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Abstract We review the classical Cauchy–Kovalevskaya theorem and the related uniqueness
theorem of Holmgren, in the simple setting of powers of the Laplacian and a smooth curve
segment in the plane. As a local problem, the Cauchy–Kovalevskaya and Holmgren theorems
supply a complete answer to the existence and uniqueness issues. Here, we consider a global
uniqueness problem of Holmgren’s type. Perhaps surprisingly, we obtain a connection with
the theory of quadrature identities, which demonstrates that rather subtle algebraic properties
of the curve come into play. For instance, if � is the interior domain of an ellipse, and I
is a proper arc of the ellipse ∂�, then there exists a nontrivial biharmonic function u in �

which is three-flat on I (i.e., all partial derivatives of u of order ≤ 2 vanish on I ) if and only
if the ellipse is a circle. Another instance of the same phenomenon is that if � is bounded
and simply connected with C∞-smooth Jordan curve boundary, and if the arc I ⊂ ∂� is
nowhere real-analytic, then we have local uniqueness already with sub-Cauchy data: if a
function is biharmonic inO∩� for some planar neighborhoodO of I , and is three-flat on I ,
then it vanishes identically onO∩�, provided thatO∩� is connected. Finally, we consider
a three-dimensional setting, and analyze it partially using analogues of the square of the
standard 2×2 Cauchy–Riemann operator. In a special case when the domain is of periodized
cylindrical type, we find a connection with the massive Laplacian [the Helmholz operator
with imaginary wave number] and the theory of generalized analytic (or pseudoanalytic)
functions of Bers and Vekua.
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358 H. Hedenmalm

1 Introduction

1.1 Basic notation

Let

� := ∂2

∂x2
+ ∂2

∂y2
, dA(z) := dxdy,

denote the Laplacian and the area element, respectively. Here, z = x + iy is the standard
decomposition into real and imaginary parts. We let C denote the complex plane. We also
need the standard complex differential operators

∂̄z := 1

2

(
∂

∂x
+ i

∂

∂y

)
, ∂z := 1

2

(
∂

∂x
− i

∂

∂y

)
,

so that � factors as Δ = 4∂z ∂̄z . We sometimes drop indication of the differentiation variable
z. A function u on a domain is harmonic if �u = 0 on the domain. Similarly, for a positive
integer N , the function u is N-harmonic if �Nu = 0 on the domain in question.

1.2 The theorems of Cauchy–Kovalevskaya and Holmgren for powers
of the Laplacian

Let � be a bounded simply connected domain in the plane C with smooth boundary. We let
∂n denote the operation of taking the normal derivative. For j = 1, 2, 3, . . ., we let ∂ j

n denote
the j-th order normal derivative. Here, we understand those higher derivatives in terms of
higher derivatives of the restriction of the function to the line normal to the boundary at the
given boundary point. We consider the Cauchy–Kovalevskaya theorem for powers of the
Laplacian �N , where N = 1, 2, 3 . . ..

Theorem 1.1 (Cauchy–Kovalevskaya) Suppose I is a real-analytic nontrivial arc of ∂�.
Then if f j , for j = 1, . . . , 2N, are real-analytic functions on I , there is a function u with

�Nu = 0 in a (planar) neighborhood of I , having ∂
j−1
n u|I = f j for j = 1, . . . , 2N. The

solution u is unique among the real-analytic functions.

Holmgren’s theorem (1901, [12]) gives uniqueness under less restrictive assumptions on
the data and the solution.

Theorem 1.2 (Holmgren) Suppose I is a real-analytic nontrivial arc of ∂�. Then if u is
smooth on a planar neighborhood O of I and �Nu = 0 holds on O ∩ �, with ∂

j−1
n u|I = 0

for j = 1, . . . , 2N, then u(z) ≡ 0 onO ∩ �, provided that the open setO ∩ � is connected.

As local statements, the theorems of Cauchy–Kovalevskaya and Holmgren complement
each other and supply a complete answer to the relevant existence and uniqueness issues.
However, it is often given that the solution u is global, that is, it solves �Nu = 0 throughout
�. It is then a reasonable question to ask whether this changes anything. For instance, in the
context of Holmgren’s theorem, may we reduce the boundary data information on I while
retaining the assertion that u vanishes identically? We may, e.g., choose to require a lower
degree of flatness along I :

∂
j−1
n u|I = 0 for j = 1, . . . , R, (1.1)

where 1 ≤ R ≤ 2N . We call (1.1) a condition of vanishing sub-Cauchy data.
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On the uniqueness theorem of Holmgren 359

Problem 1.3 (Global Holmgren problem) Suppose u is smooth in�∪ I and solves�Nu = 0
on � and has the flatness given by (1.1) on I , for some R = 1, . . . , 2N . For which values of
R does it follow that u(z) ≡ 0 on �?

Digression on the global Holmgren problem I.When R = 2N , we see that u(z) ≡
0 follows from Holmgren’s theorem, by choosing a suitable sequence of neighborhoods O.
Another instance is when R = N and I = ∂�. Indeed, in this case, we recognize in (1.1) the
vanishing of Dirichlet boundary data for the equation �Nu = 0, which necessarily forces
u(z) ≡ 0 given that we have a global solution. When R < N and I = ∂�, it is easy to
add additional smooth non-trivial Dirichlet boundary data to (1.1) and obtain a nontrivial
solution to �Nu = 0 on � with (1.1). So for I = ∂�, we see that the assumptions imply
u(z) ≡ 0 if and only if N ≤ R ≤ 2N . It remains to analyze the case when I �= ∂�. Then
either ∂�\I consists of a point, or it is an arc. When I �= ∂�, we cannot expect that (1.1)
with R = N will be enough to force u to vanish on �, Indeed, if ∂�\I is a nontrivial arc,
we may add nontrivial smooth Dirichlet data on ∂�\I (1.1) and by solving the Dirichlet
problem we obtain a nontrivial function u with �Nu = 0 on � having (1.1) with R = N .
Similarly, when ∂�\I consists of a single point, we may still obtain a nontrivial solution u
by supplying distributional Dirichlet boundary data which are supported at that single point.
So, to have a chance to get uniqueness, we must require that N < R ≤ 2N . As the case
R = 2N follows from Holmgren’s theorem, the interesting interval is N < R < 2N . For
N = 1, this interval is empty. However, for N > 1 it is nonempty, and the problem becomes
interesting.

Digression on the global Holmgren problem II. Holmgren’s theorem has a much
wider scope than what is presented here. It applies a wide range of linear partial differential
equations with real-analytic coefficients, provided that the given arc I is non-characteristic
(see [15]; we also refer the reader to the related work of Hörmander [13]). So the results
obtained here suggest that we should replace �N by a more general linear partial differential
operator and see to what happens in the above global Holmgren problem. Naturally, the
properties of the given linear partial differential operator and the geometry of the arc I will
both influence the the answer.

1.3 Higher dimensions and nonlinear partial differential equations

The global Holmgren problem makes sense also in R
n , and it is natural to look for a solution

there as well. Moreover, if we think of the global Holmgren problem as asking for uniqueness
of the solution for given (not necessarily vanishing) sub-Cauchy data, the problem makes
sense also for non-linear partial differential equations. We should note here that things can
get quite tricky in the nonlinear context. See, e.g., Métivier’s example of non-uniqueness
[17] (which is based on on Hörmander’s linear first order non-uniqueness example in theC∞
context [13]).

