p. Here, for an area- 

summable weight w, we write 

for the weighted average of the function f on II). If  we scrutinize the behavior 

of Ir on Carleson "squares" Q in ID, it becomes clear that (3.7) implies the area 

Muckenhoupt (Ap) condition (3.1). 

T h e o r e m  3.1. Let ~ be a simply connected domain in the complex plane, ~ # 

C_. Thenforpwi thp l  < p < p], wherepl ~ 1.413andp] ,~ 3.422, AP(~) * = AP' (~), 

and the Bergman projection defines a bounded projection LP(~) --+ AP(~), which 

is the identity on AP(~) and has kernel A p' (~)• 

P r oo f .  It is clear from the above that the Bergman projection defines a bounded 

operator lip : LP(~) --+ AV(~t) in the indicated range ofp .  It remains to show that 

Hp is the identity on AP(Ft) and to identity the kernel. By Proposition 2.4, it 

suffices to check that A2(~']) 7"1 AP(I~) is dense in AP(~) and that A2(~)) n AP'(I]) 

is dense in Ar After making a conformal change of  coordinates involving 

the function ~ : 11) --+ ~, and performing a division by ~p', the issue is whether 

AP(II), I~p ' 12-p) N A 2 (I~) is dense in Ap(I~, I~' 12-P), and whether the same is true with 

p replaced by p'. As the indicated interval of p's is dually invariant, it suffices to 

deal with p alone. The function I~'l 2-v is in LI(I~), by (3.2) and (3.3); hence, it 

suffices to show that the polynomials are dense in AP(D, Icp' 12-P). This is equivalent 

to showing that the function (~o') 2/p-1 is cyclic in AP(D), i.e., that its polynomial 

multiples are dense in AP(I~). As a matter of  fact, (3.2) and (3.3) show that (~p,)2/v-a 

is in a slightly better Bergman space A~(D) for some r, p < r < +oo. In view of  the 

estimate from below of the modulus of  (~o') 2/p-~ afforded by the Koebe-Bieberbach 

theorem, say, and of  the theorem of  Shapiro on cyclicity, later refined by Brown 

and Korenblum (Theorem 7.3 in [26]; also compare with the counterexample in 

[ 12] to the conjecture that the slightly-better space requirement could be dropped), 

it follows that (cp') 2Iv-1 is cyclic in AP(~)). The proof is complete. [] 

We also have the following conclusion from our study. 

T h e o r e m  3.2. The following three conditions are equivalent. 
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(a) Brennan's  conjecture holds, that is, 1/q9' belongs to AP(ID) f o r  all p with 

0 < p < 2 and f o r  all univalent functions ~ on D, 

(b) The Bergman projection H~ : LZ(f~) --+ A2(f~) extends to a continuous 

projection LP(f~) ---r AP(f~) fo r  all p with ~ < p < 4 and f o r  all s imply connected f~ 

other than C itself  

(c) With respect to the dual action induced by A 2 (~), the dual space o f  AP(f~) is 

A p' (f~) f o r  all p with ] < p < 4 and f o r  all simply connected ~2 other than C itself 

P r o o f .  We first consider the implication (a)~(b).  By the above argument 

involving the B6koll6-Bonami theorem, it suffices to establish (3.3) with ql = 2. 

Bertilsson [9] has shown that Brennan's conjecture (a) actually implies the stronger 

assertion that 
f ~  dO K 1 

I~'(rei~ < tcp'(0)l 2 1 -  r '  

for some absolute constant K. In view of  this, the estimate (3.3) easily follows. 

The implication (b)~(c)  is a consequence of  the discussion in the introduction, 

as well as that of  Section 2. 