We refer the interested reader to Gårding’s booklet for a survey of Holmgren’s theorem
with relevant historical references.

In Sect. 5, we analyze the biharmonic equation in three dimensions with respect to the
global Holmgren problem. Along the way, we obtain a factorization of the biharmonic oper-
ator �2 as the product of two 3 × 3 differential operator matrices which are somewhat
analogous to the squares of the Cauchy–Riemann operators ∂z, ∂̄z from the two-dimensional
setting.
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360 H. Hedenmalm

1.4 The local Schwarz function of an arc

If an arc I is real-analytically smooth, there exists an open neighborhood OI of the arc and
a holomorphic function SI : OI → C such that SI (z) = z̄ holds along I . This function
SI is called the local Schwarz function. In fact, the existence of a local Schwarz function is
equivalent to real-analytic smoothness of the arc. It is possible to ask only for a so-called
one-sided Schwarz function, which need not be holomorphic in all ofOI but only inOI ∩�

(the side which belongs to �). Already the existence of a one-sided Schwarz function is
very restrictive on the local geometry of I [21]. To ensure uniqueness of the local Schwarz
function SI (including the one-sided setting), we shall assume that both OI and OI ∩ � are
connected open sets.

1.5 A condition which gives uniqueness for the global Holmgren problem

As before, we let � be a bounded simply connected domain in the plane. We have obtained
the following criterion. In the statement, “nontrivial” means “not identically equal to 0”.
Moreover, as above, we assume that the set OI ∩ �—the domain of definition of the (one-
sided) Schwarz function—is connected.

Theorem 1.4 Suppose there exists a nontrivial function u : � → C with �Nu = 0 on �,
which extends to a C2N−1-smooth function on � ∪ I , where I is a real-analytic arc of ∂�.
If R is an integer with N < R ≤ 2N, and if u has the flatness given by (1.1) on I , then there
exists a nontrivial function of the form

�(z, w) = ψN (z)wN−1 + ψN−1(z)w
N−2 + · · · + ψ1(z), (1.2)

where each ψ j (z) is holomorphic in � for j = 1, . . . , N, such that

�(z, w) = O(|w − SI (z)|R−N ) as w → SI (z), (1.3)

for z ∈ � ∩ OI .

The above theorem asserts that w = SI (z) is the solution (root) of a polynomial equation
[over the ring of holomorphic functions on �]

�(z, w) = ψN (z)wN−1 + ψN−1(z)w
N−2 + · · · + ψ1(z) = 0, (1.4)

and that �(z, w) has the indicated additional flatness along w = SI (z) if N + 1 < R.
An equivalent way to express the flatness condition (1.3) is to say that w = SI (z) solves
simultaneously the system of equations

∂ j−1
w �(z, w) = (N − 1)!

(N − j)!ψN (z)wN− j + · · · + ( j − 1)!ψ j (z) = 0, j = 1, . . . , R − N .

(1.5)
The Eq. (1.4) results from considering j = 1 in (1.5). Let J , 1 ≤ J ≤ N , be the largest

integer such that the holomorphic function ψJ (z) is nontrivial. Since the expression �(z, w)

is nontrivial, such an integer J must exist. As a polynomial equation in w, (1.4) will have
at most J − 1 roots for any fixed z ∈ �. Counting multiplicities, the number of roots is
constant and equal to J − 1, for points z ∈ � where ψJ (z) �= 0. At the exceptional points
where ψJ (z) = 0, the number of roots is smaller. With the possible exception of branch
points, where some of the roots coalesce, the roots define locally well-defined holomorphic
functions in �\Z(ψJ ), where

Z(ψJ ) := {z ∈ � : ψJ (z) = 0}.
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On the uniqueness theorem of Holmgren 361

If we take the system (1.5) into account, we see that J > R− N . Indeed, we may effectively
rewrite (1.5) in the form

∂ j−1
w �(z, w) = (J − 1)!

(J − j)!ψJ (z)w
J− j + · · · + ( j − 1)!ψ j (z) = 0, j = 1, . . . , R − N ,

(1.6)
and if J ≤ R − N , we may plug in j = J into (1.6), which would result in

∂ J−1
w �(z, w) = (J − 1)!ψJ (z) = 0,

which cannot be solved by w = SI (z) [except on the zero set Z(ψJ )], a contradiction. We
think of (1.4) as saying that w = SI (z) is an algebraic expression over the ring of holomor-
phic functions on �. In particular, the local Schwarz function SI extends to a multivalued
holomorphic function in�\Z(ψJ )with branch cuts. So in particular SI makes sense not just
on �∩OI [this is an interior neighborhood of the arc I ], but more generally in � \Z(ψJ ), if
we allow for multivaluedness and branch cuts. The condition that w = SI (z) solves (1.4) is
therefore rather restrictive. To emphasize the implications of the above theorem,we formulate
a “negative version”.

Corollary 1.5 Let I be a real-analytically smooth arc of ∂�, and suppose that R is an
integer with N < R ≤ 2N. Suppose in addition that the local Schwarz function SI does not
solve the system (1.5) onOI ∩ � for any nontrivial function �(z, w) of the form (1.2). Then
every function function u on �, which extends to a C2N−1-smooth function on � ∪ I , with
�Nu = 0 on � and flatness given by (1.1) on I , must be trivial: u(z) ≡ 0.

In particular, for N = 2 and R = 3, the condition (1.3) says that w = SI (z) solves the
linear equation

ψ2(z)w + ψ1(z) = 0,

with solution

w = SI (z) = −ψ1(z)

ψ2(z)
,

which expresses a meromorphic function in �. We formulate this conclusion as a corollary.

Corollary 1.6 Let I be a real-analytically smooth arc of ∂�, and suppose that the local
Schwarz function SI does not extend to a meromorphic function on �. Then every function
function u on �, which extends to a C3-smooth function on � ∪ I , with �2u = 0 on � and
flatness given by

u|I = ∂nu|I = ∂2n u|I = 0,

must be trivial: u(z) ≡ 0.

Remark 1.7 Corollary 1.6 should be compared with what can be said in the analogous situ-
ation in three dimensions (see Theorem 5.6 below).

It is well-known that having a local Schwarz function which extends meromorphically to
� puts a strong rigidity condition on the arc I . For instance, if � is the domain interior to
an ellipse, and I is any nontrivial arc of ∂� [i.e., of positive length], then SI extends to a
meromorphic function in � if and only if the ellipse is a circle. This means that the Global
Holmgren Problem gives uniqueness in this case, with N = 2 and R = 3, unless the ellipse
is circular. We formalize this as a corollary.
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362 H. Hedenmalm

Corollary 1.8 Suppose � is the domain interior to an ellipse, and that I is a nontrivial arc
of the ellipse ∂�. Suppose u is C3-smooth in � ∪ I , and �2u = 0 on �. If u has

u|I = ∂nu|I = ∂2n u|I = 0,

then u(z) ≡ 0 unless the ellipse is a circle.

Remark 1.9 The smoothness condition in Theorem 1.4 and Corollary 1.5 is somewhat exces-
sive. For instance, in Corollaries 1.6 and 1.8, theC3-smoothness assumption may be reduced
to C2-smoothness. The additional smoothness makes for an easy presentation by avoiding
technicalities.

1.6 Uniqueness results for arc-flat biharmonic functions for smooth arcs that are
nowhere real-analytic

In the global Holmgren problem, we asked when vanishing Cauchy data may be relaxed to
vanishing sub-Cauchy data (1.1) if we know that we have a global solution in the domain
�. In the local problem, no improvement was possible because the Cauchy–Kovalevskaya
theorem produces nontrivial solutions if we supply nontrivial (real-analytic) Cauchy data on
the arc I . However, there is a way to suppress the effect: just assume the arc is C∞-smooth
and nowhere real-analytic. By this we mean that I has no nontrivial subarc which is real-
analytic. Then the Cauchy–Kovalevskaya theorem cannot be applied as stated. We recall the
standing assumption that � is bounded, simply connected, and has a C∞-smooth Jordan
curve boundary.

Theorem 1.10 Suppose I ⊂ ∂� is an arc that is nowhere real-analytic. Let O be an open
planar neighborhood of I , such that O ∩ � is connected. Then every function function u on
O∩�, which extends to a C3-smooth function on (O∩�)∪ I , with �2u = 0 onO∩� and
flatness given by

u|I = ∂nu|I = ∂2n u|I = 0,

must be trivial: u(z) ≡ 0 on O ∩ �.

1.7 Meromorphic Schwarz function and construction of arc-flat biharmonic
functions

Here, we study the necessity of the Schwarz function condition in Corollary 1.6.

Theorem 1.11 Suppose ∂� is a C∞-smooth Jordan curve, and that I ⊂ ∂� is a real-
analytically smooth arc, such that the complementary arc ∂�\I is nontrivial as well. If the
local Schwarz function SI extends to a meromorphic function in � with finitely many poles,
then there exists a nontrivial function u on �, which extends C∞-smoothly to � ∪ I , with
�2u = 0 on � and flatness given by

u|I = ∂nu|I = ∂2n u|I = 0.

Remark 1.12 When � = D, the open unit disk, the Schwarz function for the boundary is
ST(z) = 1/z, which is a rational function, and in particular, meromorphic in D. So if I is a
nontrivial arc of the unit circle T = ∂D, and T\I is a nontrivial arc as well, then Theorem 1.11
tells us that there exists a nontrivial biharmonic function u on D which is C∞-smooth on
D ∪ I and has the flatness

u|I = 0, ∂nu|I = 0, ∂2n u|I = 0.
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On the uniqueness theorem of Holmgren 363

In this case, an explicit function u can be found, which works for any nontrivial arc I ⊂ T

with I �= T. Indeed, we may use a suitable rotation of the function

u(z) = (1 − |z|2)3
|1 − z|4 ,

which is biharmonic with the required flatness except for a boundary singularity at z = 1.
This shows that the circle is exceptional in Corollary 1.8. We should mention here that the
above kernel u(z) appeared possibly for the first time in [1], and then later in [5] and [19].
Elias Stein pointed out that very similar kernels in the upper half plane appear in connection
with the theory of axially symmetric potentials [26].

Remark 1.13 Corollary 1.6 and Theorem 1.11 settle completely the issue of the Global
Holmgren problem for �2 with the flatness condition (1.3) [for R = 3], in the case when
the meromorphic extension of the Schwarz function SI to � has finitely many poles. Most
likely this [technical] finiteness condition may be removed.

Moreover, it seems likely that there should exists an analogue of Theorem 1.11 which
applies to N > 2. More precisely, suppose that N < R ≤ 2N , and that the local Schwarz
function w = SI (z) solves a polynomial equation system of Eq. (1.6) where the highest
order nontrivial coefficient ψJ (z) has only finitely many zeros in D, and that I ⊂ ∂� is a
nontrivial real-analytically smooth arc whose complementary arc is nontrivial as well. Then
there should exist a nontrivial function u on � which is C2N−1-smooth on � ∪ I with
�Nu = 0 on � having the flatness given by (1.3) on I .

As a corollary to Corollary 1.6 and Theorem 1.11, we obtain a complete resolution for
real-analytically smooth boundaries.

Corollary 1.14 Suppose ∂� is a real-analytically smooth Jordan curve, and that I ⊂ ∂�

is a an arc, such that the complementary arc ∂�\I is nontrivial as well. Then there exists a
nontrivial function u on �, which extends C2-smoothly to � ∪ I , with �2u = 0 on � and
flatness given by

u|I = ∂nu|I = ∂2n u|I = 0,

if and only if the local Schwarz function SI extends to a meromorphic function in �.

Remark 1.15 In the context of Corollary 1.14, the condition that the local Schwarz function
extend to a meromorphic function in � is the same as asking that � be a quadrature domain
(see Sect. 4.1).

2 The proof of Theorem 1.4 and its corollaries

2.1 Almansi expansion

It is well-known that a function u which is N-harmonic on �, that is, has �Nu = 0 on �,
has an Almansi expansion

u(z) = u1(z) + |z|2u2(z) + · · · + |z|2N−2uN (z), (2.1)

where the functions u j are all harmonic in �; the “coefficient functions” u j are all uniquely
determined by the given function u. On the other hand, every function u of the form (2.1),
where the functions u j are harmonic, is N -harmonic.
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364 H. Hedenmalm

Proof of Theorem 1.4 The function u is N -harmonic in �, and hence it has an Almansi
representation (2.1). Next, for j = 1, 2, 3, . . ., we we consider the function

U (z) := ∂N
z u(z),

where ∂z is the complex differentiation operator defined in Sect. 1.1. From the flatness
assumption on u, we know that

∂̄
j−1
z U (z) = 0, z ∈ I, j = 1, . . . , R − N . (2.2)

Since

∂̄N
z U (z) = ∂̄N

z ∂N
z u(x) = 4−N�Nu(z) = 0, z ∈ �,

the Almansi representation for U has the special form

U (z) = U1(z) + z̄U2(z) + · · · + z̄N−1UN (z),

where the functionsUj , j = 0, . . . , N−1 are all holomorphic in�, and uniquely determined
by the functionU . As u is assumedC2N−1-smooth on�∪ I , the functionU isCN−1-smooth
on � ∪ I . In particular,

∂̄
j−1
z U (z) = ∂̄

j−1
z

N∑
k=1

z̄k−1Uk(z) =
N∑

k= j

(k − 1)!
(k − j)!Uk(z) (2.3)

is C2N− j -smooth on � ∪ I for j = 1, . . . , N . By plugging in j = N into (2.3), we find that
UN is continuous on � ∪ I . Next, if we plug in j = N − 1, we find thatUN−1 is continuous
on � ∪ I . Proceeding iteratively, we see that all the functions Uk are continuous on � ∪ I
(k = 1, . . . , N ). In terms the Almansi representation for U , the condition (2.2) reads

∂̄
j−1
z U (z) =

N∑
k= j

(k − 1)!
(k − j)! z̄

k− jUk(z) = 0, z ∈ I, j = 1, . . . , R − N . (2.4)

We now define the function�(z, w). We declare thatψ j (z) := Uj (z), so that the function
�(z, w) is given by

�(z, w) :=
N∑

k=1

ψk(z)w
k−1 =

N∑
k=1

Uk(z)w
k−1.