We turn finally to the implication (c)~(a) .  We restrict our attention to bounded 

simply connected f~. By the argument presented in the introduction, as well 

as in Section 2, condition (c) is equivalent to the boundedness of  the Bergman 

projection II~ : LP(f~) --+ AP(f~) for all p with 4 < p _< 4, which in its turn is 

equivalent to having (3.1) for all p with 4 < p _< 2. But then the function [~0'[-q 

is at least area-summable on all "Carleson squares", and consequently on all of 

D, f o r q  = ( 2 - p ) / ( p -  1), which is free in the range 0 _< q < 2. From this, 

(a) is immediate for bounded univalent ~. However, according to Makarov [32], 

Brennan's conjecture follows for arbitrary univalent functions once it is known for 

bounded univalent functions. We are done. [] 

A c lass  o f  V o l t e r r a - t y p e  o p e r a t o r s .  We want to describe a method that 

allows us to use information of  the type that if  F belongs to the Bloch space B(D), 

then e uF is in A 2 (D) for small complex constants #; it constitutes an area version 

of  the John-Nirenberg theorem. This is relevant to us because we want certain 

negative powers of  qo' to be in A 2 (D), while it is possible to obtain reasonably 

adequate information regarding the Bloch space function log~a'; here, ~o : D -~ C 

is a univalent function. The hope is that it may be possible to obtain more detailed 

information that can lead to better estimates than those known today. 

Given an analytic function F in the unit disk D, we consider the Volterra-type 

operator 

/: T F f ( z )  = F ' ( ( )  f ( ( )  d(, z E ID, 
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where f E A2(D). This family of  operators was originally considered by Pom- 

merenke [35]. As only the derivative of  F appears in the definition of  the operator, 

we may consider only F with F(0) = 0. It is well-known [4] that TF is a bounded 

operator on A2(D) if and only if F belongs to the Bloch space B(D). For a Bloch 

function F ,  let a(TF) denote the spectrum of the operator TF : A2(D) ~ A2(D). 
The reason why TF is relevant to the situation at hand is that if a point A is in the 

unbounded component of C \ a(TF), then the function exp(F/A) belongs to A 2 (I~). 

The argument for this is quite simple. For large I,Xl, expand the resolvent in a 

Neumann series 

( I  -- A - 1 T F )  - 1  = I + A - 1 T  F A- A - 2 T ~  -t- . . .  , 

where I stands for the identity operator, and apply it to the constant function 1; 

note that 

T~I = -~ F n = 0 , 1 , 2 , 3 , . . . ,  

if we make the normalization F(0) = 0 as above. It follows that 

1 A_2F 2 I )t_3F 3 ( I - A - 1 T F ) - 1 1 = 1 + A - X F + ~ .  + ~  + . . . .  exp(F/A), 

so the assertion follows for large ]A t. For general A, the result follows by analytic 

continuation. 

I f  we are to use the above trick to solve Brennan's conjecture and, by Theorem 

3.2, to solve the duality problem as well as the problem of  the boundedness of  the 

Bergman projection, then, by (3.1), we need to know that for each p in the interval 

4_ < p < 2, the points 1/(1 - p / 2 )  and ( p -  1)/(p/2 - 1) are in the unbounded 3 
component of  the resolvent set C \ a(TF), with 

F(z) = log qa'(0)' z E ID. 

In other words, the intervals ] - cr - 1[ and [3, +oo[ should form part of  the resolvent 

set. Looking at the Koebe function as a special case, we find that this is so in that 

very special instance; more importantly, we also see that no bigger interval would 

work. This suggests that the answer to the following problem might be affirmative. 

P r o b l e m  3.3. For the above F, with ~o univalent in D, is the spectrum a(TF) 
contained in the disk 

D(1 ,2 )=  { z e C :  I z - 1 1 < 2 } ?  

In other words (by the spectral radius formula), does the estimate I1(I - T, )"II _< 
(2 + e) n hold for  large n with fixed (small) positive e? 
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It is well-known that for bounded univalent ~p, better growth estimates of  ~o' are 

possible than for general univalent functions. In particular, ~' E A 2 (I~) then, which 

suggests the next problem. 

P r o b l e m  3.4. For the above F, with ~ bounded and univalent in D, is the 

spectrum a(Tt)  contained in the closed unit disk 9? In other words, does the 

estimate I IT,~II _< (1 + ,)n hold for targe n with fixed (small) positive e ? 