By differentiating iteratively with respect to w, we find that

∂ j−1
w �(z, w)= ∂ j−1

w

N∑
k=1

ψk(z)w
k−1 =

N∑
k= j

(k − 1)!
(k − j)!ψk(z)w

k− j =
N∑

k= j

(k − 1)!
(k − j)!Uk(z)w

k− j,

so that

∂ j−1
w �(z, w)

∣∣
w:=SI (z)

=
N∑

k= j

(k − 1)!
(k − j)!Uk(z)[SI (z)]k− j , (2.5)

and according to (2.4), the right hand side expression in (2.5) vanishes on the arc I for
j = 1, . . . , R − N , as SI (z) = z̄ there. But the right hand side of (2.5) is holomorphic
on � ∩ OI and extends continuously to (� ∪ I ) ∩ OI and apparently vanishes on I for
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On the uniqueness theorem of Holmgren 365

j = 1, . . . , R − N , so by the boundary uniqueness theorem for holomorphic functions (e.g.,
Privalov’s theorem), the right hand side of (2.5) must vanish on � ∩ OI :

∂ j−1
w �(z, w)

∣∣
w:=SI (z)

= 0, z ∈ � ∩ OI , j = 1, . . . , R − N .

This is the systemofEq. (1.5),which byTaylor’s formula is equivalent to theflatness condition
(1.3).

It remains to be established that the function�(z, w) is nontrivial. Since, by construction,
�(z, z̄) = U (z), it is enough to show that U is nontrivial. We know by assumption that u
is nontrivial, and that ∂N

z u = U while u has the flatness (1.1) along I . If U is trivial, i.e.,
U (z) ≡ 0, then ∂N

z u = 0 which is an elliptic equation of order N and since R > N , the
flatness (1.1) entails that u(z) ≡ 0, by Holmgren’s theorem (for the elliptic operator ∂N ).
This contradicts the nontriviality of u, and therefore refutes the putative assumption that U
was trivial. The proof is complete. ��
Proof of Corollary 1.5 This is just the negative formulation of Theorem 1.4. ��
Proof of Corollary 1.6 In this case where N = 2, the equation (1.4) is linear, so by The-
orem 1.4 with N = 2 and R = 3, the existence of a nontrivial biharmonic function on �

with flatness (1.3) along I forces the local Schwarz function SI to extend meromorphically
to �. ��
Proof of Corollary 1.8 It is well-known that the Schwarz function for an non-circular ellipse
develops a branch cut along the segment between the focal points (cf. [8,22]), so it cannot
in particular be meromorphic in �. So, in view of Corollary 1.6, we must have u(z) ≡ 0, as
claimed. ��

3 Arcs that are nowhere real-analytic

3.1 Arc-flat biharmonic functions

We suppose u is C3-smooth on � ∪ I , where I ⊂ ∂� is a nontrivial arc, and that u solves
the sub-Cauchy problem (O stands for an open connected planar neighborhood of I and we
assume O ∩ � is connected)

�2u|O∩� = 0, u|I = ∂nu|I = ∂2n u|I = 0.

We make no particular assumptions on the arc I , but we know ∂� is a C∞-smooth Jordan
curve. As in the proof of Theorem 1.4, we form the associated function

U (z) := ∂2z u(z), z ∈ O ∩ �,

which is bianalytic:

∂̄2z U (z) = ∂2z ∂̄
2
z u(z) = 1

16
�2u(z) = 0, z ∈ O ∩ �.

As such, it has an Almansi-type decomposition U (z) = U1(z) + z̄U2(z), where Uj is holo-
morphic on O ∩ �, for j = 1, 2. Since U2 = ∂̄zU , the smoothness assumptions on U entail
thatU2 extends continuously to (O ∩ �) ∪ I , and, consequently,U1 extends continuously to
(O ∩ �) ∪ I as well.

123

Author's personal copy



366 H. Hedenmalm

Proof of Theorem 1.10 We argue by contradiction, and assume that there exists a nontrivial
biharmonic function u on O ∩ � which extends to a C3-smooth function on O ∩ � with the
given flatness on I . As above,we form the functionU (z) := ∂2z u(z), which is bianalyticO∩�

andC1-smooth on (O∩�)∪I .WeputU2(z) := ∂̄zU (z),which is then a holomorphic function
onO∩�which extends continuously to (O∩�)∪ I . The functionU1(z) := U (z)− z̄U2(z)
is also holomorphic on O ∩ � and continuous on (O ∩ �) ∪ I . So the bianalytic function U
has the decomposition U (z) = U1(z) + z̄U2(z), where Uj , j = 1, 2, are both holomorphic
on O ∩ � and continuous on (O ∩ �) ∪ I .
From the sub-Cauchy flatness on I , we have that

U (z) = U1(z) + z̄U2(z) = 0, z ∈ I. (3.1)

We suppose for the moment that the the analytic function U2 – which is continuous on
(O∩�)∪ I – is nontrivial; then there must exist a nontrivial subarc I ′ ⊂ I whereU2(z) �= 0
for z ∈ I ′. The function

SI ′(z) := −U1(z)

U2(z)

then has the following properties: (i) it is holomorphic in O′ ∩ �, for some neighborhood
O of I ′, and (ii) it extends to a continuous function on (O′ ∩ �) ∪ I ′, with boundary values
SI (z) = z̄ on I ′. We conclude that SI ′ is a local one-sided Schwarz function. By Sakai’s
theorem [21], aC∞-smooth nowhere real-analytic arc cannot have a one-sided local Schwarz
function. This gives us a contradiction, and the assumption that U2 was nontrivial must be
incorrect. SoU2(z) ≡ 0 onO′ ∩�, and by (3.1),U1(z) = 0 on I , and the uniqueness theorem
for analytic functions gives that U1(z) ≡ 0. We conclude that U (z) ≡ 0, and the function u
solves the partial differential equation ∂2z u(z) = 0 on O ∩ �, which means that the complex
conjugate of u solves the same equation that U did, with even flatter data on the arc I . A
repetition of the above argument then gives that u(z) ≡ 0, as claimed. ��

4 Quadrature domains and the construction of arc-flat biharmonic
functions

4.1 Quadrature domains

As before, � is a bounded simply connected domain in C. For the moment, we assume in
addition that the boundary ∂� is a real-analytically smooth Jordan curve. As before, I ⊂ ∂�

is a nontrivial arc. Then the local Schwarz function SI extends to a local Schwarz function
for the whole boundary curve; we write S∂� for the extension. In [2], Aharonov and Shapiro
show that in this setting, the following two conditions are equivalent:

(i) the Schwarz function S∂� extends to a meromorphic function in �,
(ii) the domain � is a quadrature domain.

Here, the statement that � is a quadrature domain means that for all harmonic functions
h on � that are area-integrable (h ∈ L1(�)),

∫
�

hdA = 〈h, α〉�,
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for some distribution α with finite support contained inside�. The notation 〈·, ·〉� is the dual
action which extends (to the setting of distributions) the standard integral

〈 f, g〉� =
∫

�

f gdA

when f g ∈ L1(�). It was also explained in [2] that the conditions (i)-(ii) are equivalent a
third condition:

(iii) any conformal map ϕ : D → � [with ϕ(D) = �] is a rational function.

It is easy to see that the condition (iii) entails that the boundary curve ∂� is algebraic.
Let us try to understand why the implication (i) �⇒ (iii) holds. So, we assume the Schwarz
function extends to a meromorphic function in �, and form the function

�(ζ) :=
{
S∂�(ϕ(ζ )), ζ ∈ D̄,

ϕ(1/ζ̄ ), ζ ∈ De,

where De := {ζ ∈ C : |ζ | > 1} is the “exterior disk”, and ϕ is any [surjective] confor-
mal map D → �. By the assumed real-analyticity of ∂�, the conformal map ϕ extends
holomorphically (and conformally) across the circle T = ∂D, see, e.g. [20]. In particular,
�(ζ) is well-defined on T, and is holomorphic in C \ T. As the two definitions in C\T agree
[in the limit sense] along T, Morera’s theorem gives that � extends holomorphically across
T. But then � is a rational function, as it has only finitely many poles and is holomorphic
everywhere else on the Riemann sphere C ∪ {∞}. If we put

ϕext(ζ ) := �(1/ζ̄ ),

then ϕext is a rational function, which agrees with ϕ on D. This establishes assertion (iii).

4.2 Real-analytic arcs with one-sided meromorphic Schwarz function

We return to the previous setting of a real-analytic arc I ⊂ ∂�, where � is a bounded simply
connected domain whose boundary ∂� is a C∞-smooth Jordan curve. We shall assume
that the local Schwarz function extends to a meromorphic function in � with finitely many
poles. In this more general setting, the surjective conformal mapping ϕ : D → � extends
analytically across the arc Ĩ := ϕ−1(I ): the extension is given by

ϕext(ζ ) := SI ◦ ϕ(1/ζ̄ ), ζ ∈ De.

The extension is then meromorphic in D∪De ∪ Ĩ , with finitely many poles; we denote it by
ϕ as well.

Proof of Theorem 1.11 We assume for simplicity that the arc I is open, i.e. does not contain
its endpoints. Also, without loss of generality, we may assume that the origin 0 is in�. We let
ϕ : D → � be a surjective conformal mapping with ϕ(0) = 0, which by the above argument
extends meromorphically to D ∪ De ∪ Ĩ , with finitelywith finitely many poles. Here, Ĩ ⊂ T

be the arc of the circle for which ϕ( Ĩ ) = I ⊂ ∂�. We let F be a the function

F(ζ, ξ) := 1

ϕ(ζ )

∫ ζ

0

1 + ξ̄η

1 − ξ̄η
ϕ′(η)dη, (4.1)

where |ξ | = 1 is assumed. For fixed ξ /∈ Ĩ , the function F(·, ξ) is well-defined and holomor-
phic in a neighborhood of D∪ Ĩ . Moreover, F(ζ, ξ) enjoys an estimate in terms of a (radial)
function of |ζ | which is independent of the parameter ξ ∈ T.
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Next, we let proceed by considering functions real-valued v1, v2 that are harmonic in D

(to be determined shortly), and associate holomorphic functions V1, V2 with Im V1(0) =
Im V2(0) = 0 and Re Vj = v j for j = 1, 2. Then 2∂ζ v2(ζ ) = V ′

2(ζ ), for j = 1, 2. We form
the associated function

v(ζ ) := v1(ζ ) + |ϕ(ζ )|2v2(ζ ). (4.2)

The functions v1, v2 are real-valued and harmonic, and we calculate that

�v = �[v1 + |ϕ|2v2] = �[|ϕ|2v2] = 4|ϕ′|2
{
v2 + 2Re

[
ϕ

ϕ′ ∂ζ v2

]}
, (4.3)

and

2∂ζ

1

ϕ′(ζ )
∂ζ [v(ζ )] = [V ′

1/ϕ
′]′(ζ ) + ϕ(ζ )

{
2V ′

2(ζ ) + ϕ(ζ )[V ′
2/ϕ

′]′(ζ )
}
. (4.4)

Now, we require of v1, v2 that the function v gets to have vanishing second order derivatives
along Ĩ in the following sense:

�v| Ĩ = 0, ∂ζ

1

ϕ′ ∂ζ [v]
∣∣∣∣
Ĩ

= 0. (4.5)

Since

v2 + 2Re

[
ϕ

ϕ′ ∂ζ v2

]
= Re

{
V2 + ϕ

ϕ′ V
′
2

}
= Re

{
(ϕV2)′

ϕ′

}
,

the first condition in (4.5) may be expressed as

Re

{
(ϕV2)′

ϕ′

}
= 0 on Ĩ . (4.6)

If we let V2 be the holomorphic function

V2(ζ ) =
∫
T

F(ζ, ξ)dν(ξ), (4.7)

where F is as in (4.1) and ν is a real-valued Borel measure supported on the complementary
arc T\Ĩ , then condition (4.6) is automatically met, so that the first requirement in (4.5) is
satisfied. It remains to meet the second requirement of (4.5) as well. In view of (4.4), and
the uniqueness theorem for holomorphic functions, we may write the second requirement in
the form

[V ′
1/ϕ

′]′(ζ ) + ϕ̄(1/ζ̄ )
{
2V ′

2(ζ ) + ϕ(ζ )[V ′
2/ϕ

′]′(ζ )
} = 0,

which is the same as [
V ′
1

ϕ′

]′
(ζ ) + ϕ̄(1/ζ̄ )

ϕ(ζ )

d

dζ

{ [ϕ(ζ )]2V ′
2(ζ )

ϕ′(ζ )

}
= 0.

We think of this is as a second order linear differential equation in V1, with a nice holomorphic
solution V1 in a neighborhood of D ∪ Ĩ unless the finitely many poles in D of the function

ϕ̄(1/ζ̄ )

ϕ(ζ )
= SI (ϕ(ζ ))

ϕ(ζ )

are felt. In order to suppress those poles, we may ask that the function V ′
2 should have a

sufficiently deep zero at each of those poles in D. This amounts to asking that

V ( j)
2 (ζ ) =

∫
T

∂
j
ζ F(ζ, ξ)dν(ξ) = 0 j = 1, . . . , j0(ζ ), (4.8)
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for a finite collection of points ζ in the disk D. Taking real and imaginary parts in (4.8),
we still are left with a finite number of linear conditions, and the space of real-valued Borel
measures supported in T \ Ĩ is infinite-dimensional. So, clearly, there exists a nontrivial ν

that satisfies (4.8). If we like, we may even find such a ν with C∞-smooth density. Then the
function V2 is nonconstant, and its real part is nonconstant as well.

Finally, we turn to the issue of the biharmonic function u on� that we are looking for. We
put ũ(z) := v ◦ϕ−1(z) and observe that with the choice of the Borel measure ν, the function
ũ is real-valued with

�ũ|I = 0, ∂2z ũ|I = 0,

by (4.5). This means that all partial derivatives of ũ of order 2 vanish along I , which says that
both ∂x ũ and ∂y ũ have gradient vanishing along I . So both ∂x ũ and ∂y ũ are constant on I . If
we repeat this argument, we see that there exists an affine function A(z) := A0 + A1x + A2y
such that u := ũ − A has the required flatness along I . Since by construction ũ cannot itself
be affine, this completes the proof of the theorem. ��
Proof of Corollary 1.14 In view of Remark 1.9, the forward implication follows from Corol-
lary 1.6. In the reverse direction, we appeal to Theorem 1.11 and use the observation that
the local Schwarz function SI is automatically holomorphic in a neighborhood of the entire
boundary ∂�, so it can only have finitely many poles in �. ��

5 The biharmonic equation in three dimensions and the global Holmgren
problem

5.1 A uniqueness conjecture for biharmonic functions flat on a patch which is
nowhere real-analytic

Let � be a domain in R
n (for n ≥ 2) which is the image of the open unit ball under

a C∞-diffeomorphism between the closures. In particular, then, the boundary ∂� is C∞-
diffeomorphic to the unit sphere, and, in particular, ∂� is C∞-smooth. We pick a patch
I ⊂ ∂�, which asks of I that it is nonempty, relatively open, and connected. We say that I is
nowhere real-analytic if there is no real-analytic sub-patch of I . In view of Theorem 1.10 and
its proof, we suggest the following conjecture. If true, the conjecture would be a far-reaching
extension of Sakai’s theorem (which has a rather elementary proof in the given setting with
n = 2).