Let us take a look at what these problems ask for in addition to the desired 

conclusion that (3.1) hold on the required interval ~ < p < 4. That ,k belongs to 

the resolvent set C \ (Tr) means that for each f E A2(I~), the equation 

(I - A-XTF)g = f 

has a unique solution g ~ A2(11)). Written out explicitly, this equation reads 

// g(z) - A -1 F'(()g(() d( = f(z) ,  z e D, 

which we easily solve: 

// g(z) = f(O)e F(*)/~ + e F(~)/~ f ( ( )  e -F(~)/x d(, z e I~. 

So, we need the following two things: 

(3.8) e F(z)/x e A2(~), Oz(e-F/XA2(D)) = e-r/XOzA2(D), 

where 0., stands for differentiation with respect to z, as usual. The second condition 

asks that the operators of  differentiation and multiplication by e -F/;~ "commute"  

in the weak sense that the two products have equal ranges. It is not clear how much 

this second condition adds to the first; however, for the very simple Bloch function 

F(z) = log(1 - z), an explicit computation shows that the second condition in (3.8) 

is fulfilled automatically when the first is. 

In any case, (3.8) suggests the following very general problem. 

P r o b l e m  3.5. Let 7-/ = ~ ( X )  be a Hilbert space of functions on the set X. 

Consider two operators P and Q; if they are both bounded, we say that they range- 

commute if PQ( Tt) = Q P( 7~). I f  they are unbounded, we require them to be densely 

defined, in such a way that PQ and QP are densely defined, too. We also need both 

PQ and QP to extend continuously to 7-l in such a way that the range consists o f  

functions on X. This allows us to speak o f  range-commuting operators in a much 

more general situation. The problem is to characterize the range-commuting pairs 

of  operators on 7-l. 
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(a) A classical concrete situation is when 7-[ = L 2 (T), X : qF, P is the orthogonal 

projection L2(T) -~ H2(I~), and Q is the operator o f  multiplication by an outer 

function q. The Helson-Szeg6 theorem [27, 23] answers this problem in terms of  

a decomposition of log Iql, and the Hunt-Muckenhoupt-Wheeden theorem [28, 23] 

answers it in terms of  the (A2) condition for  Iq[. 

(b) The above-mentioned situation corresponds to ~ = A 2 (D), X = I~, P = Oz, 

and Q is again multiplication by a zero-free analytic function on D. The problem 

does not change much if we replace P = Oz with the multiplicative differentiation 

operator P = zOz. Now, the property that zO~ shares with the Cauchy projection 

mentioned in part (a) is the rotation invariance; in other words, both operators are 

(Taylor) coefficient multipliers. 

4 T h e  Dir ich le t  p r o b l e m  on b o u n d e d  d o m a i n s  

A p p l i c a t i o n s  to the Dirichlet problem. Let ft be a bounded domain in 

the complex plane and let 1 < p < + ~ .  The Sobolev spaces WI,P(C), WI,P(f~), 

I,~'P(~), and HWX,P(Ft) were all defined in the introduction. We need the following 

elementary lemma. 

L e m m a  4.1. Suppose f l ,  f2, f 3 , .  . . is a sequence offunctions in C~(f~) which 

converges in the norm of  Wt'P(C) to a function f ~  E WI'P(C). I f  f ~ tu  = 0 

area-almost everywhere, then foo = 0 as an element o f  W 1,p(C). 

Proof. By a standard Sobolev space argument, we may pick a subsequence 

of the given sequence that converges area-almost everywhere to the limit f~ ,  It 

follows that f ~ ( z )  = 0 area-almost everywhere in C, whence the assertion is 

immediate. [] 

As we mentioned in the introduction, this allows us to view W~'P(f~) as a 

(closed) subspace of WI,P(f~). We now come to the main theorem in this section. 

Theorem 4,2. Let fl be a bounded domain in C, and let 1 < p < +oo. The 

following three conditions are equivalent. 

(a) With respect to the duality o f  A2(f~), Ap' (l~)* = Ap(f~). 

(b) LP(ft) = AP(~) + A f  (f~) -c, with AP(Ft) N AP'(12) • = {0}. 