Conjecture 5.1 (n ≥ 3) Suppose I ⊂ ∂� is a patch which is nowhere real-analytic. Let
O be an open neighborhood of I in R

n , such that O ∩ � is connected. Then every function
function u onO∩�, which extends to a C3-smooth function on (O∩�)∪ I , with �2u = 0
on O ∩ � and flatness given by

u|I = ∂nu|I = ∂2n u|I = 0,

must be trivial: u(z) ≡ 0 on O ∩ �.

5.2 Matrix-valued differential operators

In C ∼= R
2, we may identify a complex-valued function u = u1 + iu2, where u1, u2 are

real-valued, with a column vector:
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u ∼
(
u1
u2

)
.

In the same fashion, we identify the differential operators ∂z and ∂̄z with 2×2 matrix-valued
differential operators

2∂z ∼
(

∂x ∂y

−∂y ∂x

)
, 2∂̄z ∼

(
∂x −∂y

∂y ∂x

)
,

so that

� = 4∂z ∂̄z ∼
(

� 0

0 �

)
,

which identifies the Laplacian � with its diagonal lift. Along the same lines, we see that

4∂2z ∼
(

∂2x − ∂2y 2∂x∂y
−2∂x∂y ∂2x − ∂2y

)
, 4∂̄2z ∼

(
∂2x − ∂2y −2∂x∂y
2∂x∂y ∂2x − ∂2y

)
,

and the main identity which we have used in this paper is simply that(
∂2x − ∂2y 2∂x∂y
−2∂x∂y ∂2x − ∂2y

) (
∂2x − ∂2y −2∂x∂y
2∂x∂y ∂2x − ∂2y

)
=

(
�2 0

0 �2

)
. (5.1)

While it seems unclear what should be the canonical analogue of the Cauchy–Riemann
operators ∂z, ∂̄z in the three-dimensional setting, it turns out to be possible to find suitable
analogues of their squares! Indeed, there is a three-dimensional analogue of the factorization
(5.1). We write x = (x1, x2, x3) for a point inR3, and let ∂ j denote the partial derivative with
respect to x j , for j = 1, 2, 3, and let

� := ∂21 + ∂22 + ∂23

be the three-dimensional Laplacian. We then define the 3 × 3 matrix-valued differential
operators

L :=
⎛
⎜⎝

∂21 − ∂22 − ∂23 2∂1∂2 2∂1∂3
−2∂1∂2 ∂21 − ∂22 + ∂23 −2∂2∂3
−2∂1∂3 −2∂2∂3 ∂21 + ∂22 − ∂23

⎞
⎟⎠

and

L′ :=
⎛
⎜⎝

∂21 − ∂22 − ∂23 −2∂1∂2 −2∂1∂3
2∂1∂2 ∂21 − ∂22 + ∂23 −2∂2∂3
2∂1∂3 −2∂2∂3 ∂21 + ∂22 − ∂23

⎞
⎟⎠ .

Proposition 5.2 The matrix-valued partial differential operators L,L′ commute and factor
the bilaplacian:

LL′ = L′L =
⎛
⎜⎝

�2 0 0

0 �2 0

0 0 �2

⎞
⎟⎠ .
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Proof We first observe that it enough to check LL′ equals the diagonally lifted bilaplacian,
because L′L amounts to much the same computation (after all, L′ equals L after the change
of variables x1 �→ −x1). The entry in the (1, 1) corner position of the product equals

(∂21 − ∂22 − ∂23 )2 + 4(∂1∂2)
2 + 4(∂1∂3)

2 = (∂21 + ∂22 + ∂23 )2 = �2.

Similarly, the entry in the (1, 2) position equals

(∂21 − ∂22 − ∂23 )(−2∂1∂2) + 2∂1∂2(∂
2
1 − ∂22 + ∂23 ) + 2∂1∂3(−2∂2∂3) = 0,

and the entry in the (1, 3) position equals

(∂21 − ∂22 − ∂23 )(−2∂1∂3) + 2∂1∂2(−2∂2∂3) + 2∂1∂3(∂
2
1 + ∂22 − ∂23 ) = 0.

Furthermore, the entry in the (2, 1) position equals

−2∂1∂2(∂
2
1 − ∂22 − ∂23 ) + (∂21 − ∂22 + ∂23 )(2∂1∂2) − 2∂2∂3(2∂1∂3) = 0,

the entry in the (2, 2) position equals

−2∂1∂2(−2∂1∂2) + (∂21 − ∂22 + ∂23 )2 − 2∂2∂3(−2∂2∂3) = (∂21 + ∂22 + ∂23 )2 = �2,

and the entry in the (2, 3) position equals

−2∂1∂2(−2∂1∂3) + (∂21 − ∂22 + ∂23 )(−2∂2∂3) − 2∂2∂3(∂
2
1 + ∂22 − ∂23 ) = 0.

Finally, the entry in the (3, 1) position equals

−2∂1∂3(∂
2
1 − ∂22 − ∂23 ) − 2∂2∂3(2∂1∂2) + (∂21 + ∂22 − ∂23 )(2∂1∂3) = 0,

the entry in the (3, 2) position equals

−2∂1∂3(−2∂1∂2) − 2∂2∂3(∂
2
1 − ∂22 + ∂23 ) + (∂21 + ∂22 − ∂23 )(−2∂2∂3) = 0,

and the entry in the (3, 3) corner position equals

4(∂1∂3)
2 + 4(∂2∂3)

2 + (∂21 + ∂22 − ∂23 )2 = (∂21 + ∂22 + ∂23 )2 = �2.

This completes the proof. ��
5.3 An Almansi-type expansion

We need to have an Almansi-type representation of the biharmonic functions. We formulate
the result in general dimension n.

Definition 5.3 We say that the domain � ⊂ R
n is x1-contractive if x = (x1, . . . , xn) ∈ �

implies that (t x1, x2, . . . , xn) ∈ � for all t ∈ [0, 1]. Moreover, we say that � ⊂ R
n is

strongly x1-contractive if, in addition, x = (x1, . . . , xn) ∈ ∂� with x1 �= 0 implies that
(t x1, x2, . . . , xn) ∈ � for all t ∈ [0, 1[.
Proposition 5.4 If � ⊂ R

n is x1-contractive, and if u : � → R is biharmonic, i.e., solves
�2u = 0, then u(x) = v(x) + x1w(x), where v,w are harmonic in �.

Proof By calculation, we have that

�[x1w] = (∂21 + · · · + ∂2n )[x1w] = 2∂1w + x1�w,
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so that if w is harmonic, �[x1w] = 2∂1w, and hence, �2[x1w] = 2�∂1w = 2∂1�w = 0. It
is now clear that any function of the form u(x) = v(x) + x1w(x), with v,w both harmonic,
is biharmonic.