(c) The Bergrnan projection lIn : L2(f~) -4 A2(f~) defines a bounded projection 

LP(12) ~ AP(f~). 

(d) Wl'P(f~) = HWI'P(f~) + W]'P(f~), with HW',P(f~) f3 W~'P(f~) = {0}. 
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(e) The Dirichlet problem is uniquely solvable on ~ with respect to the Sobolev 
class W I'p. 

Proof .  Condition (e) is to be interpreted in the sense of  the introduction, where 

we declared that it was to mean precisely (d). 

The equivalences (a)c~(b)r were (more or less) obtained in the introduction. 

Hence it remains to establish the equivalence (b)~(d).  

We first consider the implication (d)=c,(b). Let f E LV(fl), and extend this 

function to a function .f, which is compactly supported in C and belongs to the 

space Lv(C). Consider the function 

( z ) =  e -  

assuming that the extension f is chosen so that 9(z) = O(tzt -2) as Izt ~ + ~ ;  what 

is needed is that f should have integral 0 over C. Then 9 E L•(C), and O~g = f 
holds in C in the sense of distribution theory. Moreover, from the boundedness 

of  the Beurling transform on LP(C) [2, 16] (see also [39, 40]), we infer that 

0z9 E Lv(C). The function g is then an element of  the Sobolev space W 1,p(C), so 

that its restriction gl~ belongs to Wl,V(f~). By (d), gt~ has a unique decomposition 

91n = 91 + g2, where gl E HWI'P(~2) and ,q2 6 VV'oI'P(f~). Applying the operator 

0: to this decomposition, we find that f = 0:,9~ + 0:g2 ,  where 0z,91 E AP(fl) and 

0~,92 E Ap'([])• the latter in view of Lemma 2.1. As for uniqueness, suppose 

fl + f~ = 0, with fl E AV(f~) and f2 E AP'(I])• We take the conjugate Cauchy 

transform as above 

fc h({) dA(~) E C, ~[h](z) = 2 - ~ ' z 

and apply it to this equality, to get 

+ : o; 

here, ~[ft]l~ E HWI'P(~) and ~[f2]t~ E W~'P(~t), by Lemma 2.1. The uniqueness 

in the decomposition of the Sobolev space tells us that ~[fl]lf~ = 0 and ~{f2]l~ = 0, 

which after an application of 0: leads to f~ = f2 = 0. 

Finally, consider the implication (b)~(d) .  We take a function 9 E W ~'v(~), and 

look for a decomposition g = 91 + 92, where 9~ E HWI'v(~) and 92 E W01'P(fl). 

The function f = Ozg is in LP(fl), so that it has a unique decomposition f = ./1 + f2, 

where fl E AP(f/) and f2 E Ap' (fl)• Applying the conjugate Cauchy transform, 

we get 

~[f](z) = ~[f~](z) + ~[f2](z), 
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where ~[/1]ln E /-Bu and ~[A]ln �9 Wol'"(i)) �9 The function g - @[flln is 
antianalytic in Wl,v(ft), and so we get the decomposition 

g = g - ~[f] + ~[f]  = (g  - ~[f l  + ~:[fl l(z)) ~[I2](Z) + 

on fL which is of the desired type. The final item is the uniqueness. So suppose 

gl E HWI'P(f~) and g2 �9 W~'V(~t) have sum gl + g2 = 0. Apply Oz to this equality to 

obtain Ozgl + Ozg2 = 0, where Ozgl �9 AP(ft) and O~g2 E O~W~'P(f~) = AV' (f~)• By 

the uniqueness of the decomposition for L~'(ft), we get O~g~ = Ozg2 = O, Doing the 

same analysis on the conjugated equality ~1 + ~2 = 0 leads to Ozgl = Ozg2 = O. We 

conclude that both g~ and g2 are constant. But then g2, being an element of W0 ~ 'p (ft), 

must equal 0. After all, if not, then there should exist functions G~ E Cc~(ft) 

that converge to the characteristic function in in the norm of W~,v(C), and then 

OzG31n -~ 0 in LV(f~). But we have from Green's formula that 

/o o   tzI AtzI=/o  tz, A(z   
the right hand side tends to the normalized area of ft as j -~ +er whereas the left 

hand side tends to 0. This contradiction shows that it is not possible to get In in 

W0X'P(f~). The proof is complete. [] 

C o r o l l a r y  4.3. Let p be in the interval pl < p < p~, where Pl ~ 1.413 and 

p] ~ 3.422. Then the Dirichlet problem is solvable in the Sobolev class Wl'V(f~) 

on every bounded simply connected domain ft other than C itself 

Consequences  for the Green solver. If ft is a bounded domain in C with 

smooth boundary, we have a Green function G = Gn, which is a function of  two 

complex variables that for each fixed ~ Ef t  solves the problem 

A~G(z,~)  = ~ ( z ) ,  z ~ ft, 

G(z ,  ~) = O, z ~ Oft, 

where 5~ stands for the unit point mass at ~ and 

As = OzO~ = OzO---~ = 4 + , z = x + iy e C, 

is a quarter of  the ordinary Laplacian. As such, it is uniquely determined. We may 

also associate with the function G an operator, also denoted by G, which is given 

by 

G[f](z) = [ G(z,  4) f (r  dA(~), z e f t ,  
t *  
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defined for appropriately summable functions f ;  we refer to it as the Green solver. 

It solves the boundary value problem 

 zc[f](z) = f ( z ) ,  z a ,  

a[ f ] ( z )  = o, z e o a .  

The regularizing properties of the operator G are well-known in this setting; it lifts 

the degree of smoothness by two units in the scale of the Sobolev spaces. We 

want to define the Green solver for general bounded simply connected domains; 

this requires specifying our requirements on G clearly in mrms of  the Sobolev 

spaces. We need the space W-I,P(C), which consists of those distributions on C 

that define continuous linear functionals on W I'p' (Q. The space of  restrictions to 

~ of distributions in W-I,P(C) is denoted by W-I,P(~); it can be identified with 

the dual space of W~ 'p' (~). From the standard ellipticity theory for the Laplace 

operator Az, we have that, locally, distributions of class W -~,p are precisely the 

Laplacians of functions of  class W 1,p (see any book on elliptic partial differential 

equations). For bounded ~ with smooth boundary, the Green solver is characmrized 

uniquely as the mapping Gn : W-I '2(~) -~ W01'2(~) for which AGn is the identity 

operator on W-1,2(~) .  Actually, A : W~'2(~) ~ W-1'2(~)  is invertible, and Gn 

is the inverse operator. As a matter of fact, this definition makes sense for general 

bounded domains f~. However, we are only interested in simply connected ones 

here. 

T h e o r e m  4.4. Let f~ be a bounded simply connected domain in CL Then Gn 

defines a continuous map W - a'p( f~ ) -4 W o 'P ( f~ ), for  all p in the interval pl < p < p~, 

where pl ,~ 1.413 and p] ,~ 3.422. 

Proof .  Let f E W-I"P(f2), and let f E W-I'P(C) be a compactly supported 

extension of the distribution f to all of  C. By the ellipticity of  A, there exists a 

function g E WI'P(C) with A 9 = f i n  some open disk of large radius that contains 

and the support of  f compactly. By Corollary 4, we find a (unique) function 

91 E HWI'P(f~) such that 92 = 9tn - 91 E Wo'P(f~). This function has Laplacian 

Ag2 = f ,  so it must be identifiable with G[f]; we should check that g2 is uniquely 

determined by f .  To this end, we take f = 0, and try to prove that g2 = 0. But 

then A92 = 0, so that g2 E HWI'P(12); but we already know that 92 E W~'P(f~). The 

uniqueness is now immediate from HWI'P(f~) N W~'P(ft) = {0}. [] 

We should mention that Solovyov [38] has analogous applications of his 

(somewhat different) results on the boundedness of the Bergman projection in 

L p. Corollary 4.3 is obtained for Lipschitz domains with the optimal range of  ex- 
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ponents p (p should belong to some neighborhood of  the interval [], 4]) by Jerison 

and Kenig in [29]; the result extends the work of Dahlberg [ 19] mentioned below. 