We turn to the reverse implication. So, we are given a biharmonic function u on �, and
attempt to find the two harmonic functions v,w so that u(x) = v(x) + x1w(x). We first
observe that h := �u is a harmonic function, and that if v,w exist, we must have that
h = �[v + x1w] = �[x1w] = 2∂1w. Let x ′ := (x2, . . . xn) ∈ R

n−1, so that x = (x1, x ′).
By calculation, then,

�

∫ x1

0
h(t1, x

′)dt1 = ∂1h(x) +
∫ x1

0
�′h(t1, x

′)dt1 = ∂1h(x) −
∫ x1

0
∂21h(t1, x

′)dt1

= ∂1h(0, x ′),

where we used that h was harmonic, and let �′ denote the Laplacian with respect to x ′ =
(x2, . . . , xn). Next, we apply the results on P-convexity in Sections 10.6–10.8 of [14] to the
slice �′ := � ∩ ({0} × R

n−1), and obtain a solution F to the Poisson equation �′F(x ′) =
∂1h(0, x ′) on �′. We now declare w to be the function

w(x) = w(x1, x
′) := 1

2

{∫ x1

0
h(t1, x

′)dt1 − F(x ′)
}
,

which is well-defined since � was assumed x1-contractive. In view of the above calculation,
w is harmonic in �, and we quickly see that 2∂1w = h, so that �[x1w] = h. Finally we put
v := u − x1w which is harmonic in � by construction. ��

Remark 5.5 If � is strongly x1-contractive, and if I ⊂ ∂� is a relatively open patch on the
boundary ∂� – which is assumedC∞-smooth – and u isC4-smooth on�∪ I , then the above
proof can be made to produce a decomposition u = v + x1w, where v,w are harmonic in �

and C2-smooth on � ∪ I .

5.4 Application of the matrix-valued differential operators

We return to three dimensions and assume u is biharmonic in a bounded convex domain �

is R3 which is strongly x1-contractive. We assume that the boundary ∂� is C∞-smooth, and
that I ⊂ ∂� is a nontrivial open patch. We may lift u to a vector-valued function in the
following three ways:

u〈1〉 := u ⊕ 0 ⊕ 0 =
⎛
⎝ u
0
0

⎞
⎠ , u〈2〉 := 0 ⊕ u ⊕ 0 =

⎛
⎝ 0
u
0

⎞
⎠ , u〈3〉 := u ⊕ 0 ⊕ 0 =

⎛
⎝ 0
0
u

⎞
⎠ .

We assume that all partial derivatives of u of order ≤ 2 vanish on I , and that u isC4-smooth
on�∪ I . Since u is biharmonic in�, we apply Proposition 5.4 to decompose u〈1〉, u〈2〉, u〈3〉:

u〈1〉 = v〈1〉 + x1w
〈1〉, u〈2〉 = v〈2〉 + x1w

〈2〉, u〈3〉 = v〈3〉 + x1w
〈3〉,

with obvious interpretation of v〈 j〉, w〈 j〉 as vector-valued functions. In view of Remark 5.5,
the functions v,w are both C2-smooth in �∪ I . Moreover, by the flatness assumption on u,

L′[u〈 j〉] = L′[v〈 j〉] + L′[x1w〈 j〉] = 0 on I, j = 1, 2, 3.
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We let R denote the matrix-valued operator

R :=
⎛
⎝ ∂21 −∂1∂2 −∂1∂3

∂1∂2 −∂22 −∂2∂3
∂1∂3 −∂2∂3 −∂23

⎞
⎠ ,

and observe that L′[h] = 2R[h] holds for all harmonic 3-vectors h. In a similar fashion,
we calculate that L′[x1h] = 2C[h] + 2x1R[h] for harmonic 3-vectors h, where C is the
matrix-valued differential operator

C :=
⎛
⎝ ∂1 −∂2 −∂3

∂2 ∂1 0
∂3 0 ∂1

⎞
⎠ .

In particular, for j = 1, 2, 3,

0 = L′[u〈 j〉] = 2R[v〈 j〉] + 2C[w〈 j〉] + 2x1R[w〈 j〉] on I,

which we may write in the form

x1R[w〈 j〉] = −R[v〈 j〉] − C[w〈 j〉] on I, for j = 1, 2, 3. (5.2)

Let H[ f ] be the Hessian matrix operator:

H :=
⎛
⎝ ∂21 ∂1∂2 ∂1∂3

∂1∂2 ∂22 ∂2∂3
∂1∂3 ∂2∂3 ∂23

⎞
⎠ ,

where, for a scalar-valued function f , the matrix operator is applied to f in each entry,
producing a 3 × 3 matrix field H[ f ]. Note the similarity with R. The system (5.2) amounts
to the 3 × 3 matrix equation

x1H[w] = −H[v] − B[w] on I, (5.3)

where

B :=
⎛
⎝ ∂1 ∂2 ∂3

∂2 ∂1 0
∂3 0 ∂1

⎞
⎠ .

By the flatness assumption on I , a calculation gives that

0 = �u = �(v + x1w) = �(x1w) = x1�w + 2∂1w = 2∂1w on I,

so we may reduce the system (5.3) to

x1H[w] = −H[v] − A[w] on I, (5.4)

where

A :=
⎛
⎝ ∂1 ∂2 ∂3

∂2 0 0
∂3 0 0

⎞
⎠ .

We have arrived at the following.
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Theorem 5.6 In the above setting, we have that

∂1w = 0 and x1H[w] = −H[v] − A[w] on I.

In particular, if the Hessian H[w] is nonsingular on the patch I , then the matrix field

X1 := −(H[w])−1(H[v] + A[w]),
defined in � ∪ I wherever the Hessian H[w] is nonsingular, has the property that X1 = x1I
holds on the patch I , where I denotes the unit 3 × 3 matrix.

Unfortunately, the determinant of the Hessian of a harmonic function may vanish identi-
cally (see Lewy [16]). However, if the determinant vanishes then the given harmonic function
is rather special, connected with the theory of minimal surfaces (Lewy [16]). Quite possibly
the system (5.3) should give a lot of information anyway also in this case. We mention here
Lewy’s observation that unless the harmonic function is affine, the corresponding Hessian
has rank at least 2.

Remark 5.7 Theorem 5.6 is a three-dimensional analogue of Corollary 1.6. It should be
mentioned that part of the assertion of Theorem 5.6 is the equality

∇[w + ∂1v] + x1∇[∂1w] = 0 on I,

so that x1 multiplied by one gradient of a harmonic function equals the gradient of another
harmonic function.

Remark 5.8 Holmgren’s theorem for the Laplacian � asserts that in the above three-
dimensional setting that if the harmonic function vanishes along with its normal derivative
along the (relatively open) patch I ⊂ ∂�, then the function vanishes identically [observe that
the vanishing of the normal derivative is the same as the vanishing of the gradient here]. In
two dimensions, the corresponding statement is a special instance of Privalov’s uniqueness
theorem, as the gradient of the harmonic function is identified with a holomorphic function.
Privalov’s uniqueness theorem allows the arc to be replaced by a (closed) set of positive
linear measure (see [3] for a collection of related results), and it might seem reasonable to
suspect that a corresponding positive area criterion would be possible in three dimensions.
This was disproved by a counterexample of Bourgain andWolff [6,27] (see also Wang [25]).
Our understanding remains rather incomplete.