By the Sobolev imbedding theorem, the identity mapping 

, 2p '  
W~ 'p (f~) ~ L q' (ll), P' <- q' < 2 =-1r 

is continuous provided 1 < p' < 2. Taking adjoints, then, we find that the identity 

mapping 
2 p < q < p ,  

Lq(tq) "-+ W-l'P(fl) '  2 + p 

is continuous for 2 < p < + ~ .  Combining this information with Theorem 4.4, 

we obtain the following result, which generalizes (albeit to a smaller range of 

the parameter p) the results obtained by Dahlberg [19] for Lipschitz domains 

to general bounded simply connected domains (where the boundary is a fairly 

arbitrary continuum). 

Corollary 4.5. Let f~ be a bounded simply connected domain in C Then Gn 

defines a continuous map Lq(f~) -+ W~'P(f~), where 1/q = 1/p + 1/2, for  all p in 

the interval 2 < p < 19'1, with p~ ..~ 3.422. 

Remarks  on Brennan's conjecture and elliptic regularity. Let K be 

a compact continuum in C which does not divide the plane, and let f~ be an open 

neighborhood of K. Suppose the function h is continuous on f~ and harmonic in 

ft \ K, and that h[n _> 0 while h[g = 0. The question is whether h is automatically 

of smoothness class W 1,p near K, for all p in the interval i < p < 4. This is like 

asking for an elliptic regularity theorem with very irregular boundary. From what 

we have already seen, it is clear that this amounts to a reformulation of  Brennan's 

conjecture. Localizing to some point z0 E K, we see that it is not the connectedness 

of  K per se that is vital for the problem, but rather a degree of  "thickness" of  K 

near z0. By elliptic regularity results for A, h is of smoothness class W 1,p near 

K if and only if Ah is of smoothness class W -1,p near K. And Ah is a positive 

distribution supported on K, that is, a positive Borel measure with support in K; 

it behaves like harmonic measure for some fixed point in C \ K, with respect to 

the domain C \ K. It can be shown that Brennan's conjecture is also equivalent 

to the statement that harmonic measure, considered as a distribution in the plane, 

belongs to the Sobolev space W-I,P(C), for all exponents p with 1 < p < 4. The 

classical theorem of Beurling [ 10, p. 53] (from his thesis, t~tudes sur un problbme 

de majoration) shows that h is of  H61der class Lip �89 near K, while the Sobolev 

imbedding theorem together with smoothness W 1,p forp < 4 yields a similar result. 
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Harmonic measure on a continuum, generally speaking, is largest (that is, worst 

with respect to smoothness classes) near "tip points", so it is natural that those 

should be decisive for Brennan's conjecture. This should be compared with the 

much more precise statement of Carleson and Makarov [18]; see also [9]. We 

make one more remark, based on the Hamack inequality. The statement that h is 

of  smoothness class W 1,p near K means that 
' 

\d(-z,K)] dA(z) < +oo 

for some neighborhood U of K that is (precompactly)contained in f~, where d(z, K) 
is the Euclidean distance from z to the set K. A much more general conjecture, 

due to Kraetzer [31], incorporating the conjectures of Brennan and of Carleson 

and Jones [17], can be expressed as the claim that 

fu < +oo 
h(z) p 

dA(z) 
\g d(z, K)q 

holds provided that 0 _< q _< 4 and q2/4 < p < +~.  

If, however, K is only assumed to be compact and allowed to be disconnected, 

it is generally impossible to get much more than the rather trivial information that 

the function h is of  smoothness class W1,L For instance, if K is of  Cantor type, 

h(z) can drop like lz - z016 in a small angular sector around the given point z0 E K, 

for some positive constant 5 that we can make as small as we like; this prevents h 

from being in a much better Sobolev class. 

A n  o p e n  p r o b l e m .  An interesting question that seems to be open is to what 

extent the Dirichlet problem is solvable in fractional exponent Sobolev spaces W ~,p 

on general bounded simply connected domains. For Lipschitz domains, the exact 

range of (a, p) was found by Jerison and Kenig [29]. The problem is of particular 

interest for p = 2. 
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