5.5 Domains with toric product structure

Theorem 5.6, and especially Remark 5.7, tells us about the rigidity imposed by the global
Holmgren problem in three dimensions with R = 3 (sub-Cauchy data involving partial
derivatives of order ≤ 2). It is, however, not clear what the result really says about the
patch I and the domain �. Here, we will try to analyze a rather special situation in three
dimensions where we can apply “dimension reduction” which leads us to analyze two-
dimensional problems in place of three-dimensional problems. The appearance of a flat
direction should make it easier to have nontrivial biharmonic functions with sub-Cauchy flat
boundary data. Indeed, this is precisely what we find.

To begin with, We let �∗ ⊂ R
2 be a bounded simply connected domain with smooth

boundary, and consider the cylindrical domain � := �∗ ×R ⊂ R
3. This domain is unfortu-

nately unbounded. To remedy this, we fix a positive real parameter α and consider

� := {(0, 0)} × αZ = {(0, 0, αn) : n ∈ Z},
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which is then a discrete additive subgroup of R3. We will consider �/�, where two points
x, y ∈ � are equated if x− y ∈ �. Geometrically,�/� looks like a doughnut. The functions
on �/� can be understood as the functions on � which are periodic with respect to �. We
let I∗ ⊂ ∂�∗ be an arc, and consider the patch I := I∗ × R. The global Holmgren problem
now asks whether a biharmonic function on �/� which is, say, C4-smooth on � ∪ I , with
vanishing sub-Cauchy data

u|I = 0, ∂nu|I = 0, ∂2n u|I = 0,

must necessarily vanish identically.
In the theorem below, we use the notation

�′ := ∂21 + ∂22

for the two-variable Laplacian. In the proof, it is convenient to work with complex-valued
functions, so in the assumptions we may as well assume each of the functions u,U to be
complex-valued.

Theorem 5.9 The following two conditions are equivalent:
(i) There exists a nontrivial biharmonic function on �/� which extends to a C4-smooth
function on (� ∪ I )/� with vanishing sub-Cauchy data

u|I = ∂nu|I = ∂2n u|I = 0.

(ii) There exists an integer n ∈ Z and a nontrivial function U of two variables that is
C4-smooth on �∗ ∪ I∗ which solves the sub-Cauchy problem

(�′ − 4π2α−2n2)2U = 0 on �∗, and U |I∗ = ∂nU |I∗ = ∂2nU |I∗ = 0.

Proof We first consider the implication (ii) �⇒ (i). By (ii), we have a nontrivial functionU
with the given properties, and consider the function

u(x) = ei2πnα−1x3U (x1, x2), x = (x1, x2, x3) ∈ �,

which is �-periodic and also biharmonic:

�2u(x) = (�′ + ∂23 )2[ei2πnα−1x3U (x1, x2)] = ei2πnα−1x3(�′ − 4π2α−2n2)2U (x1, x2) = 0.

The vanishing of the sub-Cauchy data along I is immediate.
Second, we consider the implication (i) �⇒ (ii). Given the nontrivial biharmonic function

u, we form, for a suitable integer n ∈ Z, the function

U (x1, x2) :=
∫ α

0
e−i2πnα−1t u(x1, x2, t)dt.

The choice of n should be such that the resulting functionU is nontrivial. The nontriviality of
u ensures the existence of such an n, by standard Fourier analysis. Next, by the biharmonicity
of u, we have

(�′ − κ2)2U (x1, x2) =
∫ α

0
e−i2πnα−1t {(�′)2 − 2κ2�′ + κ2}u(x1, x2, t)dt

= −
∫ α

0
e−i2πnα−1t {∂43 + 2∂21∂23 + 2∂22∂23 + 2κ2∂21

+ 2κ2∂22 − κ4}u(x1, x2, t)dt, (5.5)
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where we write κ := 2πα−1n. A calculation involving integration by parts shows that
∫ α

0
e−i2πnα−1t∂a1 ∂b2 ∂c3u(x1, x2, t)dt = (−1)c

∫ α

0
∂a1 ∂b2u(x1, x2, t)∂

c
t [e−i2πnα−1t ]dt

= (i2πα−1n)c∂a1 ∂b2

∫ α

0
e−i2πnα−1t u(x1, x2, t)dt = (iκ)c∂a1 ∂b2U (x1, x2),

for a, b, c = 0, 1, 2, . . .. By combining this with (5.5), it follows that

(�′ − 4π2α−2n2)2U (x1, x2) = 0,

as claimed. The smoothness and the vanishing of the sub-Cauchy data along I∗ are rather
immediate. ��
5.6 The structure of homogeneous solutions to the square of the massive Laplacian

Theorem 5.9 allows us to reduce the three-dimensional situation to a two-dimensional one.
Accordingly, we no longer need to separate � and �′, and write � := ∂21 + ∂22 for the
two-dimensional Laplacian. The partial differential operators

� − κ2 (5.6)

for real κ are very similar to the classical Helmholtz equation, only that we would expect a
plus sign instead of the minus. Instead the operators (5.6) appear in the context of massive
Gaussian free fields (see, e. g., [18]), sowe call�−κ2 [with κ �= 0] themassive Laplacian. As
before, we identify the (x1, x2)-plane with the complex plane C, and work with the R-linear
operators D,D′:

Du := 2∂u + λū, D′u := 2∂̄u − λū.

Here, λ ∈ C is a constant with |λ|2 = κ2. We calculate that

DD′u = D′Du = (� − |λ|2)u = (� − κ2)u. (5.7)

If Conjecture 5.1 holds, we would also expect this to carry over to the setting of massive
Laplacians in the plane, which might be easier to decide conclusively.

Conjecture 5.10 Suppose κ ∈ R
×, and that �∗ is bounded and simply connected with

C∞-smooth Jordan curve boundary ∂�∗. Suppose I∗ ⊂ ∂�∗ is an arc which is nowhere real-
analytic, and let O∗ be a planar open neighborhood of I∗, for which O∗ ∩ �∗ is connected.
Then every function function U on O∗ ∩ �∗, which extends to a C3-smooth function on
(O∗ ∩ �∗) ∪ I∗, with (� − κ2)2U = 0 on O∗ ∩ �∗ and flatness given by

U |I∗ = ∂nU |I∗ = ∂2nU |I∗ = 0,

must be trivial: U (z) ≡ 0 on O∗ ∩ �∗.

We will now try to explain how the proof of Theorem 1.10 can be modified to fit the
present setting, and why it does not seem to yield Conjecture 5.10.

We consider the function V := D2U , which vanishes along the arc I∗ and solves (D′)2V =
0 on O∗ ∩ �∗ in view of the factorization (5.7). Next, we put V2 := D′V , which then solves
D′V2 = 0 on O∗ ∩ �∗. We also put V1 := V − ξV2, where ξ := Re z + c is a real-valued
affine function with 2∂̄ξ = 1. Then
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D′V1 = D′V − D′[ξV2] = V2 − D′[ξV2] = V2 − 2∂̄(ξV2) + λξ̄ V̄2

= V2 − 2∂̄(ξV2) + λξ V̄2 = V2 − 2V2∂̄ξ − ξ ∂̄V2 + λξ V̄2 = −ξ ∂̄V2 + λξ V̄2

= −ξD′V2 = 0,

so that D′Vj = 0 holds onO∗ ∩ �∗ for j = 1, 2, and V = V1 + ξV2. Since V = 0 along I∗,
we obtain that ξ = −V1/V2 wherever V2 is nonzero along I∗. Unless V2 vanishes identically,
the theory of generalized functions of Vekua and Bers [4,23,24], shows that V2 vanishes at
most on a closed set of zero length. But Sakai’s theorem does not apply, and we run into
difficulty.
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